1
|
Mei W, Faraj Tabrizi S, Godina C, Lovisa AF, Isaksson K, Jernström H, Tavazoie SF. A commonly inherited human PCSK9 germline variant drives breast cancer metastasis via LRP1 receptor. Cell 2024:S0092-8674(24)01326-6. [PMID: 39657676 DOI: 10.1016/j.cell.2024.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 08/12/2024] [Accepted: 11/10/2024] [Indexed: 12/12/2024]
Abstract
Identifying patients at risk for metastatic relapse is a critical medical need. We identified a common missense germline variant in proprotein convertase subtilisin/kexin type 9 (PCSK9) (rs562556, V474I) that is associated with reduced survival in multiple breast cancer patient cohorts. Genetic modeling of this gain-of-function single-nucleotide variant in mice revealed that it causally promotes breast cancer metastasis. Conversely, host PCSK9 deletion reduced metastatic colonization in multiple breast cancer models. Host PCSK9 promoted metastatic initiation events in lung and enhanced metastatic proliferative competence by targeting tumoral low-density lipoprotein receptor related protein 1 (LRP1) receptors, which repressed metastasis-promoting genes XAF1 and USP18. Antibody-mediated therapeutic inhibition of PCSK9 suppressed breast cancer metastasis in multiple models. In a large Swedish early-stage breast cancer cohort, rs562556 homozygotes had a 22% risk of distant metastatic relapse at 15 years, whereas non-homozygotes had a 2% risk. Our findings reveal that a commonly inherited genetic alteration governs breast cancer metastasis and predicts survival-uncovering a hereditary basis underlying breast cancer metastasis.
Collapse
Affiliation(s)
- Wenbin Mei
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY, USA
| | | | - Christopher Godina
- Division of Oncology, Department of Clinical Sciences in Lund, Lund University Cancer Center/Kamprad, Lund, Sweden
| | - Anthea F Lovisa
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY, USA
| | - Karolin Isaksson
- Division of Surgery, Department of Clinical Sciences in Lund, Lund University and Department of Surgery Kristianstad Hospital, Lund, Sweden
| | - Helena Jernström
- Division of Oncology, Department of Clinical Sciences in Lund, Lund University Cancer Center/Kamprad, Lund, Sweden
| | - Sohail F Tavazoie
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
2
|
Wang Y, Li G, Wang H, Qi Q, Wang X, Lu H. Targeted therapeutic strategies for Nectin-4 in breast cancer: Recent advances and future prospects. Breast 2024; 79:103838. [PMID: 39577073 PMCID: PMC11616553 DOI: 10.1016/j.breast.2024.103838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 07/31/2024] [Accepted: 11/13/2024] [Indexed: 11/24/2024] Open
Abstract
Nectin-4 is a cell adhesion molecule which has gained more and more attention as a therapeutic target in cancer recently. Overexpression of Nectin-4 has been observed in various tumors, including breast cancer, and is associated with tumor progression. Enfortumab vedotin(EV)is an antibody-drug conjugate (ADC) targeting Nectin-4, which has been approved by FDA for the treatment of urothelial carcinoma. Notably, Nectin-4 was also investigated as a target for breast cancer in preclinical and clinical settings. Nectin-4-targeted approaches, such as ADCs, oncolytic viruses, photothermal therapy and immunotherapy, have shown promising results in early-phase clinical trials. These therapies offer novel strategies for delivering targeted treatments to Nectin-4-expressing cancer cells, enhancing treatment efficacy and minimizing off-target effects. In conclusion, this review aims to provide an overview of the latest advances in understanding the role of Nectin-4 in breast cancer and discuss the future development prospects of Nectin-4 targeted agents.
Collapse
Affiliation(s)
- Yufei Wang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China; Laboratory of Cancer Biology, Key Lab of Biotherapy in Zhejiang, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Guangliang Li
- Department of Medical Oncology (Breast Cancer), Zhejiang Cancer Hospital, Hangzhou, China
| | - Hanying Wang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Quan Qi
- Department of Medical Oncology, Huzhou Central Hospital, Huzhou, China
| | - Xian Wang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China.
| | - Haiqi Lu
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China.
| |
Collapse
|
3
|
Lopez M, Crompot E, Josselin E, Farina A, Rubis M, Castellano R, Fares J, Wehbe M, Collette Y, Charafe E, Blanchin S, Romagne F, Pálfi A, Hechler T, Pahl A, Azim HA, Lhospice F, Mamessier E, Bertucci F, Elands J, Préville X, Olive D. ETx-22, a Novel Nectin-4-Directed Antibody-Drug Conjugate, Demonstrates Safety and Potent Antitumor Activity in Low-Nectin-4-Expressing Tumors. CANCER RESEARCH COMMUNICATIONS 2024; 4:2998-3012. [PMID: 39440991 PMCID: PMC11583010 DOI: 10.1158/2767-9764.crc-24-0176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/13/2024] [Accepted: 10/18/2024] [Indexed: 10/25/2024]
Abstract
SIGNIFICANCE ETx-22, a novel ADC combining a tumor nectin-4-specific antibody and an innovative linker to exatecan, demonstrates significant and durable responses in low-target-expressing tumor models that are resistant to MMAE-based EV and has a better toxicity profile. This new ADC has the potential to benefit additional patient populations beyond its current indication.
Collapse
Affiliation(s)
- Marc Lopez
- Laboratoire d’Oncologie Prédictive, Centre de Recherche en Cancérologie de Marseille, CRCM, Inserm UMR1068, CNRS UMR7258, Aix-Marseille Université U105, Institut Paoli-Calmettes, Label “Ligue Contre le Cancer”, Marseille, France
| | - Emerence Crompot
- Laboratoire d’Oncologie Prédictive, Centre de Recherche en Cancérologie de Marseille, CRCM, Inserm UMR1068, CNRS UMR7258, Aix-Marseille Université U105, Institut Paoli-Calmettes, Label “Ligue Contre le Cancer”, Marseille, France
| | - Emmanuelle Josselin
- TrGET Platform, Centre de Recherche en Cancérologie de Marseille, CRCM, Inserm UMR1068, CNRS UMR7258, Aix Marseille Université U105, Institut Paoli-Calmettes, Marseille, France
| | - Anne Farina
- ICEP Platform, Centre de Recherche en Cancérologie de Marseille, CRCM, Inserm UMR1068, CNRS UMR7258, Aix Marseille Université U105, Institut Paoli-Calmettes, Marseille, France
| | - Marion Rubis
- ICEP Platform, Centre de Recherche en Cancérologie de Marseille, CRCM, Inserm UMR1068, CNRS UMR7258, Aix Marseille Université U105, Institut Paoli-Calmettes, Marseille, France
| | - Remy Castellano
- TrGET Platform, Centre de Recherche en Cancérologie de Marseille, CRCM, Inserm UMR1068, CNRS UMR7258, Aix Marseille Université U105, Institut Paoli-Calmettes, Marseille, France
| | - Joanna Fares
- Emergence Therapeutics SA, A Wholly Owned Subsidiary of Eli Lilly and Company, Marseille, France
| | - Maria Wehbe
- Emergence Therapeutics SA, A Wholly Owned Subsidiary of Eli Lilly and Company, Marseille, France
| | - Yves Collette
- TrGET Platform, Centre de Recherche en Cancérologie de Marseille, CRCM, Inserm UMR1068, CNRS UMR7258, Aix Marseille Université U105, Institut Paoli-Calmettes, Marseille, France
| | - Emmanuelle Charafe
- ICEP Platform, Centre de Recherche en Cancérologie de Marseille, CRCM, Inserm UMR1068, CNRS UMR7258, Aix Marseille Université U105, Institut Paoli-Calmettes, Marseille, France
| | | | | | | | | | | | - Hatem A. Azim
- Emergence Therapeutics SA, A Wholly Owned Subsidiary of Eli Lilly and Company, Marseille, France
| | - Florence Lhospice
- Emergence Therapeutics SA, A Wholly Owned Subsidiary of Eli Lilly and Company, Marseille, France
| | - Emilie Mamessier
- Laboratoire d’Oncologie Prédictive, Centre de Recherche en Cancérologie de Marseille, CRCM, Inserm UMR1068, CNRS UMR7258, Aix-Marseille Université U105, Institut Paoli-Calmettes, Label “Ligue Contre le Cancer”, Marseille, France
| | - François Bertucci
- Laboratoire d’Oncologie Prédictive, Centre de Recherche en Cancérologie de Marseille, CRCM, Inserm UMR1068, CNRS UMR7258, Aix-Marseille Université U105, Institut Paoli-Calmettes, Label “Ligue Contre le Cancer”, Marseille, France
- Département d’Oncologie Médicale, Institut Paoli-Calmettes Marseille, France
| | - Jack Elands
- Emergence Therapeutics SA, A Wholly Owned Subsidiary of Eli Lilly and Company, Marseille, France
| | - Xavier Préville
- Emergence Therapeutics SA, A Wholly Owned Subsidiary of Eli Lilly and Company, Marseille, France
| | - Daniel Olive
- Equipe Immunité et Cancer, Centre de Recherche en Cancérologie de Marseille, CRCM, Inserm UMR1068, CNRS UMR7258, Aix-Marseille Université U105, Institut Paoli-Calmettes, Marseille, France
| |
Collapse
|
4
|
Ge S, Jia T, Shi J, Cao J, Sang S, Li J, Zhang B, Deng S. A cutting-edge 68Ga-labeled bicyclic peptide PET molecular probe for noninvasive assessment of Nectin4 expression. Bioorg Chem 2024; 152:107745. [PMID: 39213795 DOI: 10.1016/j.bioorg.2024.107745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/09/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
The diagnosis and treatment of triple negative breast cancer (TNBC) are huge challenges due to the lack of identifiable molecular targets. The high expression of Nectin4 in a variety of tumors, including TNBC, is associated with the occurrence, invasion, progression and poor prognosis of tumors. Therefore, Nectin4 is an emerging biomarker for the diagnosis and treatment of TNBC. A PET imaging method to non-invasively quantify Nectin4 expression levels may aid in TNBC diagnosis and classification. In this study, a novel bicyclic peptide molecular probe [68Ga]Ga-DN68 was used to evaluate the expression of Nectin4 in tumors. The radiolabeling rate of [68Ga]Ga-DN68 was over 97 %, while maintaining more than 99 % radiochemical purity. In vitro experiments showed that [68Ga]Ga-DN68 could effectively target Nectin4 in tumor cells, and the cellular uptake of MC38-Nectin4 cells (Nectin4+) was significantly higher than that of MC38 cells (Nectin4-). Biodistribution and PET imaging studies consistently showed that [68Ga]Ga-DN68 was specifically accumulated in MC38-Nectin4 and MDA-MB-468 tumors, which was significantly higher than that of MC38. When co-injected with cold DN68, the specific accumulation could block the tumor uptake of MDA-MB-468. Notably, the signal-to-noise ratio at the tumor site gradually increased over time, reaching a peak at 1 h. These results strongly suggest that [68Ga]Ga-DN68 has broad application prospects as a PET tracer in TNBC imaging.
Collapse
Affiliation(s)
- Shushan Ge
- Department of Nuclear Medicine, The First Affiliated Hospital of Soochow University, Suzhou 215006, China; Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou 215006, China; Nuclear Medicine Laboratory of Mianyang Central Hospital, Mianyang 621099, China.
| | - Tongtong Jia
- Department of Nuclear Medicine, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Jinyu Shi
- Department of Nuclear Medicine, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Jinming Cao
- Department of Nuclear Medicine, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Shibiao Sang
- Department of Nuclear Medicine, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Jihui Li
- Department of Nuclear Medicine, The First Affiliated Hospital of Soochow University, Suzhou 215006, China.
| | - Bin Zhang
- Department of Nuclear Medicine, The First Affiliated Hospital of Soochow University, Suzhou 215006, China.
| | - Shengming Deng
- Department of Nuclear Medicine, The First Affiliated Hospital of Soochow University, Suzhou 215006, China; Nuclear Medicine Laboratory of Mianyang Central Hospital, Mianyang 621099, China.
| |
Collapse
|
5
|
Khosravanian MJ, Mirzaei Y, Mer AH, Keyhani-Khankahdani M, Abdinia FS, Misamogooe F, Amirkhani Z, Bagheri N, Meyfour A, Jahandideh S, Barpour N, Nikmanesh Y, Shahsavarani H, Abdollahpour-Alitappeh M. Nectin-4-directed antibody-drug conjugates (ADCs): Spotlight on preclinical and clinical evidence. Life Sci 2024; 352:122910. [PMID: 39002610 DOI: 10.1016/j.lfs.2024.122910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/15/2024]
Abstract
Nectin-4 (Nectin cell adhesion molecule 4), a type I transmembrane cell adhesion protein, was demonstrated to be overexpressed in a variety of tumors, making it an attractive antigen for targeted therapies such as antibody-drug conjugates (ADCs). Of great note, the US Food and Drug Administration (FDA)-approval of the first Nectin-4-directed ADC, enfortumab vedotin (EV), in urothelial cancer (UC) not only introduced Nectin-4 as a clinically validated and reliable target antigen but also confirmed the evolving role of Nectin-4-directed ADCs as novel and promising cancer therapeutics. In addition to EV, there have been or are currently being seven and eleven Nectin-4-directed ADCs, respectively, in various stages of clinical trials and preclinical development, offering a promising future for the treatment of Nectin-4-positive cancer patients. This study reviewed clinical- and preclinical-stage Nectin-4-directed ADCs.
Collapse
Affiliation(s)
| | - Yousef Mirzaei
- Department of Medical Biochemical Analysis, Cihan University-Erbil, Kurdistan Region, Iraq
| | - Ali Hussein Mer
- Department of Nursing, Mergasour Technical Institute, Erbil Polytechnic University, Erbil, Kurdistan Region, Iraq
| | | | | | - Fatemeh Misamogooe
- Student Research Committee, Larestan University of Medical Sciences, Larestan, Iran
| | - Zahra Amirkhani
- Student Research Committee, Larestan University of Medical Sciences, Larestan, Iran
| | - Nader Bagheri
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord 8813733450, Iran
| | - Anna Meyfour
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeed Jahandideh
- Department of Research and Development, Orchidgene co, Tehran 1387837584, Iran
| | - Nesa Barpour
- Department of Genetics, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Yousef Nikmanesh
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hosein Shahsavarani
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran 1983963113, Iran
| | | |
Collapse
|
6
|
Ando T, Ka M, Sugiura Y, Tokunaga M, Nakagawa N, Iida T, Matsumoto Y, Watanabe K, Kawakami M, Sato M, Kage H. NECTIN2 is a prognostic biomarker and potential therapeutic target in lung adenocarcinoma. Respir Investig 2024; 62:582-588. [PMID: 38678829 DOI: 10.1016/j.resinv.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/21/2024] [Accepted: 04/06/2024] [Indexed: 05/01/2024]
Abstract
INTRODUCTION NECTINs are transmembrane proteins mediating cell-to-cell adhesion. NECTINs interact with integrins or other membrane receptors to trigger multiple cellular functions. Aberrant NECTIN expression is associated with cancer progression and poor outcomes. While NECTIN2 is overexpressed in various cancer types, its role in lung cancer is not well understood. MATERIAL AND METHODS We investigated the function of NECTIN2 in lung adenocarcinoma (LUAD) using the Cancer Genome Atlas (TCGA) dataset and clinical samples of 105 LUAD patients who had undergone surgical resection. Cell proliferation, apoptosis, migration and invasion were investigated using human lung adenocarcinoma cell lines. RESULTS We found that high NECTIN2 expression correlated with reduced overall survival in LUAD in TCGA database. In clinical samples, high NECTIN2 expression was associated with lower recurrence-free survival in all patients (P < 0.001) and in stage I patients (P = 0.001). Functional analyses demonstrated that NECTIN2 knockout promoted cell apoptosis and diminished cell proliferation and migration capacity. NECTIN2 overexpression did not significantly affect cellular functions. DISCUSSION Our results suggest that NECTIN2 plays a significant role in cell apoptosis and cancer cell migration, leading to increased postoperative recurrence. Furthermore, NECTIN2 serves as a prognostic indicator and a potential therapeutic target in LUAD. CONCLUSIONS High NECTIN2 expression in LUAD was found to be associated with postoperative recurrence, and was observed to play an important role in cell apoptosis and migration.
Collapse
Affiliation(s)
- Takahiro Ando
- Department of Respiratory Medicine, The University of Tokyo. 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan.
| | - Mirei Ka
- Department of Respiratory Medicine, The University of Tokyo. 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Yuriko Sugiura
- Department of Respiratory Medicine, The University of Tokyo. 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Masakatsu Tokunaga
- Department of Respiratory Medicine, The University of Tokyo. 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Natsuki Nakagawa
- Department of Respiratory Medicine, The University of Tokyo. 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Takahiro Iida
- Department of Thoracic Surgery, The University of Tokyo. 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Yoko Matsumoto
- Department of Respiratory Medicine, The University of Tokyo. 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Kousuke Watanabe
- Department of Clinical Laboratory, The University of Tokyo. 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Masanori Kawakami
- Department of Respiratory Medicine, The University of Tokyo. 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Masaaki Sato
- Department of Thoracic Surgery, The University of Tokyo. 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Hidenori Kage
- Department of Respiratory Medicine, The University of Tokyo. 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
7
|
Mofunanya A, Cameron ER, Braun CJ, Celeste F, Zhao X, Hemann MT, Scott KL, Li J, Powers S. Simultaneous screening of overexpressed genes in breast cancer for oncogenic drivers and tumor dependencies. Sci Rep 2024; 14:13227. [PMID: 38851782 PMCID: PMC11162420 DOI: 10.1038/s41598-024-64297-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 06/06/2024] [Indexed: 06/10/2024] Open
Abstract
There are hundreds of genes typically overexpressed in breast cancer cells and it's often assumed that their overexpression contributes to cancer progression. However, the precise proportion of these overexpressed genes contributing to tumorigenicity remains unclear. To address this gap, we undertook a comprehensive screening of a diverse set of seventy-two genes overexpressed in breast cancer. This systematic screening evaluated their potential for inducing malignant transformation and, concurrently, assessed their impact on breast cancer cell proliferation and viability. Select genes including ALDH3B1, CEACAM5, IL8, PYGO2, and WWTR1, exhibited pronounced activity in promoting tumor formation and establishing gene dependencies critical for tumorigenicity. Subsequent investigations revealed that CEACAM5 overexpression triggered the activation of signaling pathways involving β-catenin, Cdk4, and mTOR. Additionally, it conferred a growth advantage independent of exogenous insulin in defined medium and facilitated spheroid expansion by inducing multiple layers of epithelial cells while preserving a hollow lumen. Furthermore, the silencing of CEACAM5 expression synergized with tamoxifen-induced growth inhibition in breast cancer cells. These findings underscore the potential of screening overexpressed genes for both oncogenic drivers and tumor dependencies to expand the repertoire of therapeutic targets for breast cancer treatment.
Collapse
Affiliation(s)
- Adaobi Mofunanya
- Department of Pathology, Stony Brook Cancer Center, Stony Brook, NY, 11794, USA
| | - Eleanor R Cameron
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Christian J Braun
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Frank Celeste
- Department of Pathology, Stony Brook Cancer Center, Stony Brook, NY, 11794, USA
- Graduate Program in Genetics, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Xiaoyu Zhao
- Department of Pathology, Stony Brook Cancer Center, Stony Brook, NY, 11794, USA
- Graduate Program in Molecular and Cellular Biology, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Michael T Hemann
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Kenneth L Scott
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jinyu Li
- Department of Pathology, Stony Brook Cancer Center, Stony Brook, NY, 11794, USA
| | - Scott Powers
- Department of Pathology, Stony Brook Cancer Center, Stony Brook, NY, 11794, USA.
- Graduate Program in Genetics, Stony Brook University, Stony Brook, NY, 11794, USA.
- Graduate Program in Molecular and Cellular Biology, Stony Brook University, Stony Brook, NY, 11794, USA.
| |
Collapse
|
8
|
Zhang J, Duan X, Chen X, Zhang Z, Sun H, Shou J, Zhao G, Wang J, Ma Y, Yang Y, Tian X, Shen Q, Yu W, He Z, Fan Y, Yang X. Translational PET Imaging of Nectin-4 Expression in Multiple Different Cancers with 68Ga-N188. J Nucl Med 2024; 65:12S-18S. [PMID: 38719240 DOI: 10.2967/jnumed.123.266830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/31/2024] [Indexed: 05/30/2024] Open
Abstract
Nectin cell adhesion molecule 4 (nectin-4) is a transmembrane protein overexpressed on a variety of cancers and plays an important role in oncogenic and metastatic processes. The nectin-4-targeted antibody-drug conjugate enfortumab vedotin has been approved for treating locally advanced or metastatic urothelial cancer, but the efficacy in other types of cancer remains to be explored. The aim of this study was to evaluate the feasibility of nectin-4-targeted PET imaging with 68Ga-N188 as a noninvasive method to quantify membranous nectin-4 expression in multiple tumor types-an approach that may provide insight for patient stratification and treatment selection. Methods: Sixty-two patients with 16 types of cancer underwent head-to-head 68Ga-N188 and 18F-FDG PET/CT imaging for initial staging or detection of recurrence and metastases. Correlation between lesion SUVmax and nectin-4 expression determined by immunohistochemistry staining was analyzed in 36 of 62 patients. Results: The SUVmax of 68Ga-N188 had a positive correlation with membranous nectin-4 expression in the various tumor types tested (r = 0.458; P = 0.005), whereas no association was observed between the SUVmax and cytoplasmic nectin-4 expression. The detection rates for patient-based analysis of 68Ga-N188 and 18F-FDG PET/CT examinations were comparable (95.00% [57/60] vs. 93.33% [56/60]). In patients with pancreatic cancer, 68Ga-N188 exhibited a potential advantage for detecting residual or locally recurrent tumors; this advantage may assist in clinical decision-making. Conclusion: The correlation between nectin-4-targeted 68Ga-N188 PET imaging and membranous nectin-4 expression indicates the potential of 68Ga-N188 as an effective tool for selecting patients who may benefit from enfortumab vedotin treatment. The PET imaging results provided evidence to explore nectin-4-targeted therapy in a variety of tumors. 68Ga-N188 may improve the restaging of pancreatic cancer but requires further evaluation in a powered, prospective setting.
Collapse
Affiliation(s)
- Jianhua Zhang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
| | - Xiaojiang Duan
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
| | - Xueqi Chen
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
| | - Zhuochen Zhang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
| | - Hongwei Sun
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
| | - Jiayin Shou
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
| | - Guangyu Zhao
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
| | - Jianxin Wang
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, China
| | - Yongsu Ma
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, China
| | - Yinmo Yang
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, China
| | - Xiaodong Tian
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, China
| | - Qi Shen
- Department of Urology, Peking University First Hospital, Beijing, China
- National Research Center for Genitourinary Oncology, Institute of Urology, Peking University, Beijing, China
| | - Wei Yu
- Department of Urology, Peking University First Hospital, Beijing, China
- National Research Center for Genitourinary Oncology, Institute of Urology, Peking University, Beijing, China
| | - Zhisong He
- Department of Urology, Peking University First Hospital, Beijing, China
- National Research Center for Genitourinary Oncology, Institute of Urology, Peking University, Beijing, China
| | - Yan Fan
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
| | - Xing Yang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China;
- Department of Central Laboratory, Peking University First Hospital, Beijing, China
- Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Beijing, China; and
- International Cancer Institute, Peking University Health Science Center, Beijing, China
| |
Collapse
|
9
|
Li K, Zhou Y, Zang M, Jin X, Li X. Therapeutic prospects of nectin-4 in cancer: applications and value. Front Oncol 2024; 14:1354543. [PMID: 38606099 PMCID: PMC11007101 DOI: 10.3389/fonc.2024.1354543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/15/2024] [Indexed: 04/13/2024] Open
Abstract
Nectin-4 is a Ca2+-independent immunoglobulin-like protein that exhibits significantly elevated expression in malignant tumors while maintaining extremely low levels in healthy adult tissues. In recent years, overexpression of Nectin-4 has been implicated in tumor occurrence and development of various cancers, including breast cancer, urothelial cancer, and lung cancer. In 2019, the Food and Drug Administration approved enfortumab vedotin, the first antibody-drug conjugate targeting Nectin-4, for the treatment of urothelial carcinoma. This has emphasized the value of Nectin-4 in tumor targeted therapy and promoted the implementation of more clinical trials of enfortumab vedotin. In addition, many new drugs targeting Nectin-4 for the treatment of malignant tumors have entered clinical trials, with the aim of exploring potential new indications. However, the exact mechanisms by which Nectin-4 affects tumorigenesis and progression are still unclear, and the emergence of drug resistance and treatment-related adverse reactions poses challenges. This article reviews the diagnostic potential, prognostic significance, and molecular role of Nectin-4 in tumors, with a focus on clinical trials in the field of Nectin-4-related tumor treatment and the development of new drugs targeting Nectin-4.
Collapse
Affiliation(s)
- Kaiyue Li
- Department of Nuclear Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yujing Zhou
- Department of Nuclear Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Maolin Zang
- Department of Urology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xin Jin
- Imaging Center, Jinan Third People’s Hospital, Jinan, Shandong, China
| | - Xin Li
- Department of Nuclear Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|
10
|
Tanaka Y, Ito T, Murata M, Tanegashima K, Kaku-Ito Y, Nakahara T. NECTIN4-targeted antibody-drug conjugate is a potential therapeutic option for extramammary Paget disease. Exp Dermatol 2024; 33:e15049. [PMID: 38509717 DOI: 10.1111/exd.15049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/15/2024] [Accepted: 02/24/2024] [Indexed: 03/22/2024]
Abstract
Extramammary Paget disease (EMPD) is a rare skin cancer mainly found in areas rich in apocrine sweat glands. Since the effective treatments for advanced and/or metastasized EMPD are limited, there is an urgent need to develop novel therapeutic approaches. Nectin cell adhesion molecule 4 (NECTIN4) is highly expressed in cancers and considered to be a promising therapeutic target. NECTIN4 is also expressed in EMPD, but its role and the efficacy of NECTIN4-targeted therapy in EMPD remain unclear. This study investigated the potential of NECTIN4 as a novel therapeutic target for EMPD. NECTIN4 expression was immunohistochemically analysed in EMPD patients' primary (118 samples) and metastatic (21 samples) lesions. Using an EMPD cell line, KS-EMPD-1, the effects of NECTIN4 inhibition on cell proliferation and migration were investigated. NECTIN4 was expressed in primary and metastatic EMPD lesions, and the H-score of NECTIN4 staining was significantly higher in metastatic lesions than in primary ones. Knockdown of NECTIN4 significantly inhibited cell proliferation and affected cell migration. The cytotoxic effects of NECTIN4-targeted antibody-drug conjugate (ADC) were further evaluated, revealing a significant decrease in EMPD cell viability. In conclusion, NECTIN4 is a potential therapeutic target and NECTIN4-targeted ADC is promising as a therapeutic option for EMPD.
Collapse
Affiliation(s)
- Yuka Tanaka
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takamichi Ito
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Maho Murata
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Keiko Tanegashima
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yumiko Kaku-Ito
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takeshi Nakahara
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
11
|
Liu CH, Leu SJ, Lee CH, Lin CY, Wang WC, Tsai BY, Lee YC, Chen CL, Yang YY, Lin LT. Production and characterization of single-chain variable fragment antibodies targeting the breast cancer tumor marker nectin-4. Front Immunol 2024; 14:1292019. [PMID: 38288120 PMCID: PMC10822971 DOI: 10.3389/fimmu.2023.1292019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 12/11/2023] [Indexed: 01/31/2024] Open
Abstract
Background Nectin-4 is a novel biomarker overexpressed in various types of cancer, including breast cancer, in which it has been associated with poor prognosis. Current literature suggests that nectin-4 has a role in cancer progression and may have prognostic and therapeutic implications. The present study aims to produce nectin-4-specific single-chain variable fragment (scFv) antibodies and evaluate their applications in breast cancer cell lines and clinical specimens. Methods We generated recombinant nectin-4 ectodomain fragments as immunogens to immunize chickens and the chickens' immunoglobulin genes were amplified for construction of anti-nectin-4 scFv libraries using phage display. The binding capacities of the selected clones were evaluated with the recombinant nectin-4 fragments, breast cancer cell lines, and paraffin-embedded tissue sections using various laboratory approaches. The binding affinity and in silico docking profile were also characterized. Results We have selected two clones (S21 and L4) from the libraries with superior binding capacity. S21 yielded higher signals when used as the primry antibody for western blot analysis and flow cytometry, whereas clone L4 generated cleaner and stronger signals in immunofluorescence and immunohistochemistry staining. In addition, both scFvs could diminish attachment-free cell aggregation of nectin-4-positive breast cancer cells. As results from ELISA indicated that L4 bound more efficiently to fixed nectin-4 ectodomain, molecular docking analysis was further performed and demonstrated that L4 possesses multiple polar contacts with nectin-4 and diversity in interacting residues. Conclusion Overall, the nectin-4-specific scFvs could recognize nectin-4 expressed by breast cancer cells and have the merit of being further explored for potential diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Ching-Hsuan Liu
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Microbiology & Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Sy-Jye Leu
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chi-Hsin Lee
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Cheng-Yuan Lin
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Wei-Chu Wang
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | | | - Yu-Ching Lee
- The Center of Translational Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chi-Long Chen
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University and Taipei Medical University Hospital, Taipei, Taiwan
| | - Yi-Yuan Yang
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Core Laboratory of Antibody Generation and Research, Taipei Medical University, Taipei, Taiwan
| | - Liang-Tzung Lin
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
12
|
Nanamiya T, Takane K, Yamaguchi K, Okawara Y, Arakawa M, Saku A, Ikenoue T, Fujiyuki T, Yoneda M, Kai C, Furukawa Y. Expression of PVRL4, a molecular target for cancer treatment, is transcriptionally regulated by FOS. Oncol Rep 2024; 51:17. [PMID: 38063270 PMCID: PMC10739986 DOI: 10.3892/or.2023.8676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 10/04/2023] [Indexed: 12/18/2023] Open
Abstract
PVRL4 (or nectin‑4) is a promising therapeutic target since its upregulated expression is found in a wide range of human cancer types. Enfortumab vedotin, an antibody‑drug conjugate targeting PVRL4, is clinically used for the treatment of urothelial bladder cancer. In addition, rMV‑SLAMblind, a genetically engineered oncolytic measles virus, can infect cancer cells and induce apoptosis through interaction with PVRL4. Although PVRL4 transcript levels are elevated in breast, lung and ovarian cancer, the mechanisms of its upregulation have not yet been uncovered. To clarify the regulatory mechanisms of elevated PVRL4 expression in breast cancer cells, Assay for Transposase‑Accessible Chromatin‑sequencing and chromatin immunoprecipitation‑sequencing (ChIP‑seq) data were used to search for its regulatory regions. Using breast cancer cells, an enhancer region was ultimately identified. Additional analyses, including ChIP and reporter assays, demonstrated that FOS interacted with the PVRL4 enhancer region, and that alterations of the FOS‑binding motifs in the enhancer region decreased reporter activity. Consistent with these data, exogenous expression of FOS enhanced the reporter activity and PVRL4 expression in breast cancer cells. Furthermore, RNA‑seq analysis using breast cancer cells treated with PVRL4 small interfering RNA revealed its possible involvement in the cytokine response and immune system. These data suggested that FOS was involved, at least partly, in the regulation of PVRL4 expression in breast cancer cells, and that elevated PVRL4 expression may regulate the response of cancer cells to cytokines and the immune system.
Collapse
Affiliation(s)
- Tomoyuki Nanamiya
- Division of Clinical Genome Research, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Kiyoko Takane
- Division of Clinical Genome Research, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Kiyoshi Yamaguchi
- Division of Clinical Genome Research, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Yuya Okawara
- Division of Clinical Genome Research, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Mariko Arakawa
- Division of Clinical Genome Research, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Akari Saku
- Division of Clinical Genome Research, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Tsuneo Ikenoue
- Division of Clinical Genome Research, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Tomoko Fujiyuki
- Division of Virus Engineering, Institute of Industrial Science, The University of Tokyo, Tokyo 153-8505, Japan
| | - Misako Yoneda
- Division of Virological Medicine, Institute of Industrial Science, The University of Tokyo, Tokyo 153-8505, Japan
| | - Chieko Kai
- Division of Infectious Disease Control Science, Institute of Industrial Science, The University of Tokyo, Tokyo 153-8505, Japan
| | - Yoichi Furukawa
- Division of Clinical Genome Research, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| |
Collapse
|
13
|
Wang H, Sun D, Chen J, Li H, Chen L. Nectin-4 has emerged as a compelling target for breast cancer. Eur J Pharmacol 2023; 960:176129. [PMID: 38059449 DOI: 10.1016/j.ejphar.2023.176129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 10/08/2023] [Accepted: 10/18/2023] [Indexed: 12/08/2023]
Abstract
The incidence of breast cancer in women has increased year by year, becoming one of the most common malignant tumors in females worldwide. Most patients can be treated with surgery and endocrine drugs, but there are still some patients who lack effective treatment, such as triple-negative breast cancer (TNBC). Nectin-4, a protein encoded by poliovirus receptor-associated protein 4, is a Ca2+-independent immunoglobulin-like protein. It is mainly involved in the adhesion between cells. In recent years, studies have found that Nectin-4 is overexpressed in breast cancer and several other malignancies. Otherwise, several monoclonal antibodies and inhibitors targeting Nectin-4 have shown prosperous outcomes, so Nectin-4 has great potential to be a therapeutic target for breast cancer. The present review systematically describes the significance of Nectin-4 in each aspect of breast cancer, as well as the molecular mechanisms of these aspects mediated by Nectin-4. We further highlight ongoing or proposed therapeutic strategies for breast cancer specific to Nectin-4.
Collapse
Affiliation(s)
- Hui Wang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Dejuan Sun
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Jinxia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Hua Li
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China; Institute of Structural Pharmacology & TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China.
| | - Lixia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
14
|
Matsuyoshi N, Oya K, Nomura T. Skin fragility: Caution is required with the use of pain relief patches during enfortumab vedotin treatment. J Dermatol 2023; 50:e303-e304. [PMID: 37073099 DOI: 10.1111/1346-8138.16809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/14/2023] [Accepted: 04/05/2023] [Indexed: 04/20/2023]
Affiliation(s)
- Nao Matsuyoshi
- Department of Dermatology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Kazumasa Oya
- Department of Dermatology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Toshifumi Nomura
- Department of Dermatology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
15
|
Chang HK, Park YH, Choi JA, Kim JW, Kim J, Kim HS, Lee HN, Cho H, Chung JY, Kim JH. Nectin-4 as a Predictive Marker for Poor Prognosis of Endometrial Cancer with Mismatch Repair Impairment. Cancers (Basel) 2023; 15:2865. [PMID: 37345201 DOI: 10.3390/cancers15102865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/11/2023] [Accepted: 05/19/2023] [Indexed: 06/23/2023] Open
Abstract
The adhesion molecule Nectin-4 is a new potential therapeutic target for different types of cancer; however, little is known about its diagnosis significance in endometrial cancer (EC). We found that Nectin-4 expression was significantly higher in EC tissues than in nonadjacent normal tissue. The area under the receiver operating characteristic curve value of 0.922 indicated good diagnostic accuracy for Nectin-4 expression in EC. Furthermore, Nectin-4 expression was associated with DNA mismatch repair (MMR) protein deficiency. Notably, the high Nectin-4 expression group of patients with MSH2/6-deficient EC had shorter progression-free survival than that of the low Nectin-4 expression group. The number of lymphovascular space invasion-positive patients in groups with MMR deficiency and high Nectin-4 expression was also increased compared with that in the low Nectin-4 expression group. Bioinformatics analysis revealed that alteration in Nectin-4 and MMR genes is associated with Nectin-4 expression in EC. To the best of our knowledge, this is the first study to show that Nectin-4 expression may be a potential biomarker for EC diagnosis and that high Nectin-4 expression in MMR-deficient patients with EC can predict short progression-free survival, thus providing clues to identify patients for adjuvant therapy.
Collapse
Affiliation(s)
- Ha Kyun Chang
- Department of Obstetrics and Gynecology, Korea University Ansan Hospital, Korea University School of Medicine, Ansan 15355, Republic of Korea
| | - Young Hoon Park
- Obstetrics and Gynecology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Jung-A Choi
- Obstetrics and Gynecology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06229, Republic of Korea
- Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Jeong Won Kim
- Department of Pathology, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul 07441, Republic of Korea
| | - Jisup Kim
- Department of Pathology, Gil Medical Center, Gachon University College of Medicine, Incheon 21565, Republic of Korea
| | - Hyo Sun Kim
- Obstetrics and Gynecology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Hae Nam Lee
- Department of Obstetrics and Gynecology, Catholic University of Korea Bucheon St. Mary's Hospital, Bucheon 14647, Republic of Korea
| | - Hanbyoul Cho
- Obstetrics and Gynecology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06229, Republic of Korea
- Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Joon-Yong Chung
- Molecular Imaging Branch, National Cancer Institute, Center for Cancer Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jae-Hoon Kim
- Obstetrics and Gynecology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06229, Republic of Korea
- Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| |
Collapse
|
16
|
Wang L, Shi G, Zhao G, He W, Cen Z, Xu F. Efficacy and safety of enfortumab vedotin in the treatment of advanced urothelial carcinoma: a systematic review and meta-analysis. Anticancer Drugs 2023; 34:473-478. [PMID: 36730481 DOI: 10.1097/cad.0000000000001449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
This study aimed to investigate whether Enfortumab vedotin (EV) is suitable for patients with locally advanced or metastatic urothelial carcinoma and to perform a meta-analysis of its efficacy and safety. Five studies involved 584 patients were included in the meta-analysis. The results of single-arm meta-analysis showed that with EV at 1.25 mg/kg, the objective response rate (ORR) was 47%. The meta-analysis indicated that EV showed good efficacy and safety in the patient population of locally advanced or metastatic urothelial carcinoma.
Collapse
Affiliation(s)
- Leibo Wang
- Department of Surgery, Guizhou Orthopaedic Hospital, Guiyang
| | - Guanyu Shi
- Department of Urology, Fenggang County People's Hospital, Zunyi, China
| | - Guoqiang Zhao
- Department of Surgery, Guizhou Orthopaedic Hospital, Guiyang
| | - Wei He
- Department of Surgery, Guizhou Orthopaedic Hospital, Guiyang
| | - Zhuangding Cen
- Department of Surgery, Guizhou Orthopaedic Hospital, Guiyang
| | - Feng Xu
- Department of Surgery, Guizhou Orthopaedic Hospital, Guiyang
| |
Collapse
|
17
|
Nectin-4: a Tumor Cell Target and Status of Inhibitor Development. Curr Oncol Rep 2023; 25:181-188. [PMID: 36696077 DOI: 10.1007/s11912-023-01360-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2022] [Indexed: 01/26/2023]
Abstract
PURPOSE OF REVIEW This study aims to gather the current state of the literature about anti-Nectin-4 innovative associations in solid tumors and to investigate underlying resistance mechanisms. RECENT FINDINGS Antibody-drug conjugate (ADC) targeting Nectin-4 efficacy gained attention and offers a promising association with other antineoplastic drugs especially in urothelial carcinoma. The heterogeneity of Nectin-4 expression across the molecular subtypes was highlighted especially in urothelial cancers. A unique study using preclinical models demonstrated an upregulation of P-gp expression, which may explain the anti-Nectin-4 resistance mechanisms. Further studies are urgently needed to understand anti-Nectin-4 sensitivity and resistance phenomenon. The growing therapeutic associations of enfortumab vedotin offer optimistic opportunities in management and treatment of wide range of solid tumors including rare aggressive malignancies.
Collapse
|
18
|
Yamamoto A, Doak AE, Cheung KJ. Orchestration of Collective Migration and Metastasis by Tumor Cell Clusters. ANNUAL REVIEW OF PATHOLOGY 2023; 18:231-256. [PMID: 36207009 DOI: 10.1146/annurev-pathmechdis-031521-023557] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Metastatic dissemination has lethal consequences for cancer patients. Accruing evidence supports the hypothesis that tumor cells can migrate and metastasize as clusters of cells while maintaining contacts with one another. Collective metastasis enables tumor cells to colonize secondary sites more efficiently, resist cell death, and evade the immune system. On the other hand, tumor cell clusters face unique challenges for dissemination particularly during systemic dissemination. Here, we review recent progress toward understanding how tumor cell clusters overcome these disadvantages as well as mechanisms they utilize to gain advantages throughout the metastatic process. We consider useful models for studying collective metastasis and reflect on how the study of collective metastasis suggests new opportunities for eradicating and preventing metastatic disease.
Collapse
Affiliation(s)
- Ami Yamamoto
- Translational Research Program, Public Health Sciences and Human Biology Divisions, Fred Hutchinson Cancer Center, Seattle, Washington, USA; , , .,Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, Washington, USA
| | - Andrea E Doak
- Translational Research Program, Public Health Sciences and Human Biology Divisions, Fred Hutchinson Cancer Center, Seattle, Washington, USA; , , .,Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, Washington, USA
| | - Kevin J Cheung
- Translational Research Program, Public Health Sciences and Human Biology Divisions, Fred Hutchinson Cancer Center, Seattle, Washington, USA; , ,
| |
Collapse
|
19
|
Fenton SE, VanderWeele DJ. Antibody-drug conjugates and predictive biomarkers in advanced urothelial carcinoma. Front Oncol 2023; 12:1069356. [PMID: 36686762 PMCID: PMC9846350 DOI: 10.3389/fonc.2022.1069356] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/06/2022] [Indexed: 01/05/2023] Open
Abstract
The use of antibody-drug conjugates (ADCs) is expanding in several malignancies, including urothelial carcinoma where two of these medications have been approved for use and several others remain under study. ADCs act by binding to specific cell surface proteins, delivering anticancer agents directly to the target cells. Preclinical studies suggest that loss of these surface proteins alters sensitivity to therapy and expression of target proteins vary significantly based on the tumor subtype, prior therapies and other characteristics. However, use of biomarkers to predict treatment response have not been regularly included in clinical trials and clinician practice. In this review we summarize what is known about potential predictive biomarkers for ADCs in UC and discuss potential areas where use of biomarkers may improve patient care.
Collapse
Affiliation(s)
- Sarah E. Fenton
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, United States
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - David J. VanderWeele
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, United States
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
20
|
Liu R, Zhao K, Wang K, Zhang L, Ma W, Qiu Z, Wang W. Prognostic value of nectin-4 in human cancers: A meta-analysis. Front Oncol 2023; 13:1081655. [PMID: 36937394 PMCID: PMC10020226 DOI: 10.3389/fonc.2023.1081655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 02/16/2023] [Indexed: 03/06/2023] Open
Abstract
Background Many reports have described that abnormal nectin-4 expression may be used as a prognostic marker in many tumors. However, these studies failed to reach a consensus. Here, we performed a meta-analysis to comprehensively evaluate the prognostic value of nectin-4 in cancers. Methods Relevant studies were identified through a comprehensive search of PubMed, EMBASE and Web of science until August 31, 2022. Pooled hazard ratios (HRs) with 95% confidence intervals (CIs) were used to evaluate the relationship between nectin-4 expression and overall survival (OS) and disease-free survival/progression-free survival/relapse-free survival (DFS/PFS/RFS). Odds ratios (ORs) with 95% CIs were applied to assess the relationship between nectin-4 expression and clinicopathologic features. Subgroup analysis was performed to explore the sources of heterogeneity. Sensitivity analysis and funnel plot were used to test the reliability of the results. All data analyses were performed using STATA version 12.0 software. Results Fifteen articles involving 2245 patients were included in the meta-analysis. The pooled analysis showed that high nectin-4 expression was significantly associated with poor OS (HR: 1.75, 95% CI: 1.35-2.28). There was no relationship between high nectin-4 expression and DFS/PFS/RFS (HR: 178, 95% CI: 0.78-4.08).Subgroup analyses revealed that that high nectin-4 expression mainly presented adverse OS in esophageal cancer (EC) (HR: 1.78, 95% CI: 1.30-2.44) and gastric cancer (GC) (HR: 1.92, 95% CI: 1.43-2.58). We also found that high nectin-4 expression was associated with tumor diameter (big vs small) (OR: 1.96, 95% CI: 1.02-3.75), tumor stage (III-IV vs I-II) (OR: 2.04, 95% CI: 1.01-4.12) and invasion depth (T3+T4 vs T2+T1) (OR: 3.95, 95% CI: 2.06-7.57). Conclusions Nectin-4 can be used as an effective prognostic indicator for specific cancers.
Collapse
|
21
|
Miñoza JMA, Rico JA, Zamora PRF, Bacolod M, Laubenbacher R, Dumancas GG, de Castro R. Biomarker Discovery for Meta-Classification of Melanoma Metastatic Progression Using Transfer Learning. Genes (Basel) 2022; 13:2303. [PMID: 36553569 PMCID: PMC9777873 DOI: 10.3390/genes13122303] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Melanoma is considered to be the most serious and aggressive type of skin cancer, and metastasis appears to be the most important factor in its prognosis. Herein, we developed a transfer learning-based biomarker discovery model that could aid in the diagnosis and prognosis of this disease. After applying it to the ensemble machine learning model, results revealed that the genes found were consistent with those found using other methodologies previously applied to the same TCGA (The Cancer Genome Atlas) data set. Further novel biomarkers were also found. Our ensemble model achieved an AUC of 0.9861, an accuracy of 91.05, and an F1 score of 90.60 using an independent validation data set. This study was able to identify potential genes for diagnostic classification (C7 and GRIK5) and diagnostic and prognostic biomarkers (S100A7, S100A7, KRT14, KRT17, KRT6B, KRTDAP, SERPINB4, TSHR, PVRL4, WFDC5, IL20RB) in melanoma. The results show the utility of a transfer learning approach for biomarker discovery in melanoma.
Collapse
Affiliation(s)
- Jose Marie Antonio Miñoza
- System Modeling and Simulation Laboratory, Department of Computer Science, University of the Philippines Diliman, Quezon City 1101, Philippines
| | - Jonathan Adam Rico
- Center for Informatics, University of San Agustin, Iloilo City 5000, Philippines
| | | | - Manny Bacolod
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10065, USA
| | | | - Gerard G. Dumancas
- Center for Informatics, University of San Agustin, Iloilo City 5000, Philippines
- Loyola Science Center, Department of Chemistry, The University of Scranton, Scranton, PA 18510, USA
| | - Romulo de Castro
- Center for Informatics, University of San Agustin, Iloilo City 5000, Philippines
- 3R Biosystems, Long Beach, CA 90840, USA
| |
Collapse
|
22
|
Kobecki J, Gajdzis P, Mazur G, Chabowski M. Nectins and Nectin-like Molecules in Colorectal Cancer: Role in Diagnostics, Prognostic Values, and Emerging Treatment Options: A Literature Review. Diagnostics (Basel) 2022; 12:3076. [PMID: 36553083 PMCID: PMC9777592 DOI: 10.3390/diagnostics12123076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/03/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022] Open
Abstract
In 2020, colorectal cancer was the third most common type of cancer worldwide with a clearly visible increase in the number of cases each year. With relatively high mortality rates and an uncertain prognosis, colorectal cancer is a serious health problem. There is an urgent need to investigate its specific mechanism of carcinogenesis and progression in order to develop new strategies of action against this cancer. Nectins and Nectin-like molecules are cell adhesion molecules that take part in a plethora of essential processes in healthy tissues as well as mediating substantial actions for tumor initiation and evolution. Our understanding of their role and a viable application of this in anti-cancer therapy has rapidly improved in recent years. This review summarizes the current data on the role nectins and Nectin-like molecules play in colorectal cancer.
Collapse
Affiliation(s)
- Jakub Kobecki
- Department of Surgery, 4th Military Teaching Hospital, 5 Weigla Street, 50-981 Wroclaw, Poland
- Division of Anaesthesiological and Surgical Nursing, Department of Nursing and Obstetrics, Faculty of Health Science, Wroclaw Medical University, 5 Bartla Street, 51-618 Wroclaw, Poland
| | - Paweł Gajdzis
- Department of Pathomorphology, 4th Military Teaching Hospital, 5 Weigla Street, 50-981 Wroclaw, Poland
- Department of Clinical Pathology, Wroclaw Medical University, 213 Borowska Street, 50-556 Wroclaw, Poland
| | - Grzegorz Mazur
- Department of Internal Medicine, Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, 213 Borowska Street, 50-556 Wroclaw, Poland
| | - Mariusz Chabowski
- Department of Surgery, 4th Military Teaching Hospital, 5 Weigla Street, 50-981 Wroclaw, Poland
- Division of Anaesthesiological and Surgical Nursing, Department of Nursing and Obstetrics, Faculty of Health Science, Wroclaw Medical University, 5 Bartla Street, 51-618 Wroclaw, Poland
| |
Collapse
|
23
|
Nectin-4 as Blood-Based Biomarker Enables Detection of Early Ovarian Cancer Stages. Cancers (Basel) 2022; 14:cancers14235867. [PMID: 36497350 PMCID: PMC9739558 DOI: 10.3390/cancers14235867] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/25/2022] [Accepted: 11/27/2022] [Indexed: 11/30/2022] Open
Abstract
Ovarian cancer is the third most common gynecological malignancy and has the highest mortality rate. Owing to unspecific symptoms, ovarian cancer is not detected until an advanced stage in about two-thirds of cases. Therefore, it is crucial to establish reliable biomarkers for the early stages to improve the patients’ prognosis. The aim of this study is to investigate whether the ADAM17 substrates Nectin-4, Heparin-binding EGF-like growth factor (HB-EGF) and Amphiregulin (AREG) could function as potential tumor markers for ovarian cancer. In this study a set of 231 sera consisting of 131 ovarian cancer patients and 100 healthy age-matched controls were assembled. Nectin-4, HB-EGF and AREG levels of preoperatively collected sera were determined by enzyme-linked immunosorbent assay (ELISA). Our analysis revealed that Nectin-4 and HB-EGF were significantly increased compared to the age-matched control group (p < 0.0001, p = 0.016). Strikingly, significantly higher Nectin-4 and HB-EGF levels were detected in early-stage FIGO I/II (p <0.001; p = 0.025) compared to healthy controls. Eighty-four percent (16/19) of patients with low Ca-125 levels showed increased Nectin-4 levels. Our study proposes Nectin-4 and HB-EGF as promising blood-based biomarkers for the detection of early stages of ovarian cancer patients that would not have been detected by Ca-125.
Collapse
|
24
|
Lee PH, Choi SM, An MH, Hwang DY, Park S, Baek AR, Jang AS. Nectin4 is a potential therapeutic target for asthma. Front Immunol 2022; 13:1049900. [PMID: 36457999 PMCID: PMC9707334 DOI: 10.3389/fimmu.2022.1049900] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 10/26/2022] [Indexed: 10/31/2023] Open
Abstract
BACKGROUND Nectins comprise a family of cellular adhesion molecules involved in Ca2+-independent cellular adhesion. Neither the biological significance nor clinical potential of Nectin4 for asthma has been investigated. OBJECTIVES The aims of this study were to elucidate the role of Nectin4 in airway inflammation and to determine the relationship between Nectin4 and clinical variables in patients with asthma. METHODS The relationship between Nectin4 levels in the blood of asthmatic patients and clinical variables was examined. Dermatophagoides pteronyssinus 1 (Der p1)-exposed normal human bronchial epithelial (NHBE) cells, and Nectin4-deficient (Nectin4-/-) and wild-type (WT) mice sensitized/challenged with ovalbumin (OVA), were used to investigate the involvement of Nectin4 in the pathogenesis of bronchial asthma via the Src/Rac1 pathway. RESULTS Plasma Nectin4 levels were significantly higher in asthmatic patients than controls and correlated with specific IgE D1, D2, lung function. The ROC curves for Nectin4 levels differed between asthma patients and controls. Nectin4/Afadin and Src/Rac1 levels were significantly increased in NHBE cells exposed to Der p1, but decreased in NHBE cells treated with Nectin4 siRNA. Airway obstruction and inflammation, as well as the levels of Th2 cytokines, Nectin4, and Src/Rac1, were increased in WT OVA/OVA mice compared with WT sham mice. Nectin4 knockdown resulted in lower levels of Afadin and Src/Rac1 in Nectin4-/-OVA/OVA than WT OVA/OVA mice. CONCLUSION These results suggest that Nectin4 is involved in airway inflammation and may be a therapeutic target in patients with asthma.
Collapse
Affiliation(s)
- Pureun-Haneul Lee
- Department of Interdisciplinary Program in Biomedical Science Major, Graduate School of Soonchunhyang University, Soonchunhyang University Bucheon Hospital, Bucheon, South Korea
| | - Seon Muk Choi
- Department of Interdisciplinary Program in Biomedical Science Major, Graduate School of Soonchunhyang University, Soonchunhyang University Bucheon Hospital, Bucheon, South Korea
| | - Min Hyeok An
- Department of Interdisciplinary Program in Biomedical Science Major, Graduate School of Soonchunhyang University, Soonchunhyang University Bucheon Hospital, Bucheon, South Korea
| | - Da Yeon Hwang
- Department of Interdisciplinary Program in Biomedical Science Major, Graduate School of Soonchunhyang University, Soonchunhyang University Bucheon Hospital, Bucheon, South Korea
| | - Shinhee Park
- Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon-si, Gyeonggi-do, South Korea
| | - Ae Rin Baek
- Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon-si, Gyeonggi-do, South Korea
| | - An-Soo Jang
- Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon-si, Gyeonggi-do, South Korea
| |
Collapse
|
25
|
Cabaud O, Berger L, Crompot E, Adélaide J, Finetti P, Garnier S, Guille A, Carbuccia N, Farina A, Agavnian E, Chaffanet M, Gonçalves A, Charafe-Jauffret E, Mamessier E, Birnbaum D, Bertucci F, Lopez M. Overcoming Resistance to Anti-nectin-4 Antibody-Drug Conjugate. Mol Cancer Ther 2022; 21:1227-1235. [PMID: 35534238 DOI: 10.1158/1535-7163.mct-22-0013] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/14/2022] [Accepted: 04/28/2022] [Indexed: 11/16/2022]
Abstract
Antibody-drug conjugates (ADCs) represent a fast-growing drug class in oncology. However, ADCs are associated with resistance, and therapies able to overcome it are of utmost importance. Recently, enfortumab vedotin-ejfv (EV) was approved in nectin-4+ metastatic urothelial cancer. We previously described PVRL4/nectin-4, as a new therapeutic target in breast cancer (BC), and produced an efficient EV-like ADC comprising a human anti-nectin-4 monoclonal antibody conjugated to monomethyl auristatin-E (MMAE) named N41mab-vcMMAE. To study the consequence of the long-term treatment with this ADC, we developed a preclinical BC model in mice, and report a mechanism of resistance to N41mab-vcMMAE after a 9- months treatment and a way to reverse it. RNA-sequencing pointed to an upregulation in resistant tumors of ABCB1 expression, encoding the multidrug resistance protein MDR-1/P-glycoprotein (P-gp), associated with focal gene amplification and high protein expression. Sensitivity to N41mab-vcMMAE of the resistant model was restored in vitro by P-gp pharmacological inhibitors, like tariquidar. P-gp is expressed in a variety of normal tissues. By delivering the drug to the tumor more specifically than does classical chemotherapy, we hypothesized that the combined use of ADC with P-gp inhibitors might reverse resistance in vivo without toxicity. Indeed, we showed that the tariquidar/N41mab-vcMMAE combination was well tolerated and induced a rapid regression of ADC-resistant tumors in mice. By contrast, the tariquidar/docetaxel combination was toxic and poorly efficient. These results show that ABC transporter inhibitors can be safely used with ADC to reverse ADC-induced resistance and open new opportunities in the fight against multidrug resistance.
Collapse
Affiliation(s)
- Olivier Cabaud
- Laboratoire d'Oncologie Prédictive, Centre de Recherche en Cancérologie de Marseille, CRCM, Inserm UMR1068, CNRS UMR7258, Aix-Marseille Université U105, Institut Paoli-Calmettes, Label « Ligue contre le cancer », Marseille, France
| | - Ludovic Berger
- Laboratoire d'Oncologie Prédictive, Centre de Recherche en Cancérologie de Marseille, CRCM, Inserm UMR1068, CNRS UMR7258, Aix-Marseille Université U105, Institut Paoli-Calmettes, Label « Ligue contre le cancer », Marseille, France
| | - Emerence Crompot
- Laboratoire d'Oncologie Prédictive, Centre de Recherche en Cancérologie de Marseille, CRCM, Inserm UMR1068, CNRS UMR7258, Aix-Marseille Université U105, Institut Paoli-Calmettes, Label « Ligue contre le cancer », Marseille, France
| | - José Adélaide
- Laboratoire d'Oncologie Prédictive, Centre de Recherche en Cancérologie de Marseille, CRCM, Inserm UMR1068, CNRS UMR7258, Aix-Marseille Université U105, Institut Paoli-Calmettes, Label « Ligue contre le cancer », Marseille, France
| | - Pascal Finetti
- Laboratoire d'Oncologie Prédictive, Centre de Recherche en Cancérologie de Marseille, CRCM, Inserm UMR1068, CNRS UMR7258, Aix-Marseille Université U105, Institut Paoli-Calmettes, Label « Ligue contre le cancer », Marseille, France
| | - Sèverine Garnier
- Laboratoire d'Oncologie Prédictive, Centre de Recherche en Cancérologie de Marseille, CRCM, Inserm UMR1068, CNRS UMR7258, Aix-Marseille Université U105, Institut Paoli-Calmettes, Label « Ligue contre le cancer », Marseille, France
| | - Arnaud Guille
- Laboratoire d'Oncologie Prédictive, Centre de Recherche en Cancérologie de Marseille, CRCM, Inserm UMR1068, CNRS UMR7258, Aix-Marseille Université U105, Institut Paoli-Calmettes, Label « Ligue contre le cancer », Marseille, France
| | - Nadine Carbuccia
- Laboratoire d'Oncologie Prédictive, Centre de Recherche en Cancérologie de Marseille, CRCM, Inserm UMR1068, CNRS UMR7258, Aix-Marseille Université U105, Institut Paoli-Calmettes, Label « Ligue contre le cancer », Marseille, France
| | - Anne Farina
- ICEP Platform, Centre de Recherche en Cancérologie de Marseille, CRCM, Inserm UMR1068, CNRS UMR7258, Aix Marseille Université U105, Institut Paoli-Calmettes, Marseille, France
| | - Emilie Agavnian
- ICEP Platform, Centre de Recherche en Cancérologie de Marseille, CRCM, Inserm UMR1068, CNRS UMR7258, Aix Marseille Université U105, Institut Paoli-Calmettes, Marseille, France
| | - Max Chaffanet
- Laboratoire d'Oncologie Prédictive, Centre de Recherche en Cancérologie de Marseille, CRCM, Inserm UMR1068, CNRS UMR7258, Aix-Marseille Université U105, Institut Paoli-Calmettes, Label « Ligue contre le cancer », Marseille, France
| | - Anthony Gonçalves
- Laboratoire d'Oncologie Prédictive, Centre de Recherche en Cancérologie de Marseille, CRCM, Inserm UMR1068, CNRS UMR7258, Aix-Marseille Université U105, Institut Paoli-Calmettes, Label « Ligue contre le cancer », Marseille, France
| | - Emmanuelle Charafe-Jauffret
- ICEP Platform, Centre de Recherche en Cancérologie de Marseille, CRCM, Inserm UMR1068, CNRS UMR7258, Aix Marseille Université U105, Institut Paoli-Calmettes, Marseille, France
| | - Emilie Mamessier
- Laboratoire d'Oncologie Prédictive, Centre de Recherche en Cancérologie de Marseille, CRCM, Inserm UMR1068, CNRS UMR7258, Aix-Marseille Université U105, Institut Paoli-Calmettes, Label « Ligue contre le cancer », Marseille, France
| | - Daniel Birnbaum
- Laboratoire d'Oncologie Prédictive, Centre de Recherche en Cancérologie de Marseille, CRCM, Inserm UMR1068, CNRS UMR7258, Aix-Marseille Université U105, Institut Paoli-Calmettes, Label « Ligue contre le cancer », Marseille, France
| | - François Bertucci
- Laboratoire d'Oncologie Prédictive, Centre de Recherche en Cancérologie de Marseille, CRCM, Inserm UMR1068, CNRS UMR7258, Aix-Marseille Université U105, Institut Paoli-Calmettes, Label « Ligue contre le cancer », Marseille, France
- Département d'Oncologie Médicale, Institut Paoli-Calmettes, Marseille, France
| | - Marc Lopez
- Laboratoire d'Oncologie Prédictive, Centre de Recherche en Cancérologie de Marseille, CRCM, Inserm UMR1068, CNRS UMR7258, Aix-Marseille Université U105, Institut Paoli-Calmettes, Label « Ligue contre le cancer », Marseille, France
| |
Collapse
|
26
|
Hashimoto H, Tanaka Y, Murata M, Ito T. Nectin-4: a Novel Therapeutic Target for Skin Cancers. Curr Treat Options Oncol 2022; 23:578-593. [PMID: 35312963 DOI: 10.1007/s11864-022-00940-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2021] [Indexed: 12/19/2022]
Abstract
OPINION STATEMENT Nectin-4 is a tumor-associated antigen that is highly expressed on various cancer cells, and it has been further proposed to have roles in tumor development and propagation ranging from cellular proliferation to motility and invasion. Nectin-4 blockade reduces tumor proliferation and induces apoptosis in several malignancies. Nectin-4 has been used as a potential target in antibody-drug conjugate (ADC) development. Enfortumab vedotin, an ADC against Nectin-4, has demonstrated efficacy against solid tumor malignancies. Enfortumab vedotin has received US Food and Drug Administration approval for treating urothelial cancer. Furthermore, the efficacy of ADCs against Nectin-4 against solid tumors other than urothelial cancer has been demonstrated in preclinical studies, and clinical trials examining the effects of enfortumab vedotin are ongoing. Recently, Nectin-4 was reported to be highly expressed in several skin cancers, including malignant melanoma, cutaneous squamous cell carcinoma, and extramammary Paget's disease, and involved in tumor progression and survival in retrospective studies. Nectin-4-targeted therapies and ADCs against Nectin-4 could therefore be novel therapeutic options for skin cancers. This review highlights current knowledge on Nectin-4 in malignant tumors, the efficacy of enfortumab vedotin in clinical trials, and the prospects of Nectin-4-targeted agents against skin cancers.
Collapse
Affiliation(s)
- Hiroki Hashimoto
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| | - Yuka Tanaka
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Maho Murata
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Takamichi Ito
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| |
Collapse
|
27
|
Tanaka Y, Murata M, Tanegashima K, Oda Y, Ito T. Nectin cell adhesion molecule 4 regulates angiogenesis through Src signaling and serves as a novel therapeutic target in angiosarcoma. Sci Rep 2022; 12:4031. [PMID: 35256687 PMCID: PMC8901754 DOI: 10.1038/s41598-022-07727-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 02/15/2022] [Indexed: 12/15/2022] Open
Abstract
Angiosarcoma is a rare, life-threatening soft tissue sarcoma with malignant endothelial cells that is mainly found in the skin. Multidisciplinary approaches are used to treat patients with unresectable metastasized lesions; considering the cellular origin of angiosarcoma, anti-angiogenic therapy has also been used recently. However, these treatments have limited efficacy, and the survival rate remains low. Thus, more effective treatments need to be developed. Nectin cell adhesion molecule 4 (NECTIN4) is highly expressed in malignant tumors and promotes tumor progression. Thus, NECTIN4 is expected to be a novel therapeutic target for cancer. However, the significance of NECTIN4 in angiosarcoma remains unknown. Using immunohistochemistry, we investigated NECTIN4 expression in 74 tissue samples from angiosarcoma patients, finding variable NECTIN4 expression. In addition, we investigated NECTIN4 expression and function in human angiosarcoma cell lines. NECTIN4 expression was higher in angiosarcoma cells than normal endothelial cells, and angiosarcoma cells were sensitive to monomethyl auristatin E, the cytotoxic part of a NECTIN4-targetting antibody-drug conjugate. NECTIN4 knockdown inhibited the proliferation and angiogenesis of angiosarcoma cells, and Src kinase signaling was shown to be involved in NECTIN4 function, at least in part. NECTIN4-targeted therapy has the potential to be a novel treatment strategy for angiosarcoma.
Collapse
Affiliation(s)
- Yuka Tanaka
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka City, Fukuoka, 812-8582, Japan
| | - Maho Murata
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka City, Fukuoka, 812-8582, Japan
| | - Keiko Tanegashima
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka City, Fukuoka, 812-8582, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takamichi Ito
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka City, Fukuoka, 812-8582, Japan.
| |
Collapse
|
28
|
Bouleftour W, Guillot A, Magné N. The Anti-Nectin 4: A Promising Tumor Cells Target. A Systematic Review. Mol Cancer Ther 2022; 21:493-501. [PMID: 35131876 DOI: 10.1158/1535-7163.mct-21-0846] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/17/2021] [Accepted: 01/25/2022] [Indexed: 11/16/2022]
Abstract
The nectin cell adhesion protein 4 (Nectin-4) is overexpressed in multiple human malignancies. Such aberrant expression is correlated with cancer progression and poor prognostic. Nectin-4 has emerged as a potential biomarker and promising targeted therapy. This review aimed to gather the current state of the literature about Nectin-4 relevance in preclinical tumor models and to summarize its clinical relevance regarding cancer. A systematic assessment of literature articles was performed by searching in PUBMED (MEDLINE) from the database inception to May 2021, following PRISMA guidelines. Preclinical models unanimously demonstrated membrane and cytoplasmic location of the Nectin-4. Furthermore, Nectin-4 was overexpressed whatever the location of the solid tumors. Interestingly, a heterogeneity of Nectin-4 expression has been highlighted in bladder urothelial carcinoma. High serum Nectin-4 level was correlated with treatment efficiency and disease progression. Finally, generated Anti-drug-Conjugated targeting Nectin-4 induced cell death in multiple tumor cell lines. Nectin-4 emerge as a promising target for anti-cancer drugs development because of its central role in tumorigenesis, and lymphangiogenesis. Enfortumab vedotin targeting Nectin-4 demonstrated encouraging results and should be extended to other types of solid tumors.
Collapse
Affiliation(s)
- Wafa Bouleftour
- Medical oncology department, Institut de cancérologie de la loire
| | | | | |
Collapse
|
29
|
Lacouture ME, Patel AB, Rosenberg JE, O’Donnell PH. OUP accepted manuscript. Oncologist 2022; 27:e223-e232. [PMID: 35274723 PMCID: PMC8914492 DOI: 10.1093/oncolo/oyac001] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/03/2021] [Indexed: 11/14/2022] Open
Affiliation(s)
- Mario E Lacouture
- ∗Corresponding author: Mario E. Lacouture, Department of Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA. Tel: +646 608 2347;
| | - Anisha B Patel
- Department of Dermatology, Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jonathan E Rosenberg
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical Center, New York, NY, USA
| | - Peter H O’Donnell
- Department of Medicine, Section of Hematology/Oncology, University of Chicago, Chicago, IL, USA
| |
Collapse
|
30
|
Liu Y, Han X, Li L, Zhang Y, Huang X, Li G, Xu C, Yin M, Zhou P, Shi F, Liu X, Zhang Y, Wang G. Role of Nectin‑4 protein in cancer (Review). Int J Oncol 2021; 59:93. [PMID: 34664682 DOI: 10.3892/ijo.2021.5273] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 08/30/2021] [Indexed: 11/06/2022] Open
Abstract
The Nectin cell adhesion molecule (Nectin) family members are Ca2+‑independent immunoglobulin‑like cellular adhesion molecules (including Nectins 1‑4), involved in cell adhesion via homophilic/heterophilic interplay. In addition, the Nectin family plays a significant role in enhancing cellular viability and movement ability. In contrast to enrichment of Nectins 1‑3 in normal tissues, Nectin‑4 is particularly overexpressed in a number of tumor types, including breast, lung, urothelial, colorectal, pancreatic and ovarian cancer. Moreover, the upregulation of Nectin‑4 is an independent biomarker for overall survival in numerous cancer types. A large number of studies have revealed that high expression of Nectin‑4 is closely related to tumor occurrence and development in various cancer types, but the manner in which Nectin‑4 protein contributes to the onset and development of these malignancies is yet unknown. The present review summarizes the molecular mechanisms and functions of Nectin‑4 protein in the biological processes and current advances with regard to its expression and regulation in various cancer types.
Collapse
Affiliation(s)
- Yongheng Liu
- Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, P.R. China
| | - Xiuxin Han
- Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, P.R. China
| | - Lili Li
- Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, P.R. China
| | - Yanting Zhang
- Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, P.R. China
| | - Xiaoyu Huang
- Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, P.R. China
| | - Guanghao Li
- Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, P.R. China
| | - Chuncai Xu
- Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, P.R. China
| | - Mengfan Yin
- Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, P.R. China
| | - Peng Zhou
- Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, P.R. China
| | - Fanqi Shi
- Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, P.R. China
| | - Xiaozhi Liu
- Central Laboratory, The Fifth Central Hospital of Tianjin, Tianjin 300450, P.R. China
| | - Yan Zhang
- Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, P.R. China
| | - Guowen Wang
- Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, P.R. China
| |
Collapse
|
31
|
Tsamouri MM, Steele TM, Mudryj M, Kent MS, Ghosh PM. Comparative Cancer Cell Signaling in Muscle-Invasive Urothelial Carcinoma of the Bladder in Dogs and Humans. Biomedicines 2021; 9:1472. [PMID: 34680588 PMCID: PMC8533305 DOI: 10.3390/biomedicines9101472] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/12/2021] [Accepted: 10/12/2021] [Indexed: 12/15/2022] Open
Abstract
Muscle-invasive urothelial carcinoma (MIUC) is the most common type of bladder malignancy in humans, but also in dogs that represent a naturally occurring model for this disease. Dogs are immunocompetent animals that share risk factors, pathophysiological features, clinical signs and response to chemotherapeutics with human cancer patients. This review summarizes the fundamental pathways for canine MIUC initiation, progression, and metastasis, emerging therapeutic targets and mechanisms of drug resistance, and proposes new opportunities for potential prognostic and diagnostic biomarkers and therapeutics. Identifying similarities and differences between cancer signaling in dogs and humans is of utmost importance for the efficient translation of in vitro research to successful clinical trials for both species.
Collapse
Affiliation(s)
- Maria Malvina Tsamouri
- Veterans Affairs-Northern California Health System, Mather, CA 95655, USA; (T.M.S.); (M.M.)
- Department of Urologic Surgery, School of Medicine, University of California Davis, Sacramento, CA 95718, USA
- Graduate Group in Integrative Pathobiology, University of California Davis, Davis, CA 95616, USA
| | - Thomas M. Steele
- Veterans Affairs-Northern California Health System, Mather, CA 95655, USA; (T.M.S.); (M.M.)
- Department of Urologic Surgery, School of Medicine, University of California Davis, Sacramento, CA 95718, USA
| | - Maria Mudryj
- Veterans Affairs-Northern California Health System, Mather, CA 95655, USA; (T.M.S.); (M.M.)
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, Davis, CA 95616, USA
| | - Michael S. Kent
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA;
| | - Paramita M. Ghosh
- Veterans Affairs-Northern California Health System, Mather, CA 95655, USA; (T.M.S.); (M.M.)
- Department of Urologic Surgery, School of Medicine, University of California Davis, Sacramento, CA 95718, USA
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, CA 95718, USA
| |
Collapse
|
32
|
Abstract
Nectins are immunoglobulin-like cell adhesion molecules constituting a family with four members, nectin-1, nectin-2, nectin-3, and nectin-4. In the brain, nectin-2 as well as nectin-1 and nectin-3 are expressed whereas nectin-4 is hardly expressed. In the nervous system, physiological functions of nectin-1 and nectin-3, such as synapse formation, mossy fiber trajectory regulation, interneurite affinity, contextual fear memory formation, and stress-related mental disorders, have been revealed. Nectin-2 is ubiquitously expressed in non-neuronal tissues and various nectin-2 functions in non-nervous systems have been extensively investigated, but nectin-2 functions in the brain have not been revealed until recently. Recent findings have revealed that nectin-2 is expressed in the specific areas of the brain and plays important roles, such as homeostasis of astrocytes and neurons and the formation of synapses. Moreover, a single nucleotide polymorphism in the human NECTIN2 gene is associated with Alzheimer's disease. We here summarize recent progress in our understanding of nectin-2 functions in the brain.
Collapse
|
33
|
Wrenn E, Huang Y, Cheung K. Collective metastasis: coordinating the multicellular voyage. Clin Exp Metastasis 2021; 38:373-399. [PMID: 34254215 PMCID: PMC8346286 DOI: 10.1007/s10585-021-10111-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 06/14/2021] [Indexed: 12/16/2022]
Abstract
The metastatic process is arduous. Cancer cells must escape the confines of the primary tumor, make their way into and travel through the circulation, then survive and proliferate in unfavorable microenvironments. A key question is how cancer cells overcome these multiple barriers to orchestrate distant organ colonization. Accumulating evidence in human patients and animal models supports the hypothesis that clusters of tumor cells can complete the entire metastatic journey in a process referred to as collective metastasis. Here we highlight recent studies unraveling how multicellular coordination, via both physical and biochemical coupling of cells, induces cooperative properties advantageous for the completion of metastasis. We discuss conceptual challenges and unique mechanisms arising from collective dissemination that are distinct from single cell-based metastasis. Finally, we consider how the dissection of molecular transitions regulating collective metastasis could offer potential insight into cancer therapy.
Collapse
Affiliation(s)
- Emma Wrenn
- Translational Research Program, Public Health Sciences and Human Biology Divisions, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA, 98195, USA
| | - Yin Huang
- Translational Research Program, Public Health Sciences and Human Biology Divisions, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Kevin Cheung
- Translational Research Program, Public Health Sciences and Human Biology Divisions, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA.
| |
Collapse
|
34
|
Liu Z, Ai L, Li R, Yang Y, Chen K, He C, Li Y. Analysis of miRNA expression profile in lung tissues of an intermittent hypoxia rat model. Respir Physiol Neurobiol 2021; 294:103741. [PMID: 34273552 DOI: 10.1016/j.resp.2021.103741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/21/2021] [Accepted: 07/07/2021] [Indexed: 10/20/2022]
Abstract
We screened key miRNAs in an intermittent hypoxia rat model and explored the biological roles of downstream target genes and related regulatory pathways. We analyzed the expression profile of miRNAs in the lung tissues of rats in the 5 % (IH1), 7.5 % (IH2), 10 % (IH3), 12.5 % (IH4) oxygen concentration and negative control (NC) groups and identified common miRNAs. Multiple differentially expressed miRNAs were detected, and intersection of their expression profiles yielded 10 common miRNAs with 929 target genes mainly distributed in the nucleus. Molecular functions pertained mainly to the activation of transcription factors, while biological processes focused on cell interaction and signal transduction. Among signaling pathways, the top 5 included the LKB1 signaling, nectin adhesion, and S1P pathways. 8 of 10 common miRNAs had excellent diagnostic value for detecting intermittent hypoxia. The miRNAs binds to the target gene might play a key role in the pathophysiological process of OSA through the LKB1/AMPK and S1P/Akt/eNOS signaling pathways.
Collapse
Affiliation(s)
- Zhijuan Liu
- Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Li Ai
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650101, China
| | - Ran Li
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650101, China
| | - Yuan Yang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650101, China
| | - Keli Chen
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650101, China
| | - Chunxia He
- Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Yongxia Li
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650101, China.
| |
Collapse
|
35
|
Wong JL, Rosenberg JE. Targeting nectin-4 by antibody-drug conjugates for the treatment of urothelial carcinoma. Expert Opin Biol Ther 2021; 21:863-873. [PMID: 34030536 PMCID: PMC8224177 DOI: 10.1080/14712598.2021.1929168] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/10/2021] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Nectin-4 is a tumor-associated antigen overexpressed in urothelial carcinoma and several other malignancies. It has emerged as a compelling target for novel tumor-directed therapies, particularly as a component of antibody-drug conjugates (ADCs), a growing class of anti-cancer therapeutic agents. Development of nectin-4-directed therapies has been led by enfortumab vedotin (EV), an ADC comprised of a fully human monoclonal antibody specific for nectin-4 conjugated via a cleavable linker to the microtubule inhibitor MMAE. EV was approved in 2019 as a first-in-class agent for the treatment of urothelial carcinoma. AREAS COVERED This article discusses general principles relevant to ADC design and our current understanding of nectin-4 in normal physiology and malignancy, followed by a review of the development of EV as well as additional drug conjugate strategies targeting nectin-4. EXPERT OPINION EV offers proof-of-concept for the clinical utility of nectin-4-directed therapies and provides further support for ADCs as an important class of anti-cancer agents. Future development of nectin-4-targeted approaches will benefit from a deeper understanding of nectin-4 biology in both health and disease, as well as a detailed exploration of the mechanisms underlying therapeutic activity and resistance.
Collapse
Affiliation(s)
- Jeffrey L. Wong
- Memorial Sloan Kettering Cancer Center, New York, NY
- Rockefeller University, New York, NY
| | - Jonathan E. Rosenberg
- Memorial Sloan Kettering Cancer Center, New York, NY
- Weill Cornell Medical College, New York, NY
| |
Collapse
|
36
|
Bogen JP, Grzeschik J, Jakobsen J, Bähre A, Hock B, Kolmar H. Treating Bladder Cancer: Engineering of Current and Next Generation Antibody-, Fusion Protein-, mRNA-, Cell- and Viral-Based Therapeutics. Front Oncol 2021; 11:672262. [PMID: 34123841 PMCID: PMC8191463 DOI: 10.3389/fonc.2021.672262] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/11/2021] [Indexed: 01/02/2023] Open
Abstract
Bladder cancer is a frequent malignancy and has a clinical need for new therapeutic approaches. Antibody and protein technologies came a long way in recent years and new engineering approaches were applied to generate innovative therapeutic entities with novel mechanisms of action. Furthermore, mRNA-based pharmaceuticals recently reached the market and CAR-T cells and viral-based gene therapy remain a major focus of biomedical research. This review focuses on the engineering of biologics, particularly therapeutic antibodies and their application in preclinical development and clinical trials, as well as approved monoclonal antibodies for the treatment of bladder cancer. Besides, newly emerging entities in the realm of bladder cancer like mRNA, gene therapy or cell-based therapeutics are discussed and evaluated. As many discussed molecules exhibit unique mechanisms of action based on innovative protein engineering, they reflect the next generation of cancer drugs. This review will shed light on the engineering strategies applied to develop these next generation treatments and provides deeper insights into their preclinical profiles, clinical stages, and ongoing trials. Furthermore, the distribution and expression of the targeted antigens and the intended mechanisms of action are elucidated.
Collapse
Affiliation(s)
- Jan P Bogen
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany.,Ferring Darmstadt Laboratory, Biologics Technology and Development, Darmstadt, Germany
| | - Julius Grzeschik
- Ferring Darmstadt Laboratory, Biologics Technology and Development, Darmstadt, Germany
| | - Joern Jakobsen
- Ferring Pharmaceuticals, International PharmaScience Center, Copenhagen, Denmark
| | - Alexandra Bähre
- Ferring Pharmaceuticals, International PharmaScience Center, Copenhagen, Denmark
| | - Björn Hock
- Global Pharmaceutical Research and Development, Ferring International Center S.A., Saint-Prex, Switzerland
| | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany
| |
Collapse
|
37
|
Nathanson SD, Detmar M, Padera TP, Yates LR, Welch DR, Beadnell TC, Scheid AD, Wrenn ED, Cheung K. Mechanisms of breast cancer metastasis. Clin Exp Metastasis 2021; 39:117-137. [PMID: 33950409 PMCID: PMC8568733 DOI: 10.1007/s10585-021-10090-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/20/2021] [Indexed: 02/06/2023]
Abstract
Invasive breast cancer tends to metastasize to lymph nodes and systemic sites. The management of metastasis has evolved by focusing on controlling the growth of the disease in the breast/chest wall, and at metastatic sites, initially by surgery alone, then by a combination of surgery with radiation, and later by adding systemic treatments in the form of chemotherapy, hormone manipulation, targeted therapy, immunotherapy and other treatments aimed at inhibiting the proliferation of cancer cells. It would be valuable for us to know how breast cancer metastasizes; such knowledge would likely encourage the development of therapies that focus on mechanisms of metastasis and might even allow us to avoid toxic therapies that are currently used for this disease. For example, if we had a drug that targeted a gene that is critical for metastasis, we might even be able to cure a vast majority of patients with breast cancer. By bringing together scientists with expertise in molecular aspects of breast cancer metastasis, and those with expertise in the mechanical aspects of metastasis, this paper probes interesting aspects of the metastasis cascade, further enlightening us in our efforts to improve the outcome from breast cancer treatments.
Collapse
Affiliation(s)
- S David Nathanson
- Department of Surgery, Henry Ford Cancer Institute, 2799 W Grand Boulevard, Detroit, MI, USA.
| | - Michael Detmar
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Timothy P Padera
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Danny R Welch
- Department of Cancer Biology, University of Kansas Medical Center and University of Kansas Cancer Center, Kansas City, KS, USA
| | - Thomas C Beadnell
- Department of Cancer Biology, University of Kansas Medical Center and University of Kansas Cancer Center, Kansas City, KS, USA
| | - Adam D Scheid
- Department of Cancer Biology, University of Kansas Medical Center and University of Kansas Cancer Center, Kansas City, KS, USA
| | - Emma D Wrenn
- Translational Research Program, Public Health Sciences and Human Biology Divisions, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA, USA
| | - Kevin Cheung
- Translational Research Program, Public Health Sciences and Human Biology Divisions, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| |
Collapse
|
38
|
Kedashiro S, Kameyama T, Mizutani K, Takai Y. Nectin-4 and p95-ErbB2 cooperatively regulate Hippo signaling-dependent SOX2 gene expression, enhancing anchorage-independent T47D cell proliferation. Sci Rep 2021; 11:7344. [PMID: 33795719 PMCID: PMC8016986 DOI: 10.1038/s41598-021-86437-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/10/2021] [Indexed: 12/17/2022] Open
Abstract
Nectin-4, upregulated in various cancer cells, cis-interacts with ErbB2 and its trastuzumab-resistant splice variants, p95-ErbB2 and ErbB2∆Ex16, enhancing DNA synthesis through the PI3K-AKT signaling in human breast cancer T47D cells in an adherent culture. We found here that nectin-4 and p95-ErbB2, but not nectin-4 and either ErbB2 or ErbB2∆Ex16, cooperatively enhanced SOX2 gene expression and cell proliferation in a suspension culture. This enhancement of T47D cell proliferation in a suspension culture by nectin-4 and p95-ErbB2 was dependent on the SOX2 gene expression. In T47D cells, nectin-4 and any one of p95-ErbB2, ErbB2, or ErbB2∆Ex16 cooperatively activated the PI3K-AKT signaling, known to induce the SOX2 gene expression, to similar extents. However, only a combination of nectin-4 and p95-ErbB2, but not that of nectin-4 and either ErbB2 or ErbB2∆Ex16, cooperatively enhanced the SOX2 gene expression. Detailed studies revealed that only nectin-4 and p95-ErbB2 cooperatively activated the Hippo signaling. YAP inhibited the SOX2 gene expression in this cell line and thus the MST1/2-LATS1/2 signaling-mediated YAP inactivation increased the SOX2 gene expression. These results indicate that only the combination of nectin-4 and p95-ErbB2, but not that of nectin-4 and either ErbB2 or ErbB2∆Ex16, cooperatively regulates the Hippo signaling-dependent SOX2 gene expression, enhancing anchorage-independent T47D cell proliferation.
Collapse
Affiliation(s)
- Shin Kedashiro
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 1-5-6 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| | - Takeshi Kameyama
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 1-5-6 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| | - Kiyohito Mizutani
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 1-5-6 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan.
| | - Yoshimi Takai
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 1-5-6 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan.
| |
Collapse
|
39
|
Tanaka Y, Murata M, Oda Y, Furue M, Ito T. Nectin Cell Adhesion Molecule 4 (NECTIN4) Expression in Cutaneous Squamous Cell Carcinoma: A New Therapeutic Target? Biomedicines 2021; 9:biomedicines9040355. [PMID: 33808400 PMCID: PMC8067104 DOI: 10.3390/biomedicines9040355] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/22/2021] [Accepted: 03/26/2021] [Indexed: 12/24/2022] Open
Abstract
Cutaneous squamous cell carcinoma (cSCC) is the second most common skin cancer, and its incidence is rising because of the aging population. Nectin cell adhesion molecule 4 (NECTIN4) is involved in the progression of tumors and has attracted interest as a potential therapeutic target. However, little is known about the expression and significance of NECTIN4 in cSCC. The aim of this study was to determine the expression and function of NECTIN4 in cSCC. Immunohistological NECTIN4 expression was investigated in tissues from 34 cSCC patients. Using an A431 human SCC cell line, the role of NECTIN4 in the regulation of cell–cell attachment and migration and proliferation was assessed. NECTIN4 was expressed in most cSCC tissues and on the plasma membrane of A431 cells. Silencing of NECTIN4 prevented cell–cell attachment and induced the expression migration-related molecules, leading to an increase in cell migration. Knockdown of NECTIN4 downregulated extracellular signal-regulated kinase signaling, decreased cyclin D1 expression, and inhibited cell proliferation. These results show that NECTIN4 is expressed in cSCC and functions in the regulation of cell–cell interactions, as well as in the migration and proliferation of SCC cells. NECTIN4-targeted therapy may serve as a novel and promising treatment for cSCC.
Collapse
Affiliation(s)
- Yuka Tanaka
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (Y.T.); (M.M.); (M.F.)
| | - Maho Murata
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (Y.T.); (M.M.); (M.F.)
| | - Yoshinao Oda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan;
| | - Masutaka Furue
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (Y.T.); (M.M.); (M.F.)
- Research and Clinical Center for Yusho and Dioxin, Kyushu University Hospital, Fukuoka 812-8582, Japan
| | - Takamichi Ito
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (Y.T.); (M.M.); (M.F.)
- Correspondence: ; Tel.: +81-92-642-5585
| |
Collapse
|
40
|
Heath EI, Rosenberg JE. The biology and rationale of targeting nectin-4 in urothelial carcinoma. Nat Rev Urol 2021; 18:93-103. [PMID: 33239713 DOI: 10.1038/s41585-020-00394-5] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2020] [Indexed: 01/29/2023]
Abstract
Bladder cancer is the tenth most common cancer type worldwide. Urothelial carcinoma is the most common type of bladder cancer and accounts for 90% of bladder cancer cases in the USA and Europe. Novel approaches are needed to improve patient outcomes. Nectin-4 is a tumour-associated antigen found on the surface of most urothelial carcinoma cells. In the antibody-drug conjugate enfortumab vedotin, human anti-nectin-4 antibody is linked to the cytotoxic microtubule-disrupting agent monomethyl auristatin E. In ongoing phase I, II and III clinical trials, enfortumab vedotin has been evaluated as a monotherapy and in combination with a checkpoint inhibitor and/or chemotherapy in locally advanced and metastatic urothelial carcinoma. Encouraging data from the phase II study resulted in the FDA granting accelerated approval for enfortumab vedotin in December 2019 for patients with locally advanced or metastatic urothelial carcinoma who were previously treated with platinum and a checkpoint inhibitor therapy. Moreover, data from a phase I study led to the FDA granting breakthrough therapy designation to enfortumab vedotin combined with pembrolizumab as a first-line treatment in February 2020 for cisplatin-ineligible patients with locally advanced or metastatic urothelial carcinoma. Results of ongoing and future combination studies of enfortumab vedotin with immunotherapy and other novel agents are eagerly awaited.
Collapse
Affiliation(s)
- Elisabeth I Heath
- Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA.
| | - Jonathan E Rosenberg
- Genitourinary Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
41
|
Novel Therapies. Bladder Cancer 2021. [DOI: 10.1007/978-3-030-70646-3_26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
42
|
Fujiyuki T, Amagai Y, Shoji K, Kuraishi T, Sugai A, Awano M, Sato H, Hattori S, Yoneda M, Kai C. Recombinant SLAMblind Measles Virus Is a Promising Candidate for Nectin-4-Positive Triple Negative Breast Cancer Therapy. Mol Ther Oncolytics 2020; 19:127-135. [PMID: 33145396 PMCID: PMC7585052 DOI: 10.1016/j.omto.2020.09.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 09/24/2020] [Indexed: 12/21/2022] Open
Abstract
One of the most refractory breast cancer types is triple negative (TN) breast cancer, in which cells are resistant to both hormone and Herceptin treatments and, thus, often cause recurrence and metastasis. Effective treatments are needed to treat TN breast cancer. We previously demonstrated that rMV-SLAMblind, a recombinant measles virus, showed anti-tumor activity against breast cancer cells. Here, we examined whether rMV-SLAMblind is effective for treating TN breast cancer. Nectin-4, a receptor for rMV-SLAMblind, was expressed on the surface of 75% of the analyzed TN breast cancer cell lines. rMV-SLAMblind infected the nectin-4-expressing TN breast cancer cell lines, and significantly decreased the viability in half of the analyzed cell lines in vitro. Additionally, intratumoral injection of rMV-SLAMblind suppressed tumor growth in xenografts of MDA-MB-468 and HCC70 cells. To assess treatment for metastatic breast cancer, we performed intravenous administration of the luciferase-expressing-rMV-SLAMblind to MDA xenografted mice. Virus replicated in the tumor and resulted in significant suppression of the tumor growth. The safety of the virus was tested by its intravenous injection into healthy cynomolgus monkeys, which did not cause any measles-like symptoms. These results suggest that rMV-SLAMblind is a promising candidate as a therapeutic agent for treating metastatic and/or TN type breast cancer.
Collapse
Affiliation(s)
- Tomoko Fujiyuki
- Laboratory Animal Research Center, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Yosuke Amagai
- Laboratory Animal Research Center, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Koichiro Shoji
- Laboratory Animal Research Center, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Takeshi Kuraishi
- Amami Laboratory of Injurious Animals, The Institute of Medical Science, The University of Tokyo, 802 Tean-Sude, Setouchisho, Oshima-gun, Kagoshima 894-1531, Japan
| | - Akihiro Sugai
- Laboratory Animal Research Center, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Mutsumi Awano
- Laboratory Animal Research Center, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Hiroki Sato
- Laboratory Animal Research Center, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Shosaku Hattori
- Amami Laboratory of Injurious Animals, The Institute of Medical Science, The University of Tokyo, 802 Tean-Sude, Setouchisho, Oshima-gun, Kagoshima 894-1531, Japan
| | - Misako Yoneda
- Laboratory Animal Research Center, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Chieko Kai
- Laboratory Animal Research Center, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| |
Collapse
|
43
|
Matveeva OV, Shabalina SA. Prospects for Using Expression Patterns of Paramyxovirus Receptors as Biomarkers for Oncolytic Virotherapy. Cancers (Basel) 2020; 12:cancers12123659. [PMID: 33291506 PMCID: PMC7762160 DOI: 10.3390/cancers12123659] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/28/2020] [Accepted: 12/01/2020] [Indexed: 12/26/2022] Open
Abstract
Simple Summary Some non-pathogenic viruses that do not cause serious illness in humans can efficiently target and kill cancer cells and may be considered candidates for cancer treatment with virotherapy. However, many cancer cells are protected from viruses. An important goal of personalized cancer treatment is to identify viruses that can kill a certain type of cancer cells. To this end, researchers investigate expression patterns of cell entry receptors, which viruses use to bind to and enter host cells. We summarized and analyzed the receptor expression patterns of two paramyxoviruses: The non-pathogenic measles and the Sendai viruses. The receptors for these viruses are different and can be proteins or lipids with attached carbohydrates. This review discusses the prospects for using these paramyxovirus receptors as biomarkers for successful personalized virotherapy for certain types of cancer. Abstract The effectiveness of oncolytic virotherapy in cancer treatment depends on several factors, including successful virus delivery to the tumor, ability of the virus to enter the target malignant cell, virus replication, and the release of progeny virions from infected cells. The multi-stage process is influenced by the efficiency with which the virus enters host cells via specific receptors. This review describes natural and artificial receptors for two oncolytic paramyxoviruses, nonpathogenic measles, and Sendai viruses. Cell entry receptors are proteins for measles virus (MV) and sialylated glycans (sialylated glycoproteins or glycolipids/gangliosides) for Sendai virus (SeV). Accumulated published data reviewed here show different levels of expression of cell surface receptors for both viruses in different malignancies. Patients whose tumor cells have low or no expression of receptors for a specific oncolytic virus cannot be successfully treated with the virus. Recent published studies have revealed that an expression signature for immune genes is another important factor that determines the vulnerability of tumor cells to viral infection. In the future, a combination of expression signatures of immune and receptor genes could be used to find a set of oncolytic viruses that are more effective for specific malignancies.
Collapse
Affiliation(s)
- Olga V. Matveeva
- Sendai Viralytics LLC, 23 Nylander Way, Acton, MA 01720, USA
- Correspondence: (O.V.M.); (S.A.S.)
| | - Svetlana A. Shabalina
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
- Correspondence: (O.V.M.); (S.A.S.)
| |
Collapse
|
44
|
Halford Z, Anderson MK, Clark MD. Enfortumab Vedotin-ejfv: A First-in-Class Anti-Nectin-4 Antibody-Drug Conjugate for the Management of Urothelial Carcinoma. Ann Pharmacother 2020; 55:772-782. [PMID: 32945172 DOI: 10.1177/1060028020960402] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE To evaluate the pharmacology, pharmacokinetics, clinical efficacy, safety, dosing, cost, and clinical implications of enfortumab vedotin-ejfv (EV) in the treatment of locally advanced or metastatic urothelial carcinoma (UC). DATA SOURCES A literature search of PubMed (inception to August 2020) was conducted using the terms enfortumab, vedotin, Padcev, and Nectin. Data were also obtained from package inserts, meeting abstracts, and ongoing studies from ClinicalTrials.gov. STUDY SELECTION AND DATA EXTRACTION All relevant published articles, package inserts, and meeting abstracts evaluating EV for the treatment of UC were analyzed. DATA SYNTHESIS Antibody-drug conjugates (ADCs) deliver potent cytotoxic agents using highly selective monoclonal antibodies. Targeting the near-universal expression of Nectin-4 on UC cells is a viable therapeutic strategy. In a pivotal phase II trial, EV demonstrated an overall response rate of 44%, and a median duration of response of 7.6 months. Estimated overall survival was 11.7 months with a median estimated progression-free survival of 5.6 months. Results were similar among difficult-to-treat patients, including those with liver metastases. Unique toxicity concerns with EV require careful consideration and monitoring. RELEVANCE TO PATIENT CARE AND CLINICAL PRACTICE EV, a first-in-class anti-Nectin-4 ADC, provides impressive response rates with manageable toxicities, making it a promising treatment option for patients with multiply relapsed or refractory UC. CONCLUSION The US Food and Drug Administration-approved EV demonstrates antitumor activity in heavily pretreated patients with UC but harbors important adverse effects and financial concerns. Additional studies are required to identify the optimal sequencing, patient population, and place in therapy for EV.
Collapse
Affiliation(s)
| | | | - Matthew D Clark
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
45
|
Murata M, Ito T, Tanaka Y, Kaku-Ito Y, Furue M. NECTIN4 Expression in Extramammary Paget's Disease: Implication of a New Therapeutic Target. Int J Mol Sci 2020; 21:E5891. [PMID: 32824340 PMCID: PMC7460664 DOI: 10.3390/ijms21165891] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/14/2020] [Accepted: 08/14/2020] [Indexed: 01/10/2023] Open
Abstract
Extramammary Paget's disease (EMPD) is a rare skin cancer arising in the anogenital area. Most EMPD tumors remain dormant as in situ lesions, but the outcomes of patients with metastatic EMPD are poor because of the lack of effective systemic therapies. Nectin cell adhesion molecule 4 (NECTIN4) has attracted attention as a potential therapeutic target for some cancers. Urothelial cancer is one such cancer, and clinical trials of enfortumab vedotin, a drug-conjugated anti-NECTIN4 antibody, are ongoing. However, little is known regarding the role of NECTIN4 in EMPD. In this study, we conducted immunohistochemical analysis of NECTIN4 expression in 110 clinical EMPD samples and normal skin tissue. In normal skin, positive signals were observed in epidermal keratinocytes (particularly in the lower part of the epidermis), eccrine and apocrine sweat glands, inner and outer root sheaths, and matrix of the hair follicles. The most EMPD lesions exhibited strong NECTIN4 expression, and high NECTIN4 expression was significantly associated with increased tumor thickness, advanced TNM stage, and worse disease-specific survival. These results support the potential use of NECTIN4-targeted therapy for EMPD. Our report contributes to the better understanding of the pathobiology of NECTIN4 in the skin and the skin-related adverse effects of NECTIN4-targeted therapy.
Collapse
Affiliation(s)
- Maho Murata
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (M.M.); (Y.T.); (Y.K.-I.); (M.F.)
| | - Takamichi Ito
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (M.M.); (Y.T.); (Y.K.-I.); (M.F.)
| | - Yuka Tanaka
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (M.M.); (Y.T.); (Y.K.-I.); (M.F.)
| | - Yumiko Kaku-Ito
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (M.M.); (Y.T.); (Y.K.-I.); (M.F.)
| | - Masutaka Furue
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (M.M.); (Y.T.); (Y.K.-I.); (M.F.)
- Research and Clinical Center for Yusho and Dioxin, Kyushu University Hospital, Fukuoka 812-8582, Japan
- Division of Skin Surface Sensing, Department of Dermatology, Faculty of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| |
Collapse
|
46
|
Boylan KL, Manion RD, Shah H, Skubitz KM, Skubitz APN. Inhibition of Ovarian Cancer Cell Spheroid Formation by Synthetic Peptides Derived from Nectin-4. Int J Mol Sci 2020; 21:E4637. [PMID: 32629816 PMCID: PMC7370299 DOI: 10.3390/ijms21134637] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/21/2020] [Accepted: 06/26/2020] [Indexed: 12/20/2022] Open
Abstract
The formation of 3D multicellular spheroids in the ascites fluid of ovarian cancer patients is an understudied component of the disease progression. Spheroids are less sensitive to chemotherapy, in part due to the protection afforded by their structure, but also due to their slower proliferation rate. Previous studies suggest that the cell adhesion molecule Nectin-4 plays a key role in the formation of ovarian cancer spheroids. In this study, we further examined the role of Nectin-4 at early time points in spheroid formation using real-time digital photography. Human NIH:OVCAR5 ovarian cancer cells formed aggregates within 8 h, which further contracted into compact spheroids over 24 h. In contrast, Nectin-4 knockdown cells did not form tightly compacted spheroids. Synthetic peptides derived from Nectin-4 were tested for their ability to alter spheroid formation in two ovarian cancer cell lines. Nectin-4 peptide 10 (N4-P10) had an immediate effect on disrupting ovarian cancer spheroid formation, which continued for over 24 h, while a scrambled version of the peptide had no effect. N4-P10 inhibited spheroid formation in a concentration-dependent manner and was not cytotoxic; suggesting that N4-P10 treatment could maintain the cancer cells as single cells which may be more sensitive to chemotherapy.
Collapse
Affiliation(s)
- Kristin L.M. Boylan
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA; (K.L.M.B.); (R.D.M.); (H.S.)
- Ovarian Cancer Early Detection Program, University of Minnesota, Minneapolis, MN 55455, USA
| | - Rory D. Manion
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA; (K.L.M.B.); (R.D.M.); (H.S.)
- Ovarian Cancer Early Detection Program, University of Minnesota, Minneapolis, MN 55455, USA
| | - Heena Shah
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA; (K.L.M.B.); (R.D.M.); (H.S.)
- Ovarian Cancer Early Detection Program, University of Minnesota, Minneapolis, MN 55455, USA
| | - Keith M. Skubitz
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA;
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Amy P. N. Skubitz
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA; (K.L.M.B.); (R.D.M.); (H.S.)
- Ovarian Cancer Early Detection Program, University of Minnesota, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Obstetrics, Gynecology, and Women’s Health, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
47
|
Wang L, Yang M, Guo X, Yang Z, Liu S, Ji Y, Jin H. Estrogen-related receptor-α promotes gallbladder cancer development by enhancing the transcription of Nectin-4. Cancer Sci 2020; 111:1514-1527. [PMID: 32030850 PMCID: PMC7226197 DOI: 10.1111/cas.14344] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 01/28/2020] [Accepted: 02/03/2020] [Indexed: 01/01/2023] Open
Abstract
Estrogen-related receptor-α (ERRα) is a nuclear receptor of transcription factor that binds to estrogen responsive elements and estrogen-related responsive elements. Estrogen-related receptor-α is involved in metabolic processes and implicated in the progression and growth of several human malignancies. However, the biologic role and clinical significance of ERRα in gallbladder cancer (GBC) remains to be clarified. Here, we reported that ERRα protein expression was notably higher in GBC tissues than in cholecystitis tissues, and that the aberrantly higher ERRα expression was positively correlated with advanced TNM stage and indicated dismal prognosis of GBC (P < .01). In GBC cell lines NOZ and OCUG, the targeted depletion of ERRα retarded the growth and suppressed the migration and invasive capabilities of GBC cells, and inhibited epithelial-mesenchymal transition by decreasing the expression of mesenchymal markers and elevating the expression of epithelial markers. Moreover, ERRα knockdown inhibited tumor growth in nude mice and led to decreased expression levels of Nectin-4, p-PI3K p85α, and p-AKT. Overexpression of ERRα in the GBC-SD cell line showed exactly the opposite effect. The targeted inhibition of Nectin-4 antagonized GBC cell proliferation and invasion, which were induced by ERRα upregulation. Moreover, Nectin-4 depletion inhibited the ERRα-induced activation of the PI3K/AKT pathway. Chromatin immunoprecipitation analysis and dual-luciferase reporter gene assays showed that ERRα enhanced the transcription of Nectin-4 by binding to the promoter of Nectin-4. In conclusion, our data indicated that ERRα could be a potential target for the genetic treatment of GBC.
Collapse
Affiliation(s)
- Lei Wang
- Department of Hepatopancreatobiliary SurgeryThe Affiliated Wuxi No. 2 People’s Hospital of Nanjing Medical UniversityWuxiChina
| | - MengMeng Yang
- Jiangsu Provincial Key Laboratory on Parasite and Vector Control TechnologyJiangsu Institute of Parasitic DiseasesWuxiChina
| | - Xingmei Guo
- Department of Hepatopancreatobiliary SurgeryThe Affiliated Wuxi No. 2 People’s Hospital of Nanjing Medical UniversityWuxiChina
| | - Ziyi Yang
- Department of General Surgery and Laboratory of General SurgeryXinhua Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Shilei Liu
- Department of General Surgery and Laboratory of General SurgeryXinhua Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yuan Ji
- Department of Hepatopancreatobiliary SurgeryThe Affiliated Wuxi No. 2 People’s Hospital of Nanjing Medical UniversityWuxiChina
| | - Huihan Jin
- Department of Hepatopancreatobiliary SurgeryThe Affiliated Wuxi No. 2 People’s Hospital of Nanjing Medical UniversityWuxiChina
| |
Collapse
|
48
|
Saha SK, Islam SMR, Kwak KS, Rahman MS, Cho SG. PROM1 and PROM2 expression differentially modulates clinical prognosis of cancer: a multiomics analysis. Cancer Gene Ther 2020; 27:147-167. [PMID: 31164716 PMCID: PMC7170805 DOI: 10.1038/s41417-019-0109-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/03/2019] [Accepted: 05/19/2019] [Indexed: 12/11/2022]
Abstract
Prominin 1 (PROM1) is considered a biomarker for cancer stem cells, although its biological role is unclear. Prominin 2 (PROM2) has also been associated with certain cancers. However, the prognostic value of PROM1 and PROM2 in cancer is controversial. Here, we performed a systematic data analysis to examine whether prominins can function as prognostic markers in human cancers. The expression of prominins was assessed and their prognostic value in human cancers was determined using univariate and multivariate survival analyses, via various online platforms. We selected a group of prominent functional protein partners of prominins by protein-protein interaction analysis. Subsequently, we investigated the relationship between mutations and copy number alterations in prominin genes and various types of cancers. Furthermore, we identified genes that correlated with PROM1 and PROM2 in certain cancers, based on their levels of expression. Gene ontology and pathway analyses were performed to assess the effect of these correlated genes on various cancers. We observed that PROM1 was frequently overexpressed in esophageal, liver, and ovarian cancers and its expression was negatively associated with prognosis, whereas PROM2 overexpression was associated with poor overall survival in lung and ovarian cancers. Based on the varying characteristics of prominins, we conclude that PROM1 and PROM2 expression differentially modulates the clinical outcomes of cancers.
Collapse
Affiliation(s)
- Subbroto Kumar Saha
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea.
| | - S M Riazul Islam
- Department of Computer Science and Engineering, Sejong University, 209, Neungdong-ro, Gwangjin-gu, Seoul, 05006, Republic of Korea
| | - Kyung-Sup Kwak
- School of Information and Communication Engineering, Inha University, 100, Inha-ro, Nam-gu, Incheon, 22212, Republic of Korea
| | - Md Shahedur Rahman
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Ssang-Goo Cho
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea.
| |
Collapse
|
49
|
Sethy C, Goutam K, Nayak D, Pradhan R, Molla S, Chatterjee S, Rout N, Wyatt MD, Narayan S, Kundu CN. Clinical significance of a pvrl 4 encoded gene Nectin-4 in metastasis and angiogenesis for tumor relapse. J Cancer Res Clin Oncol 2020; 146:245-259. [PMID: 31617074 DOI: 10.1007/s00432-019-03055-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 10/11/2019] [Indexed: 12/29/2022]
Abstract
PURPOSE In the present study, we have systematically examined the clinical significance of Nectin-4 (encoded by the PVRL-4 gene), a marker for breast cancer stem cells (CSCs), in cancer metastasis and angiogenesis using a variety of human specimens, including invasive duct carcinoma (IDC) with multiple grades, several types of primary tumors to local and distant relapses, lymph node metastases and circulating tumor cells (CTCs). METHODS Nectin-4 was overexpressed in more than 92% of samples with 65.2% Nectin-4-positive cells. The level of expression was increased with increasing tumor grade (GI-III) and size (T1-4) of IDC specimens. RESULTS More induction of Nectin-4 was noted in relapsed samples from a variety of tumors (colon, tongue, liver, kidney, ovary, buccal mucosa) in comparison to primary tumors, while paired adjacent normal tissues do not express any Nectin-4. A high expression of Nectin-4 along with other representative markers in CTCs and lymph node metastasis was also observed in cancer specimens. An increased level of Nectin-4 along with representative metastatic (CD-44, Sca1, ALDH1, Nanog) and angiogenic (Ang-I, Ang-II, VEGF) markers were noted in metastatic tumors (local and distant) in comparison to primary tumors that were correlated with different grades of tumor progression. In addition, greater expression of Nectin-4 was observed in secondary tumors (distant metastasis, e.g., breast to liver or stomach to gall bladder) in comparison to primary tumors. CONCLUSION Our study demonstrated a significant correlation between Nectin-4 expression and tumor grade as well as stages (p < 0.001), suggesting its association with tumor progression. Nectin-4 was overexpressed at all stages of metastasis and angiogenesis, thus appearing to play a major role in tumor relapse through the PI3K-Akt-NFκβ pathway.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Breast Neoplasms/blood supply
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Carcinoma, Ductal, Breast/blood supply
- Carcinoma, Ductal, Breast/genetics
- Carcinoma, Ductal, Breast/metabolism
- Cell Adhesion Molecules/biosynthesis
- Cell Adhesion Molecules/genetics
- Cell Adhesion Molecules/metabolism
- Female
- Humans
- Middle Aged
- NF-kappa B/metabolism
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/pathology
- Phosphatidylinositol 3-Kinases/metabolism
- Proto-Oncogene Proteins c-akt/metabolism
- Signal Transduction
Collapse
Affiliation(s)
- Chinmayee Sethy
- Cancer Biology Division, KIIT School of Biotechnology, Kalinga Institute of Industrial Technology, Campus-11, Patia, Bhubaneswar, 751024, Odisha, India
| | - Kunal Goutam
- Department of Surgical Oncology, Acharya Harihar Regional Cancer Centre, Cuttack, 753007, Odisha, India
| | - Deepika Nayak
- Cancer Biology Division, KIIT School of Biotechnology, Kalinga Institute of Industrial Technology, Campus-11, Patia, Bhubaneswar, 751024, Odisha, India
| | - Rajalaxmi Pradhan
- Cancer Biology Division, KIIT School of Biotechnology, Kalinga Institute of Industrial Technology, Campus-11, Patia, Bhubaneswar, 751024, Odisha, India
| | - Sefinew Molla
- Cancer Biology Division, KIIT School of Biotechnology, Kalinga Institute of Industrial Technology, Campus-11, Patia, Bhubaneswar, 751024, Odisha, India
| | - Subhajit Chatterjee
- Cancer Biology Division, KIIT School of Biotechnology, Kalinga Institute of Industrial Technology, Campus-11, Patia, Bhubaneswar, 751024, Odisha, India
| | - Niranjan Rout
- Department of Oncopathology, Acharya Harihar Regional Cancer Centre, Cuttack, 753007, Odisha, India
| | - Michael D Wyatt
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - Satya Narayan
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Chanakya Nath Kundu
- Cancer Biology Division, KIIT School of Biotechnology, Kalinga Institute of Industrial Technology, Campus-11, Patia, Bhubaneswar, 751024, Odisha, India.
| |
Collapse
|
50
|
Kedashiro S, Sugiura A, Mizutani K, Takai Y. Nectin-4 cis-interacts with ErbB2 and its trastuzumab-resistant splice variants, enhancing their activation and DNA synthesis. Sci Rep 2019; 9:18997. [PMID: 31831814 PMCID: PMC6908695 DOI: 10.1038/s41598-019-55460-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 11/26/2019] [Indexed: 12/31/2022] Open
Abstract
Nectin-4 cell adhesion molecule and ErbB2 tyrosine kinase receptor are upregulated in many cancers, including breast cancer, and promote cancer cell proliferation and metastasis. Using human breast cancer cell lines T47D and SUM190-PT, in which both nectin-4 and ErbB2 were upregulated, we showed here that nectin-4 cis-interacted with ErB2 and enhanced its dimerization and activation, followed by the activation of the phosphoinositide 3-kinase-AKT signalling pathway for DNA synthesis. The third immunoglobulin-like domain of nectin-4 cis-interacted with domain IV of ErbB2. This region differs from the trastuzumab-interacting region but is included in the trastuzumab-resistant splice variants of ErbB2, p95-ErbB2 and ErbB2ΔEx16. Nectin-4 also cis-interacted with these trastuzumab-resistant splice variants and enhanced the activation of the phosphoinositide 3-kinase-AKT signalling pathway for DNA synthesis. In addition, nectin-4 enhanced the activation of the p95-ErbB2-induced JAK-STAT3 signalling pathway, but not the ErbB2- or ErbB2ΔEx16-induced JAK-STAT3 signalling pathway. These results indicate that nectin-4 cis-interacts with ErbB2 and its trastuzumab-resistant splice variants and enhances the activation of these receptors and downstream signalling pathways in a novel mechanism.
Collapse
Affiliation(s)
- Shin Kedashiro
- From the Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 1-5-6 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| | - Ayumu Sugiura
- From the Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 1-5-6 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| | - Kiyohito Mizutani
- From the Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 1-5-6 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan.
| | - Yoshimi Takai
- From the Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 1-5-6 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan.
| |
Collapse
|