1
|
Patel KB, Bergmeier W, Fogelson AL. Modeling Platelet P2Y 1/ 12 Pathway to Integrin Activation. ARXIV 2024:arXiv:2410.13015v1. [PMID: 39483345 PMCID: PMC11527272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Through experimental studies, many details of the pathway of integrin α IIV β 3 activation by ADP during the platelet aggregation process have been mapped out. ADP binds to two separate G protein coupled receptors on platelet surfaces, leading to alterations in the regulation of the small GTPase RAP1. We seek to (1) gain insights into the relative contributions of both pathways to RAP1-mediated integrin activation and to (2) predict cell behavior in response to a continuous range of external agonist concentrations. To this end, we develop a dynamical systems model detailing the action of each protein in the two pathways up to the regulation of RAP1. We perform a parameter estimation using flow cytometry data to determine a number of unknown rate constants. We then validate with already published data; in particular, the model confirmed the effect of impaired P2Y1 receptor desensitization or reduced RASA3 expression on RAP1 activation. We then predict the effect of protein expression levels on integrin activation and show that components of the P2Y12 pathway are critical to the regulation of integrin. This model aids in our understanding of interindividual variability in platelet response to ADP and therapeutic P2Y12 inhibition. It also provides a more detailed view of platelet activation in the ongoing mathematical study of platelet aggregation.
Collapse
Affiliation(s)
- Keshav B. Patel
- Department of Mathematics, University of Utah, Salt Lake City, UT, 84112
| | - Wolfgang Bergmeier
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599
- Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599
| | - Aaron L. Fogelson
- Department of Mathematics, University of Utah, Salt Lake City, UT, 84112
- Department of Bioengineering, University of Utah, Salt Lake City, UT, 84112
| |
Collapse
|
2
|
Zhang X, Liu Y, Yang R, Guo Y, Yan M, Xiao Y, Dong Y, Zhang R, Qin Y, Bu Y, Zhang Y, Gao H. Phosphorylation of RasGRP1 by Shc3 prevents RasGRP1 degradation and contributes to Ras/c-Jun activation in hepatocellular carcinoma. Mol Cell Biochem 2024; 479:2307-2321. [PMID: 37646951 DOI: 10.1007/s11010-023-04839-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 08/14/2023] [Indexed: 09/01/2023]
Abstract
Ras guanine nucleotide-releasing protein 1 (RasGRP1), a Ras activator, is upregulated in hepatocellular carcinoma (HCC) and other kinds of cancer and is associated with the poor prognosis of patients. However, little is known about the underlying regulatory mechanisms of RasGRP1 in the context of cancer. Here, we report that RasGRP1 physically interacted with the adaptor protein Src homolog and collagen homolog 3 (Shc3). Moreover, RasGRP1 C-terminus domain (aa 607-797) bound to the central collagen-homology 1 (CH1) domain of Shc3. Subsequently, Shc3 enhanced the RasGRP1 tyrosine phosphorylation rate and stability by inhibiting its ubiquitination. Notably, the phosphorylation-mimicking mutants of RasGRP1, RasGRP1 Y704A, and Y748A, rescued the phosphorylation and ubiquitination levels of RasGRP1 in HCC cells. Further investigation showed that the RasGRP1 and Shc3 interaction induced activation of Ras and c-Jun, resulting in cell proliferation in vitro. Moreover, the regulation of Shc3/RasGRP1/Ras/c-Jun signal transduction was confirmed in vivo using the subcutaneous xenograft mouse model. Thus, we propose that continuous Shc3 overexpression may be a possible mechanism for maintaining RasGRP1 stability and that persistent activation of Ras/c-Jun signaling through the interaction of RasGRP1 and Shc3 is a key event increasing cell proliferation. Our findings suggest that the interaction of RasGRP1 and Shc3 plays an important role in HCC tumorigenesis and suggests the potential clinical usage of novel biomarkers and therapeutic targets in HCC.
Collapse
Affiliation(s)
- Xinran Zhang
- Department of Pharmacy, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, 300192, China
| | - Yun Liu
- Key Laboratory of Cancer Prevention and Therapy, Department of Pediatric Oncology, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, 300060, China
| | - Rui Yang
- Department of Critical Care Medicine, Tianjin First Central Hospital, Tianjin Institute of Emergency Medicine, Tianjin, 300192, China
| | - Yuanyuan Guo
- Department of Pharmacy, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, 300192, China
| | - Meiling Yan
- Department of Pharmacy, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, 300192, China
| | - Ying Xiao
- Department of Pharmacy, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, 300192, China
| | - Yunzhuo Dong
- Department of Pharmacy, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, 300192, China
| | - Ruixia Zhang
- Department of Pharmacy, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, 300192, China
| | - Yinpeng Qin
- Department of Pharmacy, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, 300192, China
| | - Yishan Bu
- Department of Pharmacy, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, 300192, China
| | - Yi Zhang
- Department of Pharmacy, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, 300192, China
| | - Huier Gao
- Department of Pharmacy, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, 300192, China.
| |
Collapse
|
3
|
Xiao L, Qiao J, Huang Y, Tan B, Hong L, Li Z, Cai G, Wu Z, Zheng E, Wang S, Gu T. RASGRP1 targeted by H3K27me3 regulates myoblast proliferation and differentiation in mice and pigs. Acta Biochim Biophys Sin (Shanghai) 2024; 56:452-461. [PMID: 38419500 PMCID: PMC10984873 DOI: 10.3724/abbs.2024011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 11/14/2023] [Indexed: 03/02/2024] Open
Abstract
Skeletal muscle is not only the largest organ in the body that is responsible for locomotion and exercise but also crucial for maintaining the body's energy metabolism and endocrine secretion. The trimethylation of histone H3 lysine 27 (H3K27me3) is one of the most important histone modifications that participates in muscle development regulation by repressing the transcription of genes. Previous studies indicate that the RASGRP1 gene is regulated by H3K27me3 in embryonic muscle development in pigs, but its function and regulatory role in myogenesis are still unclear. In this study, we verify the crucial role of H3K27me3 in RASGRP1 regulation. The gain/loss function of RASGRP1 in myogenesis regulation is performed using mouse myoblast C2C12 cells and primarily isolated porcine skeletal muscle satellite cells (PSCs). The results of qPCR, western blot analysis, EdU staining, CCK-8 assay and immunofluorescence staining show that overexpression of RASGRP1 promotes cell proliferation and differentiation in both skeletal muscle cell models, while knockdown of RASGRP1 leads to the opposite results. These findings indicate that RASGRP1 plays an important regulatory role in myogenesis in both mice and pigs.
Collapse
Affiliation(s)
- Liyao Xiao
- National Engineering Research Center for Breeding Swine IndustryCollege of Animal ScienceSouth China Agricultural UniversityGuangzhou510000China
| | - Jiaxin Qiao
- National Engineering Research Center for Breeding Swine IndustryCollege of Animal ScienceSouth China Agricultural UniversityGuangzhou510000China
| | - Yiyang Huang
- National Engineering Research Center for Breeding Swine IndustryCollege of Animal ScienceSouth China Agricultural UniversityGuangzhou510000China
| | - Baohua Tan
- National Engineering Research Center for Breeding Swine IndustryCollege of Animal ScienceSouth China Agricultural UniversityGuangzhou510000China
| | - Linjun Hong
- National Engineering Research Center for Breeding Swine IndustryCollege of Animal ScienceSouth China Agricultural UniversityGuangzhou510000China
| | - Zicong Li
- National Engineering Research Center for Breeding Swine IndustryCollege of Animal ScienceSouth China Agricultural UniversityGuangzhou510000China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresourcesGuangzhou510000China
- Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and TechnologyGuangzhou510000China
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular BreedingGuangzhou510000China
| | - Gengyuan Cai
- National Engineering Research Center for Breeding Swine IndustryCollege of Animal ScienceSouth China Agricultural UniversityGuangzhou510000China
- Guangdong Wens Breeding Swine Technology Co.Ltd.Yunfu527400China
| | - Zhenfang Wu
- National Engineering Research Center for Breeding Swine IndustryCollege of Animal ScienceSouth China Agricultural UniversityGuangzhou510000China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresourcesGuangzhou510000China
- Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and TechnologyGuangzhou510000China
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular BreedingGuangzhou510000China
- Guangdong Wens Breeding Swine Technology Co.Ltd.Yunfu527400China
| | - Enqin Zheng
- National Engineering Research Center for Breeding Swine IndustryCollege of Animal ScienceSouth China Agricultural UniversityGuangzhou510000China
| | - Shanshan Wang
- National Engineering Research Center for Breeding Swine IndustryCollege of Animal ScienceSouth China Agricultural UniversityGuangzhou510000China
- College of Life ScienceHubei UniversityWuhan430000China
| | - Ting Gu
- National Engineering Research Center for Breeding Swine IndustryCollege of Animal ScienceSouth China Agricultural UniversityGuangzhou510000China
| |
Collapse
|
4
|
Fan S, Kang B, Li S, Li W, Chen C, Chen J, Deng L, Chen D, Zhou J. Exploring the multifaceted role of RASGRP1 in disease: immune, neural, metabolic, and oncogenic perspectives. Cell Cycle 2024; 23:722-746. [PMID: 38865342 PMCID: PMC11229727 DOI: 10.1080/15384101.2024.2366009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 11/25/2023] [Indexed: 06/14/2024] Open
Abstract
RAS guanyl releasing protein 1 (RASGRP1) is a guanine nucleotide exchange factor (GEF) characterized by the presence of a RAS superfamily GEF domain. It functions as a diacylglycerol (DAG)-regulated nucleotide exchange factor, specifically activating RAS through the exchange of bound GDP for GTP. Activation of RAS by RASGRP1 has a wide range of downstream effects at the cellular level. Thus, it is not surprising that many diseases are associated with RASGRP1 disorders. Here, we present an overview of the structure and function of RASGRP1, its crucial role in the development, expression, and regulation of immune cells, and its involvement in various signaling pathways. This review comprehensively explores the relationship between RASGRP1 and various diseases, elucidates the underlying molecular mechanisms of RASGRP1 in each disease, and identifies potential therapeutic targets. This study provides novel insights into the role of RASGRP1 in insulin secretion and highlights its potential as a therapeutic target for diabetes. The limitations and challenges associated with studying RASGRP1 in disease are also discussed.
Collapse
Affiliation(s)
- Shangzhi Fan
- The First Affiliated Hospital, Hunan Provincial Clinical Medical Research Center for Drug Evaluation of Major Chronic Diseases,Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Hengyang Clinical Pharmacology Research Center, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Hengyang Key Laboratory of Clinical Pharmacology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Bo Kang
- The First Affiliated Hospital, Hunan Provincial Clinical Medical Research Center for Drug Evaluation of Major Chronic Diseases,Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Hengyang Clinical Pharmacology Research Center, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Hengyang Key Laboratory of Clinical Pharmacology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Shaoqian Li
- The First Affiliated Hospital, Hunan Provincial Clinical Medical Research Center for Drug Evaluation of Major Chronic Diseases,Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Hengyang Clinical Pharmacology Research Center, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Hengyang Key Laboratory of Clinical Pharmacology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Weiyi Li
- The First Affiliated Hospital, Hunan Provincial Clinical Medical Research Center for Drug Evaluation of Major Chronic Diseases,Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Hengyang Clinical Pharmacology Research Center, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Hengyang Key Laboratory of Clinical Pharmacology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Canyu Chen
- The First Affiliated Hospital, Hunan Provincial Clinical Medical Research Center for Drug Evaluation of Major Chronic Diseases,Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Hengyang Clinical Pharmacology Research Center, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Hengyang Key Laboratory of Clinical Pharmacology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Pharmacy Department, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jixiang Chen
- The First Affiliated Hospital, Hunan Provincial Clinical Medical Research Center for Drug Evaluation of Major Chronic Diseases,Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Hengyang Clinical Pharmacology Research Center, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Hengyang Key Laboratory of Clinical Pharmacology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Pharmacy Department, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Lijing Deng
- The First Affiliated Hospital, Hunan Provincial Clinical Medical Research Center for Drug Evaluation of Major Chronic Diseases,Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Hengyang Clinical Pharmacology Research Center, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Hengyang Key Laboratory of Clinical Pharmacology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Pharmacy Department, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Danjun Chen
- The First Affiliated Hospital, Hunan Provincial Clinical Medical Research Center for Drug Evaluation of Major Chronic Diseases,Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Hengyang Clinical Pharmacology Research Center, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Hengyang Key Laboratory of Clinical Pharmacology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Pharmacy Department, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jiecan Zhou
- The First Affiliated Hospital, Hunan Provincial Clinical Medical Research Center for Drug Evaluation of Major Chronic Diseases,Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Hengyang Clinical Pharmacology Research Center, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Hengyang Key Laboratory of Clinical Pharmacology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Pharmacy Department, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
5
|
Lee RH, Rocco DJ, Nieswandt B, Bergmeier W. The CalDAG-GEFI/Rap1/αIIbβ3 axis minimally contributes to accelerated platelet clearance in mice with constitutive store-operated calcium entry. Platelets 2023; 34:2157383. [PMID: 36683325 PMCID: PMC10032033 DOI: 10.1080/09537104.2022.2157383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 12/06/2022] [Indexed: 01/24/2023]
Abstract
Circulating platelets maintain low cytosolic Ca2+ concentrations. At sites of vascular injury, agonist-induced Ca2+ release from platelet intracellular stores triggers influx of extracellular Ca2+, a process known as store-operated Ca2+ entry (SOCE). Stromal interaction molecule 1 (Stim1) senses reduced Ca2+ stores and triggers SOCE. Gain-of-function (GOF) mutations in Stim1, such as described for Stormorken syndrome patients or mutant mice (Stim1Sax), are associated with marked thrombocytopenia and increased platelet turnover. We hypothesized that reduced platelet survival in Stim1Sax/+ mice is due to increased Rap1/integrin signaling and platelet clearance in the spleen, similar to what we recently described for mice expressing a mutant version of the Rap1-GAP, Rasa3 (Rasa3hlb/hlb). Stim1Sax/+ mice were crossed with mice deficient in CalDAG-GEFI, a critical calcium-regulated Rap1-GEF in platelets. In contrast to Rasa3hlb/hlb x Caldaggef1-/- mice, only a small increase in the peripheral platelet count, but not platelet lifespan, was observed in Stim1Sax/+ x Caldaggef1-/- mice. Similarly, inhibition of αIIbβ3 integrin in vivo only minimally raised the peripheral platelet count in Stim1Sax/+ mice. Compared to controls, Stim1Sax/+ mice exhibited increased platelet accumulation in the lung, but not the spleen or liver. These results suggest that CalDAG-GEFI/Rap1/integrin signaling contributes only minimally to accelerated platelet turnover caused by constitutive SOCE.
Collapse
Affiliation(s)
- Robert H Lee
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill
- UNC Blood Research Center, University of North Carolina at Chapel Hill
| | - David J Rocco
- UNC Blood Research Center, University of North Carolina at Chapel Hill
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill
| | - Bernhard Nieswandt
- Institute of Experimental Biomedicine I, University Hospital Würzburg, Würzburg, Germany
- Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
| | - Wolfgang Bergmeier
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill
- UNC Blood Research Center, University of North Carolina at Chapel Hill
| |
Collapse
|
6
|
Manso JA, Carabias A, Sárkány Z, de Pereda JM, Pereira PJB, Macedo-Ribeiro S. Pathogen-specific structural features of Candida albicans Ras1 activation complex: uncovering new antifungal drug targets. mBio 2023; 14:e0063823. [PMID: 37526476 PMCID: PMC10470544 DOI: 10.1128/mbio.00638-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/16/2023] [Indexed: 08/02/2023] Open
Abstract
An important feature associated with Candida albicans pathogenicity is its ability to switch between yeast and hyphal forms, a process in which CaRas1 plays a key role. CaRas1 is activated by the guanine nucleotide exchange factor (GEF) CaCdc25, triggering hyphal growth-related signaling pathways through its conserved GTP-binding (G)-domain. An important function in hyphal growth has also been proposed for the long hypervariable region downstream the G-domain, whose unusual content of polyglutamine stretches and Q/N repeats make CaRas1 unique within Ras proteins. Despite its biological importance, both the structure of CaRas1 and the molecular basis of its activation by CaCdc25 remain unexplored. Here, we show that CaRas1 has an elongated shape and limited conformational flexibility and that its hypervariable region contains helical structural elements, likely forming an intramolecular coiled-coil. Functional assays disclosed that CaRas1-activation by CaCdc25 is highly efficient, with activities up to 2,000-fold higher than reported for human GEFs. The crystal structure of the CaCdc25 catalytic region revealed an active conformation for the α-helical hairpin, critical for CaRas1-activation, unveiling a specific region exclusive to CTG-clade species. Structural studies on CaRas1/CaCdc25 complexes also revealed an interaction surface clearly distinct from that of homologous human complexes. Furthermore, we identified an inhibitory synthetic peptide, prompting the proposal of a key regulatory mechanism for CaCdc25. To our knowledge, this is the first report of specific inhibition of the CaRas1-activation via targeting its GEF. This, together with their unique pathogen-structural features, disclose a set of novel strategies to specifically block this important virulence-related mechanism. IMPORTANCE Candida albicans is the main causative agent of candidiasis, the commonest fungal infection in humans. The eukaryotic nature of C. albicans and the rapid emergence of antifungal resistance raise the challenge of identifying novel drug targets to battle this prevalent and life-threatening disease. CaRas1 and CaCdc25 are key players in the activation of signaling pathways triggering multiple virulence traits, including the yeast-to-hypha interconversion. The structural similarity of the conserved G-domain of CaRas1 to those of human homologs and the lack of structural information on CaCdc25 has impeded progress in targeting these proteins. The unique structural and functional features for CaRas1 and CaCdc25 presented here, together with the identification of a synthetic peptide capable of specifically inhibiting the GEF activity of CaCdc25, open new possibilities to uncover new antifungal drug targets against C. albicans virulence.
Collapse
Affiliation(s)
- José A. Manso
- IBMC–Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Arturo Carabias
- Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas-University of Salamanca, Salamanca, Spain
| | - Zsuzsa Sárkány
- IBMC–Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - José M. de Pereda
- Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas-University of Salamanca, Salamanca, Spain
| | - Pedro José Barbosa Pereira
- IBMC–Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Sandra Macedo-Ribeiro
- IBMC–Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| |
Collapse
|
7
|
A Focused Review of Ras Guanine Nucleotide-Releasing Protein 1 in Immune Cells and Cancer. Int J Mol Sci 2023; 24:ijms24021652. [PMID: 36675167 PMCID: PMC9864139 DOI: 10.3390/ijms24021652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Four Ras guanine nucleotide-releasing proteins (RasGRP1 through 4) belong to the family of guanine nucleotide exchange factors (GEFs). RasGRPs catalyze the release of GDP from small GTPases Ras and Rap and facilitate their transition from an inactive GDP-bound to an active GTP-bound state. Thus, they regulate critical cellular responses via many downstream GTPase effectors. Similar to other RasGRPs, the catalytic module of RasGRP1 is composed of the Ras exchange motif (REM) and Cdc25 domain, and the EF hands and C1 domain contribute to its cellular localization and regulation. RasGRP1 can be activated by a diacylglycerol (DAG)-mediated membrane recruitment and protein kinase C (PKC)-mediated phosphorylation. RasGRP1 acts downstream of the T cell receptor (TCR), B cell receptors (BCR), and pre-TCR, and plays an important role in the thymocyte maturation and function of peripheral T cells, B cells, NK cells, mast cells, and neutrophils. The dysregulation of RasGRP1 is known to contribute to numerous disorders that range from autoimmune and inflammatory diseases and schizophrenia to neoplasia. Given its position at the crossroad of cell development, inflammation, and cancer, RASGRP1 has garnered interest from numerous disciplines. In this review, we outline the structure, function, and regulation of RasGRP1 and focus on the existing knowledge of the role of RasGRP1 in leukemia and other cancers.
Collapse
|
8
|
Baidya SK, Banerjee S, Adhikari N, Jha T. Selective Inhibitors of Medium-Size S1' Pocket Matrix Metalloproteinases: A Stepping Stone of Future Drug Discovery. J Med Chem 2022; 65:10709-10754. [PMID: 35969157 DOI: 10.1021/acs.jmedchem.1c01855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Among various matrix metalloproteinases (MMPs), MMPs having medium-size S1' pockets are established as promising biomolecular targets for executing crucial roles in cancer, cardiovascular diseases, and neurodegenerative diseases. However, no such MMP inhibitors (MMPIs) are available to date as drug candidates despite a lot of continuous research work for more than three decades. Due to a high degree of structural resemblance among these MMPs, designing selective MMPIs is quite challenging. However, the variability and uniqueness of the S1' pockets of these MMPs make them promising targets for designing selective MMPIs. In this perspective, the overall structural aspects of medium-size S1' pocket MMPs including the unique binding patterns of enzyme-inhibitor interactions have been discussed in detail to acquire knowledge regarding selective inhibitor designing. This overall knowledge will surely be a curtain raiser for the designing of selective MMPIs as drug candidates in the future.
Collapse
Affiliation(s)
- Sandip Kumar Baidya
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Suvankar Banerjee
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Nilanjan Adhikari
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Tarun Jha
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| |
Collapse
|
9
|
Huynh MV, Hobbs GA, Schaefer A, Pierobon M, Carey LM, Diehl JN, DeLiberty JM, Thurman RD, Cooke AR, Goodwin CM, Cook JH, Lin L, Waters AM, Rashid NU, Petricoin EF, Campbell SL, Haigis KM, Simeone DM, Lyssiotis CA, Cox AD, Der CJ. Functional and biological heterogeneity of KRAS Q61 mutations. Sci Signal 2022; 15:eabn2694. [PMID: 35944066 PMCID: PMC9534304 DOI: 10.1126/scisignal.abn2694] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Missense mutations at the three hotspots in the guanosine triphosphatase (GTPase) RAS-Gly12, Gly13, and Gln61 (commonly known as G12, G13, and Q61, respectively)-occur differentially among the three RAS isoforms. Q61 mutations in KRAS are infrequent and differ markedly in occurrence. Q61H is the predominant mutant (at 57%), followed by Q61R/L/K (collectively 40%), and Q61P and Q61E are the rarest (2 and 1%, respectively). Probability analysis suggested that mutational susceptibility to different DNA base changes cannot account for this distribution. Therefore, we investigated whether these frequencies might be explained by differences in the biochemical, structural, and biological properties of KRASQ61 mutants. Expression of KRASQ61 mutants in NIH 3T3 fibroblasts and RIE-1 epithelial cells caused various alterations in morphology, growth transformation, effector signaling, and metabolism. The relatively rare KRASQ61E mutant stimulated actin stress fiber formation, a phenotype distinct from that of KRASQ61H/R/L/P, which disrupted actin cytoskeletal organization. The crystal structure of KRASQ61E was unexpectedly similar to that of wild-type KRAS, a potential basis for its weak oncogenicity. KRASQ61H/L/R-mutant pancreatic ductal adenocarcinoma (PDAC) cell lines exhibited KRAS-dependent growth and, as observed with KRASG12-mutant PDAC, were susceptible to concurrent inhibition of ERK-MAPK signaling and of autophagy. Our results uncover phenotypic heterogeneity among KRASQ61 mutants and support the potential utility of therapeutic strategies that target KRASQ61 mutant-specific signaling and cellular output.
Collapse
Affiliation(s)
- Minh V. Huynh
- Department of Biochemistry & Biophysics, University of
North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - G. Aaron Hobbs
- Department of Pharmacology, University of North Carolina at
Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North
Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Antje Schaefer
- Department of Pharmacology, University of North Carolina at
Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North
Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Mariaelena Pierobon
- Center for Applied Proteomics and Molecular Medicine,
George Mason University, Manassas, VA 20110, USA
| | - Leiah M. Carey
- Department of Biochemistry & Biophysics, University of
North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North
Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - J. Nathaniel Diehl
- Curriculum in Genetics and Molecular Biology, University of
North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jonathan M. DeLiberty
- Department of Pharmacology, University of North Carolina at
Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ryan D. Thurman
- Department of Biochemistry & Biophysics, University of
North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Adelaide R. Cooke
- Lineberger Comprehensive Cancer Center, University of North
Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Craig M. Goodwin
- Lineberger Comprehensive Cancer Center, University of North
Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Joshua H. Cook
- Department of Cancer Biology, Dana-Farber Cancer Institute,
Boston, MA 02215, USA
- Department of Medicine, Brigham & Women's
Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Biomedical Informatics, Harvard Medical
School, Boston, MA 02115, USA
| | - Lin Lin
- Department of Molecular and Integrative Physiology,
University of Michigan Health System, Ann Arbor, MI 48109, USA
| | - Andrew M. Waters
- Department of Pharmacology, University of North Carolina at
Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North
Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Naim U. Rashid
- Department of Biostatistics, University of North Carolina
at Chapel Hill, NC 27955, USA
| | - Emanuel F. Petricoin
- Center for Applied Proteomics and Molecular Medicine,
George Mason University, Manassas, VA 20110, USA
| | - Sharon L. Campbell
- Department of Biochemistry & Biophysics, University of
North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North
Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kevin M. Haigis
- Department of Cancer Biology, Dana-Farber Cancer Institute,
Boston, MA 02215, USA
- Department of Medicine, Brigham & Women's
Hospital, Harvard Medical School, Boston, MA 02115, USA
- Broad Institute, Cambridge, MA 02142, USA
- Harvard Digestive Disease Center, Harvard Medical School,
Boston, MA 02115, USA
| | - Diane M. Simeone
- Perlmutter Cancer Center, New York University, New York,
NY10016, USA
| | - Costas A. Lyssiotis
- Department of Molecular and Integrative Physiology,
University of Michigan Health System, Ann Arbor, MI 48109, USA
- Department of Internal Medicine, Division of
Gastroenterology, University of Michigan, Ann Arbor, MI 48198, USA
- University of Michigan Comprehensive Cancer Center, Ann
Arbor, MI 48109, USA
| | - Adrienne D. Cox
- Department of Pharmacology, University of North Carolina at
Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North
Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Radiation Oncology, University of North
Carolina at Chapel Hill, Chapel Hill, NC 2799, USA
| | - Channing J. Der
- Department of Pharmacology, University of North Carolina at
Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North
Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Curriculum in Genetics and Molecular Biology, University of
North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
10
|
Yanagita RC, Otani M, Hatanaka S, Nishi H, Miyake S, Hanaki Y, Sato M, Kawanami Y, Irie K. Analysis of binding mode of vibsanin A with protein kinase C C1 domains: An experimental and molecular dynamics simulation study. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Eves BJ, Gebregiworgis T, Gasmi-Seabrook GM, Kuntz DA, Privé GG, Marshall CB, Ikura M. Structures of RGL1 RAS-Association domain in complex with KRAS and the oncogenic G12V mutant. J Mol Biol 2022; 434:167527. [DOI: 10.1016/j.jmb.2022.167527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 02/24/2022] [Accepted: 03/01/2022] [Indexed: 11/28/2022]
|
12
|
Burge RA, Hobbs GA. Not all RAS mutations are equal: A detailed review of the functional diversity of RAS hot spot mutations. Adv Cancer Res 2022; 153:29-61. [PMID: 35101234 DOI: 10.1016/bs.acr.2021.07.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The RAS family of small GTPases are among the most frequently mutated oncogenes in human cancer. Approximately 20% of cancers harbor a RAS mutation, and >150 different missense mutations have been detected. Many of these mutations have mutant-specific biochemical defects that alter nucleotide binding and hydrolysis, effector interactions and cell signaling, prompting renewed efforts in the development of anti-RAS therapies, including the mutation-specific strategies. Previously viewed as undruggable, the recent FDA approval of a KRASG12C-selective inhibitor has offered real promise to the development of allele-specific RAS therapies. A broader understanding of the mutational consequences on RAS function must be developed to exploit additional allele-specific vulnerabilities. Approximately 94% of RAS mutations occur at one of three mutational "hot spots" at Gly12, Gly13 and Gln61. Further, the single-nucleotide substitutions represent >99% of these mutations. Within this scope, we discuss the mutational frequencies of RAS isoforms in cancer, mutant-specific effector interactions and biochemical properties. By limiting our analysis to this mutational subset, we simplify the analysis while only excluding a small percentage of total mutations. Combined, these data suggest that the presence or absence of select RAS mutations in human cancers can be linked to their biochemical properties. Continuing to examine the biochemical differences in each RAS-mutant protein will continue to provide additional breakthroughs in allele-specific therapeutic strategies.
Collapse
Affiliation(s)
- Rachel A Burge
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, United States
| | - G Aaron Hobbs
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, United States; Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States.
| |
Collapse
|
13
|
Abstract
RAS proteins play major roles in many human cancers, but programs to develop direct RAS inhibitors so far have only been successful for the oncogenic KRAS mutant G12C. As an alternative approach, inhibitors for the RAS guanine nucleotide exchange factor SOS1 have been investigated by several academic groups and companies, and major progress has been achieved in recent years in the optimization of small molecule activators and inhibitors of SOS1. Here, we review the discovery and development of small molecule modulators of SOS1 and their molecular binding modes and modes of action. As targeting the RAS pathway is expected to result in the development of resistance mechanisms, SOS1 inhibitors will most likely be best applied in vertical combination approaches where two nodes of the RAS signaling pathway are hit simultaneously. We summarize the current understanding of which combination partners may be most beneficial for patients with RAS driven tumors.
Collapse
Affiliation(s)
| | - Benjamin Bader
- Screening, Lead Discovery, Nuvisan ICB GmbH, Berlin, Germany
| |
Collapse
|
14
|
Regulation of the Small GTPase Ras and Its Relevance to Human Disease. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2021; 2262:19-43. [PMID: 33977469 DOI: 10.1007/978-1-0716-1190-6_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ras research has experienced a considerable boost in recent years, not least prompted by the Ras initiative launched by the NCI in 2013 ( https://www.cancer.gov/research/key-initiatives/ras ), accompanied and conditioned by a strongly reinvigorated determination within the Ras community to develop therapeutics attacking directly the Ras oncoproteins. As a member of the small G-protein superfamily, function and transforming activity of Ras all revolve about its GDP/GTP loading status. For one thing, the extent of GTP loading will determine the proportion of active Ras in the cell, with implications for intensity and quality of downstream signaling. But also the rate of nucleotide exchange, i.e., the Ras-GDP/GTP cycling rate, can have a major impact on Ras function, as illustrated perhaps most impressively by newly discovered fast-cycling oncogenic mutants of the Ras-related GTPase Rac1. Thus, while the last years have witnessed memorable new findings and technical developments in the Ras field, leading to an improved insight into many aspects of Ras biology, they have not jolted at the basics, but rather deepened our view of the fundamental regulatory principles of Ras activity control. In this brief review, we revisit the role and mechanisms of Ras nucleotide loading and its implications for cancer in the light of recent findings.
Collapse
|
15
|
Baars MJ, Douma T, Simeonov DR, Myers DR, Kulhanek K, Banerjee S, Zwakenberg S, Baltissen MP, Amini M, de Roock S, van Wijk F, Vermeulen M, Marson A, Roose JP, Vercoulen Y. Dysregulated RASGRP1 expression through RUNX1 mediated transcription promotes autoimmunity. Eur J Immunol 2021; 51:471-482. [PMID: 33065764 PMCID: PMC7894479 DOI: 10.1002/eji.201948451] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 08/11/2020] [Accepted: 10/15/2020] [Indexed: 12/19/2022]
Abstract
RasGRP1 is a Ras guanine nucleotide exchange factor, and an essential regulator of lymphocyte receptor signaling. In mice, Rasgrp1 deletion results in defective T lymphocyte development. RASGRP1-deficient patients suffer from immune deficiency, and the RASGRP1 gene has been linked to autoimmunity. However, how RasGRP1 levels are regulated, and if RasGRP1 dosage alterations contribute to autoimmunity remains unknown. We demonstrate that diminished Rasgrp1 expression caused defective T lymphocyte selection in C57BL/6 mice, and that the severity of inflammatory disease inversely correlates with Rasgrp1 expression levels. In patients with autoimmunity, active inflammation correlated with decreased RASGRP1 levels in CD4+ T cells. By analyzing H3K27 acetylation profiles in human T cells, we identified a RASGRP1 enhancer that harbors autoimmunity-associated SNPs. CRISPR-Cas9 disruption of this enhancer caused lower RasGRP1 expression, and decreased binding of RUNX1 and CBFB transcription factors. Analyzing patients with autoimmunity, we detected reduced RUNX1 expression in CD4+ T cells. Lastly, we mechanistically link RUNX1 to transcriptional regulation of RASGRP1 to reveal a key circuit regulating RasGRP1 expression, which is vital to prevent inflammatory disease.
Collapse
Affiliation(s)
- Matthijs J.D. Baars
- Molecular Cancer Research, Center for Molecular MedicineUniversity Medical Center Utrecht, Utrecht UniversityUtrechtThe Netherlands
| | - Thera Douma
- Center of Translational ImmunologyUniversity Medical Center Utrecht, Utrecht UniversityUtrechtThe Netherlands
| | - Dimitre R. Simeonov
- Diabetes CenterUniversity of California San FranciscoSan FranciscoCAUSA
- Biomedical Sciences Graduate ProgramUniversity of California San FranciscoSan FranciscoCAUSA
| | - Darienne R. Myers
- Biomedical Sciences Graduate ProgramUniversity of California San FranciscoSan FranciscoCAUSA
- Department of AnatomyUniversity of California San FranciscoSan FranciscoCAUSA
| | - Kayla Kulhanek
- Department of AnatomyUniversity of California San FranciscoSan FranciscoCAUSA
| | - Saikat Banerjee
- Department of AnatomyUniversity of California San FranciscoSan FranciscoCAUSA
| | - Susan Zwakenberg
- Molecular Cancer Research, Center for Molecular MedicineUniversity Medical Center Utrecht, Utrecht UniversityUtrechtThe Netherlands
| | - Marijke P. Baltissen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode InstituteRadboud University NijmegenNijmegenThe Netherlands
| | - Mojtaba Amini
- Molecular Cancer Research, Center for Molecular MedicineUniversity Medical Center Utrecht, Utrecht UniversityUtrechtThe Netherlands
| | - Sytze de Roock
- Pediatric Immunology and Rheumatology, Wilhelmina Children's HospitalUniversity Medical Center Utrecht, Utrecht UniversityUtrechtThe Netherlands
| | - Femke van Wijk
- Center of Translational ImmunologyUniversity Medical Center Utrecht, Utrecht UniversityUtrechtThe Netherlands
- Pediatric Immunology and Rheumatology, Wilhelmina Children's HospitalUniversity Medical Center Utrecht, Utrecht UniversityUtrechtThe Netherlands
| | - Michiel Vermeulen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode InstituteRadboud University NijmegenNijmegenThe Netherlands
| | - Alexander Marson
- Diabetes CenterUniversity of California San FranciscoSan FranciscoCAUSA
- J. David Gladstone InstitutesSan FranciscoCAUSA
- Department of MedicineUniversity of CaliforniaSan FranciscoCAUSA
- Department of Microbiology and ImmunologyUniversity of CaliforniaSan FranciscoCAUSA
| | - Jeroen P. Roose
- Department of AnatomyUniversity of California San FranciscoSan FranciscoCAUSA
| | - Yvonne Vercoulen
- Molecular Cancer Research, Center for Molecular MedicineUniversity Medical Center Utrecht, Utrecht UniversityUtrechtThe Netherlands
| |
Collapse
|
16
|
Nras Q61R/+ and Kras-/- cooperate to downregulate Rasgrp1 and promote lympho-myeloid leukemia in early T-cell precursors. Blood 2021; 137:3259-3271. [PMID: 33512434 PMCID: PMC8351901 DOI: 10.1182/blood.2020009082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 12/31/2020] [Indexed: 12/12/2022] Open
Abstract
Kras−/−; NrasQ61R/+ mice develop early onset of T-cell malignancy that recapitulates many biological and molecular features of human ETP-ALL. We identify Rasgrp1 as a negative regulator of Ras/ERK signaling in oncogenic Nras-driven ETP-like leukemia.
Early T-cell precursor acute lymphoblastic leukemia (ETP-ALL) is an aggressive subtype of T-cell ALL. Although genetic mutations hyperactivating cytokine receptor/Ras signaling are prevalent in ETP-ALL, it remains unknown how activated Ras signaling contributes to ETP-ALL. Here, we find that in addition to the frequent oncogenic RAS mutations, wild-type (WT) KRAS transcript level was significantly downregulated in human ETP-ALL cells. Similarly, loss of WT Kras in NrasQ61R/+ mice promoted hyperactivation of extracellular signal-regulated kinase (ERK) signaling, thymocyte hyperproliferation, and expansion of the ETP compartment. Kras−/−; NrasQ61R/+ mice developed early onset of T-cell malignancy that recapitulates many biological and molecular features of human ETP-ALL. Mechanistically, RNA-sequencing analysis and quantitative proteomics study identified that Rasgrp1, a Ras guanine nucleotide exchange factor, was greatly downregulated in mouse and human ETP-ALL. Unexpectedly, hyperactivated Nras/ERK signaling suppressed Rasgrp1 expression and reduced Rasgrp1 level led to increased ERK signaling, thereby establishing a positive feedback loop to augment Nras/ERK signaling and promote cell proliferation. Corroborating our cell line data, Rasgrp1 haploinsufficiency induced Rasgrp1 downregulation and increased phosphorylated ERK level and ETP expansion in NrasQ61R/+ mice. Our study identifies Rasgrp1 as a negative regulator of Ras/ERK signaling in oncogenic Nras-driven ETP-like leukemia.
Collapse
|
17
|
Carabias A, Gómez-Hernández M, de Cima S, Rodríguez-Blázquez A, Morán-Vaquero A, González-Sáenz P, Guerrero C, de Pereda JM. Mechanisms of autoregulation of C3G, activator of the GTPase Rap1, and its catalytic deregulation in lymphomas. Sci Signal 2020; 13:13/647/eabb7075. [PMID: 32873726 DOI: 10.1126/scisignal.abb7075] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
C3G is a guanine nucleotide exchange factor (GEF) that regulates cell adhesion and migration by activating the GTPase Rap1. The GEF activity of C3G is stimulated by the adaptor proteins Crk and CrkL and by tyrosine phosphorylation. Here, we uncovered mechanisms of C3G autoinhibition and activation. Specifically, we found that two intramolecular interactions regulate the activity of C3G. First, an autoinhibitory region (AIR) within the central domain of C3G binds to and blocks the catalytic Cdc25H domain. Second, the binding of the protein's N-terminal domain to its Ras exchanger motif (REM) is required for its GEF activity. CrkL activated C3G by displacing the AIR/Cdc25HD interaction. Two missense mutations in the AIR found in non-Hodgkin's lymphomas, Y554H and M555K, disrupted the autoinhibitory mechanism. Expression of C3G-Y554H or C3G-M555K in Ba/F3 pro-B cells caused constitutive activation of Rap1 and, consequently, the integrin LFA-1. Our findings suggest that sustained Rap1 activation by deregulated C3G might promote progression of lymphomas and that designing therapeutics to target C3G might treat these malignancies.
Collapse
Affiliation(s)
- Arturo Carabias
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca, 37007 Salamanca, Spain
| | - María Gómez-Hernández
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca, 37007 Salamanca, Spain
| | - Sergio de Cima
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca, 37007 Salamanca, Spain
| | - Antonio Rodríguez-Blázquez
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca, 37007 Salamanca, Spain
| | - Alba Morán-Vaquero
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca, 37007 Salamanca, Spain
| | - Patricia González-Sáenz
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca, 37007 Salamanca, Spain
| | - Carmen Guerrero
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca, 37007 Salamanca, Spain.,Departamento de Medicina, Facultad de Medicina, Universidad de Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
| | - José M de Pereda
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca, 37007 Salamanca, Spain.
| |
Collapse
|
18
|
Gasper R, Wittinghofer F. The Ras switch in structural and historical perspective. Biol Chem 2020; 401:143-163. [PMID: 31600136 DOI: 10.1515/hsz-2019-0330] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 09/23/2019] [Indexed: 12/22/2022]
Abstract
Since its discovery as an oncogene more than 40 years ago, Ras has been and still is in the focus of many academic and pharmaceutical labs around the world. A huge amount of work has accumulated on its biology. However, many questions about the role of the different Ras isoforms in health and disease still exist and a full understanding will require more intensive work in the future. Here we try to survey some of the structural findings in a historical perspective and how it has influenced our understanding of structure-function and mechanistic relationships of Ras and its interactions. The structures show that Ras is a stable molecular machine that uses the dynamics of its switch regions for the interaction with all regulators and effectors. This conformational flexibility has been used to create small molecule drug candidates against this important oncoprotein.
Collapse
Affiliation(s)
- Raphael Gasper
- Max-Planck-Institut für molekulare Physiologie, Otto-Hahn-Str. 11, D-44227 Dortmund, Germany
| | - Fred Wittinghofer
- Max-Planck-Institut für molekulare Physiologie, Otto-Hahn-Str. 11, D-44227 Dortmund, Germany
| |
Collapse
|
19
|
Myers DR, Norlin E, Vercoulen Y, Roose JP. Active Tonic mTORC1 Signals Shape Baseline Translation in Naive T Cells. Cell Rep 2020; 27:1858-1874.e6. [PMID: 31067469 PMCID: PMC6593126 DOI: 10.1016/j.celrep.2019.04.037] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 01/25/2019] [Accepted: 04/05/2019] [Indexed: 12/15/2022] Open
Abstract
Naive CD4+ T cells are an example of dynamic cell homeostasis: T cells need to avoid autoreactivity while constantly seeing self-peptides, yet they must be primed to react to foreign antigens during infection. The instructive signals that balance this primed yet quiescent state are unknown. Interactions with self-peptides result in membrane-proximal, tonic signals in resting T cells. Here we reveal selective and robust tonic mTORC1 signals in CD4+ T cells that influence T cell fate decisions. We find that the Ras exchange factor Rasgrp1 is necessary to generate tonic mTORC1 signals. Genome-wide ribosome profiling of resting, primary CD4+ T cells uncovers a baseline translational landscape rich in mTOR targets linked to mitochondria, oxidative phosphorylation, and splicing. Aberrantly increased tonic mTORC1 signals from a Rasgrp1Anaef allele result in immunopathology with spontaneous appearance of T peripheral helper cells, follicular helper T cells, and anti-nuclear antibodies that are preceded by subtle alterations in the translational landscape. Myers et al. evaluate a mouse model of autoimmunity, Rasgrp1Anaef. They find that T cells with the Rasgrp1Anaef allele exhibit altered signaling from Rasgrp1 to the mTORC1 pathway in the basal state. They show that increased basal Rasgrp1Anaef-mTORC1 signals lead to an altered translational landscape in T cells and immunopathology.
Collapse
Affiliation(s)
- Darienne R Myers
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Emilia Norlin
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Yvonne Vercoulen
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jeroen P Roose
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
20
|
Eshraghi M, Ramírez-Jarquín UN, Shahani N, Nuzzo T, De Rosa A, Swarnkar S, Galli N, Rivera O, Tsaprailis G, Scharager-Tapia C, Crynen G, Li Q, Thiolat ML, Bezard E, Usiello A, Subramaniam S. RasGRP1 is a causal factor in the development of l-DOPA-induced dyskinesia in Parkinson's disease. SCIENCE ADVANCES 2020; 6:eaaz7001. [PMID: 32426479 PMCID: PMC7195186 DOI: 10.1126/sciadv.aaz7001] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 02/12/2020] [Indexed: 05/10/2023]
Abstract
The therapeutic effects of l-3,4-dihydroxyphenylalanine (l-DOPA) in patients with Parkinson's disease (PD) severely diminishes with the onset of abnormal involuntary movement, l-DOPA-induced dyskinesia (LID). However, the molecular mechanisms that promote LID remain unclear. Here, we demonstrated that RasGRP1 [(guanine nucleotide exchange factor (GEF)] controls the development of LID. l-DOPA treatment rapidly up-regulated RasGRP1 in the striatum of mouse and macaque model of PD. The lack of RasGRP1 in mice (RasGRP1-/- ) dramatically diminished LID without interfering with the therapeutic effects of l-DOPA. Besides acting as a GEF for Ras homolog enriched in the brain (Rheb), the activator of the mammalian target of rapamycin kinase (mTOR), RasGRP1 promotes l-DOPA-induced extracellular signal-regulated kinase (ERK) and the mTOR signaling in the striatum. High-resolution tandem mass spectrometry analysis revealed multiple RasGRP1 downstream targets linked to LID vulnerability. Collectively, the study demonstrated that RasGRP1 is a critical striatal regulator of LID.
Collapse
Affiliation(s)
- Mehdi Eshraghi
- The Scripps Research Institute, Department of Neuroscience, Jupiter, FL 33458, USA
| | | | - Neelam Shahani
- The Scripps Research Institute, Department of Neuroscience, Jupiter, FL 33458, USA
| | - Tommaso Nuzzo
- Department of Environmental, Biological, and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy
- Laboratory of Behavioral Neuroscience, Ceinge Biotecnologie Avanzate, 80145 Naples, Italy
| | - Arianna De Rosa
- Department of Environmental, Biological, and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy
- Laboratory of Behavioral Neuroscience, Ceinge Biotecnologie Avanzate, 80145 Naples, Italy
| | - Supriya Swarnkar
- The Scripps Research Institute, Department of Neuroscience, Jupiter, FL 33458, USA
| | - Nicole Galli
- The Scripps Research Institute, Department of Neuroscience, Jupiter, FL 33458, USA
| | - Oscar Rivera
- The Scripps Research Institute, Department of Neuroscience, Jupiter, FL 33458, USA
| | - George Tsaprailis
- The Scripps Research Institute, Proteomics Core, Jupiter, FL 33458, USA
| | | | - Gogce Crynen
- The Scripps Research Institute, Center for Computational Biology and Bioinformatics, Jupiter, FL 33458, USA
| | - Qin Li
- Motac Neuroscience, UK-M15 6WE Manchester, UK
- Institute of Lab Animal Sciences China Academy of Medical Sciences, Beijing, China
| | - Marie-Laure Thiolat
- Université de Bordeaux, Institut des Maladies Neurodégénératives, Bordeaux, France
- Centre National de la Recherche Scientifique Unité Mixte de Recherche 5293, Institut des Maladies Neurodégénératives, Bordeaux, France
| | - Erwan Bezard
- Motac Neuroscience, UK-M15 6WE Manchester, UK
- Institute of Lab Animal Sciences China Academy of Medical Sciences, Beijing, China
- Université de Bordeaux, Institut des Maladies Neurodégénératives, Bordeaux, France
- Centre National de la Recherche Scientifique Unité Mixte de Recherche 5293, Institut des Maladies Neurodégénératives, Bordeaux, France
| | - Alessandro Usiello
- Department of Environmental, Biological, and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy
- Laboratory of Behavioral Neuroscience, Ceinge Biotecnologie Avanzate, 80145 Naples, Italy
- Corresponding author. (A.U.); (S.S.)
| | - Srinivasa Subramaniam
- The Scripps Research Institute, Department of Neuroscience, Jupiter, FL 33458, USA
- Corresponding author. (A.U.); (S.S.)
| |
Collapse
|
21
|
Sarker M, Goliaei A, Golesi F, Poggi M, Cook A, Khan MAI, Temple BR, Stefanini L, Canault M, Bergmeier W, Campbell SL. Subcellular localization of Rap1 GTPase activator CalDAG-GEFI is orchestrated by interaction of its atypical C1 domain with membrane phosphoinositides. J Thromb Haemost 2020; 18:693-705. [PMID: 31758832 PMCID: PMC7050387 DOI: 10.1111/jth.14687] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 10/17/2019] [Accepted: 11/14/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND The small GTPase Rap1 and its guanine nucleotide exchange factor, CalDAG-GEFI (CDGI), are critical for platelet function and hemostatic plug formation. CDGI function is regulated by a calcium binding EF hand regulatory domain and an atypical C1 domain with unknown function. OBJECTIVE Here, we investigated whether the C1 domain controls CDGI subcellular localization, both in vitro and in vivo. METHODS CDGI interaction with phosphoinositides was studied by lipid co-sedimentation assays and molecular dynamics simulations. Cellular localization of CDGI was studied in heterologous cells by immunofluorescence and subcellular fractionation assays. RESULTS Lipid co-sedimentation studies demonstrated that the CDGI C1 domain associates with membranes through exclusive recognition of phosphoinositides, phosphatidylinositol (4,5)-biphosphate (PIP2) and phosphatidylinositol (3,4,5)-triphosphate (PIP3). Molecular dynamics simulations identified a phospholipid recognition motif consisting of residues exclusive to the CDGI C1 domain. Mutation of those residues abolished co-sedimentation of the C1 domain with lipid vesicles and impaired membrane localization of CDGI in heterologous cells. CONCLUSION Our studies identify a novel interaction between an atypical C1 domain and phosphatidylinositol (4,5)-biphosphate and phosphatidylinositol (3,4,5)-triphosphate in cellular membranes, which is critical for Rap1 signaling in health and disease.
Collapse
Affiliation(s)
- Muzaddid Sarker
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ardeshir Goliaei
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | - Marjorie Poggi
- Aix Marseille University, INSERM, INRA, Marseille, France
| | - Aaron Cook
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Mohammad A. I. Khan
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Brenda R. Temple
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- RL Juliano Structural Bioinformatics Core, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Lucia Stefanini
- Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, Rome, Italy
| | | | - Wolfgang Bergmeier
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Sharon L. Campbell
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
22
|
Myers DR, Wheeler B, Roose JP. mTOR and other effector kinase signals that impact T cell function and activity. Immunol Rev 2020; 291:134-153. [PMID: 31402496 DOI: 10.1111/imr.12796] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 07/11/2019] [Indexed: 12/27/2022]
Abstract
T cells play important roles in autoimmune diseases and cancer. Following the cloning of the T cell receptor (TCR), the race was on to map signaling proteins that contributed to T cell activation downstream of the TCR as well as co-stimulatory molecules such as CD28. We term this "canonical TCR signaling" here. More recently, it has been appreciated that T cells need to accommodate increased metabolic needs that stem from T cell activation in order to function properly. A central role herein has emerged for mechanistic/mammalian target of rapamycin (mTOR). In this review we briefly cover canonical TCR signaling to set the stage for discussion on mTOR signaling, mRNA translation, and metabolic adaptation in T cells. We also discuss the role of mTOR in follicular helper T cells, regulatory T cells, and other T cell subsets. Our lab recently uncovered that "tonic signals", which pass through proximal TCR signaling components, are robustly and selectively transduced to mTOR to promote baseline translation of various mRNA targets. We discuss insights on (tonic) mTOR signaling in the context of T cell function in autoimmune diseases such as lupus as well as in cancer immunotherapy through CAR-T cell or checkpoint blockade approaches.
Collapse
Affiliation(s)
- Darienne R Myers
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA
| | - Benjamin Wheeler
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA
| | - Jeroen P Roose
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
23
|
Canault M, Alessi MC. RasGRP2 Structure, Function and Genetic Variants in Platelet Pathophysiology. Int J Mol Sci 2020; 21:E1075. [PMID: 32041177 PMCID: PMC7037602 DOI: 10.3390/ijms21031075] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/31/2020] [Accepted: 02/03/2020] [Indexed: 12/18/2022] Open
Abstract
RasGRP2 is calcium and diacylglycerol-regulated guanine nucleotide exchange factor I that activates Rap1, which is an essential signaling-knot in "inside-out" αIIbβ3 integrin activation in platelets. Inherited platelet function disorder caused by variants of RASGRP2 represents a new congenital bleeding disorder referred to as platelet-type bleeding disorder-18 (BDPLT18). We review here the structure of RasGRP2 and its functions in the pathophysiology of platelets and of the other cellular types that express it. We will also examine the different pathogenic variants reported so far as well as strategies for the diagnosis and management of patients with BDPLT18.
Collapse
Affiliation(s)
- Matthias Canault
- Aix Marseille University, INSERM, INRAE, C2VN, 13005 Marseille, France
| | - Marie-Christine Alessi
- Aix Marseille University, INSERM, INRAE, C2VN, 13005 Marseille, France
- Hematology laboratory, APHM, CHU Timone, 13005 Marseille, France
| |
Collapse
|
24
|
Lindemann O, Rossaint J, Najder K, Schimmelpfennig S, Hofschröer V, Wälte M, Fels B, Oberleithner H, Zarbock A, Schwab A. Intravascular adhesion and recruitment of neutrophils in response to CXCL1 depends on their TRPC6 channels. J Mol Med (Berl) 2020; 98:349-360. [PMID: 31950205 PMCID: PMC7080674 DOI: 10.1007/s00109-020-01872-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 12/21/2019] [Accepted: 01/03/2020] [Indexed: 02/07/2023]
Abstract
Abstract Here we report a novel role for TRPC6, a member of the transient receptor potential (TRPC) channel family, in the CXCL1-dependent recruitment of murine neutrophil granulocytes. Representing a central element of the innate immune system, neutrophils are recruited from the blood stream to a site of inflammation. The recruitment process follows a well-defined sequence of events including adhesion to the blood vessel walls, migration, and chemotaxis to reach the inflammatory focus. A common feature of the underlying signaling pathways is the utilization of Ca2+ ions as intracellular second messengers. However, the required Ca2+ influx channels are not yet fully characterized. We used WT and TRPC6−/− neutrophils for in vitro and TRPC6−/− chimeric mice (WT mice with WT or TRPC6−/− bone marrow cells) for in vivo studies. After renal ischemia and reperfusion injury, TRPC6−/− chimeric mice had an attenuated TRPC6−/− neutrophil recruitment and a better outcome as judged from the reduced increase in the plasma creatinine concentration. In the cremaster model CXCL1-induced neutrophil adhesion, arrest and transmigration were also decreased in chimeric mice with TRPC6−/− neutrophils. Using atomic force microscopy and microfluidics, we could attribute the recruitment defect of TRPC6−/− neutrophils to the impact of the channel on adhesion to endothelial cells. Mechanistically, TRPC6−/− neutrophils exhibited lower Ca2+ transients during the initial adhesion leading to diminished Rap1 and β2 integrin activation and thereby reduced ICAM-1 binding. In summary, our study reveals that TRPC6 channels in neutrophils are crucial signaling modules in their recruitment from the blood stream in response to CXCL1. Key point Neutrophil TRPC6 channels are crucial for CXCL1-triggered activation of integrins during the initial steps of neutrophil recruitment.
Collapse
Affiliation(s)
- Otto Lindemann
- Institute of Physiology II, Westfälische Wilhelms-Universität, Münster, Germany
| | - Jan Rossaint
- Department of Anaesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| | - Karolina Najder
- Institute of Physiology II, Westfälische Wilhelms-Universität, Münster, Germany
| | | | - Verena Hofschröer
- Institute of Physiology II, Westfälische Wilhelms-Universität, Münster, Germany
| | - Mike Wälte
- Institute of Physiology II, Westfälische Wilhelms-Universität, Münster, Germany.,Institute of Cell Dynamics and Imaging, Westfälische Wilhelms-Universität, Münster, Germany
| | - Benedikt Fels
- Institute of Physiology II, Westfälische Wilhelms-Universität, Münster, Germany
| | - Hans Oberleithner
- Institute of Physiology II, Westfälische Wilhelms-Universität, Münster, Germany
| | - Alexander Zarbock
- Department of Anaesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| | - Albrecht Schwab
- Institute of Physiology II, Westfälische Wilhelms-Universität, Münster, Germany.
| |
Collapse
|
25
|
Hobbs GA, Baker NM, Miermont AM, Thurman RD, Pierobon M, Tran TH, Anderson AO, Waters AM, Diehl JN, Papke B, Hodge RG, Klomp JE, Goodwin CM, DeLiberty JM, Wang J, Ng RWS, Gautam P, Bryant KL, Esposito D, Campbell SL, Petricoin EF, Simanshu DK, Aguirre AJ, Wolpin BM, Wennerberg K, Rudloff U, Cox AD, Der CJ. Atypical KRAS G12R Mutant Is Impaired in PI3K Signaling and Macropinocytosis in Pancreatic Cancer. Cancer Discov 2020; 10:104-123. [PMID: 31649109 PMCID: PMC6954322 DOI: 10.1158/2159-8290.cd-19-1006] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/17/2019] [Accepted: 10/18/2019] [Indexed: 11/16/2022]
Abstract
Allele-specific signaling by different KRAS alleles remains poorly understood. The KRAS G12R mutation displays uneven prevalence among cancers that harbor the highest occurrence of KRAS mutations: It is rare (∼1%) in lung and colorectal cancers, yet relatively common (∼20%) in pancreatic ductal adenocarcinoma (PDAC), suggesting context-specific properties. We evaluated whether KRASG12R is functionally distinct from the more common KRASG12D- or KRASG12V-mutant proteins (KRASG12D/V). We found that KRASG12D/V but not KRASG12R drives macropinocytosis and that MYC is essential for macropinocytosis in KRASG12D/V- but not KRASG12R-mutant PDAC. Surprisingly, we found that KRASG12R is defective for interaction with a key effector, p110α PI3K (PI3Kα), due to structural perturbations in switch II. Instead, upregulated KRAS-independent PI3Kγ activity was able to support macropinocytosis in KRASG12R-mutant PDAC. Finally, we determined that KRASG12R-mutant PDAC displayed a distinct drug sensitivity profile compared with KRASG12D-mutant PDAC but is still responsive to the combined inhibition of ERK and autophagy. SIGNIFICANCE: We determined that KRASG12R is impaired in activating a key effector, p110α PI3K. As such, KRASG12R is impaired in driving macropinocytosis. However, overexpression of PI3Kγ in PDAC compensates for this deficiency, providing one basis for the prevalence of this otherwise rare KRAS mutant in pancreatic cancer but not other cancers.See related commentary by Falcomatà et al., p. 23.This article is highlighted in the In This Issue feature, p. 1.
Collapse
Affiliation(s)
- G Aaron Hobbs
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Nicole M Baker
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | | | - Ryan D Thurman
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Mariaelena Pierobon
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia
| | - Timothy H Tran
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland
| | | | - Andrew M Waters
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - J Nathaniel Diehl
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Bjoern Papke
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Richard G Hodge
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Jennifer E Klomp
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Craig M Goodwin
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Jonathan M DeLiberty
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Junning Wang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Raymond W S Ng
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Prson Gautam
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Kirsten L Bryant
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Dominic Esposito
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland
| | - Sharon L Campbell
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Emanuel F Petricoin
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia
| | - Dhirendra K Simanshu
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland
| | - Andrew J Aguirre
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Brian M Wolpin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Krister Wennerberg
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Udo Rudloff
- Thoracic and GI Oncology Branch, NCI, Bethesda, Maryland.
- Rare Tumor Initiative, Pediatric Oncology Branch, NCI, Bethesda, Maryland
| | - Adrienne D Cox
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Radiation Oncology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Channing J Der
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
26
|
Gbenedio OM, Bonnans C, Grun D, Wang CY, Hatch AJ, Mahoney MR, Barras D, Matli M, Miao Y, Garcia KC, Tejpar S, Delorenzi M, Venook AP, Nixon AB, Warren RS, Roose JP, Depeille P. RasGRP1 is a potential biomarker to stratify anti-EGFR therapy response in colorectal cancer. JCI Insight 2019; 5:127552. [PMID: 31237864 DOI: 10.1172/jci.insight.127552] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Colorectal cancer (CRC) is the third most frequent neoplastic disorder and is a main cause of tumor-related mortality as many patients progress to stage IV metastatic CRC. Standard care consists of combination chemotherapy (FOLFIRI or FOLFOX). Patients with WT KRAS typing are eligible to receive anti-EGFR therapy combined with chemotherapy. Unfortunately, predicting efficacy of CRC anti-EGFR therapy has remained challenging. Here we uncover that the EGFR-pathway component RasGRP1 acts as CRC tumor suppressor in the context of aberrant Wnt signaling. We find that RasGRP1 suppresses EGF-driven proliferation of colonic epithelial organoids. Having established that RasGRP1 dosage levels impacts biology, we focused on CRC patients next. Mining five different data platforms, we establish that RasGRP1 expression levels decrease with CRC progression and predict poor clinical outcome of patients. Lastly, deletion of one or two Rasgrp1 alleles makes CRC spheroids more susceptible to EGFR inhibition. Retrospective analysis of the CALGB80203 clinical trial shows that addition of anti-EGFR therapy to chemotherapy significantly improves outcome for CRC patients when tumors express low RasGRP1 suppressor levels. In sum, RasGRP1 is a unique biomarker positioned in the EGFR pathway and of potential relevance to anti-EGFR therapy for CRC patients.
Collapse
Affiliation(s)
| | - Caroline Bonnans
- Department of Anatomy, UCSF, San Francisco, California, USA.,Institut National de la Santé et de la Recherche Médicale, Montpellier, France
| | - Delphine Grun
- Bioinformatics Core Facility (BCF) at SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Chih-Yang Wang
- Department of Anatomy, UCSF, San Francisco, California, USA
| | - Ace J Hatch
- Department of Medicine, Duke University, Durham, North Carolina, USA
| | - Michelle R Mahoney
- Alliance Statistics and Data Center, Mayo Clinic, Rochester, Minnesota, USA
| | - David Barras
- Bioinformatics Core Facility (BCF) at SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Mary Matli
- Department of Surgery, UCSF, San Francisco, California, USA
| | - Yi Miao
- Department of Molecular and Cellular Physiology, Department of Structural Biology and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, USA
| | - K Christopher Garcia
- Department of Molecular and Cellular Physiology, Department of Structural Biology and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, USA
| | - Sabine Tejpar
- Institut National de la Santé et de la Recherche Médicale, Montpellier, France
| | - Mauro Delorenzi
- Bioinformatics Core Facility (BCF) at SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland.,Department of Oncology, University of Lausanne, Lausanne, Switzerland
| | - Alan P Venook
- Hematology/Oncology, Department of Medicine, UCSF, San Francisco, California, USA
| | - Andrew B Nixon
- Alliance Statistics and Data Center, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Jeroen P Roose
- Department of Anatomy, UCSF, San Francisco, California, USA
| | | |
Collapse
|
27
|
Blanco FA, Czikora A, Kedei N, You Y, Mitchell GA, Pany S, Ghosh A, Blumberg PM, Das J. Munc13 Is a Molecular Target of Bryostatin 1. Biochemistry 2019; 58:3016-3030. [PMID: 31243993 PMCID: PMC6620733 DOI: 10.1021/acs.biochem.9b00427] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
![]()
Bryostatin
1 is a natural macrolide shown to improve neuronal connections and
enhance memory in mice. Its mechanism of action is largely attributed
to the modulation of novel and conventional protein kinase Cs (PKCs)
by binding to their regulatory C1 domains. Munc13-1 is a C1 domain-containing
protein that shares common endogenous and exogenous activators with
novel and conventional PKC subtypes. Given the essential role of Munc13-1
in the priming of synaptic vesicles and neuronal transmission overall,
we explored the potential interaction between bryostatin 1 and Munc13-1.
Our results indicate that in vitro bryostatin 1 binds
to both the isolated C1 domain of Munc13-1 (Ki = 8.07 ± 0.90 nM) and the full-length Munc13-1 protein
(Ki = 0.45 ± 0.04 nM). Furthermore,
confocal microscopy and immunoblot analysis demonstrated that in intact
HT22 cells bryostatin 1 mimics the actions of phorbol esters, a previously
established class of Munc13-1 activators, and induces plasma membrane
translocation of Munc13-1, a hallmark of its activation. Consistently,
bryostatin 1 had no effect on the Munc13-1H567K construct
that is insensitive to phorbol esters. Effects of bryostatin 1 on
the other Munc13 family members, ubMunc13-2 and bMunc13-2, resembled
those of Munc13-1 for translocation. Lastly, we observed an increased
level of expression of Munc13-1 following a 24 h incubation with bryostatin
1 in both HT22 and primary mouse hippocampal cells. This study characterizes
Munc13-1 as a molecular target of bryostatin 1. Considering the crucial
role of Munc13-1 in neuronal function, these findings provide strong
support for the potential role of Munc13s in the actions of bryostatin
1.
Collapse
Affiliation(s)
- Francisco A Blanco
- Department of Pharmacological & Pharmaceutical Sciences, College of Pharmacy , University of Houston , Houston , Texas 77204 , United States
| | - Agnes Czikora
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute , National Institutes of Health , Bethesda , Maryland 20892 , United States
| | - Noemi Kedei
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute , National Institutes of Health , Bethesda , Maryland 20892 , United States
| | - Youngki You
- Department of Pharmacological & Pharmaceutical Sciences, College of Pharmacy , University of Houston , Houston , Texas 77204 , United States
| | - Gary A Mitchell
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute , National Institutes of Health , Bethesda , Maryland 20892 , United States
| | - Satyabrata Pany
- Department of Pharmacological & Pharmaceutical Sciences, College of Pharmacy , University of Houston , Houston , Texas 77204 , United States
| | - Anamitra Ghosh
- Department of Pharmacological & Pharmaceutical Sciences, College of Pharmacy , University of Houston , Houston , Texas 77204 , United States
| | - Peter M Blumberg
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute , National Institutes of Health , Bethesda , Maryland 20892 , United States
| | - Joydip Das
- Department of Pharmacological & Pharmaceutical Sciences, College of Pharmacy , University of Houston , Houston , Texas 77204 , United States
| |
Collapse
|
28
|
Mclaurin JD, Weiner OD. Multiple sources of signal amplification within the B-cell Ras/MAPK pathway. Mol Biol Cell 2019; 30:1610-1620. [PMID: 31042097 PMCID: PMC6727637 DOI: 10.1091/mbc.e18-09-0560] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The Ras-Map kinase (MAPK) cascade underlies functional decisions in a wide range of cell types and organisms. In B-cells, positive feedback-driven Ras activation is the proposed source of the digital (all or none) MAPK responses following antigen stimulation. However, an inability to measure endogenous Ras activity in living cells has hampered our ability to test this model directly. Here we leverage biosensors of endogenous Ras and ERK activity to revisit this question. We find that B-cell receptor (BCR) ligation drives switch-like Ras activation and that lower BCR signaling output is required for the maintenance versus the initiation of Ras activation. Surprisingly, digital ERK responses persist in the absence of positive feedback-mediated Ras activation, and digital ERK is observed at a threshold level of Ras activation. These data suggest an independent analogue-to-digital switch downstream of Ras activation and reveal that multiple sources of signal amplification exist within the Ras-ERK module of the BCR pathway.
Collapse
Affiliation(s)
- Justin D Mclaurin
- Cardiovascular Research Institute and Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158
| | - Orion D Weiner
- Cardiovascular Research Institute and Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158
| |
Collapse
|
29
|
Killoran RC, Smith MJ. Conformational resolution of nucleotide cycling and effector interactions for multiple small GTPases determined in parallel. J Biol Chem 2019; 294:9937-9948. [PMID: 31088913 DOI: 10.1074/jbc.ra119.008653] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/09/2019] [Indexed: 12/31/2022] Open
Abstract
Small GTPases alternatively bind GDP/GTP guanine nucleotides to gate signaling pathways that direct most cellular processes. Numerous GTPases are implicated in oncogenesis, particularly the three RAS isoforms HRAS, KRAS, and NRAS and the RHO family GTPase RAC1. Signaling networks comprising small GTPases are highly connected, and there is some evidence of direct biochemical cross-talk between their functional G-domains. The activation potential of a given GTPase is contingent on a codependent interaction with the nucleotide and a Mg2+ ion, which bind to individual variants with distinct affinities coordinated by residues in the GTPase nucleotide-binding pocket. Here, we utilized a selective-labeling strategy coupled with real-time NMR spectroscopy to monitor nucleotide exchange, GTP hydrolysis, and effector interactions of multiple small GTPases in a single complex system. We provide insight into nucleotide preference and the role of Mg2+ in activating both WT and oncogenic mutant enzymes. Multiplexing revealed guanine nucleotide exchange factor (GEF), GTPase-activating protein (GAP), and effector-binding specificities in mixtures of GTPases and resolved that the three related RAS isoforms are biochemically equivalent. This work establishes that direct quantitation of the nucleotide-bound conformation is required to accurately determine an activation potential for any given GTPase, as small GTPases such as RAS-like proto-oncogene A (RALA) or the G12C mutant of KRAS display fast exchange kinetics but have a high affinity for GDP. Furthermore, we propose that the G-domains of small GTPases behave autonomously in solution and that nucleotide cycling proceeds independently of protein concentration but is highly impacted by Mg2+ abundance.
Collapse
Affiliation(s)
- Ryan C Killoran
- From the Institute for Research in Immunology and Cancer and
| | - Matthew J Smith
- From the Institute for Research in Immunology and Cancer and .,Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| |
Collapse
|
30
|
Bandaru P, Kondo Y, Kuriyan J. The Interdependent Activation of Son-of-Sevenless and Ras. Cold Spring Harb Perspect Med 2019; 9:cshperspect.a031534. [PMID: 29610148 DOI: 10.1101/cshperspect.a031534] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The guanine-nucleotide exchange factor (GEF) Son-of-Sevenless (SOS) plays a critical role in metazoan signaling by converting Ras•GDP (guanosine diphosphate) to Ras•GTP (guanosine triphosphate) in response to tyrosine kinase activation. Structural studies have shown that SOS differs from other Ras-specific GEFs in that SOS is itself activated by Ras•GTP binding to an allosteric site, distal to the site of nucleotide exchange. The activation of SOS involves membrane recruitment and conformational changes, triggered by lipid binding, that open the allosteric binding site for Ras•GTP. This is in contrast to other Ras-specific GEFs, which are activated by second messengers that more directly affect the active site. Allosteric Ras•GTP binding stabilizes SOS at the membrane, where it can turn over other Ras molecules processively, leading to an ultrasensitive response that is distinct from that of other Ras-specific GEFs.
Collapse
Affiliation(s)
- Pradeep Bandaru
- Department of Molecular and Cell Biology, California Institute for Quantitative Biosciences, Howard Hughes Medical Institute, University of California, Berkeley, California 94720
| | - Yasushi Kondo
- Department of Molecular and Cell Biology, California Institute for Quantitative Biosciences, Howard Hughes Medical Institute, University of California, Berkeley, California 94720
| | - John Kuriyan
- Departments of Molecular and Cell Biology and of Chemistry, California Institute for Quantitative Biosciences, Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Howard Hughes Medical Institute, University of California, Berkeley, California 94720
| |
Collapse
|
31
|
|
32
|
Stefanini L, Bergmeier W. RAP GTPases and platelet integrin signaling. Platelets 2018; 30:41-47. [PMID: 29863951 PMCID: PMC6312509 DOI: 10.1080/09537104.2018.1476681] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 04/26/2018] [Accepted: 04/27/2018] [Indexed: 12/31/2022]
Abstract
Platelets are highly specialized cells that continuously patrol the vasculature to ensure its integrity (hemostasis). At sites of vascular injury, they are able to respond to trace amounts of agonists and to rapidly transition from an anti-adhesive/patrolling to an adhesive state (integrin inside-out activation) required for hemostatic plug formation. Pathological conditions that disturb the balance in the underlying signaling processes can lead to unwanted platelet activation (thrombosis) or to an increased bleeding risk. The small GTPases of the RAP subfamily, highly expressed in platelets, are critical regulators of cell adhesion, cytoskeleton remodeling, and MAP kinase signaling. Studies by our group and others demonstrate that RAP GTPases, in particular RAP1A and RAP1B, are the key molecular switches that turn on platelet activation/adhesiveness at sites of injury. In this review, we will summarize major findings on the role of RAP GTPases in platelet biology with a focus on the signaling pathways leading to the conversion of integrins to a high-affinity state.
Collapse
Affiliation(s)
- Lucia Stefanini
- Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, Rome, Italy
| | - Wolfgang Bergmeier
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill (NC), USA
- McAllister Heart Institute, University of North Carolina at Chapel Hill (NC), USA
| |
Collapse
|
33
|
Cook AA, Deng W, Ren J, Li R, Sondek J, Bergmeier W. Calcium-induced structural rearrangements release autoinhibition in the Rap-GEF CalDAG-GEFI. J Biol Chem 2018; 293:8521-8529. [PMID: 29622678 DOI: 10.1074/jbc.ra118.002712] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 03/22/2018] [Indexed: 11/06/2022] Open
Abstract
Platelets are recruited to sites of vascular injury, where they are activated and aggregate to form a hemostatic plug. This process requires the activation of the small GTPase Rap1B by its cognate guanine nucleotide exchange factor CalDAG-GEFI. Studies on platelet function suggest that CalDAG-GEFI activity is regulated by changes in cytosolic calcium, but the exact molecular mechanism is poorly understood. Here we show that purified CalDAG-GEFI is autoinhibited and directly regulated by calcium. Substitutions of putative calcium-binding residues within the canonical EF hands of CalDAG-GEFI diminish its capacity to activate Rap1B. Structural differences between active (WT) and inactive (EF hand variant) CalDAG-GEFI protein were determined by hydrogen-deuterium exchange MS. The highest differential rates of deuterium uptake in WT over EF hand variant CalDAG-GEFI were observed in regions within the catalytic Cdc25 domain and a putative autoinhibitory linker connecting the Cdc25 and EF hand domains. Exchange activity in the EF hand variant was fully restored by an additional substitution, valine 406 to glutamate, which is thought to disrupt the interface between the autoinhibitory linker and the Cdc25 domain. Overall, our results suggest a model for how CalDAG-GEFI remains in an autoinhibited state when levels of cytosolic calcium in resting platelets are low. In response to cellular stimulation, calcium mobilization and binding to the EF hands causes conformational rearrangements within CalDAG-GEFI, including the autoinhibitory linker that frees the catalytic surface of CalDAG-GEFI to engage and activate Rap1B. The data from this study are the first evidence linking CalDAG-GEFI activity directly to calcium.
Collapse
Affiliation(s)
- Aaron A Cook
- From the Departments of Biochemistry and Biophysics and
| | - Wei Deng
- the Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia 30322, and
| | | | - Renhao Li
- the Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia 30322, and
| | - John Sondek
- From the Departments of Biochemistry and Biophysics and.,Pharmacology and.,the Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599
| | - Wolfgang Bergmeier
- From the Departments of Biochemistry and Biophysics and .,the McAllister Heart Institute, University of North Carolina, Chapel Hill, North Carolina 27516
| |
Collapse
|
34
|
Stefanini L, Bergmeier W. Negative regulators of platelet activation and adhesion. J Thromb Haemost 2018; 16:220-230. [PMID: 29193689 PMCID: PMC5809258 DOI: 10.1111/jth.13910] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Indexed: 12/29/2022]
Abstract
Platelets are small anucleated cells that constantly patrol the cardiovascular system to preserve its integrity and prevent excessive blood loss where the vessel lining is breached. Their key challenge is to form a hemostatic plug under conditions of high shear forces. To do so, platelets have evolved a molecular machinery that enables them to sense trace amounts of signals at the site of damage and to rapidly shift from a non-adhesive to a pro-adhesive state. However, this highly efficient molecular machinery can also lead to unintended platelet activation and cause clinical complications such as thrombocytopenia and thrombosis. Thus, several checkpoints are in place to tightly control platelet activation and adhesiveness in space and time. In this review, we will discuss select negative regulators of platelet activation, which are critical to maintain patrolling platelets in a quiescent, non-adhesive state and/or to limit platelet adhesion to sites of injury.
Collapse
Affiliation(s)
- L Stefanini
- Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, Rome, Italy
| | - W Bergmeier
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
35
|
Czikora A, Pany S, You Y, Saini AS, Lewin NE, Mitchell GA, Abramovitz A, Kedei N, Blumberg PM, Das J. Structural determinants of phorbol ester binding activity of the C1a and C1b domains of protein kinase C theta. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:1046-1056. [PMID: 29317197 DOI: 10.1016/j.bbamem.2018.01.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 12/06/2017] [Accepted: 01/04/2018] [Indexed: 12/31/2022]
Abstract
The PKC isozymes represent the most prominent family of signaling proteins mediating response to the ubiquitous second messenger diacylglycerol. Among them, PKCθ is critically involved in T-cell activation. Whereas all the other conventional and novel PKC isoforms have twin C1 domains with potent binding activity for phorbol esters, in PKCθ only the C1b domain possesses potent binding activity, with little or no activity reported for the C1a domain. In order to better understand the structural basis accounting for the very weak ligand binding of the PKCθ C1a domain, we assessed the effect on ligand binding of twelve amino acid residues which differed between the C1a and C1b domains of PKCθ. Mutation of Pro9 of the C1a domain of PKCθ to the corresponding Lys9 found in C1b restored in vitro binding activity for [3H]phorbol 12,13-dibutyrate to 3.6 nM, whereas none of the other residues had substantial effect. Interestingly, the converse mutation in the C1b domain of Lys9 to Pro9 only diminished binding affinity to 11.7 nM, compared to 254 nM in the unmutated C1a. In confocal experiments, deletion of the C1b domain from full length PKCθ diminished, whereas deletion of the C1a domain enhanced 5-fold (at 100 nM PMA) the translocation to the plasma membrane. We conclude that the Pro168 residue in the C1a domain of full length PKCθ plays a critical role in the ligand and membrane binding, while exchanging the residue (Lys240) at the same position in C1b domain of full length PKCθ only modestly reduced the membrane interaction.
Collapse
Affiliation(s)
- Agnes Czikora
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, United States
| | - Satyabrata Pany
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, United States
| | - Youngki You
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, United States
| | - Amandeep S Saini
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, United States
| | - Nancy E Lewin
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, United States
| | - Gary A Mitchell
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, United States
| | - Adelle Abramovitz
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, United States
| | - Noemi Kedei
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, United States
| | - Peter M Blumberg
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, United States.
| | - Joydip Das
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, United States.
| |
Collapse
|
36
|
Das J, Kedei N, Kelsey JS, You Y, Pany S, Mitchell GA, Lewin NE, Blumberg PM. Critical Role of Trp-588 of Presynaptic Munc13-1 for Ligand Binding and Membrane Translocation. Biochemistry 2018; 57:732-741. [PMID: 29244485 DOI: 10.1021/acs.biochem.7b00764] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Munc13-1 is a presynaptic active-zone protein essential for neurotransmitter release and presynaptic plasticity in the brain. This multidomain scaffold protein contains a C1 domain that binds to the activator diacylglycerol/phorbol ester. Although the C1 domain bears close structural homology with the C1 domains of protein kinase C (PKC), the tryptophan residue at position 22 (588 in the full-length Munc13-1) occludes the activator binding pocket, which is not the case for PKC. To elucidate the role of this tryptophan, we generated W22A, W22K, W22D, W22Y, and W22F substitutions in the full-length Munc13-1, expressed the GFP-tagged constructs in Neuro-2a cells, and measured their membrane translocation in response to phorbol ester treatment by imaging of the live cells using confocal microscopy. The extent of membrane translocation followed the order, wild-type > W22K > W22F > W22Y > W22A > W22D. The phorbol ester binding affinity of the wild-type Munc13-1C1 domain and its mutants was phosphatidylserine (PS)-dependent following the order, wild-type > W22K > W22A ≫ W22D in both 20% and 100% PS. Phorbol ester affinity was higher for Munc13-1 than the C1 domain. While Munc13-1 translocated to the plasma membrane, the C1 domain translocated to internal membranes in response to phorbol ester. Molecular dynamics (80 ns) studies reveal that Trp-22 is relatively less flexible than the homologous Trp-22 of PKCδ and PKCθ. Results are discussed in terms of the overall negative charge state of the Munc13-1C1 domain and its possible interaction with the PS-rich plasma membrane. This study shows that Trp-588 is an important structural element for ligand binding and membrane translocation in Munc13-1.
Collapse
Affiliation(s)
- Joydip Das
- Department of Pharmacological & Pharmaceutical Sciences, College of Pharmacy, University of Houston , Houston, Texas 77204, United States
| | - Noemi Kedei
- Center for Cancer Research, National Cancer Institute , Bethesda, Maryland 20892, United States
| | - Jessica S Kelsey
- Center for Cancer Research, National Cancer Institute , Bethesda, Maryland 20892, United States
| | - Youngki You
- Department of Pharmacological & Pharmaceutical Sciences, College of Pharmacy, University of Houston , Houston, Texas 77204, United States
| | - Satyabrata Pany
- Department of Pharmacological & Pharmaceutical Sciences, College of Pharmacy, University of Houston , Houston, Texas 77204, United States
| | - Gary A Mitchell
- Center for Cancer Research, National Cancer Institute , Bethesda, Maryland 20892, United States
| | - Nancy E Lewin
- Center for Cancer Research, National Cancer Institute , Bethesda, Maryland 20892, United States
| | - Peter M Blumberg
- Center for Cancer Research, National Cancer Institute , Bethesda, Maryland 20892, United States
| |
Collapse
|
37
|
Bergmeier W, Stefanini L. Platelets at the Vascular Interface. Res Pract Thromb Haemost 2018; 2:27-33. [PMID: 29457148 PMCID: PMC5810953 DOI: 10.1002/rth2.12061] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 10/19/2017] [Indexed: 02/01/2023] Open
Abstract
In this brief review paper, we will summarize the State-of-the-Art on how platelet reactivity is regulated in circulation and at sites of vascular injury. Our review discusses recent and ongoing work, presented at this year's International Society on Thrombosis and Haemostasis (ISTH) meeting, on the role of platelets in (1) classical hemostasis at sites of mechanical injury, and (2) the maintenance of vascular integrity at sites of inflammation.
Collapse
Affiliation(s)
- Wolfgang Bergmeier
- Department of Biochemistry and BiophysicsUniversity of North Carolina at Chapel HillChapel HillNCUSA
- McAllister Heart InstituteUniversity of North Carolina at Chapel HillChapel HillNCUSA
| | - Lucia Stefanini
- Department of Internal Medicine and Medical SpecialtiesSapienza University of RomeRomeItaly
| |
Collapse
|
38
|
Kelsey JS, Géczy T, Kaler CJ, Blumberg PM. The C1 domain of Vav3, a novel potential therapeutic target. Cell Signal 2017; 40:133-142. [PMID: 28927664 PMCID: PMC5651187 DOI: 10.1016/j.cellsig.2017.09.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 08/22/2017] [Accepted: 09/14/2017] [Indexed: 12/12/2022]
Abstract
Vav1/2/3 comprise a protein family with guanyl nucleotide exchange activity for Rho and Rac as well as with motifs conferring adapter activity. Biologically, Vav1 plays a critical role in hematologic cell signaling, whereas Vav2/3 have a wider tissue distribution, but all 3 Vav proteins are implicated in cancer development. A structural feature of Vav1/2/3 is the presence of an atypical C1 domain, which possesses close structural homology to the typical C1 domains of protein kinase C but which fails to bind the second messenger diacylglycerol or the potent analogs, the phorbol esters. Previously, we have shown that five residues in the Vav1 C1 domain are responsible for its lack of phorbol ester binding. Here, we show that the lack of phorbol ester binding of Vav3 has a similar basis. We then explore the consequences of phorbol ester binding to a modified Vav3 in which the C1 domain has been altered to allow phorbol ester binding. We find both disruption of the guanyl nucleotide exchange activity of the modified Vav 3 as well as a shift in localization to the membrane upon phorbol ester treatment. This change in localization is associated with altered interactions with other signaling proteins. The studies provide a first step in assessing the potential for the design of custom C1 domain targeted molecules selective for the atypical C1 domains of Vav family proteins.
Collapse
Affiliation(s)
- Jessica S Kelsey
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Tamás Géczy
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Christopher J Kaler
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Peter M Blumberg
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
39
|
Czikora A, Kedei N, Kalish H, Blumberg PM. Importance of the REM (Ras exchange) domain for membrane interactions by RasGRP3. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2017; 1859:2350-2360. [PMID: 28912101 PMCID: PMC5659902 DOI: 10.1016/j.bbamem.2017.09.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 09/07/2017] [Accepted: 09/08/2017] [Indexed: 11/18/2022]
Abstract
RasGRP comprises a family of guanine nucleotide exchange factors, regulating the dissociation of GDP from Ras GTPases to enhance the formation of the active GTP-bound form. RasGRP1 possesses REM (Ras exchange), GEF (catalytic), EF-hand, C1, SuPT (suppressor of PT), and PT (plasma membrane-targeting) domains, among which the C1 domain drives membrane localization in response to diacylglycerol or phorbol ester and the PT domain recognizes phosphoinositides. The homologous family member RasGRP3 shows less plasma membrane localization. The objective of this study was to explore the role of the different domains of RasGRP3 in membrane translocation in response to phorbol esters. The full-length RasGRP3 shows limited translocation to the plasma membrane in response to PMA, even when the basic hydrophobic cluster in the PT domain, reported to be critical for RasGRP1 translocation to endogenous activators, is mutated to resemble that of RasGRP1. Moreover, exchange of the C-termini (SuPT-PT domain) of the two proteins had little effect on their plasma membrane translocation. On the other hand, while the C1 domain of RasGRP3 alone showed partial plasma membrane translocation, truncated RasGRP3 constructs, which contain the PT domain and are missing the REM, showed stronger translocation, indicating that the REM of RasGRP3 was a suppressor of its membrane interaction. The REM of RasGRP1 failed to show comparable suppression of RasGRP3 translocation. The marked differences between RasGRP3 and RasGRP1 in membrane interaction necessarily will contribute to their different behavior in cells and are relevant to the design of selective ligands as potential therapeutic agents.
Collapse
Affiliation(s)
- Agnes Czikora
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, United States
| | - Noemi Kedei
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, United States
| | - Heather Kalish
- Trans-NIH Shared Resource on Biomedical Engineering and Physical Science (BEPS), National Institute of Biomedical Imaging and Bioengineering (NIBIB) National Institutes of Health, United States
| | - Peter M Blumberg
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, United States.
| |
Collapse
|
40
|
Vercoulen Y, Kondo Y, Iwig JS, Janssen AB, White KA, Amini M, Barber DL, Kuriyan J, Roose JP. A Histidine pH sensor regulates activation of the Ras-specific guanine nucleotide exchange factor RasGRP1. eLife 2017; 6:29002. [PMID: 28952923 PMCID: PMC5643099 DOI: 10.7554/elife.29002] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 09/05/2017] [Indexed: 02/04/2023] Open
Abstract
RasGRPs are guanine nucleotide exchange factors that are specific for Ras or Rap, and are important regulators of cellular signaling. Aberrant expression or mutation of RasGRPs results in disease. An analysis of RasGRP1 SNP variants led to the conclusion that the charge of His 212 in RasGRP1 alters signaling activity and plasma membrane recruitment, indicating that His 212 is a pH sensor that alters the balance between the inactive and active forms of RasGRP1. To understand the structural basis for this effect we compared the structure of autoinhibited RasGRP1, determined previously, to those of active RasGRP4:H-Ras and RasGRP2:Rap1b complexes. The transition from the autoinhibited to the active form of RasGRP1 involves the rearrangement of an inter-domain linker that displaces inhibitory inter-domain interactions. His 212 is located at the fulcrum of these conformational changes, and structural features in its vicinity are consistent with its function as a pH-dependent switch.
Collapse
Affiliation(s)
- Yvonne Vercoulen
- Department of Anatomy, University of California, San Francisco, San Francisco, United States.,Molecular Cancer Research, Center for Molecular Medicine, UMC Utrecht, Utrecht University, Utrecht, Netherlands
| | - Yasushi Kondo
- Department of Molecular and Cell Biology and Chemistry, University of California, Berkeley, United States.,California Institute for Quantitative Biosciences, University of California, Berkeley, United States
| | - Jeffrey S Iwig
- Department of Molecular and Cell Biology and Chemistry, University of California, Berkeley, United States.,California Institute for Quantitative Biosciences, University of California, Berkeley, United States
| | - Axel B Janssen
- Department of Anatomy, University of California, San Francisco, San Francisco, United States
| | - Katharine A White
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, United States
| | - Mojtaba Amini
- Molecular Cancer Research, Center for Molecular Medicine, UMC Utrecht, Utrecht University, Utrecht, Netherlands
| | - Diane L Barber
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, United States
| | - John Kuriyan
- Department of Molecular and Cell Biology and Chemistry, University of California, Berkeley, United States.,California Institute for Quantitative Biosciences, University of California, Berkeley, United States.,Howard Hughes Medical Institute, University of California, Berkeley, United States.,Department of Chemistry, University of California, Berkeley, United States.,Divisions of Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, United States
| | - Jeroen P Roose
- Department of Anatomy, University of California, San Francisco, San Francisco, United States
| |
Collapse
|
41
|
Elhalem E, Donadío LG, Zhou X, Lewin NE, Garcia LC, Lai CC, Kelley JA, Peach ML, Blumberg PM, Comin MJ. Exploring the influence of indololactone structure on selectivity for binding to the C1 domains of PKCα, PKCε, and RasGRP. Bioorg Med Chem 2017; 25:2971-2980. [PMID: 28392275 PMCID: PMC5493039 DOI: 10.1016/j.bmc.2017.03.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 03/06/2017] [Accepted: 03/09/2017] [Indexed: 11/23/2022]
Abstract
C1 domain-containing proteins, such as protein kinase C (PKC), have a central role in cellular signal transduction. Their involvement in many diseases, including cancer, cardiovascular disease, and immunological and neurological disorders has been extensively demonstrated and has prompted a search for small molecules to modulate their activity. By employing a diacylglycerol (DAG)-lactone template, we have been able to develop ultra potent analogs of diacylglycerol with nanomolar binding affinities approaching those of complex natural products such as phorbol esters and bryostatins. One current challenge is the development of selective ligands capable of discriminating between different protein family members. Recently, structure-activity relationship studies have shown that the introduction of an indole ring as a DAG-lactone substituent yielded selective Ras guanine nucleotide-releasing protein (RasGRP1) activators when compared to PKCα and PKCε. In the present work, we examine the effects of ligand selectivity relative to the orientation of the indole ring and the nature of the DAG-lactone template itself. Our results show that the indole ring must be attached to the lactone moiety through the sn-2 position in order to achieve RasGRP1 selectivity.
Collapse
Affiliation(s)
- Eleonora Elhalem
- Laboratory of Organic Synthesis, Center of Research and Development in Chemistry, National Institute of Industrial Technology, Buenos Aires, Argentina
| | - Lucía Gandolfi Donadío
- Laboratory of Organic Synthesis, Center of Research and Development in Chemistry, National Institute of Industrial Technology, Buenos Aires, Argentina
| | - Xiaoling Zhou
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Nancy E Lewin
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Lia C Garcia
- Laboratory of Organic Synthesis, Center of Research and Development in Chemistry, National Institute of Industrial Technology, Buenos Aires, Argentina
| | - Christopher C Lai
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, National Institutes of Health, Frederick, MD 21702, USA
| | - James A Kelley
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, National Institutes of Health, Frederick, MD 21702, USA
| | - Megan L Peach
- Basic Science Program, Leidos Biomedical Research Inc., Chemical Biology Laboratory, Frederick National Laboratory for Cancer Research, National Institutes of Health, Frederick, MD 21702, USA
| | - Peter M Blumberg
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - María J Comin
- Laboratory of Organic Synthesis, Center of Research and Development in Chemistry, National Institute of Industrial Technology, Buenos Aires, Argentina.
| |
Collapse
|
42
|
Shah B, Püschel AW. Regulation of Rap GTPases in mammalian neurons. Biol Chem 2017; 397:1055-69. [PMID: 27186679 DOI: 10.1515/hsz-2016-0165] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 05/06/2016] [Indexed: 12/15/2022]
Abstract
Small GTPases are central regulators of many cellular processes. The highly conserved Rap GTPases perform essential functions in the mammalian nervous system during development and in mature neurons. During neocortical development, Rap1 is required to regulate cadherin- and integrin-mediated adhesion. In the adult nervous system Rap1 and Rap2 regulate the maturation and plasticity of dendritic spine and synapses. Although genetic studies have revealed important roles of Rap GTPases in neurons, their regulation by guanine nucleotide exchange factors (GEFs) that activate them and GTPase activating proteins (GAPs) that inactivate them by stimulating their intrinsic GTPase activity is just beginning to be explored in vivo. Here we review how GEFs and GAPs regulate Rap GTPases in the nervous system with a focus on their in vivo function.
Collapse
|
43
|
Yin G, Kistler S, George SD, Kuhlmann N, Garvey L, Huynh M, Bagni RK, Lammers M, Der CJ, Campbell SL. A KRAS GTPase K104Q Mutant Retains Downstream Signaling by Offsetting Defects in Regulation. J Biol Chem 2017; 292:4446-4456. [PMID: 28154176 DOI: 10.1074/jbc.m116.762435] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 01/27/2017] [Indexed: 11/06/2022] Open
Abstract
The KRAS GTPase plays a critical role in the control of cellular growth. The activity of KRAS is regulated by guanine nucleotide exchange factors (GEFs), GTPase-activating proteins (GAPs), and also post-translational modification. Lysine 104 in KRAS can be modified by ubiquitylation and acetylation, but the role of this residue in intrinsic KRAS function has not been well characterized. We find that lysine 104 is important for GEF recognition, because mutations at this position impaired GEF-mediated nucleotide exchange. Because the KRAS K104Q mutant has recently been employed as an acetylation mimetic, we conducted a series of studies to evaluate its in vitro and cell-based properties. Herein, we found that KRAS K104Q exhibited defects in both GEF-mediated exchange and GAP-mediated GTP hydrolysis, consistent with NMR-detected structural perturbations in localized regions of KRAS important for recognition of these regulatory proteins. Despite the partial defect in both GEF and GAP regulation, KRAS K104Q did not alter steady-state GTP-bound levels or the ability of the oncogenic KRAS G12V mutant to cause morphologic transformation of NIH 3T3 mouse fibroblasts and of WT KRAS to rescue the growth defect of mouse embryonic fibroblasts deficient in all Ras genes. We conclude that the KRAS K104Q mutant retains both WT and mutant KRAS function, probably due to offsetting defects in recognition of factors that up-regulate (GEF) and down-regulate (GAP) RAS activity.
Collapse
Affiliation(s)
- Guowei Yin
- From the Department of Biochemistry and Biophysics
| | - Samantha Kistler
- From the Department of Biochemistry and Biophysics.,Department of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy
| | - Samuel D George
- Department of Pharmacology, and.,Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27699
| | - Nora Kuhlmann
- the Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), Joseph-Stelzmann-Strasse 26, University of Cologne, 50931 Cologne, Germany, and
| | - Leslie Garvey
- the NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702
| | - Minh Huynh
- From the Department of Biochemistry and Biophysics.,Department of Pharmacology, and.,Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27699
| | - Rachel K Bagni
- the NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702
| | - Michael Lammers
- the Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), Joseph-Stelzmann-Strasse 26, University of Cologne, 50931 Cologne, Germany, and
| | - Channing J Der
- Department of Pharmacology, and.,Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27699
| | - Sharon L Campbell
- From the Department of Biochemistry and Biophysics, .,Department of Pharmacology, and.,Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27699
| |
Collapse
|
44
|
Bandaru P, Shah NH, Bhattacharyya M, Barton JP, Kondo Y, Cofsky JC, Gee CL, Chakraborty AK, Kortemme T, Ranganathan R, Kuriyan J. Deconstruction of the Ras switching cycle through saturation mutagenesis. eLife 2017; 6:e27810. [PMID: 28686159 PMCID: PMC5538825 DOI: 10.7554/elife.27810] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 07/05/2017] [Indexed: 02/02/2023] Open
Abstract
Ras proteins are highly conserved signaling molecules that exhibit regulated, nucleotide-dependent switching between active and inactive states. The high conservation of Ras requires mechanistic explanation, especially given the general mutational tolerance of proteins. Here, we use deep mutational scanning, biochemical analysis and molecular simulations to understand constraints on Ras sequence. Ras exhibits global sensitivity to mutation when regulated by a GTPase activating protein and a nucleotide exchange factor. Removing the regulators shifts the distribution of mutational effects to be largely neutral, and reveals hotspots of activating mutations in residues that restrain Ras dynamics and promote the inactive state. Evolutionary analysis, combined with structural and mutational data, argue that Ras has co-evolved with its regulators in the vertebrate lineage. Overall, our results show that sequence conservation in Ras depends strongly on the biochemical network in which it operates, providing a framework for understanding the origin of global selection pressures on proteins.
Collapse
Affiliation(s)
- Pradeep Bandaru
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States,California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, United States,Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
| | - Neel H Shah
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States,California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, United States,Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
| | - Moitrayee Bhattacharyya
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States,California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, United States,Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
| | - John P Barton
- Ragon Institute of MGH, MIT and Harvard, Cambridge, United States,Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, United States,Department of Physics, Massachusetts Institute of Technology, Cambridge, United States,Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, United States
| | - Yasushi Kondo
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States,California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, United States,Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
| | - Joshua C Cofsky
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States,California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, United States,Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
| | - Christine L Gee
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States,California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, United States,Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
| | - Arup K Chakraborty
- Ragon Institute of MGH, MIT and Harvard, Cambridge, United States,Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, United States,Department of Physics, Massachusetts Institute of Technology, Cambridge, United States,Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, United States,Department of Chemistry, Massachusetts Institute of Technology, Cambridge, United States,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, United States
| | - Tanja Kortemme
- Department of Bioengineering and Therapeutic Sciences, California Institute for Quantitative Biomedical Research, University of California, San Francisco, San Francisco, United States
| | - Rama Ranganathan
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States,Green Center for Systems Biology, University of Texas Southwestern Medical Center, Dallas, United States,Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States, (RR)
| | - John Kuriyan
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States,California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, United States,Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States,Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, United States, (JK)
| |
Collapse
|
45
|
Mérida I, Torres-Ayuso P, Ávila-Flores A, Arranz-Nicolás J, Andrada E, Tello-Lafoz M, Liébana R, Arcos R. Diacylglycerol kinases in cancer. Adv Biol Regul 2017; 63:22-31. [PMID: 27697466 DOI: 10.1016/j.jbior.2016.09.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 09/20/2016] [Accepted: 09/20/2016] [Indexed: 05/27/2023]
Abstract
Diacylglycerol kinases (DGK) are a family of enzymes that catalyze the transformation of diacylglycerol into phosphatidic acid. In T lymphocytes, DGKα and ζ limit the activation of the PLCγ/Ras/ERK axis, providing a critical checkpoint to inhibit T cell responses. Upregulation of these isoforms limits Ras activation, leading to hypo-responsive, anergic states similar to those caused by tumors. Recent studies have identified DGKα upregulation in tumor lymphocyte infiltrates, and cells from DGKα and ζ deficient mice show enhanced antitumor activity, suggesting that limitation of DAG based signals by DGK is used by tumors to evade immune attack. DGKα expression is low or even absent in other healthy cells like melanocytes, hepatocytes or neurons. Expression of this isoform, nevertheless is upregulated in melanoma, hepatocarcinoma and glioblastoma where DGKα contributes to the acquisition of tumor metastatic traits. A model thus emerges where tumor milieu fosters DGKα expression in tumors as well as in tumor infiltrating lymphocytes with opposite consequences. Here we review the mechanisms and targets that facilitate tumor "addiction" to DGKα, and discuss its relevance in the more advanced forms of cancer for tumor immune evasion. A better knowledge of this function offers a new perspective in the search of novel approaches to prevent inhibition of immune attack in cancer. Part of the failure in clinical progress may be attributed to the complexity of the tumor/T lymphocyte interaction. As they develop, tumors use a number of mechanisms to drive endogenous, tumor reactive T cells to a general state of hyporesponsiveness or anergy. A better knowledge of the molecular mechanisms that tumors use to trigger T cell anergic states will greatly help in the advance of immunotherapy research.
Collapse
Affiliation(s)
- Isabel Mérida
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), E-28049, Madrid, Spain.
| | - Pedro Torres-Ayuso
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), E-28049, Madrid, Spain
| | - Antonia Ávila-Flores
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), E-28049, Madrid, Spain
| | - Javier Arranz-Nicolás
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), E-28049, Madrid, Spain
| | - Elena Andrada
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), E-28049, Madrid, Spain
| | - María Tello-Lafoz
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), E-28049, Madrid, Spain
| | - Rosa Liébana
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), E-28049, Madrid, Spain
| | - Raquel Arcos
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), E-28049, Madrid, Spain
| |
Collapse
|
46
|
Affiliation(s)
- Jeroen P Roose
- Department of Anatomy, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
47
|
Shahani N, Swarnkar S, Giovinazzo V, Morgenweck J, Bohn LM, Scharager-Tapia C, Pascal B, Martinez-Acedo P, Khare K, Subramaniam S. RasGRP1 promotes amphetamine-induced motor behavior through a Rhes interaction network ("Rhesactome") in the striatum. Sci Signal 2016; 9:ra111. [PMID: 27902448 PMCID: PMC5142824 DOI: 10.1126/scisignal.aaf6670] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The striatum of the brain coordinates motor function. Dopamine-related drugs may be therapeutic to patients with striatal neurodegeneration, such as Huntington's disease (HD) and Parkinson's disease (PD), but these drugs have unwanted side effects. In addition to stimulating the release of norepinephrine, amphetamines, which are used for narcolepsy and attention-deficit/hyperactivity disorder (ADHD), trigger dopamine release in the striatum. The guanosine triphosphatase Ras homolog enriched in the striatum (Rhes) inhibits dopaminergic signaling in the striatum, is implicated in HD and L-dopa-induced dyskinesia, and has a role in striatal motor control. We found that the guanine nucleotide exchange factor RasGRP1 inhibited Rhes-mediated control of striatal motor activity in mice. RasGRP1 stabilized Rhes, increasing its synaptic accumulation in the striatum. Whereas partially Rhes-deficient (Rhes+/-) mice had an enhanced locomotor response to amphetamine, this phenotype was attenuated by coincident depletion of RasGRP1. By proteomic analysis of striatal lysates from Rhes-heterozygous mice with wild-type or partial or complete knockout of Rasgrp1, we identified a diverse set of Rhes-interacting proteins, the "Rhesactome," and determined that RasGRP1 affected the composition of the amphetamine-induced Rhesactome, which included PDE2A (phosphodiesterase 2A; a protein associated with major depressive disorder), LRRC7 (leucine-rich repeat-containing 7; a protein associated with bipolar disorder and ADHD), and DLG2 (discs large homolog 2; a protein associated with chronic pain). Thus, this Rhes network provides insight into striatal effects of amphetamine and may aid the development of strategies to treat various neurological and psychological disorders associated with the striatal dysfunction.
Collapse
Affiliation(s)
- Neelam Shahani
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Supriya Swarnkar
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Vincenzo Giovinazzo
- Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Jenny Morgenweck
- Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Laura M Bohn
- Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, FL 33458, USA
| | | | - Bruce Pascal
- Informatics Core, The Scripps Research Institute, Jupiter, FL 33458, USA
| | | | - Kshitij Khare
- Department of Statistics, University of Florida, Gainesville, FL 32611, USA
| | | |
Collapse
|
48
|
Christensen SM, Tu HL, Jun JE, Alvarez S, Triplet MG, Iwig JS, Yadav KK, Bar-Sagi D, Roose JP, Groves JT. One-way membrane trafficking of SOS in receptor-triggered Ras activation. Nat Struct Mol Biol 2016; 23:838-46. [PMID: 27501536 PMCID: PMC5016256 DOI: 10.1038/nsmb.3275] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 07/08/2016] [Indexed: 02/07/2023]
Abstract
SOS is a key activator of the small GTPase Ras. In cells, SOS-Ras signaling is thought to be initiated predominantly by membrane recruitment of SOS via the adaptor Grb2 and balanced by rapidly reversible Grb2-SOS binding kinetics. However, SOS has multiple protein and lipid interactions that provide linkage to the membrane. In reconstituted-membrane experiments, these Grb2-independent interactions were sufficient to retain human SOS on the membrane for many minutes, during which a single SOS molecule could processively activate thousands of Ras molecules. These observations raised questions concerning how receptors maintain control of SOS in cells and how membrane-recruited SOS is ultimately released. We addressed these questions in quantitative assays of reconstituted SOS-deficient chicken B-cell signaling systems combined with single-molecule measurements in supported membranes. These studies revealed an essentially one-way trafficking process in which membrane-recruited SOS remains trapped on the membrane and continuously activates Ras until being actively removed via endocytosis.
Collapse
Affiliation(s)
- Sune M. Christensen
- Department of Chemistry, University of California, Berkeley, California, USA
| | - Hsiung-Lin Tu
- Department of Chemistry, University of California, Berkeley, California, USA
| | - Jesse E. Jun
- Department of Anatomy, University of California, San Francisco, California, USA
| | - Steven Alvarez
- Department of Chemistry, University of California, Berkeley, California, USA
| | - Meredith G. Triplet
- Department of Chemistry, University of California, Berkeley, California, USA
| | - Jeffrey S. Iwig
- Howard Hughes Medical Institute, Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
| | - Kamlesh K. Yadav
- Department of Biochemistry, New York University School of Medicine, New York, USA
| | - Dafna Bar-Sagi
- Department of Biochemistry, New York University School of Medicine, New York, USA
| | - Jeroen P. Roose
- Department of Anatomy, University of California, San Francisco, California, USA
| | - Jay T. Groves
- Department of Chemistry, University of California, Berkeley, California, USA
| |
Collapse
|
49
|
Ksionda O, Melton AA, Bache J, Tenhagen M, Bakker J, Harvey R, Winter SS, Rubio I, Roose JP. RasGRP1 overexpression in T-ALL increases basal nucleotide exchange on Ras rendering the Ras/PI3K/Akt pathway responsive to protumorigenic cytokines. Oncogene 2016; 35:3658-68. [PMID: 26549032 PMCID: PMC4868787 DOI: 10.1038/onc.2015.431] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 08/31/2015] [Accepted: 10/05/2015] [Indexed: 12/25/2022]
Abstract
Ras GTPases are activated by RasGEFs and inactivated by RasGAPs, which stimulate the hydrolysis of RasGTP to inactive RasGDP. GTPase-impairing somatic mutations in RAS genes, such as KRAS(G12D), are among the most common oncogenic events in metastatic cancer. A different type of cancer Ras signal, driven by overexpression of the RasGEF RasGRP1 (Ras guanine nucleotide-releasing protein 1), was recently implicated in pediatric T-cell acute lymphoblastic leukemia (T-ALL) patients and murine models, in which RasGRP1 T-ALLs expand in response to treatment with interleukins (ILs) 2, 7 and 9. Here, we demonstrate that IL-2/7/9 stimulation activates Erk and Akt pathways downstream of Ras in RasGRP1 T-ALL but not in normal thymocytes. In normal lymphocytes, RasGRP1 is recruited to the membrane by diacylglycerol (DAG) in a phospholipase C-γ (PLCγ)-dependent manner. Surprisingly, we find that leukemic RasGRP1-triggered Ras-Akt signals do not depend on acute activation of PLCγ to generate DAG but rely on baseline DAG levels instead. In agreement, using three distinct assays that measure different aspects of the RasGTP/GDP cycle, we established that overexpression of RasGRP1 in T-ALLs results in a constitutively high GTP-loading rate of Ras, which is constantly counterbalanced by hydrolysis of RasGTP. KRAS(G12D) T-ALLs do not show constitutive GTP loading of Ras. Thus, we reveal an entirely novel type of leukemogenic Ras signals that is based on a RasGRP1-driven increased in flux through the RasGTP/GDP cycle, which is mechanistically very different from KRAS(G12D) signals. Our studies highlight the dynamic balance between RasGEF and RasGAP in these T-ALLs and put forth a new model in which IL-2/7/9 decrease RasGAP activity.
Collapse
Affiliation(s)
- O Ksionda
- Department of Anatomy, Roose University of California, San Francisco, San Francisco, CA, USA
| | - AA Melton
- Department of Anatomy, Roose University of California, San Francisco, San Francisco, CA, USA
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA
| | - J Bache
- Institute for Molecular Cell Biology, Center for Molecular Biomedicine, University Hospital, Friedrich-Schiller-University, Jena, Germany
| | - M Tenhagen
- Department of Anatomy, Roose University of California, San Francisco, San Francisco, CA, USA
| | - J Bakker
- Department of Anatomy, Roose University of California, San Francisco, San Francisco, CA, USA
| | - R Harvey
- Department of Pediatrics, University of New Mexico School of Medicine Albuquerque, NM, USA
| | - SS Winter
- Department of Pediatrics, University of New Mexico School of Medicine Albuquerque, NM, USA
| | - I Rubio
- Institute for Molecular Cell Biology, Center for Molecular Biomedicine, University Hospital, Friedrich-Schiller-University, Jena, Germany
- Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), Jena University Hospital, Jena, Germany
| | - JP Roose
- Department of Anatomy, Roose University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
50
|
Novel mutations in RASGRP2, which encodes CalDAG-GEFI, abrogate Rap1 activation, causing platelet dysfunction. Blood 2016; 128:1282-9. [PMID: 27235135 DOI: 10.1182/blood-2015-11-683102] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 05/19/2016] [Indexed: 12/19/2022] Open
Abstract
In addition to mutations in ITG2B or ITGB3 genes that cause defective αIIbβ3 expression and/or function in Glanzmann's thrombasthenia patients, platelet dysfunction can be a result of genetic variability in proteins that mediate inside-out activation of αIIbβ3 The RASGRP2 gene is strongly expressed in platelets and neutrophils, where its encoded protein CalDAG-GEFI facilitates the activation of Rap1 and subsequent activation of integrins. We used next-generation sequencing (NGS) and whole-exome sequencing (WES) to identify 2 novel function-disrupting mutations in RASGRP2 that account for bleeding diathesis and platelet dysfunction in 2 unrelated families. By using a panel of 71 genes, we identified a homozygous change (c.1142C>T) in exon 10 of RASGRP2 in a 9-year-old child of Chinese origin (family 1). This variant led to a p.Ser381Phe substitution in the CDC25 catalytic domain of CalDAG-GEFI. In 2 Spanish siblings from family 2, WES identified a nonsense homozygous variation (c.337C>T) (p.Arg113X) in exon 5 of RASGRP2 CalDAG-GEFI expression was markedly reduced in platelets from all patients, and by using a novel in vitro assay, we found that the nucleotide exchange activity was dramatically reduced in CalDAG-GEFI p.Ser381Phe. Platelets from homozygous patients exhibited agonist-specific defects in αIIbβ3 integrin activation and aggregation. In contrast, α- and δ-granule secretion, platelet spreading, and clot retraction were not markedly affected. Integrin activation in the patients' neutrophils was also impaired. These patients are the first cases of a CalDAG-GEFI deficiency due to homozygous RASGRP2 mutations that are linked to defects in both leukocyte and platelet integrin activation.
Collapse
|