1
|
Kang Z, Li R, Liu C, Dong X, Hu Y, Xu L, Liu X, Xiang Y, Gao L, Si W, Wang L, Li Q, Zhang L, Wang H, Yang X, Liu J. m 6A-modified cenRNA stabilizes CENPA to ensure centromere integrity in cancer cells. Cell 2024; 187:6035-6054.e27. [PMID: 39305902 DOI: 10.1016/j.cell.2024.08.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/10/2024] [Accepted: 08/20/2024] [Indexed: 10/20/2024]
Abstract
m6A modification is best known for its critical role in controlling multiple post-transcriptional processes of the mRNAs. Here, we discovered elevated levels of m6A modification on centromeric RNA (cenRNA) in cancerous cells compared with non-cancerous cells. We then identified CENPA, an H3 variant, as an m6A reader of cenRNA. CENPA is localized at centromeres and is essential in preserving centromere integrity and function during mitosis. The m6A-modified cenRNA stabilizes centromeric localization of CENPA in cancer cells during the S phase of the cell cycle. Mutations of CENPA at the Leu61 and the Arg63 or removal of cenRNA m6A modification lead to loss of centromere-bound CENPA during S phase. This in turn results in compromised centromere integrity and abnormal chromosome separation and hinders cancer cell proliferation and tumor growth. Our findings unveil an m6A reading mechanism by CENPA that epigenetically governs centromere integrity in cancer cells, providing potential targets for cancer therapy.
Collapse
Affiliation(s)
- Zihong Kang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, 100871 Beijing, China; Beijing Advanced Center of RNA Biology (BEACON), Peking University, Beijing, China
| | - Ruimeng Li
- MOE Key Laboratory of Bioinformatics, Center for Synthetic & Systems Biology, School of Life Sciences, Joint Graduate Program of Peking-Tsinghua-National Institute of Biological Science, Tsinghua University, 100084 Beijing, China
| | - Chang Liu
- Department of Genetics, Stanford University, School of Medicine, Stanford, CA, USA
| | - Xiaozhe Dong
- College of Chemistry and Molecular Engineering, Peking University, 100871 Beijing, China
| | - Yuxuan Hu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 211198 Nanjing, China
| | - Lei Xu
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 210008 Nanjing, China
| | - Xinyu Liu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, 100871 Beijing, China; Beijing Advanced Center of RNA Biology (BEACON), Peking University, Beijing, China
| | - Yunfan Xiang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, 100871 Beijing, China; Beijing Advanced Center of RNA Biology (BEACON), Peking University, Beijing, China
| | - Liming Gao
- School of Science, China Pharmaceutical University, 211198 Nanjing, China
| | - Wenzhe Si
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Laboratory Medicine, Peking University Third Hospital, 100191 Beijing, China
| | - Lei Wang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 210008 Nanjing, China
| | - Qing Li
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, 100871 Beijing, China
| | - Liang Zhang
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, 310022 Hangzhou, China
| | - Huan Wang
- College of Chemistry and Molecular Engineering, Peking University, 100871 Beijing, China
| | - Xuerui Yang
- MOE Key Laboratory of Bioinformatics, Center for Synthetic & Systems Biology, School of Life Sciences, Joint Graduate Program of Peking-Tsinghua-National Institute of Biological Science, Tsinghua University, 100084 Beijing, China.
| | - Jun Liu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, 100871 Beijing, China; Beijing Advanced Center of RNA Biology (BEACON), Peking University, Beijing, China.
| |
Collapse
|
2
|
Sikder S, Baek S, McNeil T, Dalal Y. Centromere inactivation during aging can be rescued in human cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.30.573721. [PMID: 38313258 PMCID: PMC10836067 DOI: 10.1101/2023.12.30.573721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
Aging involves a range of genetic, epigenetic, and physiological alterations. A key characteristic of aged cells is the loss of global heterochromatin, accompanied by a reduction in canonical histone levels. In this study, we track the fate of centromeres during aging in human cells. Our findings reveal that the centromeric histone H3 variant CENP-A is downregulated in aged cells, in a p53-dependent manner. We observe repression of centromeric noncoding transcription through an epigenetic mechanism via recruitment of a lysine-specific demethylase 1 (LSD1/KDM1A) to centromeres. This suppression results in defective de novo CENP-A loading at aging centromeres. By dual inhibition of p53 and LSD1/KDM1A in aged cells, we mitigate the reduction in centromeric proteins and centromeric transcripts, leading to mitotic rejuvenation of these cells. These results offer insights into a novel mechanism for centromeric inactivation during aging and provide potential strategies to reactivate centromeres.
Collapse
|
3
|
Wong LH, Tremethick DJ. Multifunctional histone variants in genome function. Nat Rev Genet 2024:10.1038/s41576-024-00759-1. [PMID: 39138293 DOI: 10.1038/s41576-024-00759-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2024] [Indexed: 08/15/2024]
Abstract
Histones are integral components of eukaryotic chromatin that have a pivotal role in the organization and function of the genome. The dynamic regulation of chromatin involves the incorporation of histone variants, which can dramatically alter its structural and functional properties. Contrary to an earlier view that limited individual histone variants to specific genomic functions, new insights have revealed that histone variants exert multifaceted roles involving all aspects of genome function, from governing patterns of gene expression at precise genomic loci to participating in genome replication, repair and maintenance. This conceptual change has led to a new understanding of the intricate interplay between chromatin and DNA-dependent processes and how this connection translates into normal and abnormal cellular functions.
Collapse
Affiliation(s)
- Lee H Wong
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - David J Tremethick
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capial Territory, Australia.
| |
Collapse
|
4
|
Chen YL, Jones AN, Crawford A, Sattler M, Ettinger A, Torres-Padilla ME. Determinants of minor satellite RNA function in chromosome segregation in mouse embryonic stem cells. J Cell Biol 2024; 223:e202309027. [PMID: 38625077 PMCID: PMC11022885 DOI: 10.1083/jcb.202309027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 03/06/2024] [Accepted: 03/29/2024] [Indexed: 04/17/2024] Open
Abstract
The centromere is a fundamental higher-order structure in chromosomes ensuring their faithful segregation upon cell division. Centromeric transcripts have been described in several species and suggested to participate in centromere function. However, low sequence conservation of centromeric repeats appears inconsistent with a role in recruiting highly conserved centromeric proteins. Here, we hypothesized that centromeric transcripts may function through a secondary structure rather than sequence conservation. Using mouse embryonic stem cells (ESCs), we show that an imbalance in the levels of forward or reverse minor satellite (MinSat) transcripts leads to severe chromosome segregation defects. We further show that MinSat RNA adopts a stem-loop secondary structure, which is conserved in human α-satellite transcripts. We identify an RNA binding region in CENPC and demonstrate that MinSat transcripts function through the structured region of the RNA. Importantly, mutants that disrupt MinSat secondary structure do not cause segregation defects. We propose that the conserved role of centromeric transcripts relies on their secondary RNA structure.
Collapse
Affiliation(s)
- Yung-Li Chen
- Institute of Epigenetics and Stem Cells (IES), Helmholtz Munich, München, Germany
| | - Alisha N. Jones
- Institute of Structural Biology, Molecular Targets and Therapeutics Center, Helmholtz Munich, Neuherberg, Germany
| | - Amy Crawford
- Department of Chemistry, New York University, New York, NY, USA
| | - Michael Sattler
- Institute of Structural Biology, Molecular Targets and Therapeutics Center, Helmholtz Munich, Neuherberg, Germany
- Department of Bioscience, Bavarian NMR Center, School of Natural Sciences, Technical University of Munich, Garching, Germany
| | - Andreas Ettinger
- Institute of Epigenetics and Stem Cells (IES), Helmholtz Munich, München, Germany
| | - Maria-Elena Torres-Padilla
- Institute of Epigenetics and Stem Cells (IES), Helmholtz Munich, München, Germany
- Faculty of Biology, Ludwig-Maximilians Universität, München, Germany
| |
Collapse
|
5
|
Chung TH, Zhuravskaya A, Makeyev EV. Regulation potential of transcribed simple repeated sequences in developing neurons. Hum Genet 2024; 143:875-895. [PMID: 38153590 PMCID: PMC11294396 DOI: 10.1007/s00439-023-02626-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 11/28/2023] [Indexed: 12/29/2023]
Abstract
Simple repeated sequences (SRSs), defined as tandem iterations of microsatellite- to satellite-sized DNA units, occupy a substantial part of the human genome. Some of these elements are known to be transcribed in the context of repeat expansion disorders. Mounting evidence suggests that the transcription of SRSs may also contribute to normal cellular functions. Here, we used genome-wide bioinformatics approaches to systematically examine SRS transcriptional activity in cells undergoing neuronal differentiation. We identified thousands of long noncoding RNAs containing >200-nucleotide-long SRSs (SRS-lncRNAs), with hundreds of these transcripts significantly upregulated in the neural lineage. We show that SRS-lncRNAs often originate from telomere-proximal regions and that they have a strong potential to form multivalent contacts with a wide range of RNA-binding proteins. Our analyses also uncovered a cluster of neurally upregulated SRS-lncRNAs encoded in a centromere-proximal part of chromosome 9, which underwent an evolutionarily recent segmental duplication. Using a newly established in vitro system for rapid neuronal differentiation of induced pluripotent stem cells, we demonstrate that at least some of the bioinformatically predicted SRS-lncRNAs, including those encoded in the segmentally duplicated part of chromosome 9, indeed increase their expression in developing neurons to readily detectable levels. These and other lines of evidence suggest that many SRSs may be expressed in a cell type and developmental stage-specific manner, providing a valuable resource for further studies focused on the functional consequences of SRS-lncRNAs in the normal development of the human brain, as well as in the context of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Tek Hong Chung
- Centre for Developmental Neurobiology, New Hunt's House, King's College London, London, SE1 1UL, UK
| | - Anna Zhuravskaya
- Centre for Developmental Neurobiology, New Hunt's House, King's College London, London, SE1 1UL, UK
| | - Eugene V Makeyev
- Centre for Developmental Neurobiology, New Hunt's House, King's College London, London, SE1 1UL, UK.
| |
Collapse
|
6
|
Filliaux S, Bertelsen C, Baughman H, Komives E, Lyubchenko Y. The Interaction of NF-κB Transcription Factor with Centromeric Chromatin. J Phys Chem B 2024; 128:5803-5813. [PMID: 38860885 DOI: 10.1021/acs.jpcb.3c08388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Centromeric chromatin is a subset of chromatin structure and governs chromosome segregation. The centromere is composed of both CENP-A nucleosomes (CENP-Anuc) and H3 nucleosomes (H3nuc) and is enriched with alpha-satellite (α-sat) DNA repeats. These CENP-Anuc have a different structure than H3nuc, decreasing the base pairs (bp) of wrapped DNA from 147 bp for H3nuc to 121 bp for CENP-Anuc. All these factors can contribute to centromere function. We investigated the interaction of H3nuc and CENP-Anuc with NF-κB, a crucial transcription factor in regulating immune response and inflammation. We utilized atomic force microscopy (AFM) to characterize complexes of both types of nucleosomes with NF-κB. We found that NF-κB unravels H3nuc, removing more than 20 bp of DNA, and that NF-κB binds to the nucleosomal core. Similar results were obtained for the truncated variant of NF-κB comprised only of the Rel homology domain and missing the transcription activation domain (TAD), suggesting that RelATAD is not critical in unraveling H3nuc. By contrast, NF-κB did not bind to or unravel CENP-Anuc. These findings with different affinities for two types of nucleosomes to NF-κB may have implications for understanding the mechanisms of gene expression in bulk and centromere chromatin.
Collapse
Affiliation(s)
- Shaun Filliaux
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska 68198-6025, United States
| | - Chloe Bertelsen
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska 68198-6025, United States
| | - Hannah Baughman
- Department of Chemistry and Biochemistry, UC San Diego, La Jolla, California 92093-0378, United States
| | - Elizabeth Komives
- Department of Chemistry and Biochemistry, UC San Diego, La Jolla, California 92093-0378, United States
| | - Yuri Lyubchenko
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska 68198-6025, United States
| |
Collapse
|
7
|
Santinello B, Sun R, Amjad A, Hoyt SJ, Ouyang L, Courret C, Drennan R, Leo L, Larracuente AM, Core L, O'Neill RJ, Mellone BG. Transcription of a centromere-enriched retroelement and local retention of its RNA are significant features of the CENP-A chromatin landscape. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.14.574223. [PMID: 38293134 PMCID: PMC10827089 DOI: 10.1101/2024.01.14.574223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Centromeres depend on chromatin containing the conserved histone H3 variant CENP-A for function and inheritance, while the role of centromeric DNA repeats remains unclear. Retroelements are prevalent at centromeres across taxa and represent a potential mechanism for promoting transcription to aid in CENP-A incorporation or for generating RNA transcripts to maintain centromere integrity. Here, we probe into the transcription and RNA localization of the centromere-enriched retroelement G2/Jockey-3 (hereafter referred to as Jockey-3 ) in Drosophila melanogaster , currently the only in vivo model with assembled centromeres. We find that Jockey-3 is a major component of the centromeric transcriptome and produces RNAs that localize to centromeres in metaphase. Leveraging the polymorphism of Jockey-3 and a de novo centromere system, we show that these RNAs remain associated with their cognate DNA sequences in cis , suggesting they are unlikely to perform a sequence-specific function at all centromeres. We show that Jockey-3 transcription is positively correlated with the presence of CENP-A, and that recent Jockey-3 transposition events have occurred preferentially at CENP-A-containing chromatin. We propose that Jockey-3 contributes to the epigenetic maintenance of centromeres by promoting chromatin transcription, while inserting preferentially within these regions, selfishly ensuring its continued expression and transmission. Given the conservation of retroelements as centromere components through evolution, our findings have broad implications in understanding this association in other species.
Collapse
|
8
|
Lim KK, Lam UTF, Li Y, Zeng YB, Yang H, Chen ES. Set2 regulates Ccp1 and Swc2 to ensure centromeric stability by retargeting CENP-A. Nucleic Acids Res 2024; 52:4198-4214. [PMID: 38442274 PMCID: PMC11077061 DOI: 10.1093/nar/gkae084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 01/24/2024] [Accepted: 01/29/2024] [Indexed: 03/07/2024] Open
Abstract
Precise positioning of the histone-H3 variant, CENP-A, ensures centromere stability and faithful chromosomal segregation. Mislocalization of CENP-A to extra-centromeric loci results in aneuploidy and compromised cell viability associated with formation of ectopic kinetochores. The mechanism that retargets mislocalized CENP-A back to the centromere is unclarified. We show here that the downregulation of the histone H3 lysine 36 (H3K36) methyltransferase Set2 can preserve centromere localization of a temperature-sensitive mutant cnp1-1 Schizosaccharomyces pombe CENP-A (SpCENP-A) protein and reverse aneuploidy by redirecting mislocalized SpCENP-A back to centromere from ribosomal DNA (rDNA) loci, which serves as a sink for the delocalized SpCENP-A. Downregulation of set2 augments Swc2 (SWR1 complex DNA-binding module) expression and releases histone chaperone Ccp1 from the centromeric reservoir. Swc2 and Ccp1 are directed to the rDNA locus to excavate the SpCENP-Acnp1-1, which is relocalized to the centromere in a manner dependent on canonical SpCENP-A loaders, including Mis16, Mis17 and Mis18, thereby conferring cell survival and safeguarding chromosome segregation fidelity. Chromosome missegregation is a severe genetic instability event that compromises cell viability. This mechanism thus promotes CENP-A presence at the centromere to maintain genomic stability.
Collapse
Affiliation(s)
- Kim Kiat Lim
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Ulysses Tsz Fung Lam
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Ying Li
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Cancer Science Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Yi Bing Zeng
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Henry Yang
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Cancer Science Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- National University Health System, Singapore
| | - Ee Sin Chen
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- National University Health System, Singapore
- Integrative Sciences & Engineering Programme, National University of Singapore, Singapore
| |
Collapse
|
9
|
Ramakrishnan Chandra J, Kalidass M, Demidov D, Dabravolski SA, Lermontova I. The role of centromeric repeats and transcripts in kinetochore assembly and function. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:982-996. [PMID: 37665331 DOI: 10.1111/tpj.16445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 08/09/2023] [Accepted: 08/18/2023] [Indexed: 09/05/2023]
Abstract
Centromeres are the chromosomal domains, where the kinetochore protein complex is formed, mediating proper segregation of chromosomes during cell division. Although the function of centromeres has remained conserved during evolution, centromeric DNA is highly variable, even in closely related species. In addition, the composition of the kinetochore complexes varies among organisms. Therefore, it is assumed that the centromeric position is determined epigenetically, and the centromeric histone H3 (CENH3) serves as an epigenetic marker. The loading of CENH3 onto centromeres depends on centromere-licensing factors, chaperones, and transcription of centromeric repeats. Several proteins that regulate CENH3 loading and kinetochore assembly interact with the centromeric transcripts and DNA in a sequence-independent manner. However, the functional aspects of these interactions are not fully understood. This review discusses the variability of centromeric sequences in different organisms and the regulation of their transcription through the RNA Pol II and RNAi machinery. The data suggest that the interaction of proteins involved in CENH3 loading and kinetochore assembly with centromeric DNA and transcripts plays a role in centromere, and possibly neocentromere, formation in a sequence-independent manner.
Collapse
Affiliation(s)
| | - Manikandan Kalidass
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstrasse 3, D-06466, Seeland, Germany
| | - Dmitri Demidov
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstrasse 3, D-06466, Seeland, Germany
| | - Siarhei A Dabravolski
- Department of Biotechnology Engineering, Braude Academic College of Engineering, Snunit 51, Karmiel, 2161002, Israel
| | - Inna Lermontova
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstrasse 3, D-06466, Seeland, Germany
| |
Collapse
|
10
|
Graham E, Esashi F. DNA strand breaks at centromeres: Friend or foe? Semin Cell Dev Biol 2024; 156:141-151. [PMID: 37872040 DOI: 10.1016/j.semcdb.2023.10.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 09/22/2023] [Accepted: 10/11/2023] [Indexed: 10/25/2023]
Abstract
Centromeres are large structural regions in the genomic DNA, which are essential for accurately transmitting a complete set of chromosomes to daughter cells during cell division. In humans, centromeres consist of highly repetitive α-satellite DNA sequences and unique epigenetic components, forming large proteinaceous structures required for chromosome segregation. Despite their biological importance, there is a growing body of evidence for centromere breakage across the cell cycle, including periods of quiescence. In this review, we provide an up-to-date examination of the distinct centromere environments at different stages of the cell cycle, highlighting their plausible contribution to centromere breakage. Additionally, we explore the implications of these breaks on centromere function, both in terms of negative consequences and potential positive effects.
Collapse
Affiliation(s)
- Emily Graham
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Fumiko Esashi
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.
| |
Collapse
|
11
|
Brenner LM, Meyer F, Yang H, Köhler AR, Bashtrykov P, Guo M, Jeltsch A, Lungu C, Olayioye MA. Repeat DNA methylation is modulated by adherens junction signaling. Commun Biol 2024; 7:286. [PMID: 38454140 PMCID: PMC10920906 DOI: 10.1038/s42003-024-05990-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 02/28/2024] [Indexed: 03/09/2024] Open
Abstract
Through its involvement in gene transcription and heterochromatin formation, DNA methylation regulates how cells interact with their environment. Nevertheless, the extracellular signaling cues that modulate the distribution of this central chromatin modification are largely unclear. DNA methylation is highly abundant at repetitive elements, but its investigation in live cells has been complicated by methodological challenges. Utilizing a CRISPR/dCas9 biosensor that reads DNA methylation of human α-satellite repeats in live cells, we here uncover a signaling pathway linking the chromatin and transcriptional state of repetitive elements to epithelial adherens junction integrity. Specifically, we find that in confluent breast epithelial cell monolayers, α-satellite repeat methylation is reduced by comparison to low density cultures. This is coupled with increased transcriptional activity at repeats. Through comprehensive perturbation experiments, we identify the junctional protein E-cadherin, which links to the actin cytoskeleton, as a central molecular player for signal relay into the nucleus. Furthermore, we find that this pathway is impaired in cancer cells that lack E-cadherin and are not contact-inhibited. This suggests that the molecular connection between cell density and repetitive element methylation could play a role in the maintenance of epithelial tissue homeostasis.
Collapse
Affiliation(s)
- Lisa-Marie Brenner
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Florian Meyer
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Haiqian Yang
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, 02139, MA, USA
| | - Anja R Köhler
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Pavel Bashtrykov
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Ming Guo
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, 02139, MA, USA
| | - Albert Jeltsch
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Cristiana Lungu
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany.
- Stuttgart Research Center Systems Biology (SRCSB), University of Stuttgart, Nobelstraße 15, 70569, Stuttgart, Germany.
| | - Monilola A Olayioye
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany.
- Stuttgart Research Center Systems Biology (SRCSB), University of Stuttgart, Nobelstraße 15, 70569, Stuttgart, Germany.
| |
Collapse
|
12
|
Folco H, Xiao H, Wheeler D, Feng H, Bai Y, Grewal SS. The cysteine-rich domain in CENP-A chaperone Scm3HJURP ensures centromere targeting and kinetochore integrity. Nucleic Acids Res 2024; 52:1688-1701. [PMID: 38084929 PMCID: PMC10899784 DOI: 10.1093/nar/gkad1182] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 11/20/2023] [Accepted: 11/28/2023] [Indexed: 02/29/2024] Open
Abstract
Centromeric chromatin plays a crucial role in kinetochore assembly and chromosome segregation. Centromeres are specified through the loading of the histone H3 variant CENP-A by the conserved chaperone Scm3/HJURP. The N-terminus of Scm3/HJURP interacts with CENP-A, while the C-terminus facilitates centromere localization by interacting with the Mis18 holocomplex via a small domain, called the Mis16-binding domain (Mis16-BD) in fission yeast. Fungal Scm3 proteins contain an additional conserved cysteine-rich domain (CYS) of unknown function. Here, we find that CYS binds zinc in vitro and is essential for the localization and function of fission yeast Scm3. Disrupting CYS by deletion or introduction of point mutations within its zinc-binding motif prevents Scm3 centromere localization and compromises kinetochore integrity. Interestingly, CYS alone can localize to the centromere, albeit weakly, but its targeting is greatly enhanced when combined with Mis16-BD. Expressing a truncated protein containing both Mis16-BD and CYS, but lacking the CENP-A binding domain, causes toxicity and is accompanied by considerable chromosome missegregation and kinetochore loss. These effects can be mitigated by mutating the CYS zinc-binding motif. Collectively, our findings establish the essential role of the cysteine-rich domain in fungal Scm3 proteins and provide valuable insights into the mechanism of Scm3 centromere targeting.
Collapse
Affiliation(s)
- H Diego Folco
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hua Xiao
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - David Wheeler
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hanqiao Feng
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yawen Bai
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shiv I S Grewal
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
13
|
Filliaux S, Bertelsen C, Baughman H, Komives E, Lyubchenko YL. The Interaction of NF-κB Transcription Factor with Centromeric Chromatin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.13.580208. [PMID: 38405937 PMCID: PMC10888803 DOI: 10.1101/2024.02.13.580208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Centromeric chromatin is a subset of chromatin structure and governs chromosome segregation. The centromere is composed of both CENP-A nucleosomes (CENP-A nuc ) and H3 nucleosomes (H3 nuc ) and is enriched with alpha-satellite (α-sat) DNA repeats. These CENP-A nuc have a different structure than H3 nuc , decreasing the base pairs (bp) of wrapped DNA from 147 bp for H3 nuc to 121 bp for CENP-A nuc . All these factors can contribute to centromere function. We investigated the interaction of H3 nuc and CENP-A nuc with NF-κB, a crucial transcription factor in regulating immune response and inflammation. We utilized Atomic Force Microscopy (AFM) to characterize complexes of both types of nucleosomes with NF-κB. We found that NF-κB unravels H3 nuc , removing more than 20 bp of DNA, and that NF-κB binds to the nucleosomal core. Similar results were obtained for the truncated variant of NF-κB comprised only of the Rel Homology domain and missing the transcription activation domain (TAD), suggesting the RelA TAD is not critical in unraveling H3 nuc . By contrast, NF-κB did not bind to or unravel CENP- A nuc . These findings with different affinities for two types of nucleosomes to NF-κB may have implications for understanding the mechanisms of gene expression in bulk and centromere chromatin.
Collapse
|
14
|
Abstract
Long non-coding RNAs (lncRNAs) are significant contributors in maintaining genomic integrity through epigenetic regulation. LncRNAs can interact with chromatin-modifying complexes in both cis and trans pathways, drawing them to specific genomic loci and influencing gene expression via DNA methylation, histone modifications, and chromatin remodeling. They can also operate as building blocks to assemble different chromatin-modifying components, facilitating their interactions and gene regulatory functions. Deregulation of these molecules has been associated with various human diseases, including cancer, cardiovascular disease, and neurological disorders. Thus, lncRNAs are implicated as potential diagnostic indicators and therapeutic targets. This review discusses the current understanding of how lncRNAs mediate epigenetic control, genomic integrity, and their putative functions in disease pathogenesis.
Collapse
Affiliation(s)
- Ganesan Arunkumar
- The LncRNA, Epigenetics, and Genome Organization Laboratory, Department of Cell Biology and Physiology, School of Medicine, University of New Mexico, Albuquerque, NM, USA
| |
Collapse
|
15
|
Hazazi A, AlShehah AA, Khan FR, Hakami MA, Almarshadi F, Abalkhail A, Nassar SA, Almasoudi HH, Ali AA, Abu-Alghayth MH, Kukreti N, Binshaya AS. From diagnosis to therapy: The transformative role of lncRNAs in eye cancer management. Pathol Res Pract 2024; 254:155081. [PMID: 38211388 DOI: 10.1016/j.prp.2023.155081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/29/2023] [Accepted: 12/30/2023] [Indexed: 01/13/2024]
Abstract
The genomic era has brought about a transformative shift in our comprehension of cancer, unveiling the intricate molecular landscape underlying disease development. Eye cancers (ECs), encompassing diverse malignancies affecting ocular tissues, pose distinctive challenges in diagnosis and management. Long non-coding RNAs (lncRNAs), an emerging category of non-coding RNAs, are pivotal actors in the genomic intricacies of eye cancers. LncRNAs have garnered recognition for their multifaceted roles in gene expression regulation and influence on many cellular processes. Many studies support that the lncRNAs have a role in developing various cancers. Recent investigations have pinpointed specific lncRNAs associated with ECs, including retinoblastoma and uveal melanoma. These lncRNAs exert control over critical pathways governing tumor initiation, progression, and metastasis, endowing them with the ability to function as evaluation, predictive, and therapeutic indicators. The article aims to synthesize the existing information concerning the functions of lncRNAs in ECs, elucidating their regulatory mechanisms and clinical significance. By delving into the lncRNAs' expanding relevance in the modulation of oncogenic and tumor-suppressive networks, we gain a deeper understanding of the molecular complexities intrinsic to these diseases. In our exploration of the genomic intricacies of ECs, lncRNAs introduce a fresh perspective, providing an opportunity to function as clinical and therapeutic indicators, and they also have therapeutic benefits that show promise for advancing the treatment of ECs. This comprehensive review bridges the intricate relationship between lncRNAs and ECs within the context of the genomic era.
Collapse
Affiliation(s)
- Ali Hazazi
- Department of Pathology and Laboratory Medicine, Security Forces Hospital Program, Riyadh, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh, Kingdom of Saudi Arabia
| | | | - Farhan R Khan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Al-Quwayiyah, Shaqra University, Riyadh, Saudi Arabia
| | - Mohammed Ageeli Hakami
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Al-Quwayiyah, Shaqra University, Riyadh, Saudi Arabia
| | - Fahad Almarshadi
- Department of Public Health, College of Public Health and Health Informatics, University of Ha'il, Saudi Arabia
| | - Adil Abalkhail
- Department of Public Health, College of Public Health and Health Informatics, Qassim University, Qassim, Saudi Arabia
| | - Somia A Nassar
- Department of Medical Laboratory Sciences, College of Applied medical sciences, Prince Sattam bin Abdulaziz University, Alkharj 11942, Saudi Arabia; Department of Parasitology & Animal Diseases, National Research Centre, 33 Bohouth St., Dokki, Giza 12622, Egypt
| | - Hassan H Almasoudi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia
| | - Amer Al Ali
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, P.O. Box 255, Bisha 67714, Saudi Arabia
| | - Mohammed H Abu-Alghayth
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, P.O. Box 255, Bisha 67714, Saudi Arabia
| | - Neelima Kukreti
- School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India
| | - Abdulkarim S Binshaya
- Department of Medical Laboratory Sciences, College of Applied medical sciences, Prince Sattam bin Abdulaziz University, Alkharj 11942, Saudi Arabia.
| |
Collapse
|
16
|
Xu R, Pan Z, Nakagawa T. Gross Chromosomal Rearrangement at Centromeres. Biomolecules 2023; 14:28. [PMID: 38254628 PMCID: PMC10813616 DOI: 10.3390/biom14010028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/24/2024] Open
Abstract
Centromeres play essential roles in the faithful segregation of chromosomes. CENP-A, the centromere-specific histone H3 variant, and heterochromatin characterized by di- or tri-methylation of histone H3 9th lysine (H3K9) are the hallmarks of centromere chromatin. Contrary to the epigenetic marks, DNA sequences underlying the centromere region of chromosomes are not well conserved through evolution. However, centromeres consist of repetitive sequences in many eukaryotes, including animals, plants, and a subset of fungi, including fission yeast. Advances in long-read sequencing techniques have uncovered the complete sequence of human centromeres containing more than thousands of alpha satellite repeats and other types of repetitive sequences. Not only tandem but also inverted repeats are present at a centromere. DNA recombination between centromere repeats can result in gross chromosomal rearrangement (GCR), such as translocation and isochromosome formation. CENP-A chromatin and heterochromatin suppress the centromeric GCR. The key player of homologous recombination, Rad51, safeguards centromere integrity through conservative noncrossover recombination between centromere repeats. In contrast to Rad51-dependent recombination, Rad52-mediated single-strand annealing (SSA) and microhomology-mediated end-joining (MMEJ) lead to centromeric GCR. This review summarizes recent findings on the role of centromere and recombination proteins in maintaining centromere integrity and discusses how GCR occurs at centromeres.
Collapse
Affiliation(s)
- Ran Xu
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka 560-0043, Osaka, Japan
- Forefront Research Center, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka 560-0043, Osaka, Japan
| | - Ziyi Pan
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka 560-0043, Osaka, Japan
- Forefront Research Center, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka 560-0043, Osaka, Japan
| | - Takuro Nakagawa
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka 560-0043, Osaka, Japan
- Forefront Research Center, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka 560-0043, Osaka, Japan
| |
Collapse
|
17
|
Prozzillo Y, Santopietro MV, Messina G, Dimitri P. Unconventional roles of chromatin remodelers and long non-coding RNAs in cell division. Cell Mol Life Sci 2023; 80:365. [PMID: 37982870 PMCID: PMC10661750 DOI: 10.1007/s00018-023-04949-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/31/2023] [Accepted: 09/02/2023] [Indexed: 11/21/2023]
Abstract
The aim of this review article is to focus on the unconventional roles of epigenetic players (chromatin remodelers and long non-coding RNAs) in cell division, beyond their well-characterized functions in chromatin regulation during cell differentiation and development. In the last two decades, diverse experimental evidence has shown that subunits of SRCAP and p400/TIP60 chromatin remodeling complexes in humans relocate from interphase nuclei to centrosomes, spindle or midbody, with their depletion yielding an array of aberrant outcomes of mitosis and cytokinesis. Remarkably, this behavior is shared by orthologous subunits of the Drosophila melanogaster DOM/TIP60 complex, despite fruit flies and humans diverged over 700 million years ago. In short, the available data support the view that subunits of these complexes are a new class of moonlighting proteins, in that they lead a "double life": during the interphase, they function in chromatin regulation within the nucleus, but as the cell progresses through mitosis, they interact with established mitotic factors, thus becoming integral components of the cell division apparatus. By doing so, they contribute to ensuring the correct distribution of chromosomes in the two daughter cells and, when dysfunctional, can cause genomic instability, a condition that can trigger tumorigenesis and developmental diseases. Research over the past few years has unveiled a major contribution of long non-coding RNAs (lncRNAs) in the epigenetics regulation of gene expression which also impacts on cell division control. Here, we focus on possible structural roles of lncRNAs in the execution of cytokinesis: in particular, we suggest that specific classes of lncRNAs relocate to the midbody to form an architectural scaffold ensuring its proper assembly and function during abscission. Drawing attention to experimental evidence for non-canonical extranuclear roles of chromatin factors and lncRNAs has direct implications on important and novel aspects concerning both the epigenetic regulation and the evolutionary dynamics of cell division with a significant impact on differentiation, development, and diseases.
Collapse
Affiliation(s)
- Yuri Prozzillo
- Dipartimento di Biologia e Biotecnologie "Charles Darwin", Sapienza Università di Roma, Rome, Italy
| | | | - Giovanni Messina
- Dipartimento di Biologia e Biotecnologie "Charles Darwin", Sapienza Università di Roma, Rome, Italy.
- Universita degli Studi di Milano-Bicocca, Piazza dell' Ateneo Nuovo, 1, 20126, Milano, Italy.
| | - Patrizio Dimitri
- Dipartimento di Biologia e Biotecnologie "Charles Darwin", Sapienza Università di Roma, Rome, Italy.
| |
Collapse
|
18
|
Gambelli A, Ferrando A, Boncristiani C, Schoeftner S. Regulation and function of R-loops at repetitive elements. Biochimie 2023; 214:141-155. [PMID: 37619810 DOI: 10.1016/j.biochi.2023.08.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/13/2023] [Accepted: 08/19/2023] [Indexed: 08/26/2023]
Abstract
R-loops are atypical, three-stranded nucleic acid structures that contain a stretch of RNA:DNA hybrids and an unpaired, single stranded DNA loop. R-loops are physiological relevant and can act as regulators of gene expression, chromatin structure, DNA damage repair and DNA replication. However, unscheduled and persistent R-loops are mutagenic and can mediate replication-transcription conflicts, leading to DNA damage and genome instability if left unchecked. Detailed transcriptome analysis unveiled that 85% of the human genome, including repetitive regions, hold transcriptional activity. This anticipates that R-loops management plays a central role for the regulation and integrity of genomes. This function is expected to have a particular relevance for repetitive sequences that make up to 75% of the human genome. Here, we review the impact of R-loops on the function and stability of repetitive regions such as centromeres, telomeres, rDNA arrays, transposable elements and triplet repeat expansions and discuss their relevance for associated pathological conditions.
Collapse
Affiliation(s)
- Alice Gambelli
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, Via E. Weiss 2, 34127, Trieste, Italy
| | - Alessandro Ferrando
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, Via E. Weiss 2, 34127, Trieste, Italy
| | - Chiara Boncristiani
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, Via E. Weiss 2, 34127, Trieste, Italy
| | - Stefan Schoeftner
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, Via E. Weiss 2, 34127, Trieste, Italy.
| |
Collapse
|
19
|
Arora UP, Sullivan BA, Dumont BL. Variation in the CENP-A sequence association landscape across diverse inbred mouse strains. Cell Rep 2023; 42:113178. [PMID: 37742188 PMCID: PMC10873113 DOI: 10.1016/j.celrep.2023.113178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 04/25/2023] [Accepted: 09/08/2023] [Indexed: 09/26/2023] Open
Abstract
Centromeres are crucial for chromosome segregation, but their underlying sequences evolve rapidly, imposing strong selection for compensatory changes in centromere-associated kinetochore proteins to assure the stability of genome transmission. While this co-evolution is well documented between species, it remains unknown whether population-level centromere diversity leads to functional differences in kinetochore protein association. Mice (Mus musculus) exhibit remarkable variation in centromere size and sequence, but the amino acid sequence of the kinetochore protein CENP-A is conserved. Here, we apply k-mer-based analyses to CENP-A chromatin profiling data from diverse inbred mouse strains to investigate the interplay between centromere variation and kinetochore protein sequence association. We show that centromere sequence diversity is associated with strain-level differences in both CENP-A positioning and sequence preference along the mouse core centromere satellite. Our findings reveal intraspecies sequence-dependent differences in CENP-A/centromere association and open additional perspectives for understanding centromere-mediated variation in genome stability.
Collapse
Affiliation(s)
- Uma P Arora
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA; Graduate School of Biomedical Sciences, Tufts University, 136 Harrison Avenue, Boston, MA 02111, USA.
| | - Beth A Sullivan
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, 213 Research Drive, Box 3054, Durham, NC 27710, USA
| | - Beth L Dumont
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA; Graduate School of Biomedical Sciences, Tufts University, 136 Harrison Avenue, Boston, MA 02111, USA; Graduate School of Biomedical Science and Engineering, University of Maine, 5775 Stodder Hall, Room 46, Orono, ME 04469, USA.
| |
Collapse
|
20
|
Ruiz Esparza Garrido R, Velázquez Flores MÁ. Circular RNAs: the next level of gene regulation. Am J Transl Res 2023; 15:6122-6135. [PMID: 37969203 PMCID: PMC10641363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/07/2023] [Indexed: 11/17/2023]
Abstract
Gene regulation is a highly complex process involving the presence and participation of many molecules and complexes that regulate gene expression in the genome, which occurs in a precise and coordinated way. Among all these regulatory molecules, the circular RNAs (circRNAs) are the most novel and peculiar family of noncoding RNAs (ncRNAs) as they have a circular structure, are very specific on their expression, highly conserved, and highly resistant to degradation. These molecules have been described in recent years as excellent disease markers and as potential therapeutic targets. In this review, we focused on general characteristics and on the evolution of the circRNAs, as well as on their biological functions, emphasizing on their participation in the formation of brain tumors.
Collapse
Affiliation(s)
- Ruth Ruiz Esparza Garrido
- Investigadora por México, Laboratorio de RNAs No Codificantes de la Unidad de Investigación Médica en Genética Humana, Hospital de Pediatría CMNSXXI, Instituto Mexicano del Seguro Social (IMSS)CDMX, México
| | - Miguel Ángel Velázquez Flores
- Laboratorio de RNAs No Codificantes de la Unidad de Investigación Médica en Genética Humana, Hospital de Pediatría CMNSXXI, Instituto Mexicano del Seguro Social (IMSS)CDMX, México
| |
Collapse
|
21
|
Melters DP, Neuman KC, Bentahar RS, Rakshit T, Dalal Y. Single molecule analysis of CENP-A chromatin by high-speed atomic force microscopy. eLife 2023; 12:e86709. [PMID: 37728600 PMCID: PMC10511241 DOI: 10.7554/elife.86709] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 09/01/2023] [Indexed: 09/21/2023] Open
Abstract
Chromatin accessibility is modulated in a variety of ways to create open and closed chromatin states, both of which are critical for eukaryotic gene regulation. At the single molecule level, how accessibility is regulated of the chromatin fiber composed of canonical or variant nucleosomes is a fundamental question in the field. Here, we developed a single-molecule tracking method where we could analyze thousands of canonical H3 and centromeric variant nucleosomes imaged by high-speed atomic force microscopy. This approach allowed us to investigate how changes in nucleosome dynamics in vitro inform us about transcriptional potential in vivo. By high-speed atomic force microscopy, we tracked chromatin dynamics in real time and determined the mean square displacement and diffusion constant for the variant centromeric CENP-A nucleosome. Furthermore, we found that an essential kinetochore protein CENP-C reduces the diffusion constant and mobility of centromeric nucleosomes along the chromatin fiber. We subsequently interrogated how CENP-C modulates CENP-A chromatin dynamics in vivo. Overexpressing CENP-C resulted in reduced centromeric transcription and impaired loading of new CENP-A molecules. From these data, we speculate that factors altering nucleosome mobility in vitro, also correspondingly alter transcription in vivo. Subsequently, we propose a model in which variant nucleosomes encode their own diffusion kinetics and mobility, and where binding partners can suppress or enhance nucleosome mobility.
Collapse
Affiliation(s)
- Daniël P Melters
- National Cancer Institute, Center for Cancer Research, Laboratory Receptor Biology and Gene ExpressionBethesdaUnited States
| | - Keir C Neuman
- National Heart, Lung, and Blood Institute, Laboratory of Single Molecule BiophysicsBethesdaUnited States
| | - Reda S Bentahar
- National Cancer Institute, Center for Cancer Research, Laboratory Receptor Biology and Gene ExpressionBethesdaUnited States
| | - Tatini Rakshit
- National Cancer Institute, Center for Cancer Research, Laboratory Receptor Biology and Gene ExpressionBethesdaUnited States
- Department of Chemistry, Shiv Nadar UniversityDadriIndia
| | - Yamini Dalal
- National Cancer Institute, Center for Cancer Research, Laboratory Receptor Biology and Gene ExpressionBethesdaUnited States
| |
Collapse
|
22
|
Ninomiya K, Yamazaki T, Hirose T. Satellite RNAs: emerging players in subnuclear architecture and gene regulation. EMBO J 2023; 42:e114331. [PMID: 37526230 PMCID: PMC10505914 DOI: 10.15252/embj.2023114331] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/13/2023] [Accepted: 07/22/2023] [Indexed: 08/02/2023] Open
Abstract
Satellite DNA is characterized by long, tandemly repeated sequences mainly found in centromeres and pericentromeric chromosomal regions. The recent advent of telomere-to-telomere sequencing data revealed the complete sequences of satellite regions, including centromeric α-satellites and pericentromeric HSat1-3, which together comprise ~ 5.7% of the human genome. Despite possessing constitutive heterochromatin features, these regions are transcribed to produce long noncoding RNAs with highly repetitive sequences that associate with specific sets of proteins to play various regulatory roles. In certain stress or pathological conditions, satellite RNAs are induced to assemble mesoscopic membraneless organelles. Specifically, under heat stress, nuclear stress bodies (nSBs) are scaffolded by HSat3 lncRNAs, which sequester hundreds of RNA-binding proteins. Upon removal of the stressor, nSBs recruit additional regulatory proteins, including protein kinases and RNA methylases, which modify the previously sequestered nSB components. The sequential recruitment of substrates and enzymes enables nSBs to efficiently regulate the splicing of hundreds of pre-mRNAs under limited temperature conditions. This review discusses the structural features and regulatory roles of satellite RNAs in intracellular architecture and gene regulation.
Collapse
Affiliation(s)
- Kensuke Ninomiya
- Graduate School of Frontier BiosciencesOsaka UniversitySuitaJapan
| | | | - Tetsuro Hirose
- Graduate School of Frontier BiosciencesOsaka UniversitySuitaJapan
- Institute for Open and Transdisciplinary Research Initiatives (OTRI)Osaka UniversitySuitaJapan
| |
Collapse
|
23
|
Kitagawa R, Niikura Y, Becker A, Houghton PJ, Kitagawa K. EWSR1 maintains centromere identity. Cell Rep 2023; 42:112568. [PMID: 37243594 PMCID: PMC10758295 DOI: 10.1016/j.celrep.2023.112568] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 04/03/2023] [Accepted: 05/11/2023] [Indexed: 05/29/2023] Open
Abstract
The centromere is essential for ensuring high-fidelity transmission of chromosomes. CENP-A, the centromeric histone H3 variant, is thought to be the epigenetic mark of centromere identity. CENP-A deposition at the centromere is crucial for proper centromere function and inheritance. Despite its importance, the precise mechanism responsible for maintenance of centromere position remains obscure. Here, we report a mechanism to maintain centromere identity. We demonstrate that CENP-A interacts with EWSR1 (Ewing sarcoma breakpoint region 1) and EWSR1-FLI1 (the oncogenic fusion protein in Ewing sarcoma). EWSR1 is required for maintaining CENP-A at the centromere in interphase cells. EWSR1 and EWSR1-FLI1 bind CENP-A through the SYGQ2 region within the prion-like domain, important for phase separation. EWSR1 binds to R-loops through its RNA-recognition motif in vitro. Both the domain and motif are required for maintaining CENP-A at the centromere. Therefore, we conclude that EWSR1 guards CENP-A in centromeric chromatins by binding to centromeric RNA.
Collapse
Affiliation(s)
- Risa Kitagawa
- Greehey Children's Cancer Research Institute, Mays Cancer Center, Department of Molecular Medicine, UT Health Science Center San Antonio, 8403 Floyd Curl Drive, San Antonio, TX 78229-3000, USA
| | - Yohei Niikura
- Greehey Children's Cancer Research Institute, Mays Cancer Center, Department of Molecular Medicine, UT Health Science Center San Antonio, 8403 Floyd Curl Drive, San Antonio, TX 78229-3000, USA
| | - Argentina Becker
- Greehey Children's Cancer Research Institute, Mays Cancer Center, Department of Molecular Medicine, UT Health Science Center San Antonio, 8403 Floyd Curl Drive, San Antonio, TX 78229-3000, USA
| | - Peter J Houghton
- Greehey Children's Cancer Research Institute, Mays Cancer Center, Department of Molecular Medicine, UT Health Science Center San Antonio, 8403 Floyd Curl Drive, San Antonio, TX 78229-3000, USA
| | - Katsumi Kitagawa
- Greehey Children's Cancer Research Institute, Mays Cancer Center, Department of Molecular Medicine, UT Health Science Center San Antonio, 8403 Floyd Curl Drive, San Antonio, TX 78229-3000, USA.
| |
Collapse
|
24
|
Nassar R, Thompson L, Fouquerel E. Molecular mechanisms protecting centromeres from self-sabotage and implications for cancer therapy. NAR Cancer 2023; 5:zcad019. [PMID: 37180029 PMCID: PMC10167631 DOI: 10.1093/narcan/zcad019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/27/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Centromeres play a crucial role in DNA segregation by mediating the cohesion and separation of sister chromatids during cell division. Centromere dysfunction, breakage or compromised centromeric integrity can generate aneuploidies and chromosomal instability, which are cellular features associated with cancer initiation and progression. Maintaining centromere integrity is thus essential for genome stability. However, the centromere itself is prone to DNA breaks, likely due to its intrinsically fragile nature. Centromeres are complex genomic loci that are composed of highly repetitive DNA sequences and secondary structures and require the recruitment and homeostasis of a centromere-associated protein network. The molecular mechanisms engaged to preserve centromere inherent structure and respond to centromeric damage are not fully understood and remain a subject of ongoing research. In this article, we provide a review of the currently known factors that contribute to centromeric dysfunction and the molecular mechanisms that mitigate the impact of centromere damage on genome stability. Finally, we discuss the potential therapeutic strategies that could arise from a deeper understanding of the mechanisms preserving centromere integrity.
Collapse
Affiliation(s)
- Rim Nassar
- UPMC Hillman Cancer Center, Department of Pharmacology and Chemical Biology, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15232, USA
| | - Lily Thompson
- UPMC Hillman Cancer Center, Department of Pharmacology and Chemical Biology, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15232, USA
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Elise Fouquerel
- UPMC Hillman Cancer Center, Department of Pharmacology and Chemical Biology, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15232, USA
| |
Collapse
|
25
|
Malik KK, Sridhara SC, Lone KA, Katariya PD, Pulimamidi D, Tyagi S. MLL methyltransferases regulate H3K4 methylation to ensure CENP-A assembly at human centromeres. PLoS Biol 2023; 21:e3002161. [PMID: 37379335 PMCID: PMC10335677 DOI: 10.1371/journal.pbio.3002161] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 07/11/2023] [Accepted: 05/12/2023] [Indexed: 06/30/2023] Open
Abstract
The active state of centromeres is epigenetically defined by the presence of CENP-A interspersed with histone H3 nucleosomes. While the importance of dimethylation of H3K4 for centromeric transcription has been highlighted in various studies, the identity of the enzyme(s) depositing these marks on the centromere is still unknown. The MLL (KMT2) family plays a crucial role in RNA polymerase II (Pol II)-mediated gene regulation by methylating H3K4. Here, we report that MLL methyltransferases regulate transcription of human centromeres. CRISPR-mediated down-regulation of MLL causes loss of H3K4me2, resulting in an altered epigenetic chromatin state of the centromeres. Intriguingly, our results reveal that loss of MLL, but not SETD1A, increases co-transcriptional R-loop formation, and Pol II accumulation at the centromeres. Finally, we report that the presence of MLL and SETD1A is crucial for kinetochore maintenance. Altogether, our data reveal a novel molecular framework where both the H3K4 methylation mark and the methyltransferases regulate stability and identity of the centromere.
Collapse
Affiliation(s)
- Kausika Kumar Malik
- Laboratory of Cell Cycle Regulation, Centre for DNA Fingerprinting and Diagnostics (CDFD), Uppal, Hyderabad, India
- Graduate Studies, Manipal Academy of Higher Education, Manipal, India
| | - Sreerama Chaitanya Sridhara
- Laboratory of Cell Cycle Regulation, Centre for DNA Fingerprinting and Diagnostics (CDFD), Uppal, Hyderabad, India
| | - Kaisar Ahmad Lone
- Laboratory of Cell Cycle Regulation, Centre for DNA Fingerprinting and Diagnostics (CDFD), Uppal, Hyderabad, India
- Graduate Studies, Regional Centre for Biotechnology, Faridabad, India
| | - Payal Deepakbhai Katariya
- Laboratory of Cell Cycle Regulation, Centre for DNA Fingerprinting and Diagnostics (CDFD), Uppal, Hyderabad, India
- Graduate Studies, Manipal Academy of Higher Education, Manipal, India
| | - Deepshika Pulimamidi
- Laboratory of Cell Cycle Regulation, Centre for DNA Fingerprinting and Diagnostics (CDFD), Uppal, Hyderabad, India
| | - Shweta Tyagi
- Laboratory of Cell Cycle Regulation, Centre for DNA Fingerprinting and Diagnostics (CDFD), Uppal, Hyderabad, India
| |
Collapse
|
26
|
Li J, Zhao J, Gan X, Wang Y, Jiang D, Chen L, Wang F, Xu J, Pei H, Huang J, Chen X. The RPA-RNF20-SNF2H cascade promotes proper chromosome segregation and homologous recombination repair. Proc Natl Acad Sci U S A 2023; 120:e2303479120. [PMID: 37155876 PMCID: PMC10193940 DOI: 10.1073/pnas.2303479120] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 03/27/2023] [Indexed: 05/10/2023] Open
Abstract
The human tumor suppressor Ring finger protein 20 (RNF20)-mediated histone H2B monoubiquitination (H2Bub) is essential for proper chromosome segregation and DNA repair. However, what is the precise function and mechanism of RNF20-H2Bub in chromosome segregation and how this pathway is activated to preserve genome stability remain unknown. Here, we show that the single-strand DNA-binding factor Replication protein A (RPA) interacts with RNF20 mainly in the S and G2/M phases and recruits RNF20 to mitotic centromeres in a centromeric R-loop-dependent manner. In parallel, RPA recruits RNF20 to chromosomal breaks upon DNA damage. Disruption of the RPA-RNF20 interaction or depletion of RNF20 increases mitotic lagging chromosomes and chromosome bridges and impairs BRCA1 and RAD51 loading and homologous recombination repair, leading to elevated chromosome breaks, genome instability, and sensitivities to DNA-damaging agents. Mechanistically, the RPA-RNF20 pathway promotes local H2Bub, H3K4 dimethylation, and subsequent SNF2H recruitment, ensuring proper Aurora B kinase activation at centromeres and efficient loading of repair proteins at DNA breaks. Thus, the RPA-RNF20-SNF2H cascade plays a broad role in preserving genome stability by coupling H2Bub to chromosome segregation and DNA repair.
Collapse
Affiliation(s)
- Jimin Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Centre of Immunology and Metabolism, Wuhan University, Wuhan 430072, China
| | - Jingyu Zhao
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Centre of Immunology and Metabolism, Wuhan University, Wuhan 430072, China
| | - Xiaoli Gan
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Centre of Immunology and Metabolism, Wuhan University, Wuhan 430072, China
| | - Yanyan Wang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Centre of Immunology and Metabolism, Wuhan University, Wuhan 430072, China
| | - Donghao Jiang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Centre of Immunology and Metabolism, Wuhan University, Wuhan 430072, China
| | - Liang Chen
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Centre of Immunology and Metabolism, Wuhan University, Wuhan 430072, China
| | - Fangwei Wang
- The Ministry of Education Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Jingyan Xu
- Department of Hematology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing 210009, China
| | - Huadong Pei
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057
| | - Jun Huang
- The Ministry of Education Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Xuefeng Chen
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Centre of Immunology and Metabolism, Wuhan University, Wuhan 430072, China
| |
Collapse
|
27
|
Mohapatra S, Winkle M, Ton AN, Nguyen D, Calin GA. The Role of Non-Coding RNAs in Chromosomal Instability in Cancer. J Pharmacol Exp Ther 2023; 384:10-19. [PMID: 36167417 PMCID: PMC9827503 DOI: 10.1124/jpet.122.001357] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/22/2022] [Accepted: 08/17/2022] [Indexed: 01/12/2023] Open
Abstract
Chromosomal instability (CIN) is characterized by an increased frequency of changes in chromosome structure or number and is regarded as a hallmark of cancer. CIN plays a prevalent role in tumorigenesis and cancer progression by assisting the cancer cells' phenotypic adaptation to stress, which have been tightly linked to therapy resistance and metastasis. Both CIN-inducing and CIN-repressing agents are being clinically tested for the treatment of cancer to increase CIN levels to unsustainable levels leading to cell death or to decrease CIN levels to limit the development of drug resistance, respectively. Non-coding RNAs (ncRNAs) including microRNAs and long ncRNAs (lncRNAs) have been fundamentally implicated in CIN. The miR-22, miR-26a, miR-28, and miR-186 target important checkpoint proteins involved in mediating chromosomal stability and their expression modulation has been directly related to CIN occurrence. lncRNAs derived from telomeric, centrosomal, and enhancer regions play an important role in mediating genome stability, while specific lncRNA transcripts including genomic instability inducing RNA called Ginir, P53-responsive lncRNA termed as GUARDIN, colon cancer-associated transcript 2, PCAT2, and ncRNA activated by DNA damage called NORAD have been shown to act within CIN-associated pathways. In this review, we discuss how these ncRNAs either maintain or disrupt the stability of chromosomes and how these mechanisms could be exploited for novel therapeutic approaches targeting CIN in cancer patients. SIGNIFICANCE STATEMENT: Chromosomal instability increases tumor heterogeneity and thereby assists the phenotypic adaptation of cancer cells, causing therapy resistance and metastasis. Several microRNAs and long non-coding RNAs that have been causally linked to chromosomal instability could represent novel therapeutic targets. Understanding the role of non-coding RNAs in regulating different genes involved in driving chromosomal instability will give insights into how non-coding RNAs can be utilized toward modifying chemotherapeutic regimens in different cancers.
Collapse
Affiliation(s)
- Swati Mohapatra
- Department of Translational Molecular Pathology (S.M., M.W., A.N.T., G.A.C.), UT Health Graduate School of Biomedical Sciences (S.M.), Program in Molecular Genetic Technology, School of Health Professions (A.N.T.), and Center for RNA Interference and Non-Coding RNAs (G.A.C.), The University of Texas MD Anderson Cancer Center, Houston, Texas; and Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts (D.N.)
| | - Melanie Winkle
- Department of Translational Molecular Pathology (S.M., M.W., A.N.T., G.A.C.), UT Health Graduate School of Biomedical Sciences (S.M.), Program in Molecular Genetic Technology, School of Health Professions (A.N.T.), and Center for RNA Interference and Non-Coding RNAs (G.A.C.), The University of Texas MD Anderson Cancer Center, Houston, Texas; and Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts (D.N.)
| | - Anh N Ton
- Department of Translational Molecular Pathology (S.M., M.W., A.N.T., G.A.C.), UT Health Graduate School of Biomedical Sciences (S.M.), Program in Molecular Genetic Technology, School of Health Professions (A.N.T.), and Center for RNA Interference and Non-Coding RNAs (G.A.C.), The University of Texas MD Anderson Cancer Center, Houston, Texas; and Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts (D.N.)
| | - Dien Nguyen
- Department of Translational Molecular Pathology (S.M., M.W., A.N.T., G.A.C.), UT Health Graduate School of Biomedical Sciences (S.M.), Program in Molecular Genetic Technology, School of Health Professions (A.N.T.), and Center for RNA Interference and Non-Coding RNAs (G.A.C.), The University of Texas MD Anderson Cancer Center, Houston, Texas; and Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts (D.N.)
| | - George A Calin
- Department of Translational Molecular Pathology (S.M., M.W., A.N.T., G.A.C.), UT Health Graduate School of Biomedical Sciences (S.M.), Program in Molecular Genetic Technology, School of Health Professions (A.N.T.), and Center for RNA Interference and Non-Coding RNAs (G.A.C.), The University of Texas MD Anderson Cancer Center, Houston, Texas; and Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts (D.N.)
| |
Collapse
|
28
|
Zhang C, Wang D, Hao Y, Wu S, Luo J, Xue Y, Wang D, Li G, Liu L, Shao C, Li H, Yuan J, Zhu M, Fu XD, Yang X, Chen R, Teng Y. LncRNA CCTT-mediated RNA-DNA and RNA-protein interactions facilitate the recruitment of CENP-C to centromeric DNA during kinetochore assembly. Mol Cell 2022; 82:4018-4032.e9. [PMID: 36332605 PMCID: PMC9648614 DOI: 10.1016/j.molcel.2022.09.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 04/10/2022] [Accepted: 09/23/2022] [Indexed: 11/05/2022]
Abstract
Kinetochore assembly on centromeres is central for chromosome segregation, and defects in this process cause mitotic errors and aneuploidy. Besides the well-established protein network, emerging evidence suggests the involvement of regulatory RNA in kinetochore assembly; however, it has remained elusive about the identity of such RNA, let alone its mechanism of action in this critical process. Here, we report CCTT, a previously uncharacterized long non-coding RNA (lncRNA) transcribed from the arm of human chromosome 17, which plays a vital role in kinetochore assembly. We show that CCTT highly localizes to all centromeres via the formation of RNA-DNA triplex and specifically interacts with CENP-C to help engage this blueprint protein in centromeres, and consequently, CCTT loss triggers extensive mitotic errors and aneuploidy. These findings uncover a non-centromere-derived lncRNA that recruits CENP-C to centromeres and shed critical lights on the function of centromeric DNA sequences as anchor points for kinetochore assembly.
Collapse
Affiliation(s)
- Chong Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing 102206, China
| | - Dongpeng Wang
- CAS Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yajing Hao
- CAS Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Shuheng Wu
- CAS Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jianjun Luo
- CAS Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuanchao Xue
- CAS Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Di Wang
- CAS Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Guohong Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Lihui Liu
- CAS Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Changwei Shao
- Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Huiyan Li
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing 100039, China
| | - Jinfeng Yuan
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing 100039, China
| | - Maoxiang Zhu
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Xiang-Dong Fu
- Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Xiao Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing 102206, China.
| | - Runsheng Chen
- CAS Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| | - Yan Teng
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing 102206, China.
| |
Collapse
|
29
|
Bykova M, Hou Y, Eng C, Cheng F. Quantitative trait locus (xQTL) approaches identify risk genes and drug targets from human non-coding genomes. Hum Mol Genet 2022; 31:R105-R113. [PMID: 36018824 PMCID: PMC9989738 DOI: 10.1093/hmg/ddac208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/13/2022] Open
Abstract
Advances and reduction of costs in various sequencing technologies allow for a closer look at variations present in the non-coding regions of the human genome. Correlating non-coding variants with large-scale multi-omic data holds the promise not only of a better understanding of likely causal connections between non-coding DNA and expression of traits but also identifying potential disease-modifying medicines. Genome-phenome association studies have created large datasets of DNA variants that are associated with multiple traits or diseases, such as Alzheimer's disease; yet, the functional consequences of variants, in particular of non-coding variants, remain largely unknown. Recent advances in functional genomics and computational approaches have led to the identification of potential roles of DNA variants, such as various quantitative trait locus (xQTL) techniques. Multi-omic assays and analytic approaches toward xQTL have identified links between genetic loci and human transcriptomic, epigenomic, proteomic and metabolomic data. In this review, we first discuss the recent development of xQTL from multi-omic findings. We then highlight multimodal analysis of xQTL and genetic data for identification of risk genes and drug targets using Alzheimer's disease as an example. We finally discuss challenges and future research directions (e.g. artificial intelligence) for annotation of non-coding variants in complex diseases.
Collapse
Affiliation(s)
- Marina Bykova
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Yuan Hou
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Charis Eng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
| | - Feixiong Cheng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
| |
Collapse
|
30
|
Naughton C, Huidobro C, Catacchio CR, Buckle A, Grimes GR, Nozawa RS, Purgato S, Rocchi M, Gilbert N. Human centromere repositioning activates transcription and opens chromatin fibre structure. Nat Commun 2022; 13:5609. [PMID: 36153345 PMCID: PMC9509383 DOI: 10.1038/s41467-022-33426-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/14/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractHuman centromeres appear as constrictions on mitotic chromosomes and form a platform for kinetochore assembly in mitosis. Biophysical experiments led to a suggestion that repetitive DNA at centromeric regions form a compact scaffold necessary for function, but this was revised when neocentromeres were discovered on non-repetitive DNA. To test whether centromeres have a special chromatin structure we have analysed the architecture of a neocentromere. Centromere repositioning is accompanied by RNA polymerase II recruitment and active transcription to form a decompacted, negatively supercoiled domain enriched in ‘open’ chromatin fibres. In contrast, centromerisation causes a spreading of repressive epigenetic marks to surrounding regions, delimited by H3K27me3 polycomb boundaries and divergent genes. This flanking domain is transcriptionally silent and partially remodelled to form ‘compact’ chromatin, similar to satellite-containing DNA sequences, and exhibits genomic instability. We suggest transcription disrupts chromatin to provide a foundation for kinetochore formation whilst compact pericentromeric heterochromatin generates mechanical rigidity.
Collapse
|
31
|
Ishikura S, Yoshida K, Tsunoda T, Shirasawa S. Death domain-associated protein DAXX regulates non-coding RNA transcription at the centromere through the transcription regulator ZFAT. J Biol Chem 2022; 298:102528. [PMID: 36162510 PMCID: PMC9579039 DOI: 10.1016/j.jbc.2022.102528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 09/15/2022] [Accepted: 09/17/2022] [Indexed: 11/27/2022] Open
Abstract
The centromere is an essential chromosomal structure for faithful chromosome segregation during cell division. No protein-coding genes exist at the centromeres, but centromeric DNA is actively transcribed into noncoding RNA (ncRNA). This centromeric transcription and its ncRNA products play important roles in centromere functions. We previously reported that the transcriptional regulator ZFAT (zinc-finger protein with AT hook) plays a pivotal role in ncRNA transcription at the centromere; however, it was unclear how ZFAT involvement was regulated. Here, we show that the death domain–associated protein (DAXX) promotes centromeric localization of ZFAT to regulate ncRNA transcription at the centromere. Coimmunoprecipitation analysis of endogenous proteins clearly reveals that DAXX interacts with ZFAT. In addition, we show that ectopic coexpression of ZFAT with DAXX increases the centromeric levels of both ZFAT and ncRNA, compared with ectopic expression of ZFAT alone. On the other hand, we found that siRNA-mediated depletion of DAXX decreases the centromeric levels of both ZFAT and ncRNA in cells ectopically expressing ZFAT. These results suggest that DAXX promotes the centromeric localization of ZFAT and ZFAT-regulated centromeric ncRNA transcription. Furthermore, we demonstrate that depletion of endogenous DAXX protein is sufficient to cause a decrease in the ncRNA levels at the centromeres of chromosomes 17 and X in which ZFAT regulates the transcription, indicating a physiological significance of DAXX in ZFAT-regulated centromeric ncRNA transcription. Taken together, these results demonstrate that DAXX regulates centromeric ncRNA transcription through ZFAT.
Collapse
Affiliation(s)
- Shuhei Ishikura
- Department of Cell Biology, Faculty of Medicine; Research institute for Advanced Molecular Medicine, Fukuoka University, Fukuoka 814-0180, Japan
| | - Kazumasa Yoshida
- Department of Cell Biology, Faculty of Medicine; Research institute for Advanced Molecular Medicine, Fukuoka University, Fukuoka 814-0180, Japan
| | - Toshiyuki Tsunoda
- Department of Cell Biology, Faculty of Medicine; Research institute for Advanced Molecular Medicine, Fukuoka University, Fukuoka 814-0180, Japan
| | - Senji Shirasawa
- Department of Cell Biology, Faculty of Medicine; Research institute for Advanced Molecular Medicine, Fukuoka University, Fukuoka 814-0180, Japan.
| |
Collapse
|
32
|
Hedouin S, Logsdon GA, Underwood JG, Biggins S. A transcriptional roadblock protects yeast centromeres. Nucleic Acids Res 2022; 50:7801-7815. [PMID: 35253883 PMCID: PMC9371891 DOI: 10.1093/nar/gkac117] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/02/2022] [Accepted: 02/07/2022] [Indexed: 11/12/2022] Open
Abstract
Centromeres are the chromosomal loci essential for faithful chromosome segregation during cell division. Although centromeres are transcribed and produce non-coding RNAs (cenRNAs) that affect centromere function, we still lack a mechanistic understanding of how centromere transcription is regulated. Here, using a targeted RNA isoform sequencing approach, we identified the transcriptional landscape at and surrounding all centromeres in budding yeast. Overall, cenRNAs are derived from transcription readthrough of pericentromeric regions but rarely span the entire centromere and are a complex mixture of molecules that are heterogeneous in abundance, orientation, and sequence. While most pericentromeres are transcribed throughout the cell cycle, centromere accessibility to the transcription machinery is restricted to S-phase. This temporal restriction is dependent on Cbf1, a centromere-binding transcription factor, that we demonstrate acts locally as a transcriptional roadblock. Cbf1 deletion leads to an accumulation of cenRNAs at all phases of the cell cycle which correlates with increased chromosome mis-segregation that is partially rescued when the roadblock activity is restored. We propose that a Cbf1-mediated transcriptional roadblock protects yeast centromeres from untimely transcription to ensure genomic stability.
Collapse
Affiliation(s)
- Sabrine Hedouin
- Howard Hughes Medical Institute, Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Glennis A Logsdon
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Jason G Underwood
- Pacific Biosciences (PacBio) of California, Incorporated, Menlo Park, CA 94025, USA
| | - Sue Biggins
- Howard Hughes Medical Institute, Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| |
Collapse
|
33
|
The Roles of Histone Post-Translational Modifications in the Formation and Function of a Mitotic Chromosome. Int J Mol Sci 2022; 23:ijms23158704. [PMID: 35955838 PMCID: PMC9368973 DOI: 10.3390/ijms23158704] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/28/2022] [Accepted: 08/01/2022] [Indexed: 11/25/2022] Open
Abstract
During mitosis, many cellular structures are organized to segregate the replicated genome to the daughter cells. Chromatin is condensed to shape a mitotic chromosome. A multiprotein complex known as kinetochore is organized on a specific region of each chromosome, the centromere, which is defined by the presence of a histone H3 variant called CENP-A. The cytoskeleton is re-arranged to give rise to the mitotic spindle that binds to kinetochores and leads to the movement of chromosomes. How chromatin regulates different activities during mitosis is not well known. The role of histone post-translational modifications (HPTMs) in mitosis has been recently revealed. Specific HPTMs participate in local compaction during chromosome condensation. On the other hand, HPTMs are involved in CENP-A incorporation in the centromere region, an essential activity to maintain centromere identity. HPTMs also participate in the formation of regulatory protein complexes, such as the chromosomal passenger complex (CPC) and the spindle assembly checkpoint (SAC). Finally, we discuss how HPTMs can be modified by environmental factors and the possible consequences on chromosome segregation and genome stability.
Collapse
|
34
|
Flashner S, Swift M, Sowash A, Fahmy AN, Azizkhan-Clifford J. Transcription factor Sp1 regulates mitotic chromosome assembly and segregation. Chromosoma 2022; 131:175-191. [PMID: 35916925 PMCID: PMC9470683 DOI: 10.1007/s00412-022-00778-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 06/14/2022] [Accepted: 07/14/2022] [Indexed: 11/30/2022]
Abstract
Aneuploidy is a pervasive feature of cancer cells that results from chromosome missegregation. Several transcription factors have been associated with aneuploidy; however, no studies to date have demonstrated that mammalian transcription factors directly regulate chromosome segregation during mitosis. Here, we demonstrate that the ubiquitously expressed transcription factor specificity protein 1 (Sp1), which we have previously linked to aneuploidy, has a mitosis-specific role regulating chromosome segregation. We find that Sp1 localizes to mitotic centromeres and auxin-induced rapid Sp1 degradation at mitotic onset results in chromosome segregation errors and aberrant mitotic progression. Furthermore, rapid Sp1 degradation results in anomalous mitotic chromosome assembly characterized by loss of condensin complex I localization to mitotic chromosomes and chromosome condensation defects. Consistent with these defects, Sp1 degradation results in reduced chromosome passenger complex activity and histone H3 serine 10 phosphorylation during mitosis, which is essential for condensin complex I recruitment and chromosome condensation. Together, these data provide the first evidence of a mammalian transcription factor acting specifically during mitosis to regulate chromosome segregation.
Collapse
Affiliation(s)
- Samuel Flashner
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, 245 N 15th Street, MS 497, Philadelphia, PA, 19102, USA
| | - Michelle Swift
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, 245 N 15th Street, MS 497, Philadelphia, PA, 19102, USA
| | - Aislinn Sowash
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, 245 N 15th Street, MS 497, Philadelphia, PA, 19102, USA
| | - Alexander N Fahmy
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, 245 N 15th Street, MS 497, Philadelphia, PA, 19102, USA
| | - Jane Azizkhan-Clifford
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, 245 N 15th Street, MS 497, Philadelphia, PA, 19102, USA.
| |
Collapse
|
35
|
Gonzalez PA, Nagy PD. The centromeric histone CenH3 is recruited into the tombusvirus replication organelles. PLoS Pathog 2022; 18:e1010653. [PMID: 35767596 PMCID: PMC9275711 DOI: 10.1371/journal.ppat.1010653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/12/2022] [Accepted: 06/07/2022] [Indexed: 11/19/2022] Open
Abstract
Tombusviruses, similar to other (+)RNA viruses, exploit the host cells by co-opting numerous host components and rewiring cellular pathways to build extensive virus-induced replication organelles (VROs) in the cytosol of the infected cells. Most molecular resources are suboptimal in susceptible cells and therefore, tomato bushy stunt virus (TBSV) drives intensive remodeling and subversion of many cellular processes. The authors discovered that the nuclear centromeric CenH3 histone variant (Cse4p in yeast, CENP-A in humans) plays a major role in tombusvirus replication in plants and in the yeast model host. We find that over-expression of CenH3 greatly interferes with tombusvirus replication, whereas mutation or knockdown of CenH3 enhances TBSV replication in yeast and plants. CenH3 binds to the viral RNA and acts as an RNA chaperone. Although these data support a restriction role of CenH3 in tombusvirus replication, we demonstrate that by partially sequestering CenH3 into VROs, TBSV indirectly alters selective gene expression of the host, leading to more abundant protein pool. This in turn helps TBSV to subvert pro-viral host factors into replication. We show this through the example of hypoxia factors, glycolytic and fermentation enzymes, which are exploited more efficiently by tombusviruses to produce abundant ATP locally within the VROs in infected cells. Altogether, we propose that subversion of CenH3/Cse4p from the nucleus into cytosolic VROs facilitates transcriptional changes in the cells, which ultimately leads to more efficient ATP generation in situ within VROs by the co-opted glycolytic enzymes to support the energy requirement of virus replication. In summary, CenH3 plays both pro-viral and restriction functions during tombusvirus replication. This is a surprising novel role for a nuclear histone variant in cytosolic RNA virus replication.
Collapse
Affiliation(s)
| | - Peter D. Nagy
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
| |
Collapse
|
36
|
The ins and outs of CENP-A: Chromatin dynamics of the centromere-specific histone. Semin Cell Dev Biol 2022; 135:24-34. [PMID: 35422390 DOI: 10.1016/j.semcdb.2022.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/05/2022] [Accepted: 04/05/2022] [Indexed: 01/08/2023]
Abstract
Centromeres are highly specialised chromosome domains defined by the presence of an epigenetic mark, the specific histone H3 variant called CENP-A (centromere protein A). They constitute the genomic regions on which kinetochores form and when defective cause segregation defects that can lead to aneuploidy and cancer. Here, we discuss how CENP-A is established and maintained to propagate centromere identity while subjected to dynamic chromatin remodelling during essential cellular processes like DNA repair, replication, and transcription. We highlight parallels and identify conserved mechanisms between different model organism with a particular focus on 1) the establishment of CENP-A at centromeres, 2) CENP-A maintenance during transcription and replication, and 3) the mechanisms that help preventing CENP-A localization at non-centromeric sites. We then give examples of how timely loading of new CENP-A to the centromere, maintenance of old CENP-A during S-phase and transcription, and removal of CENP-A at non-centromeric sites are coordinated and controlled by an intricate network of factors whose identity is slowly being unravelled.
Collapse
|
37
|
Vourc’h C, Dufour S, Timcheva K, Seigneurin-Berny D, Verdel A. HSF1-Activated Non-Coding Stress Response: Satellite lncRNAs and Beyond, an Emerging Story with a Complex Scenario. Genes (Basel) 2022; 13:genes13040597. [PMID: 35456403 PMCID: PMC9032817 DOI: 10.3390/genes13040597] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/18/2022] [Accepted: 03/19/2022] [Indexed: 12/21/2022] Open
Abstract
In eukaryotes, the heat shock response is orchestrated by a transcription factor named Heat Shock Factor 1 (HSF1). HSF1 is mostly characterized for its role in activating the expression of a repertoire of protein-coding genes, including the heat shock protein (HSP) genes. Remarkably, a growing set of reports indicate that, upon heat shock, HSF1 also targets various non-coding regions of the genome. Focusing primarily on mammals, this review aims at reporting the identity of the non-coding genomic sites directly bound by HSF1, and at describing the molecular function of the long non-coding RNAs (lncRNAs) produced in response to HSF1 binding. The described non-coding genomic targets of HSF1 are pericentric Satellite DNA repeats, (sub)telomeric DNA repeats, Short Interspersed Nuclear Element (SINE) repeats, transcriptionally active enhancers and the NEAT1 gene. This diverse set of non-coding genomic sites, which already appears to be an integral part of the cellular response to stress, may only represent the first of many. Thus, the study of the evolutionary conserved heat stress response has the potential to emerge as a powerful cellular context to study lncRNAs, produced from repeated or unique DNA regions, with a regulatory function that is often well-documented but a mode of action that remains largely unknown.
Collapse
Affiliation(s)
- Claire Vourc’h
- Université de Grenoble Alpes (UGA), 38700 La Tronche, France
- Correspondence: (C.V.); (A.V.)
| | - Solenne Dufour
- Institute for Advanced Biosciences (IAB), Centre de Recherche UGA/Inserm U 1209/CNRS UMR 5309, Site Santé-Allée des Alpes, 38700 La Tronche, France; (S.D.); (K.T.); (D.S.-B.)
| | - Kalina Timcheva
- Institute for Advanced Biosciences (IAB), Centre de Recherche UGA/Inserm U 1209/CNRS UMR 5309, Site Santé-Allée des Alpes, 38700 La Tronche, France; (S.D.); (K.T.); (D.S.-B.)
| | - Daphné Seigneurin-Berny
- Institute for Advanced Biosciences (IAB), Centre de Recherche UGA/Inserm U 1209/CNRS UMR 5309, Site Santé-Allée des Alpes, 38700 La Tronche, France; (S.D.); (K.T.); (D.S.-B.)
| | - André Verdel
- Institute for Advanced Biosciences (IAB), Centre de Recherche UGA/Inserm U 1209/CNRS UMR 5309, Site Santé-Allée des Alpes, 38700 La Tronche, France; (S.D.); (K.T.); (D.S.-B.)
- Correspondence: (C.V.); (A.V.)
| |
Collapse
|
38
|
Arunkumar G, Baek S, Sturgill D, Bui M, Dalal Y. Oncogenic lncRNAs alter epigenetic memory at a fragile chromosomal site in human cancer cells. SCIENCE ADVANCES 2022; 8:eabl5621. [PMID: 35235361 PMCID: PMC8890707 DOI: 10.1126/sciadv.abl5621] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Chromosome instability is a critical event in cancer progression. Histone H3 variant CENP-A plays a fundamental role in defining centromere identity, structure, and function but is innately overexpressed in several types of solid cancers. In the cancer background, excess CENP-A is deposited ectopically on chromosome arms, including 8q24/cMYC locus, by invading transcription-coupled H3.3 chaperone pathways. Up-regulation of lncRNAs in many cancers correlates with poor prognosis and recurrence in patients. We report that transcription of 8q24-derived oncogenic lncRNAs plays an unanticipated role in altering the 8q24 chromatin landscape by H3.3 chaperone-mediated deposition of CENP-A-associated complexes. Furthermore, a transgene cassette carrying specific 8q24-derived lncRNA integrated into a naïve chromosome locus recruits CENP-A to the new location in a cis-acting manner. These data provide a plausible mechanistic link between locus-specific oncogenic lncRNAs, aberrant local chromatin structure, and the generation of new epigenetic memory at a fragile site in human cancer cells.
Collapse
|
39
|
Ball CB, Parida M, Santana JF, Spector BM, Suarez GA, Price DH. Nuclear export restricts Gdown1 to a mitotic function. Nucleic Acids Res 2022; 50:1908-1926. [PMID: 35048979 PMCID: PMC8887472 DOI: 10.1093/nar/gkac015] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/22/2021] [Accepted: 01/14/2022] [Indexed: 01/11/2023] Open
Abstract
Approximately half of purified mammalian RNA polymerase II (Pol II) is associated with a tightly interacting sub-stoichiometric subunit, Gdown1. Previous studies have established that Gdown1 inhibits transcription initiation through competitive interactions with general transcription factors and blocks the Pol II termination activity of transcription termination factor 2 (TTF2). However, the biological functions of Gdown1 remain poorly understood. Here, we utilized genetic, microscopic, and multi-omics approaches to functionally characterize Gdown1 in three human cell lines. Acute depletion of Gdown1 caused minimal direct effects on transcription. We show that Gdown1 resides predominantly in the cytoplasm of interphase cells, shuttles between the cytoplasm and nucleus, and is regulated by nuclear export. Gdown1 enters the nucleus at the onset of mitosis. Consistently, genetic ablation of Gdown1 is associated with partial de-repression of mitotic transcription, and Gdown1 KO cells present with evidence of aberrant mitoses coupled to p53 pathway activation. Evidence is presented demonstrating that Gdown1 modulates the combined functions of purified productive elongation factors PAF1C, RTF1, SPT6, DSIF and P-TEFb in vitro. Collectively, our findings support a model wherein the Pol II-regulatory function of Gdown1 occurs during mitosis and is required for genome integrity.
Collapse
Affiliation(s)
- Christopher B Ball
- Department of Biochemistry and Molecular Biology, The University of Iowa, Iowa City, IA 52242, USA
| | - Mrutyunjaya Parida
- Department of Biochemistry and Molecular Biology, The University of Iowa, Iowa City, IA 52242, USA
| | - Juan F Santana
- Department of Biochemistry and Molecular Biology, The University of Iowa, Iowa City, IA 52242, USA
| | - Benjamin M Spector
- Department of Biochemistry and Molecular Biology, The University of Iowa, Iowa City, IA 52242, USA
| | - Gustavo A Suarez
- Department of Biochemistry and Molecular Biology, The University of Iowa, Iowa City, IA 52242, USA
| | - David H Price
- Department of Biochemistry and Molecular Biology, The University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
40
|
Ghosh S, Lehner CF. Incorporation of CENP-A/CID into centromeres during early Drosophila embryogenesis does not require RNA polymerase II-mediated transcription. Chromosoma 2022; 131:1-17. [PMID: 35015118 PMCID: PMC9079035 DOI: 10.1007/s00412-022-00767-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/30/2021] [Accepted: 01/03/2022] [Indexed: 11/24/2022]
Abstract
In many species, centromere identity is specified epigenetically by special nucleosomes containing a centromere-specific histone H3 variant, designated as CENP-A in humans and CID in Drosophila melanogaster. After partitioning of centromere-specific nucleosomes onto newly replicated sister centromeres, loading of additional CENP-A/CID into centromeric chromatin is required for centromere maintenance in proliferating cells. Analyses with cultured cells have indicated that transcription of centromeric DNA by RNA polymerase II is required for deposition of new CID into centromere chromatin. However, a dependence of centromeric CID loading on transcription is difficult to reconcile with the notion that the initial embryonic stages appear to proceed in the absence of transcription in Drosophila, as also in many other animal species. To address the role of RNA polymerase II–mediated transcription for CID loading in early Drosophila embryos, we have quantified the effects of alpha-amanitin and triptolide on centromeric CID-EGFP levels. Our analyses demonstrate that microinjection of these two potent inhibitors of RNA polymerase II–mediated transcription has at most a marginal effect on centromeric CID deposition during progression through the early embryonic cleavage cycles. Thus, we conclude that at least during early Drosophila embryogenesis, incorporation of CID into centromeres does not depend on RNA polymerase II–mediated transcription.
Collapse
Affiliation(s)
- Samadri Ghosh
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Christian F Lehner
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
41
|
Activation of homologous recombination in G1 preserves centromeric integrity. Nature 2021; 600:748-753. [PMID: 34853474 DOI: 10.1038/s41586-021-04200-z] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 11/02/2021] [Indexed: 01/01/2023]
Abstract
Centromeric integrity is key for proper chromosome segregation during cell division1. Centromeres have unique chromatin features that are essential for centromere maintenance2. Although they are intrinsically fragile and represent hotspots for chromosomal rearrangements3, little is known about how centromere integrity in response to DNA damage is preserved. DNA repair by homologous recombination requires the presence of the sister chromatid and is suppressed in the G1 phase of the cell cycle4. Here we demonstrate that DNA breaks that occur at centromeres in G1 recruit the homologous recombination machinery, despite the absence of a sister chromatid. Mechanistically, we show that the centromere-specific histone H3 variant CENP-A and its chaperone HJURP, together with dimethylation of lysine 4 in histone 3 (H3K4me2), enable a succession of events leading to the licensing of homologous recombination in G1. H3K4me2 promotes DNA-end resection by allowing DNA damage-induced centromeric transcription and increased formation of DNA-RNA hybrids. CENP-A and HJURP interact with the deubiquitinase USP11, enabling formation of the RAD51-BRCA1-BRCA2 complex5 and rendering the centromeres accessible to RAD51 recruitment and homologous recombination in G1. Finally, we show that inhibition of homologous recombination in G1 leads to centromeric instability and chromosomal translocations. Our results support a model in which licensing of homologous recombination at centromeric breaks occurs throughout the cell cycle to prevent the activation of mutagenic DNA repair pathways and preserve centromeric integrity.
Collapse
|
42
|
Kim T. Epigenetic control of centromere: what can we learn from neocentromere? Genes Genomics 2021; 44:317-325. [PMID: 34843088 DOI: 10.1007/s13258-021-01193-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 11/16/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND The centromere is the special region on a chromosome, which serves as the site for assembly of kinetochore complex and is essential for maintaining genomic integrity. Neocentromeres are new centromeres that form on the non-centromeric regions of the chromosome when the natural centromere is disrupted or inactivated. Although neocentromeres lack the typical features found in centromeres, cells with neocentromeres divide normally during mitosis and meiosis. Neocentromeres not only arise naturally but their formation can also be induced experimentally. Therefore, neocentromeres are a great tool for studying functions and formation of centromeres. OBJECTIVE To study neocentromeres and use that knowledge to gain insights into the epigenetic regulation of canonical centromeres. DISCUSSION Here, we review the characteristics of naturally occurring centromeres and neocentromeres and those of experimentally induced neocentromeres. We also discuss the mechanism of centromere formation and epigenetic regulation of centromere function, which we learned from studying the neocentromeres. Although neocentromeres lack main features of centromeres, such as presence of repetitive ⍺-satellite DNA and pericentric heterochromatin, they behave quite similar to the canonical centromere, indicating the epigenetic nature of the centromere. Still, further investigation will help to understand the formation and maintenance of the centromere, and the correlation to human diseases. CONCLUSION Neocentromeres helped us to understand the formation of canonical centromeres. Also, since neocentromeres are associated with certain cancer types, knowledge about them could be helpful to treat cancer.
Collapse
Affiliation(s)
- Taekyung Kim
- Department of Biology Education, Pusan National University, 2, Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan, 46241, Korea.
| |
Collapse
|
43
|
Cáceres-Gutiérrez RE, Andonegui MA, Oliva-Rico DA, González-Barrios R, Luna F, Arriaga-Canon C, López-Saavedra A, Prada D, Castro C, Parmentier L, Díaz-Chávez J, Alfaro-Mora Y, Navarro-Delgado EI, Fabian-Morales E, Tran B, Shetty J, Zhao Y, Alcaraz N, De la Rosa C, Reyes JL, Hédouin S, Hubé F, Francastel C, Herrera LA. Proteasome inhibition alters mitotic progression through the upregulation of centromeric α-Satellite RNAs. FEBS J 2021; 289:1858-1875. [PMID: 34739170 PMCID: PMC9299679 DOI: 10.1111/febs.16261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 09/19/2021] [Accepted: 11/03/2021] [Indexed: 12/14/2022]
Abstract
Cell cycle progression requires control of the abundance of several proteins and RNAs over space and time to properly transit from one phase to the next and to ensure faithful genomic inheritance in daughter cells. The proteasome, the main protein degradation system of the cell, facilitates the establishment of a proteome specific to each phase of the cell cycle. Its activity also strongly influences transcription. Here, we detected the upregulation of repetitive RNAs upon proteasome inhibition in human cancer cells using RNA‐seq. The effect of proteasome inhibition on centromeres was remarkable, especially on α‐Satellite RNAs. We showed that α‐Satellite RNAs fluctuate along the cell cycle and interact with members of the cohesin ring, suggesting that these transcripts may take part in the regulation of mitotic progression. Next, we forced exogenous overexpression and used gapmer oligonucleotide targeting to demonstrate that α‐Sat RNAs have regulatory roles in mitosis. Finally, we explored the transcriptional regulation of α‐Satellite DNA. Through in silico analyses, we detected the presence of CCAAT transcription factor‐binding motifs within α‐Satellite centromeric arrays. Using high‐resolution three‐dimensional immuno‐FISH and ChIP‐qPCR, we showed an association between the α‐Satellite upregulation and the recruitment of the transcription factor NFY‐A to the centromere upon MG132‐induced proteasome inhibition. Together, our results show that the proteasome controls α‐Satellite RNAs associated with the regulation of mitosis.
Collapse
Affiliation(s)
- Rodrigo E Cáceres-Gutiérrez
- Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Unidad de Investigación Biomédica en Cáncer, Mexico City, Mexico
| | - Marco A Andonegui
- Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Unidad de Investigación Biomédica en Cáncer, Mexico City, Mexico
| | - Diego A Oliva-Rico
- Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Unidad de Investigación Biomédica en Cáncer, Mexico City, Mexico
| | - Rodrigo González-Barrios
- Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Unidad de Investigación Biomédica en Cáncer, Mexico City, Mexico
| | - Fernando Luna
- Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Unidad de Investigación Biomédica en Cáncer, Mexico City, Mexico
| | - Cristian Arriaga-Canon
- Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Unidad de Investigación Biomédica en Cáncer, Mexico City, Mexico
| | - Alejandro López-Saavedra
- Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Unidad de Investigación Biomédica en Cáncer, Mexico City, Mexico
| | - Diddier Prada
- Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Unidad de Investigación Biomédica en Cáncer, Mexico City, Mexico.,Departamento de Informática Biomédica, Faculty of Medicine, UNAM, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Clementina Castro
- Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Unidad de Investigación Biomédica en Cáncer, Mexico City, Mexico
| | - Laurent Parmentier
- Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Unidad de Investigación Biomédica en Cáncer, Mexico City, Mexico
| | - José Díaz-Chávez
- Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Unidad de Investigación Biomédica en Cáncer, Mexico City, Mexico
| | - Yair Alfaro-Mora
- Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Unidad de Investigación Biomédica en Cáncer, Mexico City, Mexico
| | - Erick I Navarro-Delgado
- Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Unidad de Investigación Biomédica en Cáncer, Mexico City, Mexico
| | - Eunice Fabian-Morales
- Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Unidad de Investigación Biomédica en Cáncer, Mexico City, Mexico
| | - Bao Tran
- NCI CCR Sequencing Facility, Frederick National Laboratory for Cancer Research, MD, USA
| | - Jyoti Shetty
- NCI CCR Sequencing Facility, Frederick National Laboratory for Cancer Research, MD, USA
| | - Yongmei Zhao
- NCI CCR Sequencing Facility, Frederick National Laboratory for Cancer Research, MD, USA
| | - Nicolas Alcaraz
- The Bioinformatics Centre, University of Copenhagen, Copenhagen, Denmark.,National Institute of Genomic Medicine, Mexico City, Mexico
| | - Carlos De la Rosa
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - José L Reyes
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Sabrine Hédouin
- Epigenetics and Cell Fate, CNRS UMR7216, Université de Paris, Paris, France
| | - Florent Hubé
- Epigenetics and Cell Fate, CNRS UMR7216, Université de Paris, Paris, France
| | - Claire Francastel
- Epigenetics and Cell Fate, CNRS UMR7216, Université de Paris, Paris, France
| | - Luis A Herrera
- Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Unidad de Investigación Biomédica en Cáncer, Mexico City, Mexico.,Dirección General, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| |
Collapse
|
44
|
Racca C, Britton S, Hédouin S, Francastel C, Calsou P, Larminat F. BRCA1 prevents R-loop-associated centromeric instability. Cell Death Dis 2021; 12:896. [PMID: 34599155 PMCID: PMC8486751 DOI: 10.1038/s41419-021-04189-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 09/01/2021] [Accepted: 09/15/2021] [Indexed: 02/05/2023]
Abstract
Centromeres are defined by chromatin containing the histone H3 variant CENP-A assembled onto repetitive α-satellite sequences, which are actively transcribed throughout the cell cycle. Centromeres play an essential role in chromosome inheritance and genome stability through coordinating kinetochores assembly during mitosis. Structural and functional alterations of the centromeres cause aneuploidy and chromosome aberrations which can induce cell death. In human cells, the tumor suppressor BRCA1 associates with centromeric chromatin in the absence of exogenous damage. While we previously reported that BRCA1 contributes to proper centromere homeostasis, the mechanism underlying its centromeric function and recruitment was not fully understood. Here, we show that BRCA1 association with centromeric chromatin depends on the presence of R-loops, which are non-canonical three-stranded structures harboring a DNA:RNA hybrid and are frequently formed during transcription. Subsequently, BRCA1 counteracts the accumulation of R-loops at centromeric α-satellite repeats. Strikingly, BRCA1-deficient cells show impaired localization of CENP-A, higher transcription of centromeric RNA, increased breakage at centromeres and formation of acentric micronuclei, all these features being R-loop-dependent. Finally, BRCA1 depletion reveals a Rad52-dependent hyper-recombination process between centromeric satellite repeats, associated with centromere instability and missegregation. Altogether, our findings provide molecular insights into the key function of BRCA1 in maintaining centromere stability and identity.
Collapse
Affiliation(s)
- Carine Racca
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France.,Equipe Labellisée Ligue contre le Cancer, 2018, Toulouse, France
| | - Sébastien Britton
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France.,Equipe Labellisée Ligue contre le Cancer, 2018, Toulouse, France
| | - Sabrine Hédouin
- Université de Paris, Epigénétique et Destin Cellulaire, CNRS, Paris, F-75013, France.,Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Claire Francastel
- Université de Paris, Epigénétique et Destin Cellulaire, CNRS, Paris, F-75013, France
| | - Patrick Calsou
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France.,Equipe Labellisée Ligue contre le Cancer, 2018, Toulouse, France
| | - Florence Larminat
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France. .,Equipe Labellisée Ligue contre le Cancer, 2018, Toulouse, France.
| |
Collapse
|
45
|
|
46
|
Dziegielewski W, Ziolkowski PA. License to Regulate: Noncoding RNA Special Agents in Plant Meiosis and Reproduction. FRONTIERS IN PLANT SCIENCE 2021; 12:662185. [PMID: 34489987 PMCID: PMC8418119 DOI: 10.3389/fpls.2021.662185] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 06/07/2021] [Indexed: 06/13/2023]
Abstract
The complexity of the subcellular processes that take place during meiosis requires a significant remodeling of cellular metabolism and dynamic changes in the organization of chromosomes and the cytoskeleton. Recently, investigations of meiotic transcriptomes have revealed additional noncoding RNA factors (ncRNAs) that directly or indirectly influence the course of meiosis. Plant meiosis is the point at which almost all known noncoding RNA-dependent regulatory pathways meet to influence diverse processes related to cell functioning and division. ncRNAs have been shown to prevent transposon reactivation, create germline-specific DNA methylation patterns, and affect the expression of meiosis-specific genes. They can also influence chromosome-level processes, including the stimulation of chromosome condensation, the definition of centromeric chromatin, and perhaps even the regulation of meiotic recombination. In many cases, our understanding of the mechanisms underlying these processes remains limited. In this review, we will examine how the different functions of each type of ncRNA have been adopted in plants, devoting attention to both well-studied examples and other possible functions about which we can only speculate for now. We will also briefly discuss the most important challenges in the investigation of ncRNAs in plant meiosis.
Collapse
Affiliation(s)
| | - Piotr A. Ziolkowski
- Laboratory of Genome Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
| |
Collapse
|
47
|
Chen Y, Zhang Q, Teng Z, Liu H. Centromeric transcription maintains centromeric cohesion in human cells. J Cell Biol 2021; 220:e202008146. [PMID: 33881484 PMCID: PMC8065269 DOI: 10.1083/jcb.202008146] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 02/19/2021] [Accepted: 03/24/2021] [Indexed: 02/07/2023] Open
Abstract
Centromeric transcription has been shown to play an important role in centromere functions. However, lack of approaches to specifically manipulate centromeric transcription calls into question that the proposed functions are a direct consequence of centromeric transcription. By monitoring nascent RNAs, we found that several transcriptional inhibitors exhibited distinct, even opposing, efficacies on the suppression of ongoing gene and centromeric transcription in human cells, whereas under the same conditions, total centromeric RNAs were changed to a lesser extent. The inhibitor suppressing ongoing centromeric transcription weakened centromeric cohesion, whereas the inhibitor increasing ongoing centromeric transcription strengthened centromeric cohesion. Furthermore, expression of CENP-B DNA-binding domain or CENP-B knockdown moderately increased centromeric transcription without altering gene transcription; as a result, centromeric cohesion was accordingly strengthened. Targeting of the Kox1-KRAB domain with CENP-B DB to centromeres specifically decreased centromeric transcription and weakened centromeric cohesion. Thus, based on these findings, we propose that a major function of centromeric transcription is to maintain centromeric cohesion in human cells.
Collapse
Affiliation(s)
- Yujue Chen
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA
| | - Qian Zhang
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA
| | - Zhen Teng
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA
| | - Hong Liu
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA
- Tulane Aging Center, Tulane University School of Medicine, New Orleans, LA
| |
Collapse
|
48
|
Leclerc S, Kitagawa K. The Role of Human Centromeric RNA in Chromosome Stability. Front Mol Biosci 2021; 8:642732. [PMID: 33869284 PMCID: PMC8044762 DOI: 10.3389/fmolb.2021.642732] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/26/2021] [Indexed: 12/20/2022] Open
Abstract
Chromosome instability is a hallmark of cancer and is caused by inaccurate segregation of chromosomes. One cellular structure used to avoid this fate is the kinetochore, which binds to the centromere on the chromosome. Human centromeres are poorly understood, since sequencing and analyzing repeated alpha-satellite DNA regions, which can span a few megabases at the centromere, are particularly difficult. However, recent analyses revealed that these regions are actively transcribed and that transcription levels are tightly regulated, unveiling a possible role of RNA at the centromere. In this short review, we focus on the recent discovery of the function of human centromeric RNA in the regulation and structure of the centromere, and discuss the consequences of dysregulation of centromeric RNA in cancer.
Collapse
Affiliation(s)
- Simon Leclerc
- Greehey Children's Cancer Research Institute, Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Katsumi Kitagawa
- Greehey Children's Cancer Research Institute, Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| |
Collapse
|
49
|
Emerging roles of centromeric RNAs in centromere formation and function. Genes Genomics 2021; 43:217-226. [PMID: 33523401 DOI: 10.1007/s13258-021-01041-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 01/04/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Centromeres are specialized chromosomal domains involved in kinetochore formation and faithful chromosome segregation. Despite a high level of functional conservation, centromeres are not identified by DNA sequences, but by epigenetic means. Universally, centromeres are typically formed on highly repetitive DNA, which were previously considered to be silent. However, recent studies have shown that transcription occurs in this region, known as centromeric-derived RNAs (cenRNAs). CenRNAs that contribute to fundamental aspects of centromere function have been recently investigated in detail. However, the distribution, behavior and contributions of centromeric transcripts are still poorly understood. OBJECTIVE The aim of this article is to provide an overview of the roles of cenRNAs in centromere formation and function. METHODS We describe the structure and DNA sequence of centromere from yeast to human. In addition, we briefly introduce the roles of cenRNAs in centromere formation and function, kinetochore structure, accurate chromosome segregation, and pericentromeric heterochromatin assembly. Centromeric circular RNAs (circRNAs) and R-loops are rising stars in centromere function. CircRNAs have been successfully identified in various species with the assistance of high-throughput sequencing and novel computational approaches for non-polyadenylated RNA transcripts. Centromeric R-loops can be identified by the single-strand DNA ligation-based library preparation technique. But the molecular features and function of these centromeric R-loops and circRNAs are still being investigated. CONCLUSION In this review, we summarize recent findings on the epigenetic regulation of cenRNAs across species, which would provide useful information about cenRNAs and interesting hints for further studies.
Collapse
|
50
|
Mihìc P, Hédouin S, Francastel C. Centromeres Transcription and Transcripts for Better and for Worse. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2021; 60:169-201. [PMID: 34386876 DOI: 10.1007/978-3-030-74889-0_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Centromeres are chromosomal regions that are essential for the faithful transmission of genetic material through each cell division. They represent the chromosomal platform on which assembles a protein complex, the kinetochore, which mediates attachment to the mitotic spindle. In most organisms, centromeres assemble on large arrays of tandem satellite repeats, although their DNA sequences and organization are highly divergent among species. It has become evident that centromeres are not defined by underlying DNA sequences, but are instead epigenetically defined by the deposition of the centromere-specific histone H3 variant, CENP-A. In addition, and although long regarded as silent chromosomal loci, centromeres are in fact transcriptionally competent in most species, yet at low levels in normal somatic cells, but where the resulting transcripts participate in centromere architecture, identity, and function. In this chapter, we discuss the various roles proposed for centromere transcription and their transcripts, and the potential molecular mechanisms involved. We also discuss pathological cases in which unscheduled transcription of centromeric repeats or aberrant accumulation of their transcripts are pathological signatures of chromosomal instability diseases. In sum, tight regulation of centromeric satellite repeats transcription is critical for healthy development and tissue homeostasis, and thus prevents the emergence of disease states.
Collapse
Affiliation(s)
- Pia Mihìc
- Université De Paris, Epigenetics and Cell Fate, CNRS UMR7216, Paris, France
| | - Sabrine Hédouin
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Claire Francastel
- Université De Paris, Epigenetics and Cell Fate, CNRS UMR7216, Paris, France.
| |
Collapse
|