1
|
Kita T, Sasaki K, Niwa S. Biased movement of monomeric kinesin-3 KLP-6 explained by a symmetric Brownian ratchet model. Biophys J 2024:S0006-3495(24)04037-2. [PMID: 39604259 DOI: 10.1016/j.bpj.2024.11.3312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/22/2024] [Accepted: 11/22/2024] [Indexed: 11/29/2024] Open
Abstract
Most kinesin molecular motors dimerize to move processively and efficiently along microtubules; however, some can maintain processivity even in a monomeric state. Previous studies have suggested that asymmetric potentials between the motor domain and microtubules underlie this motility. In this study, we demonstrate that the kinesin-3 family motor protein KLP-6 can move forward along microtubules as a monomer upon release of autoinhibition. This motility can be explained by a change in length between the head and tail, rather than by asymmetric potentials. Using mass photometry and single-molecule assays, we confirmed that activated full-length KLP-6 is monomeric both in solution and on microtubules. KLP-6 possesses a microtubule-binding tail domain, and its motor domain does not exhibit biased movement, indicating that the tail domain is crucial for the processive movement of monomeric KLP-6. We developed a mathematical model to explain the biased Brownian movements of monomeric KLP-6. Our model concludes that a slight conformational change driven by neck-linker docking in the motor domain enables the monomeric kinesin to move forward if a second microtubule-binding domain exists.
Collapse
Affiliation(s)
- Tomoki Kita
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Kazuo Sasaki
- Department of Applied Physics, Graduate School of Engineering, Tohoku University, Sendai, Miyagi, Japan
| | - Shinsuke Niwa
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan; Frontier Research Institute for Interdisciplinary Sciences (FRIS), Tohoku University, Aramaki-Aoba 6-3, Sendai, Miyagi, Japan.
| |
Collapse
|
2
|
Laporte D, Massoni-Laporte A, Lefranc C, Dompierre J, Mauboules D, Nsamba ET, Royou A, Gal L, Schuldiner M, Gupta ML, Sagot I. A stable microtubule bundle formed through an orchestrated multistep process controls quiescence exit. eLife 2024; 12:RP89958. [PMID: 38527106 PMCID: PMC10963028 DOI: 10.7554/elife.89958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024] Open
Abstract
Cells fine-tune microtubule assembly in both space and time to give rise to distinct edifices with specific cellular functions. In proliferating cells, microtubules are highly dynamics, and proliferation cessation often leads to their stabilization. One of the most stable microtubule structures identified to date is the nuclear bundle assembled in quiescent yeast. In this article, we characterize the original multistep process driving the assembly of this structure. This Aurora B-dependent mechanism follows a precise temporality that relies on the sequential actions of kinesin-14, kinesin-5, and involves both microtubule-kinetochore and kinetochore-kinetochore interactions. Upon quiescence exit, the microtubule bundle is disassembled via a cooperative process involving kinesin-8 and its full disassembly is required prior to cells re-entry into proliferation. Overall, our study provides the first description, at the molecular scale, of the entire life cycle of a stable microtubule structure in vivo and sheds light on its physiological function.
Collapse
Affiliation(s)
| | | | | | | | | | - Emmanuel T Nsamba
- Genetics, Development, and Cell Biology, Iowa State UniversityAmesUnited States
| | - Anne Royou
- Univ. Bordeaux, CNRS, IBGC, UMR 5095BordeauxFrance
| | - Lihi Gal
- Department of Molecular Genetics, Weizmann Institute of ScienceRehovotIsrael
| | - Maya Schuldiner
- Department of Molecular Genetics, Weizmann Institute of ScienceRehovotIsrael
| | - Mohan L Gupta
- Genetics, Development, and Cell Biology, Iowa State UniversityAmesUnited States
| | | |
Collapse
|
3
|
Lin L, Tijjani I, Guo H, An Q, Cao J, Chen X, Liu W, Wang Z, Norvienyeku J. Cytoplasmic dynein1 intermediate-chain2 regulates cellular trafficking and physiopathological development in Magnaporthe oryzae. iScience 2023; 26:106050. [PMID: 36866040 PMCID: PMC9971887 DOI: 10.1016/j.isci.2023.106050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/09/2022] [Accepted: 01/20/2023] [Indexed: 02/12/2023] Open
Abstract
The cytoplasmic dynein 1, a minus end-directed motor protein, is an essential microtubule-based molecular motor that mediates the movement of molecules to intracellular destinations in eukaryotes. However, the role of dynein in the pathogenesis of Magnaporthe oryzae is unknown. Here, we identified cytoplasmic dynein 1 intermediate-chain 2 genes in M. oryzae and functionally characterized it using genetic manipulations, and biochemical approaches. We observed that targeted the deletion of MoDYNC1I2 caused significant vegetative growth defects, abolished conidiation, and rendered the ΔModync1I2 strains non-pathogenic. Microscopic examinations revealed significant defects in microtubule network organization, nuclear positioning, and endocytosis ΔModync1I2 strains. MoDync1I2 is localized exclusively to microtubules during fungal developmental stages but co-localizes with the histone OsHis1 in plant nuclei upon infection. The exogenous expression of a histone gene, MoHis1, restored the homeostatic phenotypes of ΔModync1I2 strains but not pathogenicity. These findings could facilitate the development of dynein-directed remedies for managing the rice blast disease.
Collapse
Affiliation(s)
- Lily Lin
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China,State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ibrahim Tijjani
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hengyuan Guo
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou, China
| | - Qiuli An
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiaying Cao
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaomin Chen
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wende Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zonghua Wang
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China,Institute of Oceanography, Minjiang University, Fuzhou 350108, China,Corresponding author
| | - Justice Norvienyeku
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou, China,Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, China,Corresponding author
| |
Collapse
|
4
|
Abstract
Kinesin-14s constitute a subfamily of the large superfamily of adenosine triphosphate-dependent microtubule-based motor proteins. Kinesin-14s have the motor domain at the C-terminal end of the peptide, playing key roles during spindle assembly and maintenance. Some of them are nonprocessive motors, whereas others can move processively on microtubules. Here, we take budding yeast Cik1-Kar3 and human HSET as examples to study theoretically the dynamics of the processive kinesin-14 motor moving on the single microtubule under load, the dynamics of the motor coupled with an Ndc80 protein moving on the single microtubule, the dynamics of the motor moving in microtubule arrays, and so on. The dynamics of the nonprocessive Drosophila Ncd motor is also discussed. The studies explain well the available experimental data and, moreover, provide predicted results. We show that the processive kinesin-14 motors can move efficiently in microtubule arrays toward the minus ends, and after reaching the minus ends, they can stay there stably, thus performing the function of organizing the microtubules in the bipolar spindle into polar arrays at the spindle poles.
Collapse
Affiliation(s)
- Ping Xie
- Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing100190, China
| |
Collapse
|
5
|
Kinesin-14 motors participate in a force balance at microtubule plus-ends to regulate dynamic instability. Proc Natl Acad Sci U S A 2022; 119:2108046119. [PMID: 35173049 PMCID: PMC8872730 DOI: 10.1073/pnas.2108046119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2022] [Indexed: 01/08/2023] Open
Abstract
Kinesin-14 motors represent an essential class of molecular motors that bind to microtubules and then walk toward the microtubule minus-end. However, whether these motors can interact with growing plus-ends of microtubules to impact the lengthening of microtubules remains unknown. We found that Kinesin-14 motors could bind to a protein that resides at growing microtubule plus-ends and then pull this protein away from the growing end. This interaction acted to disrupt microtubule growth and decrease microtubule lengths in cells, likely by exerting minus-end–directed forces at the microtubule tip to alter the configuration of the growing microtubule plus-end. This work demonstrates general principles for the diverse roles that force-generating molecular motors can play in regulating cellular processes. Kinesin-14 molecular motors represent an essential class of proteins that bind microtubules and walk toward their minus-ends. Previous studies have described important roles for Kinesin-14 motors at microtubule minus-ends, but their role in regulating plus-end dynamics remains controversial. Kinesin-14 motors have been shown to bind the EB family of microtubule plus-end binding proteins, suggesting that these minus-end–directed motors could interact with growing microtubule plus-ends. In this work, we explored the role of minus-end–directed Kinesin-14 motor forces in controlling plus-end microtubule dynamics. In cells, a Kinesin-14 mutant with reduced affinity to EB proteins led to increased microtubule lengths. Cell-free biophysical microscopy assays were performed using Kinesin-14 motors and an EB family marker of growing microtubule plus-ends, Mal3, which revealed that when Kinesin-14 motors bound to Mal3 at growing microtubule plus-ends, the motors subsequently walked toward the minus-end, and Mal3 was pulled away from the growing microtubule tip. Strikingly, these interactions resulted in an approximately twofold decrease in the expected postinteraction microtubule lifetime. Furthermore, generic minus-end–directed tension forces, generated by tethering growing plus-ends to the coverslip using λ-DNA, led to an approximately sevenfold decrease in the expected postinteraction microtubule growth length. In contrast, the inhibition of Kinesin-14 minus-end–directed motility led to extended tip interactions and to an increase in the expected postinteraction microtubule lifetime, indicating that plus-ends were stabilized by nonmotile Kinesin-14 motors. Together, we find that Kinesin-14 motors participate in a force balance at microtubule plus-ends to regulate microtubule lengths in cells.
Collapse
|
6
|
Norell S, Ortiz J, Lechner J. Slk19 enhances cross-linking of microtubules by Ase1 and Stu1. Mol Biol Cell 2021; 32:ar22. [PMID: 34495712 PMCID: PMC8693956 DOI: 10.1091/mbc.e21-05-0279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The Saccharomyces cerevisiae protein Slk19 has been shown to localize to kinetochores throughout mitosis and to the spindle midzone in anaphase. However, Slk19 clearly also has an important role for spindle formation and stabilization in prometaphase and metaphase, albeit this role is unresolved. Here we show that Slk19’s localization to metaphase spindles in vivo and to microtubules (MTs) in vitro depends on the MT cross-linking protein Ase1 and the MT cross-linking and stabilizing protein Stu1. By analyzing a slk19 mutant that specifically fails to localize to spindles and MTs, we surprisingly found that the presence of Slk19 amplified the amount of Ase1 strongly and that of Stu1 moderately at the metaphase spindle in vivo and at MTs in vitro. Furthermore, Slk19 markedly enhanced the cross-linking of MTs in vitro when added together with Ase1 or Stu1. We therefore suggest that Slk19 recruits additional Ase1 and Stu1 to the interpolar MTs (ipMTs) of metaphase spindles and thus increases their cross-linking and stabilization. This is in agreement with our observation that cells with defective Slk19 localization exhibit shorter metaphase spindles, an increased number of unaligned nuclear MTs, and most likely reduced ipMT overlaps.
Collapse
Affiliation(s)
- Sarina Norell
- Biochemie-Zentrum der Universität Heidelberg, INF 328, 69120 Heidelberg, Germany
| | - Jennifer Ortiz
- Biochemie-Zentrum der Universität Heidelberg, INF 328, 69120 Heidelberg, Germany
| | - Johannes Lechner
- Biochemie-Zentrum der Universität Heidelberg, INF 328, 69120 Heidelberg, Germany
| |
Collapse
|
7
|
Xie P. Modeling processive motion of kinesin-13 MCAK and kinesin-14 Cik1-Kar3 molecular motors. Protein Sci 2021; 30:2092-2105. [PMID: 34382258 DOI: 10.1002/pro.4165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 08/02/2021] [Accepted: 08/04/2021] [Indexed: 11/09/2022]
Abstract
Kinesin-13 MCAK, which is composed of two identical motor domains, can undergo unbiased one-dimensional diffusion on microtubules. Kinesin-14 Cik1-Kar3, which is composed of a Kar3 motor domain and a Cik1 motor homology domain with no ATPase activity, can move processively toward the minus end of microtubules. Here, we present a model for the diffusion of MCAK homodimer and a model for the processive motion of Cik1-Kar3 heterodimer. Although the two dimeric motors show different domain composition, in the models it is proposed that the two motors use the similar physical mechanism to move processively. With the models, the dynamics of the two dimers is studied analytically. The theoretical results for MCAK reproduce quantitatively the available experimental data about diffusion constant and lifetime of the motor bound to microtubule in different nucleotide states. The theoretical results for Cik1-Kar3 reproduce quantitatively the available experimental data about load dependence of velocity and explain consistently the available experimental data about effects of the exchange and mutation of the motor homology domain on the velocity of the heterodimer. Moreover, predicted results for other aspects of the dynamics of the two dimers are provided.
Collapse
Affiliation(s)
- Ping Xie
- Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
8
|
Kornakov N, Möllers B, Westermann S. The EB1-Kinesin-14 complex is required for efficient metaphase spindle assembly and kinetochore bi-orientation. J Cell Biol 2021; 219:211447. [PMID: 33044553 PMCID: PMC7545359 DOI: 10.1083/jcb.202003072] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 07/28/2020] [Accepted: 09/10/2020] [Indexed: 12/28/2022] Open
Abstract
Kinesin-14s are conserved molecular motors required for high-fidelity chromosome segregation, but their specific contributions to spindle function have not been fully defined. Here, we show that key functions of budding yeast Kinesin-14 Cik1-Kar3 are accomplished in a complex with Bim1 (yeast EB1). Genetic complementation of mitotic phenotypes identifies a novel KLTF peptide motif in the Cik1 N-terminus. We show that this motif is one element of a tripartite binding interface required to form a high-affinity Bim1–Cik1-Kar3 complex. Lack of Bim1-binding by Cik1-Kar3 delays cells in mitosis and impairs microtubule bundle organization and dynamics. Conversely, constitutive targeting of Cik1-Kar3 to microtubule plus ends induces the formation of nuclear microtubule bundles. Cells lacking the Bim1–Cik1-Kar3 complex rely on the conserved microtubule bundler Ase1/PRC1 for metaphase spindle organization, and simultaneous loss of plus-end targeted Kar3 and Ase1 is lethal. Our results reveal the contributions of an EB1–Kinesin-14 complex for spindle formation as a prerequisite for efficient kinetochore clustering and bi-orientation.
Collapse
Affiliation(s)
- Nikolay Kornakov
- Department of Molecular Genetics, Faculty of Biology, Center of Medical Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Bastian Möllers
- Department of Molecular Genetics, Faculty of Biology, Center of Medical Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Stefan Westermann
- Department of Molecular Genetics, Faculty of Biology, Center of Medical Biotechnology, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
9
|
Nijenhuis W, van Grinsven MMP, Kapitein LC. An optimized toolbox for the optogenetic control of intracellular transport. J Cell Biol 2020; 219:133834. [PMID: 32328628 PMCID: PMC7147098 DOI: 10.1083/jcb.201907149] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 12/18/2019] [Accepted: 01/16/2020] [Indexed: 12/31/2022] Open
Abstract
Cellular functioning relies on active transport of organelles by molecular motors. To explore how intracellular organelle distributions affect cellular functions, several optogenetic approaches enable organelle repositioning through light-inducible recruitment of motors to specific organelles. Nonetheless, robust application of these methods in cellular populations without side effects has remained challenging. Here, we introduce an improved toolbox for optogenetic control of intracellular transport that optimizes cellular responsiveness and limits adverse effects. To improve dynamic range, we employed improved optogenetic heterodimerization modules and engineered a photosensitive kinesin-3, which is activated upon blue light–sensitive homodimerization. This opto-kinesin prevented motor activation before experimental onset, limited dark-state activation, and improved responsiveness. In addition, we adopted moss kinesin-14 for efficient retrograde transport with minimal adverse effects on endogenous transport. Using this optimized toolbox, we demonstrate robust reversible repositioning of (endogenously tagged) organelles within cellular populations. More robust control over organelle motility will aid in dissecting spatial cell biology and transport-related diseases.
Collapse
Affiliation(s)
- Wilco Nijenhuis
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Mariëlle M P van Grinsven
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Lukas C Kapitein
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
10
|
Tseng KF, Mickolajczyk KJ, Feng G, Feng Q, Kwok ES, Howe J, Barbar EJ, Dawson SC, Hancock WO, Qiu W. The Tail of Kinesin-14a in Giardia Is a Dual Regulator of Motility. Curr Biol 2020; 30:3664-3671.e4. [PMID: 32735815 DOI: 10.1016/j.cub.2020.06.090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/25/2020] [Accepted: 06/25/2020] [Indexed: 12/14/2022]
Abstract
Kinesin-14s are microtubule-based motor proteins that play important roles in mitotic spindle assembly [1]. Ncd-type kinesin-14s are a subset of kinesin-14 motors that exist as homodimers with an N-terminal microtubule-binding tail, a coiled-coil central stalk (central stalk), a neck, and two identical C-terminal motor domains. To date, no Ncd-type kinesin-14 has been found to naturally exhibit long-distance minus-end-directed processive motility on single microtubules as individual homodimers. Here, we show that GiKIN14a from Giardia intestinalis [2] is an unconventional Ncd-type kinesin-14 that uses its N-terminal microtubule-binding tail to achieve minus-end-directed processivity on single microtubules over micrometer distances as a homodimer. We further find that although truncation of the N-terminal tail greatly reduces GiKIN14a processivity, the resulting tailless construct GiKIN14a-Δtail is still a minimally processive motor and moves its center of mass via discrete 8-nm steps on the microtubule. In addition, full-length GiKIN14a has significantly higher stepping and ATP hydrolysis rates than does GiKIN14a-Δtail. Inserting a flexible polypeptide linker into the central stalk of full-length GiKIN14a nearly reduces its ATP hydrolysis rate to that of GiKIN14a-Δtail. Collectively, our results reveal that the N-terminal tail of GiKIN14a is a de facto dual regulator of motility and reinforce the notion of the central stalk as a key mechanical determinant of kinesin-14 motility [3].
Collapse
Affiliation(s)
- Kuo-Fu Tseng
- Department of Physics, Oregon State University, Corvallis, OR 97331, USA
| | - Keith J Mickolajczyk
- Department of Biomedical Engineering, Penn State University, University Park, PA 16802, USA; Intercollege Graduate Degree Program in Bioengineering, Penn State University, University Park, PA 16802, USA
| | - Guangxi Feng
- Department of Physics, Oregon State University, Corvallis, OR 97331, USA
| | - Qingzhou Feng
- Department of Biomedical Engineering, Penn State University, University Park, PA 16802, USA
| | - Ethiene S Kwok
- Department of Physics, Oregon State University, Corvallis, OR 97331, USA
| | - Jesse Howe
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
| | - Elisar J Barbar
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
| | - Scott C Dawson
- Department of Microbiology, University of California, Davis, Davis, CA 95616, USA
| | - William O Hancock
- Department of Biomedical Engineering, Penn State University, University Park, PA 16802, USA; Intercollege Graduate Degree Program in Bioengineering, Penn State University, University Park, PA 16802, USA
| | - Weihong Qiu
- Department of Physics, Oregon State University, Corvallis, OR 97331, USA; Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA.
| |
Collapse
|
11
|
Zhernov I, Diez S, Braun M, Lansky Z. Intrinsically Disordered Domain of Kinesin-3 Kif14 Enables Unique Functional Diversity. Curr Biol 2020; 30:3342-3351.e5. [PMID: 32649913 DOI: 10.1016/j.cub.2020.06.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 05/06/2020] [Accepted: 06/11/2020] [Indexed: 12/12/2022]
Abstract
In addition to their force-generating motor domains, kinesin motor proteins feature various accessory domains enabling them to fulfill a variety of functions in the cell. Human kinesin-3, Kif14, localizes to the midbody of the mitotic spindle and is involved in the progression of cytokinesis. The specific motor properties enabling Kif14's cellular functions, however, remain unknown. Here, we show in vitro that the intrinsically disordered N-terminal domain of Kif14 enables unique functional diversity of the kinesin. Using single molecule TIRF microscopy, we found that Kif14 exists either as a diffusible monomer or as processive dimer and that the disordered domain (1) enables diffusibility of the monomeric Kif14, (2) renders the dimeric Kif14 super-processive and enables the kinesin to pass through highly crowded areas, (3) enables robust, autonomous Kif14 tracking of growing microtubule tips, independent of microtubule end-binding (EB) proteins, and (4) is sufficient to enable crosslinking of parallel microtubules and necessary to enable Kif14-driven sliding of antiparallel ones. We explain these features of Kif14 by the observed diffusible interaction of the disordered domain with the microtubule lattice and the observed increased affinity of the disordered domain for GTP-bound tubulin. We suggest that the disordered domain tethers the motor domain to the microtubule providing a diffusible foothold and a regulatory hub, tuning the kinesin's interaction with microtubules. Our findings thus exemplify pliable protein tethering as a fundamental mechanism of molecular motor regulation.
Collapse
Affiliation(s)
- Ilia Zhernov
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Prague West, Czech Republic; Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, 121 16 Prague, Czech Republic
| | - Stefan Diez
- B CUBE - Center for Molecular Bioengineering, TU Dresden, Tatzberg 41, 01307 Dresden, Germany; Cluster of Excellence Physics of Life, TU Dresden, Tatzberg 47/49, 01307 Dresden, Germany; Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, Dresden 01307, Germany
| | - Marcus Braun
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Prague West, Czech Republic.
| | - Zdenek Lansky
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Prague West, Czech Republic.
| |
Collapse
|
12
|
Braun M, Diez S, Lansky Z. Cytoskeletal organization through multivalent interactions. J Cell Sci 2020; 133:133/12/jcs234393. [PMID: 32540925 DOI: 10.1242/jcs.234393] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cytoskeleton consists of polymeric protein filaments with periodic lattices displaying identical binding sites, which establish a multivalent platform for the binding of a plethora of filament-associated ligand proteins. Multivalent ligand proteins can tether themselves to the filaments through one of their binding sites, resulting in an enhanced reaction kinetics for the remaining binding sites. In this Opinion, we discuss a number of cytoskeletal phenomena underpinned by such multivalent interactions, namely (1) generation of entropic forces by filament crosslinkers, (2) processivity of molecular motors, (3) spatial sorting of proteins, and (4) concentration-dependent unbinding of filament-associated proteins. These examples highlight that cytoskeletal filaments constitute the basis for the formation of microenvironments, which cytoskeletal ligand proteins can associate with and, once engaged, can act within at altered reaction kinetics. We thus argue that multivalency is one of the properties crucial for the functionality of the cytoskeleton.
Collapse
Affiliation(s)
- Marcus Braun
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, 25250 Vestec, Prague West, Czech Republic
| | - Stefan Diez
- B CUBE - Center for Molecular Bioengineering, Technische Universität Dresden, Dresden 01307, Germany .,Cluster of Excellence Physics of Life, Technische Universität Dresden, Dresden 01307, Germany.,Max Planck Institute of Molecular Cell Biology and Genetics, Dresden 01307, Germany
| | - Zdenek Lansky
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, 25250 Vestec, Prague West, Czech Republic
| |
Collapse
|
13
|
Bergman ZJ, Wong J, Drubin DG, Barnes G. Microtubule dynamics regulation reconstituted in budding yeast lysates. J Cell Sci 2018; 132:jcs.219386. [PMID: 30185524 DOI: 10.1242/jcs.219386] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 08/23/2018] [Indexed: 01/14/2023] Open
Abstract
Microtubules (MTs) are important for cellular structure, transport of cargoes and segregation of chromosomes and organelles during mitosis. The stochastic growth and shrinkage of MTs, known as dynamic instability, is necessary for these functions. Previous studies to determine how individual MT-associated proteins (MAPs) affect MT dynamics have been performed either through in vivo studies, which provide limited opportunity for observation of individual MTs or manipulation of conditions, or in vitro studies, which focus either on purified proteins, and therefore lack cellular complexity, or on cell extracts made from genetically intractable organisms. In order to investigate the ensemble activities of all MAPs on MT dynamics using lysates made from a genetically tractable organism, we developed a cell-free assay for budding yeast lysates using total internal reflection fluorescence (TIRF) microscopy. Lysates were prepared from yeast strains expressing GFP-tubulin. MT polymerization from pre-assembled MT seeds adhered to a coverslip was observed in real time. Through use of cell division cycle (cdc) and MT depolymerase mutants, we found that MT polymerization and dynamic instability are dependent on the cell cycle state and the activities of specific MAPs.
Collapse
Affiliation(s)
- Zane J Bergman
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Jonathan Wong
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - David G Drubin
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Georjana Barnes
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
14
|
Popchock AR, Jana S, Mehl RA, Qiu W. Engineering Heterodimeric Kinesins through Genetic Incorporation of Noncanonical Amino Acids. ACS Chem Biol 2018; 13:2229-2236. [PMID: 29894152 DOI: 10.1021/acschembio.8b00399] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Kinesins are commonly homodimers with two identical heavy chains (protomers) and play indispensable roles in many intracellular processes. Engineered heterodimeric kinesins with two distinct protomers are important tools for dissecting coordination and regulation of naturally occurring kinesin homodimers. Here, we report a chemical-biology-based approach that generates kinesin heterodimers by combining genetic incorporation of reactive noncanonical amino acids and small-molecule-based cross-linking. We verified using yeast kinesin-8/Kip3 as a model system that our method yields kinesin heterodimers of desired properties without introducing unintended motility disruption. To demonstrate the utility of our method, we engineered a crippled Kip3 heterodimer that contains both a wild-type-like protomer and a catalytically inactive one, and our results revealed that the resulting heterodimer moves on the microtubule with a significant reduction in velocity but not processivity. Due to its versatility, we expect that our method can be broadly adopted to create novel heterodimers for other kinesins and will thus greatly expand the studies on kinesin mechanisms.
Collapse
Affiliation(s)
- Andrew R. Popchock
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331, United States
| | - Subhashis Jana
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331, United States
| | - Ryan A. Mehl
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331, United States
| | - Weihong Qiu
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331, United States
- Department of Physics, Oregon State University, Corvallis, Oregon 97331, United States
| |
Collapse
|
15
|
Wang P, Tseng KF, Gao Y, Cianfrocco M, Guo L, Qiu W. The Central Stalk Determines the Motility of Mitotic Kinesin-14 Homodimers. Curr Biol 2018; 28:2302-2308.e3. [PMID: 30017487 DOI: 10.1016/j.cub.2018.05.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/09/2018] [Accepted: 05/10/2018] [Indexed: 01/08/2023]
Abstract
Mitotic kinesin-14 homodimers that contain an N-terminal nonmotor microtubule-binding tail contribute to spindle organization by preferentially crosslinking two different spindle microtubules rather than interacting with a single microtubule to generate processive motility. However, the mechanism underlying such selective motility behavior remains poorly understood. Here, we show that when a flexible polypeptide linker is inserted into the coiled-coil central stalk, two homodimeric mitotic kinesin-14s of distinct motility-the processive plus-end-directed KlpA from Aspergillus nidulans [1] and the nonprocessive minus-end-directed Ncd from Drosophila melanogaster [2]-both switch to become processive minus-end-directed motors. Our results demonstrate that the polypeptide linker introduces greater conformational flexibility into the central stalk. Importantly, we find that the linker insertion significantly weakens the ability of Ncd to preferentially localize between and interact with two microtubules. Collectively, our results reveal that besides the canonical role of enabling dimerization, the central stalk also functions as a mechanical component to determine the motility of homodimeric mitotic kinesin-14 motors. We suggest that the central stalk is an evolutionary design that primes these kinesin-14 motors for nontransport roles within the mitotic spindle.
Collapse
Affiliation(s)
- Pan Wang
- Institute of Photobiophysics, Henan University, Kaifeng, Henan 475004, China; Department of Physics, Oregon State University, Corvallis, OR 97331, USA
| | - Kuo-Fu Tseng
- Department of Physics, Oregon State University, Corvallis, OR 97331, USA
| | - Yuan Gao
- School of Physics, Nankai University, Tianjin 300071, China
| | - Michael Cianfrocco
- Life Sciences Institute and Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lijun Guo
- Institute of Photobiophysics, Henan University, Kaifeng, Henan 475004, China
| | - Weihong Qiu
- Department of Physics, Oregon State University, Corvallis, OR 97331, USA; Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA.
| |
Collapse
|
16
|
Gicking AM, Swentowsky KW, Dawe RK, Qiu W. Functional diversification of the kinesin‐14 family in land plants. FEBS Lett 2018; 592:1918-1928. [DOI: 10.1002/1873-3468.13094] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 04/24/2018] [Accepted: 05/05/2018] [Indexed: 01/01/2023]
Affiliation(s)
| | | | - R. Kelly Dawe
- Department of Plant Biology University of Georgia Athens GA USA
- Department of Genetics University of Georgia Athens GA USA
| | - Weihong Qiu
- Department of Physics Oregon State University Corvallis OR USA
| |
Collapse
|
17
|
KIFC1 is essential for acrosome formation and nuclear shaping during spermiogenesis in the lobster Procambarus clarkii. Oncotarget 2018; 8:36082-36098. [PMID: 28415605 PMCID: PMC5482640 DOI: 10.18632/oncotarget.16429] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 03/14/2017] [Indexed: 01/13/2023] Open
Abstract
In order to study the function of kinesin-14 motor protein KIFC1 during spermatogenesis of Procambarus clarkii, the full length of kifc1 was cloned from testes cDNA using Rapid-Amplification of cDNA Ends (RACE). The deduced KIFC1 protein sequence showed the highest similarity between Procambarus clarkii and Eriocheir senensis (similarity rate as 64%). According to the results of in situ hybridization (ISH), the kifc1 mRNA was gathered in the acrosome location above nucleus in the mid- and late-stage spermatids. Immunofluorescence results were partly consistent with the ISH in middle spermatids, while in the late spermatids the KIFC1 was distributed around the nucleus which had large deformation and formed four to six nuclear arms. In the mature sperm, KIFC1 and microtubules were distributed around the sperm, playing a role in maintaining the sperm morphology and normal function. Overexpression of P. clarkii kifc1 in GC1 cells for 24 hours resulted in disorganization of microtubules which changed the cell morphology from circular and spherical into fusiform. In addition, the overexpression also resulted in triple centrosomes during mitosis which eventually led to cell apoptosis. RNAi experiments showed that decreased KIFC1 protein levels resulted in total inhibition of spermatogenesis, with only mature sperm found in the RNAi-testis, implying an indispensable role of KIFC1 during P. clarkii spermiogenesis.
Collapse
|
18
|
Abstract
In animals and fungi, cytoplasmic dynein is a processive minus-end-directed motor that plays dominant roles in various intracellular processes. In contrast, land plants lack cytoplasmic dynein but contain many minus-end-directed kinesin-14s. No plant kinesin-14 is known to produce processive motility as a homodimer. OsKCH2 is a plant-specific kinesin-14 with an N-terminal actin-binding domain and a central motor domain flanked by two predicted coiled-coils (CC1 and CC2). Here, we show that OsKCH2 specifically decorates preprophase band microtubules in vivo and transports actin filaments along microtubules in vitro. Importantly, OsKCH2 exhibits processive minus-end-directed motility on single microtubules as individual homodimers. We find that CC1, but not CC2, forms the coiled-coil to enable OsKCH2 dimerization. Instead, our results reveal that removing CC2 renders OsKCH2 a nonprocessive motor. Collectively, these results show that land plants have evolved unconventional kinesin-14 homodimers with inherent minus-end-directed processivity that may function to compensate for the loss of cytoplasmic dynein. Land plants lack the cytoplasmic dynein motor in fungi and animals that shows processive minus-end-directed motility on microtubules. Here the authors demonstrate that land plants have evolved novel processive minus-end-directed kinesin-14 motors that likely compensate for the absence of dynein.
Collapse
|
19
|
Dhatchinamoorthy K, Shivaraju M, Lange JJ, Rubinstein B, Unruh JR, Slaughter BD, Gerton JL. Structural plasticity of the living kinetochore. J Cell Biol 2017; 216:3551-3570. [PMID: 28939613 PMCID: PMC5674893 DOI: 10.1083/jcb.201703152] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 07/17/2017] [Accepted: 08/21/2017] [Indexed: 11/30/2022] Open
Abstract
The kinetochore is a large, evolutionarily conserved protein structure that connects chromosomes with microtubules. During chromosome segregation, outer kinetochore components track depolymerizing ends of microtubules to facilitate the separation of chromosomes into two cells. In budding yeast, each chromosome has a point centromere upon which a single kinetochore is built, which attaches to a single microtubule. This defined architecture facilitates quantitative examination of kinetochores during the cell cycle. Using three independent measures-calibrated imaging, FRAP, and photoconversion-we find that the Dam1 submodule is unchanged during anaphase, whereas MIND and Ndc80 submodules add copies to form an "anaphase configuration" kinetochore. Microtubule depolymerization and kinesin-related motors contribute to copy addition. Mathematical simulations indicate that the addition of microtubule attachments could facilitate tracking during rapid microtubule depolymerization. We speculate that the minimal kinetochore configuration, which exists from G1 through metaphase, allows for correction of misattachments. Our study provides insight into dynamics and plasticity of the kinetochore structure during chromosome segregation in living cells.
Collapse
Affiliation(s)
- Karthik Dhatchinamoorthy
- Stowers Institute for Medical Research, Kansas City, MO
- The Open University, Milton Keynes, England, UK
| | | | | | | | - Jay R Unruh
- Stowers Institute for Medical Research, Kansas City, MO
| | | | - Jennifer L Gerton
- Stowers Institute for Medical Research, Kansas City, MO
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS
| |
Collapse
|
20
|
Changes in microtubule overlap length regulate kinesin-14-driven microtubule sliding. Nat Chem Biol 2017; 13:1245-1252. [PMID: 29035362 PMCID: PMC5700410 DOI: 10.1038/nchembio.2495] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 09/11/2017] [Indexed: 01/01/2023]
Abstract
Microtubule-crosslinking motor proteins, which slide antiparallel
microtubules, are required for remodeling of microtubule networks. Hitherto, all
microtubule-crosslinking motors have been shown to slide microtubules at
constant velocity until no overlap between the microtubules remains, leading to
breakdown of the initial microtubule geometry. Here, we show in
vitro that the sliding velocity of microtubules, driven by human
kinesin-14, HSET, decreases when microtubules start to slide apart, resulting in
the maintenance of finite-length microtubule overlaps. We quantitatively explain
this feedback by the local interaction kinetics of HSET with overlapping
microtubules, causing retention of HSET in shortening overlaps. Consequently,
the increased HSET density in the overlaps leads to a density-dependent decrease
in sliding velocity and the generation of an entropic force antagonizing the
force exerted by the motors. Our results demonstrate that a spatial arrangement
of microtubules can regulate the collective action of molecular motors through
local alteration of their individual interaction kinetics.
Collapse
|
21
|
van der Vaart B, Fischböck J, Mieck C, Pichler P, Mechtler K, Medema RH, Westermann S. TORC1 signaling exerts spatial control over microtubule dynamics by promoting nuclear export of Stu2. J Cell Biol 2017; 216:3471-3484. [PMID: 28972103 PMCID: PMC5674874 DOI: 10.1083/jcb.201606080] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 02/14/2017] [Accepted: 08/02/2017] [Indexed: 12/30/2022] Open
Abstract
TORC1 regulates microtubule (MT) dynamics in budding yeast, but the key downstream effectors are unknown. van der Vaart et al. show that TORC1 activity before mitosis promotes phosphorylation of the MT polymerase Stu2 near a nuclear export signal, which leads to the nuclear export of Stu2 and reduced nuclear MT growth. The target of rapamycin complex 1 (TORC1) is a highly conserved multiprotein complex that functions in many cellular processes, including cell growth and cell cycle progression. In this study, we define a novel role for TORC1 as a critical regulator of nuclear microtubule (MT) dynamics in the budding yeast Saccharomyces cerevisiae. This activity requires interactions between EB1 and CLIP-170 plus end–tracking protein (+TIP) family members with the TORC1 subunit Kog1/Raptor, which in turn allow the TORC1 proximal kinase Sch9/S6K1 to regulate the MT polymerase Stu2/XMAP215. Sch9-dependent phosphorylation of Stu2 adjacent to a nuclear export signal prevents nuclear accumulation of Stu2 before cells enter mitosis. Mutants impaired in +TIP–TORC1 interactions or Stu2 nuclear export show increased nuclear but not cytoplasmic MT length and display nuclear fusion, spindle positioning, and elongation kinetics defects. Our results reveal key mechanisms by which TORC1 signaling controls Stu2 localization and thereby contributes to proper MT cytoskeletal organization in interphase and mitosis.
Collapse
Affiliation(s)
- Babet van der Vaart
- Research Institute of Molecular Pathology, Vienna Biocenter, Vienna, Austria .,Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Josef Fischböck
- Research Institute of Molecular Pathology, Vienna Biocenter, Vienna, Austria
| | - Christine Mieck
- Research Institute of Molecular Pathology, Vienna Biocenter, Vienna, Austria
| | - Peter Pichler
- Research Institute of Molecular Pathology, Vienna Biocenter, Vienna, Austria
| | - Karl Mechtler
- Research Institute of Molecular Pathology, Vienna Biocenter, Vienna, Austria
| | - René H Medema
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Stefan Westermann
- Research Institute of Molecular Pathology, Vienna Biocenter, Vienna, Austria .,Department of Molecular Genetics, Faculty of Biology, Center for Medical Biotechnology, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
22
|
She ZY, Yang WX. Molecular mechanisms of kinesin-14 motors in spindle assembly and chromosome segregation. J Cell Sci 2017; 130:2097-2110. [DOI: 10.1242/jcs.200261] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
ABSTRACT
During eukaryote cell division, molecular motors are crucial regulators of microtubule organization, spindle assembly, chromosome segregation and intracellular transport. The kinesin-14 motors are evolutionarily conserved minus-end-directed kinesin motors that occur in diverse organisms from simple yeasts to higher eukaryotes. Members of the kinesin-14 motor family can bind to, crosslink or slide microtubules and, thus, regulate microtubule organization and spindle assembly. In this Commentary, we present the common subthemes that have emerged from studies of the molecular kinetics and mechanics of kinesin-14 motors, particularly with regard to their non-processive movement, their ability to crosslink microtubules and interact with the minus- and plus-ends of microtubules, and with microtubule-organizing center proteins. In particular, counteracting forces between minus-end-directed kinesin-14 and plus-end-directed kinesin-5 motors have recently been implicated in the regulation of microtubule nucleation. We also discuss recent progress in our current understanding of the multiple and fundamental functions that kinesin-14 motors family members have in important aspects of cell division, including the spindle pole, spindle organization and chromosome segregation.
Collapse
Affiliation(s)
- Zhen-Yu She
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wan-Xi Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
23
|
The mitotic kinesin-14 KlpA contains a context-dependent directionality switch. Nat Commun 2017; 8:13999. [PMID: 28051135 PMCID: PMC5216134 DOI: 10.1038/ncomms13999] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 11/17/2016] [Indexed: 12/26/2022] Open
Abstract
Kinesin-14s are commonly known as nonprocessive minus end-directed microtubule motors that function mainly for mitotic spindle assembly. Here we show using total internal reflection fluorescence microscopy that KlpA—a kinesin-14 from Aspergillus nidulans—is a context-dependent bidirectional motor. KlpA exhibits plus end-directed processive motility on single microtubules, but reverts to canonical minus end-directed motility when anchored on the surface in microtubule-gliding experiments or interacting with a pair of microtubules in microtubule-sliding experiments. Plus end-directed processive motility of KlpA on single microtubules depends on its N-terminal nonmotor microtubule-binding tail, as KlpA without the tail is nonprocessive and minus end-directed. We suggest that the tail is a de facto directionality switch for KlpA motility: when the tail binds to the same microtubule as the motor domain, KlpA is a plus end-directed processive motor; in contrast, when the tail detaches from the microtubule to which the motor domain binds, KlpA becomes minus end-directed. Kinesin-14s are commonly considered to be minus end-directed microtubule motor proteins. Here the authors show that KlpA, a fungal kinesin-14 orthologue, relies on its N-terminal nonmotor microtubule-binding tail to achieve context-dependent bidirectional motility.
Collapse
|
24
|
Davidson IF, Goetz D, Zaczek MP, Molodtsov MI, Huis In 't Veld PJ, Weissmann F, Litos G, Cisneros DA, Ocampo-Hafalla M, Ladurner R, Uhlmann F, Vaziri A, Peters JM. Rapid movement and transcriptional re-localization of human cohesin on DNA. EMBO J 2016; 35:2671-2685. [PMID: 27799150 PMCID: PMC5167347 DOI: 10.15252/embj.201695402] [Citation(s) in RCA: 154] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 09/08/2016] [Accepted: 10/03/2016] [Indexed: 01/17/2023] Open
Abstract
The spatial organization, correct expression, repair, and segregation of eukaryotic genomes depend on cohesin, ring-shaped protein complexes that are thought to function by entrapping DNA It has been proposed that cohesin is recruited to specific genomic locations from distal loading sites by an unknown mechanism, which depends on transcription, and it has been speculated that cohesin movements along DNA could create three-dimensional genomic organization by loop extrusion. However, whether cohesin can translocate along DNA is unknown. Here, we used single-molecule imaging to show that cohesin can diffuse rapidly on DNA in a manner consistent with topological entrapment and can pass over some DNA-bound proteins and nucleosomes but is constrained in its movement by transcription and DNA-bound CCCTC-binding factor (CTCF). These results indicate that cohesin can be positioned in the genome by moving along DNA, that transcription can provide directionality to these movements, that CTCF functions as a boundary element for moving cohesin, and they are consistent with the hypothesis that cohesin spatially organizes the genome via loop extrusion.
Collapse
Affiliation(s)
- Iain F Davidson
- Research Institute of Molecular Pathology (IMP), Vienna, Austria
| | - Daniela Goetz
- Research Institute of Molecular Pathology (IMP), Vienna, Austria
| | - Maciej P Zaczek
- Research Institute of Molecular Pathology (IMP), Vienna, Austria
| | - Maxim I Molodtsov
- Research Institute of Molecular Pathology (IMP), Vienna, Austria
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | | | | | - Gabriele Litos
- Research Institute of Molecular Pathology (IMP), Vienna, Austria
| | - David A Cisneros
- Research Institute of Molecular Pathology (IMP), Vienna, Austria
| | | | - Rene Ladurner
- Research Institute of Molecular Pathology (IMP), Vienna, Austria
| | | | - Alipasha Vaziri
- Research Institute of Molecular Pathology (IMP), Vienna, Austria
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
- The Rockefeller University, New York, NY, USA
| | | |
Collapse
|
25
|
|
26
|
Molodtsov MI, Mieck C, Dobbelaere J, Dammermann A, Westermann S, Vaziri A. A Force-Induced Directional Switch of a Molecular Motor Enables Parallel Microtubule Bundle Formation. Cell 2016; 167:539-552.e14. [PMID: 27716509 DOI: 10.1016/j.cell.2016.09.029] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 06/25/2016] [Accepted: 09/12/2016] [Indexed: 12/17/2022]
Abstract
Microtubule-organizing centers (MTOCs) nucleate microtubules that can grow autonomously in any direction. To generate bundles of parallel microtubules originating from a single MTOC, the growth of multiple microtubules needs to coordinated, but the underlying mechanism is unknown. Here, we show that a conserved two-component system consisting of the plus-end tracker EB1 and the minus-end-directed molecular motor Kinesin-14 is sufficient to promote parallel microtubule growth. The underlying mechanism relies on the ability of Kinesin-14 to guide growing plus ends along existing microtubules. The generality of this finding is supported by yeast, Drosophila, and human EB1/Kinesin-14 pairs. We demonstrate that plus-end guiding involves a directional switch of the motor due to a force applied via a growing microtubule end. The described mechanism can account for the generation of parallel microtubule networks required for a broad range of cellular functions such as spindle assembly or cell polarization.
Collapse
Affiliation(s)
- Maxim I Molodtsov
- Research Institute of Molecular Pathology, Dr. Bohr-Gasse 7, 1030 Vienna, Austria; Max F. Perutz Laboratories, University of Vienna, Dr. Bohr-Gasse 9, 1030 Vienna, Austria; Research Platform Quantum Phenomena & Nanoscale Biological Systems (QuNaBioS), Dr. Bohr-Gasse 7, 1030 Vienna, Austria
| | - Christine Mieck
- Research Institute of Molecular Pathology, Dr. Bohr-Gasse 7, 1030 Vienna, Austria
| | - Jeroen Dobbelaere
- Max F. Perutz Laboratories, University of Vienna, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - Alexander Dammermann
- Max F. Perutz Laboratories, University of Vienna, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - Stefan Westermann
- Research Institute of Molecular Pathology, Dr. Bohr-Gasse 7, 1030 Vienna, Austria; Department of Molecular Genetics, University of Duisburg-Essen, 45117 Essen, Germany.
| | - Alipasha Vaziri
- Research Institute of Molecular Pathology, Dr. Bohr-Gasse 7, 1030 Vienna, Austria; Max F. Perutz Laboratories, University of Vienna, Dr. Bohr-Gasse 9, 1030 Vienna, Austria; Research Platform Quantum Phenomena & Nanoscale Biological Systems (QuNaBioS), Dr. Bohr-Gasse 7, 1030 Vienna, Austria; The Rockefeller University, 1230 York Avenue New York, NY 10065, USA.
| |
Collapse
|
27
|
Perinuclear tethers license telomeric DSBs for a broad kinesin- and NPC-dependent DNA repair process. Nat Commun 2015. [PMID: 26205667 DOI: 10.1038/ncomms8742] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
DNA double-strand breaks (DSBs) are often targeted to nuclear pore complexes (NPCs) for repair. How targeting is achieved and the DNA repair pathways involved in this process remain unclear. Here, we show that the kinesin-14 motor protein complex (Cik1-Kar3) cooperates with chromatin remodellers to mediate interactions between subtelomeric DSBs and the Nup84 nuclear pore complex to ensure cell survival via break-induced replication (BIR), an error-prone DNA repair process. Insertion of a DNA zip code near the subtelomeric DSB site artificially targets it to NPCs hyperactivating this repair mechanism. Kinesin-14 and Nup84 mediate BIR-dependent repair at non-telomeric DSBs whereas perinuclear telomere tethers are only required for telomeric BIR. Furthermore, kinesin-14 plays a critical role in telomerase-independent telomere maintenance. Thus, we uncover roles for kinesin and NPCs in DNA repair by BIR and reveal that perinuclear telomere anchors license subtelomeric DSBs for this error-prone DNA repair mechanism.
Collapse
|
28
|
Jonsson E, Yamada M, Vale RD, Goshima G. Clustering of a kinesin-14 motor enables processive retrograde microtubule-based transport in plants. NATURE PLANTS 2015; 1:15087. [PMID: 26322239 PMCID: PMC4548964 DOI: 10.1038/nplants.2015.87] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 05/23/2015] [Indexed: 05/18/2023]
Abstract
The molecular motors kinesin and dynein drive bidirectional motility along microtubules (MTs) in most eukaryotic cells. Land plants, however, are a notable exception, because they contain a large number of kinesins but lack cytoplasmic dynein, the foremost processive retrograde transporter. It remains unclear how plants achieve retrograde cargo transport without dynein. Here, we have analysed the motility of the six members of minus-end-directed kinesin-14 motors in the moss Physcomitrella patens and found that none are processive as native dimers. However, when artificially clustered into as little as dimer of dimers, the type-VI kinesin-14 (a homologue of Arabidopsis KCBP (kinesin-like calmodulin binding protein)) exhibited highly processive and fast motility (up to 0.6 μm s-1). Multiple kin14-VI dimers attached to liposomes also induced transport of this membrane cargo over several microns. Consistent with these results, in vivo observations of green fluorescent protein-tagged kin14-VI in moss cells revealed fluorescent punctae that moved processively towards the minus-ends of the cytoplasmic MTs. These data suggest that clustering of a kinesin-14 motor serves as a dynein-independent mechanism for retrograde transport in plants.
Collapse
Affiliation(s)
- Erik Jonsson
- Marine Biological Laboratory (MBL), Woods Hole, Massachusetts 02543, USA
- Howard Hughes Medical Institute and Department of Cellular and Molecular Pharmacology, UCSF, 600 16th St., San Francisco, California 94158, USA
| | - Moé Yamada
- Marine Biological Laboratory (MBL), Woods Hole, Massachusetts 02543, USA
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Ronald D. Vale
- Marine Biological Laboratory (MBL), Woods Hole, Massachusetts 02543, USA
- Howard Hughes Medical Institute and Department of Cellular and Molecular Pharmacology, UCSF, 600 16th St., San Francisco, California 94158, USA
| | - Gohta Goshima
- Marine Biological Laboratory (MBL), Woods Hole, Massachusetts 02543, USA
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
- Correspondence and requests for materials should be addressed to G.G.
| |
Collapse
|
29
|
Candida albicans Kinesin Kar3 Depends on a Cik1-Like Regulatory Partner Protein for Its Roles in Mating, Cell Morphogenesis, and Bipolar Spindle Formation. EUKARYOTIC CELL 2015; 14:755-74. [PMID: 26024903 DOI: 10.1128/ec.00015-15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 05/26/2015] [Indexed: 02/05/2023]
Abstract
Candida albicans is a major fungal pathogen whose virulence is associated with its ability to transition from a budding yeast form to invasive hyphal filaments. The kinesin-14 family member CaKar3 is required for transition between these morphological states, as well as for mitotic progression and karyogamy. While kinesin-14 proteins are ubiquitous, CaKar3 homologs in hemiascomycete fungi are unique because they form heterodimers with noncatalytic kinesin-like proteins. Thus, CaKar3-based motors may represent a novel antifungal drug target. We have identified and examined the roles of a kinesin-like regulator of CaKar3. We show that orf19.306 (dubbed CaCIK1) encodes a protein that forms a heterodimer with CaKar3, localizes CaKar3 to spindle pole bodies, and can bind microtubules and influence CaKar3 mechanochemistry despite lacking an ATPase activity of its own. Similar to CaKar3 depletion, loss of CaCik1 results in cell cycle arrest, filamentation defects, and an inability to undergo karyogamy. Furthermore, an examination of the spindle structure in cells lacking either of these proteins shows that a large proportion have a monopolar spindle or two dissociated half-spindles, a phenotype unique to the C. albicans kinesin-14 homolog. These findings provide new insights into mitotic spindle structure and kinesin motor function in C. albicans and identify a potentially vulnerable target for antifungal drug development.
Collapse
|