1
|
Patranabis S. Recent Advances in the miRNA-Mediated Regulation of Neuronal Differentiation and Death. Neuromolecular Med 2024; 26:52. [PMID: 39648193 DOI: 10.1007/s12017-024-08820-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 11/25/2024] [Indexed: 12/10/2024]
Abstract
The review aims to focus on the role of miRNA in gene regulation, related to differentiation and apoptosis of neurons, focusing on the array of miRNAs involved in the processes. miRNAs are a known class of small regulatory RNAs, which in association with RNA processing bodies, play major roles in different cellular events, such as neurogenesis and neuronal differentiation. miRNAs function in controlling neuronal events by targeting different important molecules of cellular signalling. The post-translational modification of Ago2 is crucial in modulating the neurons' miRNA-mediated regulation. Thus, understanding the crosstalk between cellular signalling and miRNA activity affecting neuronal events is very important to decipher novel targets and related signalling pathways, involved in neuronal survival and neurodegeneration.
Collapse
|
2
|
Papadimitriou E, Thomaidou D. Post-transcriptional mechanisms controlling neurogenesis and direct neuronal reprogramming. Neural Regen Res 2024; 19:1929-1939. [PMID: 38227517 DOI: 10.4103/1673-5374.390976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/08/2023] [Indexed: 01/17/2024] Open
Abstract
Neurogenesis is a tightly regulated process in time and space both in the developing embryo and in adult neurogenic niches. A drastic change in the transcriptome and proteome of radial glial cells or neural stem cells towards the neuronal state is achieved due to sophisticated mechanisms of epigenetic, transcriptional, and post-transcriptional regulation. Understanding these neurogenic mechanisms is of major importance, not only for shedding light on very complex and crucial developmental processes, but also for the identification of putative reprogramming factors, that harbor hierarchically central regulatory roles in the course of neurogenesis and bare thus the capacity to drive direct reprogramming towards the neuronal fate. The major transcriptional programs that orchestrate the neurogenic process have been the focus of research for many years and key neurogenic transcription factors, as well as repressor complexes, have been identified and employed in direct reprogramming protocols to convert non-neuronal cells, into functional neurons. The post-transcriptional regulation of gene expression during nervous system development has emerged as another important and intricate regulatory layer, strongly contributing to the complexity of the mechanisms controlling neurogenesis and neuronal function. In particular, recent advances are highlighting the importance of specific RNA binding proteins that control major steps of mRNA life cycle during neurogenesis, such as alternative splicing, polyadenylation, stability, and translation. Apart from the RNA binding proteins, microRNAs, a class of small non-coding RNAs that block the translation of their target mRNAs, have also been shown to play crucial roles in all the stages of the neurogenic process, from neural stem/progenitor cell proliferation, neuronal differentiation and migration, to functional maturation. Here, we provide an overview of the most prominent post-transcriptional mechanisms mediated by RNA binding proteins and microRNAs during the neurogenic process, giving particular emphasis on the interplay of specific RNA binding proteins with neurogenic microRNAs. Taking under consideration that the molecular mechanisms of neurogenesis exert high similarity to the ones driving direct neuronal reprogramming, we also discuss the current advances in in vitro and in vivo direct neuronal reprogramming approaches that have employed microRNAs or RNA binding proteins as reprogramming factors, highlighting the so far known mechanisms of their reprogramming action.
Collapse
|
3
|
Ma D, Lin KY, Suresh D, Lin J, Gujar MR, Aung HY, Tan YS, Gao Y, Vincent AS, Chen T, Wang H. Arl2 GTPase associates with the centrosomal protein Cdk5rap2 to regulate cortical development via microtubule organization. PLoS Biol 2024; 22:e3002751. [PMID: 39137170 PMCID: PMC11321591 DOI: 10.1371/journal.pbio.3002751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 07/11/2024] [Indexed: 08/15/2024] Open
Abstract
ADP ribosylation factor-like GTPase 2 (Arl2) is crucial for controlling mitochondrial fusion and microtubule assembly in various organisms. Arl2 regulates the asymmetric division of neural stem cells in Drosophila via microtubule growth. However, the function of mammalian Arl2 during cortical development was unknown. Here, we demonstrate that mouse Arl2 plays a new role in corticogenesis via regulating microtubule growth, but not mitochondria functions. Arl2 knockdown (KD) leads to impaired proliferation of neural progenitor cells (NPCs) and neuronal migration. Arl2 KD in mouse NPCs significantly diminishes centrosomal microtubule growth and delocalization of centrosomal proteins Cdk5rap2 and γ-tubulin. Moreover, Arl2 physically associates with Cdk5rap2 by in silico prediction using AlphaFold multimer, which was validated by co-immunoprecipitation and proximity ligation assay. Remarkably, Cdk5rap2 overexpression significantly rescues the neurogenesis defects caused by Arl2 KD. Therefore, Arl2 plays an important role in mouse cortical development through microtubule growth via the centrosomal protein Cdk5rap2.
Collapse
Affiliation(s)
- Dongliang Ma
- Program in Neuroscience and Behavioural Disorders, Duke-NUS Medical School, Singapore
| | - Kun-Yang Lin
- Program in Neuroscience and Behavioural Disorders, Duke-NUS Medical School, Singapore
| | - Divya Suresh
- Program in Neuroscience and Behavioural Disorders, Duke-NUS Medical School, Singapore
| | - Jiaen Lin
- Program in Neuroscience and Behavioural Disorders, Duke-NUS Medical School, Singapore
| | - Mahekta R. Gujar
- Program in Neuroscience and Behavioural Disorders, Duke-NUS Medical School, Singapore
| | - Htet Yamin Aung
- Program in Neuroscience and Behavioural Disorders, Duke-NUS Medical School, Singapore
| | - Ye Sing Tan
- Program in Neuroscience and Behavioural Disorders, Duke-NUS Medical School, Singapore
| | - Yang Gao
- Program in Neuroscience and Behavioural Disorders, Duke-NUS Medical School, Singapore
| | - Anselm S. Vincent
- Program in Neuroscience and Behavioural Disorders, Duke-NUS Medical School, Singapore
| | - Teng Chen
- College of Forensic Medicine, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, PR China
- The Key Laboratory of Health Ministry for Forensic Science, Xi’an Jiaotong University, Shaanxi, PR China
| | - Hongyan Wang
- Program in Neuroscience and Behavioural Disorders, Duke-NUS Medical School, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Integrative Sciences and Engineering Programme, National University of Singapore, Singapore
| |
Collapse
|
4
|
Noble MA, Ji Y, Yim KM, Yang JW, Morales M, Abu-Shamma R, Pal A, Poulsen R, Baumgartner M, Noonan JP. Human Accelerated Regions regulate gene networks implicated in apical-to-basal neural progenitor fate transitions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.30.601407. [PMID: 39005466 PMCID: PMC11244942 DOI: 10.1101/2024.06.30.601407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
The evolution of the human cerebral cortex involved modifications in the composition and proliferative potential of the neural stem cell (NSC) niche during brain development. Human Accelerated Regions (HARs) exhibit a significant excess of human-specific sequence changes and have been implicated in human brain evolution. Multiple studies support that HARs include neurodevelopmental enhancers with novel activities in humans, but their biological functions in NSCs have not been empirically assessed at scale. Here we conducted a direct-capture Perturb-seq screen repressing 180 neurodevelopmentally active HARs in human iPSC-derived NSCs with single-cell transcriptional readout. After profiling >188,000 NSCs, we identified a set of HAR perturbations with convergent transcriptional effects on gene networks involved in NSC apicobasal polarity, a cellular process whose precise regulation is critical to the developmental emergence of basal radial glia (bRG), a progenitor population that is expanded in humans. Across multiple HAR perturbations, we found convergent dysregulation of specific apicobasal polarity and adherens junction regulators, including PARD3, ABI2, SETD2 , and PCM1 . We found that the repression of one candidate from the screen, HAR181, as well as its target gene CADM1 , disrupted apical PARD3 localization and NSC rosette formation. Our findings reveal interconnected roles for HARs in NSC biology and cortical development and link specific HARs to processes implicated in human cortical expansion.
Collapse
|
5
|
Begar E, Seyrek E, Firat-Karalar EN. Navigating centriolar satellites: the role of PCM1 in cellular and organismal processes. FEBS J 2024. [PMID: 38825736 DOI: 10.1111/febs.17194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/20/2024] [Accepted: 05/22/2024] [Indexed: 06/04/2024]
Abstract
Centriolar satellites are ubiquitous membrane-less organelles that play critical roles in numerous cellular and organismal processes. They were initially discovered through electron microscopy as cytoplasmic granules surrounding centrosomes in vertebrate cells. These structures remained enigmatic until the identification of pericentriolar material 1 protein (PCM1) as their molecular marker, which has enabled their in-depth characterization. Recently, centriolar satellites have come into the spotlight due to their links to developmental and neurodegenerative disorders. This review presents a comprehensive summary of the major advances in centriolar satellite biology, with a focus on studies that investigated their biology associated with the essential scaffolding protein PCM1. We begin by exploring the molecular, cellular, and biochemical properties of centriolar satellites, laying the groundwork for a deeper understanding of their functions and mechanisms at both cellular and organismal levels. We then examine the implications of their dysregulation in various diseases, particularly highlighting their emerging roles in neurodegenerative and developmental disorders, as revealed by organismal models of PCM1. We conclude by discussing the current state of knowledge and posing questions about the adaptable nature of these organelles, thereby setting the stage for future research.
Collapse
Affiliation(s)
- Efe Begar
- Department of Molecular Biology and Genetics, Koç University, Istanbul, Turkey
| | - Ece Seyrek
- Department of Molecular Biology and Genetics, Koç University, Istanbul, Turkey
| | - Elif Nur Firat-Karalar
- Department of Molecular Biology and Genetics, Koç University, Istanbul, Turkey
- School of Medicine, Koç University, Istanbul, Turkey
| |
Collapse
|
6
|
Darbinian N, Hampe M, Martirosyan D, Bajwa A, Darbinyan A, Merabova N, Tatevosian G, Goetzl L, Amini S, Selzer ME. Fetal Brain-Derived Exosomal miRNAs from Maternal Blood: Potential Diagnostic Biomarkers for Fetal Alcohol Spectrum Disorders (FASDs). Int J Mol Sci 2024; 25:5826. [PMID: 38892014 PMCID: PMC11172088 DOI: 10.3390/ijms25115826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/20/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
Fetal alcohol spectrum disorders (FASDs) are leading causes of neurodevelopmental disability but cannot be diagnosed early in utero. Because several microRNAs (miRNAs) are implicated in other neurological and neurodevelopmental disorders, the effects of EtOH exposure on the expression of these miRNAs and their target genes and pathways were assessed. In women who drank alcohol (EtOH) during pregnancy and non-drinking controls, matched individually for fetal sex and gestational age, the levels of miRNAs in fetal brain-derived exosomes (FB-Es) isolated from the mothers' serum correlated well with the contents of the corresponding fetal brain tissues obtained after voluntary pregnancy termination. In six EtOH-exposed cases and six matched controls, the levels of fetal brain and maternal serum miRNAs were quantified on the array by qRT-PCR. In FB-Es from 10 EtOH-exposed cases and 10 controls, selected miRNAs were quantified by ddPCR. Protein levels were quantified by ELISA. There were significant EtOH-associated reductions in the expression of several miRNAs, including miR-9 and its downstream neuronal targets BDNF, REST, Synapsin, and Sonic hedgehog. In 20 paired cases, reductions in FB-E miR-9 levels correlated strongly with reductions in fetal eye diameter, a prominent feature of FASDs. Thus, FB-E miR-9 levels might serve as a biomarker to predict FASDs in at-risk fetuses.
Collapse
Affiliation(s)
- Nune Darbinian
- Center for Neural Repair and Rehabilitation (Shriners Hospitals Pediatric Research Center), Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (M.H.); (D.M.); (A.B.); (N.M.); (G.T.)
| | - Monica Hampe
- Center for Neural Repair and Rehabilitation (Shriners Hospitals Pediatric Research Center), Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (M.H.); (D.M.); (A.B.); (N.M.); (G.T.)
| | - Diana Martirosyan
- Center for Neural Repair and Rehabilitation (Shriners Hospitals Pediatric Research Center), Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (M.H.); (D.M.); (A.B.); (N.M.); (G.T.)
| | - Ahsun Bajwa
- Center for Neural Repair and Rehabilitation (Shriners Hospitals Pediatric Research Center), Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (M.H.); (D.M.); (A.B.); (N.M.); (G.T.)
| | - Armine Darbinyan
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA;
| | - Nana Merabova
- Center for Neural Repair and Rehabilitation (Shriners Hospitals Pediatric Research Center), Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (M.H.); (D.M.); (A.B.); (N.M.); (G.T.)
- Medical College of Wisconsin-Prevea Health, Green Bay, WI 54304, USA
| | - Gabriel Tatevosian
- Center for Neural Repair and Rehabilitation (Shriners Hospitals Pediatric Research Center), Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (M.H.); (D.M.); (A.B.); (N.M.); (G.T.)
| | - Laura Goetzl
- Department of Obstetrics & Gynecology, University of Texas, Houston, TX 77030, USA;
| | - Shohreh Amini
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA;
| | - Michael E. Selzer
- Center for Neural Repair and Rehabilitation (Shriners Hospitals Pediatric Research Center), Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (M.H.); (D.M.); (A.B.); (N.M.); (G.T.)
- Department of Neurology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| |
Collapse
|
7
|
Kiel K, Król SK, Bronisz A, Godlewski J. MiR-128-3p - a gray eminence of the human central nervous system. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102141. [PMID: 38419943 PMCID: PMC10899074 DOI: 10.1016/j.omtn.2024.102141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
MicroRNA-128-3p (miR-128-3p) is a versatile molecule with multiple functions in the physiopathology of the human central nervous system. Perturbations of miR-128-3p, which is enriched in the brain, contribute to a plethora of neurodegenerative disorders, brain injuries, and malignancies, as this miRNA is a crucial regulator of gene expression in the brain, playing an essential role in the maintenance and function of cells stemming from neuronal lineage. However, the differential expression of miR-128-3p in pathologies underscores the importance of the balance between its high and low levels. Significantly, numerous reports pointed to miR-128-3p as one of the most depleted in glioblastoma, implying it is a critical player in the disease's pathogenesis and thus may serve as a therapeutic agent for this most aggressive form of brain tumor. In this review, we summarize the current knowledge of the diverse roles of miR-128-3p. We focus on its involvement in the neurogenesis and pathophysiology of malignant and neurodegenerative diseases. We also highlight the promising potential of miR-128-3p as an antitumor agent for the future therapy of human cancers, including glioblastoma, and as the linchpin of brain development and function, potentially leading to the development of new therapies for neurological conditions.
Collapse
Affiliation(s)
- Klaudia Kiel
- Tumor Microenvironment Laboratory, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawińskiego Street, Warsaw, Poland
| | - Sylwia Katarzyna Król
- Department of Neurooncology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawińskiego Street, Warsaw, Poland
| | - Agnieszka Bronisz
- Tumor Microenvironment Laboratory, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawińskiego Street, Warsaw, Poland
| | - Jakub Godlewski
- Department of Neurooncology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawińskiego Street, Warsaw, Poland
| |
Collapse
|
8
|
Sacco JC, Starr E, Weaver A, Dietz R, Spocter MA. Resequencing of the TMF-1 (TATA Element Modulatory Factor) regulated protein (TRNP1) gene in domestic and wild canids. Canine Med Genet 2023; 10:10. [PMID: 37968761 PMCID: PMC10647097 DOI: 10.1186/s40575-023-00133-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/27/2023] [Indexed: 11/17/2023] Open
Abstract
BACKGROUND Cortical folding is related to the functional organization of the brain. The TMF-1 regulated protein (TRNP1) regulates the expansion and folding of the mammalian cerebral cortex, a process that may have been accelerated by the domestication of dogs. The objectives of this study were to sequence the TRNP1 gene in dogs and related canid species, provide evidence of its expression in dog brain and compare the genetic variation within dogs and across the Canidae. The gene was located in silico to dog chromosome 2. The sequence was experimentally confirmed by amplifying and sequencing the TRNP1 exonic and promoter regions in 72 canids (36 purebred dogs, 20 Gy wolves and wolf-dog hybrids, 10 coyotes, 5 red foxes and 1 Gy fox). RESULTS A partial TRNP1 transcript was isolated from several regions in the dog brain. Thirty genetic polymorphisms were found in the Canis sp. with 17 common to both dogs and wolves, and only one unique to dogs. Seven polymorphisms were observed only in coyotes. An additional 9 variants were seen in red foxes. Dogs were the least genetically diverse. Several polymorphisms in the promoter and 3'untranslated region were predicted to alter TRNP1 function by interfering with the binding of transcriptional repressors and miRNAs expressed in neural precursors. A c.259_264 deletion variant that encodes a polyalanine expansion was polymorphic in all species studied except for dogs. A stretch of 15 nucleotides that is found in other mammalian sequences (corresponding to 5 amino acids located between Pro58 and Ala59 in the putative dog protein) was absent from the TRNP1 sequences of all 5 canid species sequenced. Both of these aforementioned coding sequence variations were predicted to affect the formation of alpha helices in the disordered region of the TRNP1 protein. CONCLUSIONS Potentially functionally important polymorphisms in the TRNP1 gene are found within and across various Canis species as well as the red fox, and unique differences in protein structure have evolved and been conserved in the Canidae compared to all other mammalian species.
Collapse
Affiliation(s)
- James C Sacco
- Ellis Pharmacogenomics Laboratory, College of Pharmacy and Health Sciences, Drake University, 50311, Des Moines, IA, USA.
| | - Emma Starr
- Ellis Pharmacogenomics Laboratory, College of Pharmacy and Health Sciences, Drake University, 50311, Des Moines, IA, USA
| | - Alyssa Weaver
- Ellis Pharmacogenomics Laboratory, College of Pharmacy and Health Sciences, Drake University, 50311, Des Moines, IA, USA
| | - Rachel Dietz
- Ellis Pharmacogenomics Laboratory, College of Pharmacy and Health Sciences, Drake University, 50311, Des Moines, IA, USA
| | - Muhammad A Spocter
- Department of Anatomy, Des Moines University, 50266, Des Moines, IA, USA
| |
Collapse
|
9
|
Margiana R, Kzar HH, Hussam F, Hameed NM, Al-Qaim ZH, Al-Gazally ME, Kandee M, Saleh MM, Toshbekov BBU, Tursunbaev F, Karampoor S, Mirzaei R. Exploring the impact of miR-128 in inflammatory diseases: A comprehensive study on autoimmune diseases. Pathol Res Pract 2023; 248:154705. [PMID: 37499519 DOI: 10.1016/j.prp.2023.154705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/19/2023] [Accepted: 07/19/2023] [Indexed: 07/29/2023]
Abstract
microRNAs (miRNAs) play a crucial role in various biological processes, including immune system regulation, such as cell proliferation, tolerance (central and peripheral), and T helper cell development. Dysregulation of miRNA expression and activity can disrupt immune responses and increase susceptibility to neuroimmune disorders. Conversely, miRNAs have been shown to have a protective role in modulating immune responses and preventing autoimmunity. Specifically, reducing the expression of miRNA-128 (miR-128) in an Alzheimer's disease (AD) mouse model has been found to improve cognitive deficits and reduce neuropathology. This comprehensive review focuses on the significance of miR-128 in the pathogenesis of neuroautoimmune disorders, including multiple sclerosis (MS), AD, Parkinson's disease (PD), Huntington's disease (HD), epilepsy, as well as other immune-mediated diseases such as inflammatory bowel disease (IBD) and rheumatoid arthritis (RA). Additionally, we present compelling evidence supporting the potential use of miR-128 as a diagnostic or therapeutic biomarker for neuroimmune disorders. Collectively, the available literature suggests that targeting miR-128 could be a promising strategy to alleviate the behavioral symptoms associated with neuroimmune diseases. Furthermore, further research in this area may uncover new insights into the molecular mechanisms underlying these disorders and potentially lead to the development of novel therapeutic approaches.
Collapse
Affiliation(s)
- Ria Margiana
- Department of Anatomy, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia; Master's Programme Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia; Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
| | - Hamzah H Kzar
- Veterinary Medicine College, Al-Qasim Green University, Al-Qasim, Iraq
| | - Fadhil Hussam
- College of Medical Technology, Medical Lab Techniques, Al-farahidi University, Iraq
| | - Noora M Hameed
- Anesthesia Techniques, Al-Nisour University College, Iraq
| | | | | | - Mahmoud Kandee
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Hofuf 31982, Al-Ahsa, Saudi Arabia; Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelshikh University, Kafrelshikh 33516, Egypt
| | - Marwan Mahmood Saleh
- Department of Biophysics, College of Applied Sciences, University Of Anbar, Anbar, Iraq
| | | | - Farkhod Tursunbaev
- MD, Independent Researcher, "Medcloud" educational centre, Tashkent, Uzbekistan
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
10
|
Niu D, Zhang X, Zhang S, Fan T, Zhou X, Wang H, Zhang X, Nan F, Jiang S, Liu F, Wang Y, Wang B. Human Cytomegalovirus IE2 Disrupts Neural Progenitor Development and Induces Microcephaly in Transgenic Mouse. Mol Neurobiol 2023; 60:3883-3897. [PMID: 36991278 DOI: 10.1007/s12035-023-03310-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 02/25/2023] [Indexed: 03/31/2023]
Abstract
Human cytomegalovirus (HCMV) is a significant contributor to congenital birth defects. Limited by the lack of animal models, the pathogenesis of neurological damage in vivo caused by HCMV infection and the role of individual viral genes remain to be elucidated. Immediate early (IE2) protein may play a function in neurodevelopmental problems caused by HCMV infection. Here, this study intended to investigate IE2's long-term effects on development of the brain in IE2-expressing transgenic mice (Rosa26-LSL-IE2+/-, Camk2α-Cre) aimed to observe the phenotype of postnatal mice. The expression of IE2 in transgenic mice was confirmed by PCR and Western blot technology. We collected mouse brain tissue at 2, 4, 6, 8, and 10 days postpartum to analyze the developmental process of neural stem cells by immunofluorescence. We discovered that transgenic mice (Rosa26-LSL-IE2+/-, Camk2α-Cre) can reliably produce IE2 in the brain at various postpartum phases. Furthermore, we also observed the symptoms of microcephaly in postnatal transgenic mice, and IE2 can damage the amount of neural stem cells, prevent them from proliferating and differentiating, and activate microglia and astrocytes, creating an unbalanced environment in the brain's neurons. In conclusion, we demonstrate that long-term expression of HCMV-IE2 can cause microcephaly through molecular mechanisms affecting the differentiation and development of neural stem cells in vivo. This work establishes a theoretical and experimental foundation for elucidating the molecular mechanism of fetal microcephaly brought by HCMV infection in throughout the period of neural development of pregnancy.
Collapse
Affiliation(s)
- Delei Niu
- Department of Pathogenic Biology, College of Basic Medicine, Qingdao University, Qingdao, 266000, Shandong, China
| | - Xianjuan Zhang
- Department of Pathogenic Biology, College of Basic Medicine, Qingdao University, Qingdao, 266000, Shandong, China
| | - Shuyun Zhang
- Department of Pathogenic Biology, College of Basic Medicine, Qingdao University, Qingdao, 266000, Shandong, China
| | - Tianyu Fan
- Department of Immunology, College of Basic Medicine, Qingdao University, Qingdao, 266000, Shandong, China
| | - Xiaoqiong Zhou
- Department of Pathogenic Biology, College of Basic Medicine, Qingdao University, Qingdao, 266000, Shandong, China
| | - Hui Wang
- Department of Special Medicine, College of Basic Medicine, Qingdao University, Qingdao, 266000, Shandong, China
| | - Xueming Zhang
- Department of Pathogenic Biology, College of Basic Medicine, Qingdao University, Qingdao, 266000, Shandong, China
| | - Fulong Nan
- Department of Special Medicine, College of Basic Medicine, Qingdao University, Qingdao, 266000, Shandong, China
| | - Shasha Jiang
- Department of Pathogenic Biology, College of Basic Medicine, Qingdao University, Qingdao, 266000, Shandong, China
| | - Fengjun Liu
- Department of Special Medicine, College of Basic Medicine, Qingdao University, Qingdao, 266000, Shandong, China
| | - Yunyang Wang
- Department of Endocrinology and Metabolism, the Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China.
| | - Bin Wang
- Department of Pathogenic Biology, College of Basic Medicine, Qingdao University, Qingdao, 266000, Shandong, China.
- Department of Special Medicine, College of Basic Medicine, Qingdao University, Qingdao, 266000, Shandong, China.
| |
Collapse
|
11
|
Lanza M, Cuzzocrea S, Oddo S, Esposito E, Casili G. The Role of miR-128 in Neurodegenerative Diseases. Int J Mol Sci 2023; 24:6024. [PMID: 37046996 PMCID: PMC10093830 DOI: 10.3390/ijms24076024] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
Several neurodegenerative disorders are characterized by the accumulation of misfolded proteins and are collectively known as proteinopathies. Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD) represent some of the most common neurodegenerative disorders whose steady increase in prevalence is having a major socio-economic impact on our society. Multiple laboratories have reported hundreds of changes in gene expression in selective brain regions of AD, PD, and HD brains. While the mechanisms underlying these changes remain an active area of investigation, alterations in the expression of noncoding RNAs, which are common in AD, PD, and HD, may account for some of the changes in gene expression in proteinopathies. In this review, we discuss the role of miR-128, which is highly expressed in mammalian brains, in AD, PD, and HD. We highlight how alterations in miR-128 may account, at least in part, for the gene expression changes associated with proteinopathies. Indeed, miR-128 is involved, among other things, in the regulation of neuronal plasticity, cytoskeletal organization, and neuronal death, events linked to various proteinopathies. For example, reducing the expression of miR-128 in a mouse model of AD ameliorates cognitive deficits and reduces neuropathology. Overall, the data in the literature suggest that targeting miR-128 might be beneficial to mitigate the behavioral phenotype associated with these diseases.
Collapse
Affiliation(s)
| | | | - Salvatore Oddo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31-98166 Messina, Italy
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31-98166 Messina, Italy
| | | |
Collapse
|
12
|
Saadeldin IM, Tanga BM, Bang S, Seo C, Maigoro AY, Kang H, Cha D, Yun SH, Kim SI, Lee S, Cho J. Isolation, characterization, proteome, miRNAome, and the embryotrophic effects of chicken egg yolk nanovesicles (vitellovesicles). Sci Rep 2023; 13:4204. [PMID: 36918605 PMCID: PMC10014936 DOI: 10.1038/s41598-023-31012-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/06/2023] [Indexed: 03/16/2023] Open
Abstract
Egg yolk constitutes about a third of the structure of the chicken egg however, the molecular structure and physiological effects of egg yolk-derived lipid membranous vesicles are not clearly understood. In this study, for the first record, the egg yolk nanovesicles (vitellovesicles, VVs) were isolated, characterized, and used as a supplement for porcine embryo culture. Yolks of ten freshly oviposited eggs were filtered and ultracentrifuged at 100,000 × g for 3 h to obtain a pellet. Cryogenic transmission electron microscopy and nanoparticle tracking analysis of the pellet revealed bilipid membranous vesicles. Protein contents of the pellet were analyzed using tandem mass spectrometry and the miRNA content was also profiled through BGISEQ-500 sequencer. VVs were supplemented with the in vitro culture medium of day-7 hatched parthenogenetic blastocysts. After 2 days of blastocyst culture, the embryonic cell count was increased in VVs supplemented embryos in comparison to the non-supplemented embryos. TUNEL assay showed that apoptotic cells were increased in control groups when compared with the VVs supplemented group. Reduced glutathione was increased by 2.5 folds in the VVs supplemented group while reactive oxygen species were increased by 5.3 folds in control groups. Quantitative PCR analysis showed that VVs significantly increased the expression of lipid metabolism-associated genes (monoglyceride lipase and lipase E), anti-apoptotic gene (BCL2), and superoxide dismutase, while significantly reducing apoptotic gene (BAX). Culturing embryos on Matrigel basement membrane matrix indicated that VVs significantly enhanced embryo attachment and embryonic stem cell outgrowths compared to the non-supplemented group. This considers the first report to characterize the molecular bioactive cargo contents of egg yolk nanovesicles to show their embryotrophic effect on mammalian embryos. This effect might be attributed to the protein and miRNA cargo contents of VVs. VVs can be used for the formulation of in vitro culture medium for mammalian embryos including humans.
Collapse
Affiliation(s)
- Islam M Saadeldin
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, 99, Daehak-Ro, Daejeon, 34134, Republic of Korea.
- Research Institute of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea.
| | - Bereket Molla Tanga
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, 99, Daehak-Ro, Daejeon, 34134, Republic of Korea
| | - Seonggyu Bang
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, 99, Daehak-Ro, Daejeon, 34134, Republic of Korea
| | - Chaerim Seo
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, 99, Daehak-Ro, Daejeon, 34134, Republic of Korea
| | - Abdulkadir Y Maigoro
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Heejae Kang
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, 99, Daehak-Ro, Daejeon, 34134, Republic of Korea
| | - Dabin Cha
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, 99, Daehak-Ro, Daejeon, 34134, Republic of Korea
| | - Sung Ho Yun
- Korea Basic Science Institute (KBSI), Ochang, 28119, Republic of Korea
| | - Seung Il Kim
- Korea Basic Science Institute (KBSI), Ochang, 28119, Republic of Korea
| | - Sanghoon Lee
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, 99, Daehak-Ro, Daejeon, 34134, Republic of Korea
| | - Jongki Cho
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, 99, Daehak-Ro, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
13
|
Elias AE, Nuñez TA, Kun B, Kreiling JA. primiReference: a reference for analysis of primary-microRNA expression in single-nucleus sequencing data. J Genet Genomics 2023; 50:108-121. [PMID: 36371075 PMCID: PMC9974815 DOI: 10.1016/j.jgg.2022.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 11/11/2022]
Abstract
Single-nucleus RNA-sequencing technology has revolutionized understanding of nuanced changes in gene expression between cell types within tissues. Unfortunately, our understanding of regulatory RNAs, such as microRNAs (miRNAs), is limited through both single-cell and single-nucleus techniques due to the short length of miRNAs in the cytoplasm and the incomplete reference of longer primary miRNA (pri-miRNA) transcripts in the nucleus. We build a custom reference to align and count pri-miRNA sequences in single-nucleus data. Using young and aged subventricular zone (SVZ) nuclei, we show differential expression of pri-miRNAs targeting genes involved in neural stem cells (NSC) differentiation in the aged SVZ. Furthermore, using wild-type and 5XFAD mouse model cortex nuclei, to validate the use of primiReference, we find cell-type-specific expression of pri-miRNAs known to be involved in Alzheimer's disease (AD). pri-miRNAs likely contribute to NSC dysregulation with age and AD pathology. primiReference is paramount in capturing a global profile of gene expression and regulation in single-nucleus data and can provide key insights into cell-type-specific expression of pri-miRNAs, paving the way for future studies of regulation and pathway dysregulation. By looking at pri-miRNA abundance and transcriptional differences, regulation of gene expression by miRNAs in disease and aging can be further explored.
Collapse
Affiliation(s)
- Amy E Elias
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, 02903, USA
| | - Thomas A Nuñez
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, 02903, USA
| | - Bianca Kun
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, 02903, USA
| | - Jill A Kreiling
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, 02903, USA.
| |
Collapse
|
14
|
Mustafov D, Karteris E, Braoudaki M. Deciphering the Role of microRNA Mediated Regulation of Coronin 1C in Glioblastoma Development and Metastasis. Noncoding RNA 2023; 9:4. [PMID: 36649032 PMCID: PMC9844418 DOI: 10.3390/ncrna9010004] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/28/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023] Open
Abstract
Glioblastoma multiforme (GBM) is a highly heterogenic and malignant brain tumour with a median survival of 15 months. The initial identification of primary glioblastomas is often challenging. Coronin 1C (CORO1C) is a key player in actin rearrangement and cofilin dynamics, as well as enhancing the processes of neurite overgrowth and migration of brain tumour cells. Different bioinformatic databases were accessed to measure CORO1C expression at the mRNA and protein level in normal and malignant brains. CORO1C expression was observed in brain regions which have retained high synaptic plasticity and myelination properties. CORO1C was also expressed mainly within the hippocampus formation, including the Cornu Ammonis (CA) fields: CA1-CA4. Higher expression was also noticed in paediatric GBM in comparison to their adult counterparts. Pediatric cell populations were observed to have an increased log2 expression of CORO1C. Furthermore, 62 miRNAs were found to target the CORO1C gene. Of these, hsa-miR-34a-5p, hsa-miR-512-3p, hsa-miR-136-5p, hsa-miR-206, hsa-miR-128-3p, and hsa-miR-21-5p have shown to act as tumour suppressors or oncomiRs in different neoplasms, including GBM. The elevated expression of CORO1C in high grade metastatic brain malignancies, including GBM, suggests that this protein could have a clinical utility as a biomarker linked to an unfavorable outcome.
Collapse
Affiliation(s)
- Denis Mustafov
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK
- College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK
| | - Emmanouil Karteris
- College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK
| | - Maria Braoudaki
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK
| |
Collapse
|
15
|
Tsujimura K, Shiohama T, Takahashi E. microRNA Biology on Brain Development and Neuroimaging Approach. Brain Sci 2022; 12:brainsci12101366. [PMID: 36291300 PMCID: PMC9599180 DOI: 10.3390/brainsci12101366] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 11/22/2022] Open
Abstract
Proper brain development requires the precise coordination and orchestration of various molecular and cellular processes and dysregulation of these processes can lead to neurological diseases. In the past decades, post-transcriptional regulation of gene expression has been shown to contribute to various aspects of brain development and function in the central nervous system. MicroRNAs (miRNAs), short non-coding RNAs, are emerging as crucial players in post-transcriptional gene regulation in a variety of tissues, such as the nervous system. In recent years, miRNAs have been implicated in multiple aspects of brain development, including neurogenesis, migration, axon and dendrite formation, and synaptogenesis. Moreover, altered expression and dysregulation of miRNAs have been linked to neurodevelopmental and psychiatric disorders. Magnetic resonance imaging (MRI) is a powerful imaging technology to obtain high-quality, detailed structural and functional information from the brains of human and animal models in a non-invasive manner. Because the spatial expression patterns of miRNAs in the brain, unlike those of DNA and RNA, remain largely unknown, a whole-brain imaging approach using MRI may be useful in revealing biological and pathological information about the brain affected by miRNAs. In this review, we highlight recent advancements in the research of miRNA-mediated modulation of neuronal processes that are important for brain development and their involvement in disease pathogenesis. Also, we overview each MRI technique, and its technological considerations, and discuss the applications of MRI techniques in miRNA research. This review aims to link miRNA biological study with MRI analytical technology and deepen our understanding of how miRNAs impact brain development and pathology of neurological diseases.
Collapse
Affiliation(s)
- Keita Tsujimura
- Department of Radiology, Harvard Medical School, Boston, MA 02115, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Group of Brain Function and Development, Nagoya University Neuroscience Institute of the Graduate School of Science, Nagoya 4648602, Japan
- Research Unit for Developmental Disorders, Institute for Advanced Research, Nagoya University, Nagoya 4648602, Japan
- Correspondence: (K.T.); (E.T.)
| | - Tadashi Shiohama
- Department of Pediatrics, Chiba University Hospital, Chiba 2608677, Japan
| | - Emi Takahashi
- Department of Radiology, Harvard Medical School, Boston, MA 02115, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Correspondence: (K.T.); (E.T.)
| |
Collapse
|
16
|
Wagner NR, Sinha A, Siththanandan V, Kowalchuk AM, MacDonald JL, Tharin S. miR-409-3p represses Cited2 to refine neocortical layer V projection neuron identity. Front Neurosci 2022; 16:931333. [PMID: 36248641 PMCID: PMC9558290 DOI: 10.3389/fnins.2022.931333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 09/13/2022] [Indexed: 12/14/2022] Open
Abstract
The evolutionary emergence of the corticospinal tract and corpus callosum are thought to underpin the expansion of complex motor and cognitive abilities in mammals. Molecular mechanisms regulating development of the neurons whose axons comprise these tracts, the corticospinal and callosal projection neurons, remain incompletely understood. Our previous work identified a genomic cluster of microRNAs (miRNAs), Mirg/12qF1, that is unique to placental mammals and specifically expressed by corticospinal neurons, and excluded from callosal projection neurons, during development. We found that one of these, miR-409-3p, can convert layer V callosal into corticospinal projection neurons, acting in part through repression of the transcriptional regulator Lmo4. Here we show that miR-409-3p also directly represses the transcriptional co-regulator Cited2, which is highly expressed by callosal projection neurons from the earliest stages of neurogenesis. Cited2 is highly expressed by intermediate progenitor cells (IPCs) in the embryonic neocortex while Mirg, which encodes miR-409-3p, is excluded from these progenitors. miR-409-3p gain-of-function (GOF) in IPCs results in a phenocopy of established Cited2 loss-of-function (LOF). At later developmental stages, both miR-409-3p GOF and Cited2 LOF promote the expression of corticospinal at the expense of callosal projection neuron markers in layer V. Taken together, this work identifies previously undescribed roles for miR-409-3p in controlling IPC numbers and for Cited2 in controlling callosal fate. Thus, miR-409-3p, possibly in cooperation with other Mirg/12qF1 miRNAs, represses Cited2 as part of the multifaceted regulation of the refinement of neuronal cell fate within layer V, combining molecular regulation at multiple levels in both progenitors and post-mitotic neurons.
Collapse
Affiliation(s)
- Nikolaus R. Wagner
- Department of Biology, Program in Neuroscience, Syracuse University, Syracuse, NY, United States
| | - Ashis Sinha
- Department of Biology, Program in Neuroscience, Syracuse University, Syracuse, NY, United States
| | - Verl Siththanandan
- Department of Neurosurgery, Stanford University Medical Center, Center for Academic Medicine, Palo Alto, CA, United States
| | - Angelica M. Kowalchuk
- Department of Biology, Program in Neuroscience, Syracuse University, Syracuse, NY, United States
| | - Jessica L. MacDonald
- Department of Biology, Program in Neuroscience, Syracuse University, Syracuse, NY, United States,*Correspondence: Jessica L. MacDonald,
| | - Suzanne Tharin
- Department of Neurosurgery, Stanford University Medical Center, Center for Academic Medicine, Palo Alto, CA, United States,Division of Neurosurgery, Palo Alto Veterans Affairs Health Care System, Palo Alto, CA, United States,Suzanne Tharin,
| |
Collapse
|
17
|
Chia SY, Vipin A, Ng KP, Tu H, Bommakanti A, Wang BZ, Tan YJ, Zailan FZ, Ng ASL, Ling SC, Okamura K, Tan EK, Kandiah N, Zeng L. Upregulated Blood miR-150-5p in Alzheimer’s Disease Dementia Is Associated with Cognition, Cerebrospinal Fluid Amyloid-β, and Cerebral Atrophy. J Alzheimers Dis 2022; 88:1567-1584. [DOI: 10.3233/jad-220116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: There is an urgent need for noninvasive, cost-effective biomarkers for Alzheimer’s disease (AD), such as blood-based biomarkers. They will not only support the clinical diagnosis of dementia but also allow for timely pharmacological and nonpharmacological interventions and evaluations. Objective: To identify and validate a novel blood-based microRNA biomarker for dementia of the Alzheimer’s type (DAT). Methods: We conducted microRNA sequencing using peripheral blood mononuclear cells isolated from a discovery cohort and validated the identified miRNAs in an independent cohort and AD postmortem tissues. miRNA correlations with AD pathology and AD clinical-radiological imaging were conducted. We also performed bioinformatics and cell-based assay to identify miRNA target genes. Results: We found that miR-150-5p expression was significantly upregulated in DAT compared to mild cognitive impairment and healthy subjects. Upregulation of miR-150-5p was observed in AD hippocampus. We further found that higher miR-150-5p levels were correlated with the clinical measures of DAT, including lower global cognitive scores, lower CSF Aβ 42, and higher CSF total tau. Interestingly, we observed that higher miR-150-5p levels were associated with MRI brain volumes within the default mode and executive control networks, two key networks implicated in AD. Furthermore, pathway analysis identified the targets of miR-150-5p to be enriched in the Wnt signaling pathway, including programmed cell death 4 (PDCD4). We found that PDCD4 was downregulated in DAT blood and was downregulated by miR-150-5p at both the transcriptional and protein levels Conclusion: Our findings demonstrated that miR-150-5p is a promising clinical blood-based biomarker for DAT
Collapse
Affiliation(s)
- Sook-Yoong Chia
- Neural Stem Cell Research Lab, Research Department, National Neuroscience Institute, Singapore
| | - Ashwati Vipin
- Department of Neurology, National Neuroscience Institute, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technology University, Novena Campus, Singapore
| | - Kok Pin Ng
- Department of Neurology, National Neuroscience Institute, Singapore
- Duke-NUS Medical School, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technology University, Novena Campus, Singapore
| | - Haitao Tu
- Neural Stem Cell Research Lab, Research Department, National Neuroscience Institute, Singapore
| | - Ananth Bommakanti
- Temasek Life Sciences Laboratory, 1 Research Link National University of Singapore, Singapore
| | | | - Yi Jayne Tan
- Department of Neurology, National Neuroscience Institute, Singapore
| | - Fatin Zahra Zailan
- Department of Neurology, National Neuroscience Institute, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technology University, Novena Campus, Singapore
| | - Adeline Su-Lyn Ng
- Department of Neurology, National Neuroscience Institute, Singapore
- Duke-NUS Medical School, Singapore
| | - Shuo-Chian Ling
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Neuroscience & Behavioral Disorders Program, Duke-NUS Medical School, Singapore
| | - Katsutomo Okamura
- Temasek Life Sciences Laboratory, 1 Research Link National University of Singapore, Singapore
- Nara Institute of Science and Technology, Takayama, Ikoma, Nara, Japan
| | - Eng-King Tan
- Neuroscience & Behavioral Disorders Program, Duke-NUS Medical School, Singapore
- Research Department, National Neuroscience Institute, Singapore General Hospital Campus, Singapore
| | - Nagaendran Kandiah
- Department of Neurology, National Neuroscience Institute, Singapore
- Duke-NUS Medical School, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technology University, Novena Campus, Singapore
| | - Li Zeng
- Neural Stem Cell Research Lab, Research Department, National Neuroscience Institute, Singapore
- Neuroscience & Behavioral Disorders Program, Duke-NUS Medical School, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technology University, Novena Campus, Singapore
| |
Collapse
|
18
|
Alvia M, Aytan N, Spencer KR, Foster ZW, Rauf NA, Guilderson L, Robey I, Averill JG, Walker SE, Alvarez VE, Huber BR, Mathais R, Cormier KA, Nicks R, Pothast M, Labadorf A, Agus F, Alosco ML, Mez J, Kowall NW, McKee AC, Brady CB, Stein TD. MicroRNA Alterations in Chronic Traumatic Encephalopathy and Amyotrophic Lateral Sclerosis. Front Neurosci 2022; 16:855096. [PMID: 35663558 PMCID: PMC9160996 DOI: 10.3389/fnins.2022.855096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/09/2022] [Indexed: 11/13/2022] Open
Abstract
Repetitive head impacts (RHI) and traumatic brain injuries are risk factors for the neurodegenerative diseases chronic traumatic encephalopathy (CTE) and amyotrophic lateral sclerosis (ALS). ALS and CTE are distinct disorders, yet in some instances, share pathology, affect similar brain regions, and occur together. The pathways involved and biomarkers for diagnosis of both diseases are largely unknown. MicroRNAs (miRNAs) involved in gene regulation may be altered in neurodegeneration and be useful as stable biomarkers. Thus, we set out to determine associations between miRNA levels and disease state within the prefrontal cortex in a group of brain donors with CTE, ALS, CTE + ALS and controls. Of 47 miRNAs previously implicated in neurological disease and tested here, 28 (60%) were significantly different between pathology groups. Of these, 21 (75%) were upregulated in both ALS and CTE, including miRNAs involved in inflammatory, apoptotic, and cell growth/differentiation pathways. The most significant change occurred in miR-10b, which was significantly increased in ALS, but not CTE or CTE + ALS. Overall, we found patterns of miRNA expression that are common and unique to CTE and ALS and that suggest shared and distinct mechanisms of pathogenesis.
Collapse
Affiliation(s)
- Marcela Alvia
- Boston University Alzheimer’s Disease Research Center, Boston University CTE Center, Boston University School of Medicine, Boston, MA, United States
| | - Nurgul Aytan
- Boston University Alzheimer’s Disease Research Center, Boston University CTE Center, Boston University School of Medicine, Boston, MA, United States
- Department of Neurology, Boston University School of Medicine, Boston, MA, United States
| | | | | | | | | | - Ian Robey
- Southern Arizona VA Healthcare System, Tucson, AZ, United States
| | - James G. Averill
- Southern Arizona VA Healthcare System, Tucson, AZ, United States
| | - Sean E. Walker
- Southern Arizona VA Healthcare System, Tucson, AZ, United States
| | - Victor E. Alvarez
- Boston University Alzheimer’s Disease Research Center, Boston University CTE Center, Boston University School of Medicine, Boston, MA, United States
- Department of Neurology, Boston University School of Medicine, Boston, MA, United States
- VA Boston Healthcare System, Boston, MA, United States
- Department of Veterans Affairs Medical Center, Bedford, MA, United States
| | - Bertrand R. Huber
- Boston University Alzheimer’s Disease Research Center, Boston University CTE Center, Boston University School of Medicine, Boston, MA, United States
- Department of Neurology, Boston University School of Medicine, Boston, MA, United States
- VA Boston Healthcare System, Boston, MA, United States
| | - Rebecca Mathais
- Boston University Alzheimer’s Disease Research Center, Boston University CTE Center, Boston University School of Medicine, Boston, MA, United States
| | - Kerry A. Cormier
- Boston University Alzheimer’s Disease Research Center, Boston University CTE Center, Boston University School of Medicine, Boston, MA, United States
- VA Boston Healthcare System, Boston, MA, United States
- Department of Veterans Affairs Medical Center, Bedford, MA, United States
| | - Raymond Nicks
- Boston University Alzheimer’s Disease Research Center, Boston University CTE Center, Boston University School of Medicine, Boston, MA, United States
| | - Morgan Pothast
- Boston University Alzheimer’s Disease Research Center, Boston University CTE Center, Boston University School of Medicine, Boston, MA, United States
| | - Adam Labadorf
- Department of Neurology, Boston University School of Medicine, Boston, MA, United States
- VA Boston Healthcare System, Boston, MA, United States
| | - Filisia Agus
- Department of Neurology, Boston University School of Medicine, Boston, MA, United States
| | - Michael L. Alosco
- Boston University Alzheimer’s Disease Research Center, Boston University CTE Center, Boston University School of Medicine, Boston, MA, United States
- Department of Neurology, Boston University School of Medicine, Boston, MA, United States
| | - Jesse Mez
- Boston University Alzheimer’s Disease Research Center, Boston University CTE Center, Boston University School of Medicine, Boston, MA, United States
- Department of Neurology, Boston University School of Medicine, Boston, MA, United States
| | - Neil W. Kowall
- Boston University Alzheimer’s Disease Research Center, Boston University CTE Center, Boston University School of Medicine, Boston, MA, United States
- Department of Neurology, Boston University School of Medicine, Boston, MA, United States
- VA Boston Healthcare System, Boston, MA, United States
| | - Ann C. McKee
- Boston University Alzheimer’s Disease Research Center, Boston University CTE Center, Boston University School of Medicine, Boston, MA, United States
- Department of Neurology, Boston University School of Medicine, Boston, MA, United States
- VA Boston Healthcare System, Boston, MA, United States
- Department of Veterans Affairs Medical Center, Bedford, MA, United States
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, United States
| | - Christopher B. Brady
- Department of Neurology, Boston University School of Medicine, Boston, MA, United States
- VA Boston Healthcare System, Boston, MA, United States
- Department of Veterans Affairs Medical Center, Bedford, MA, United States
| | - Thor D. Stein
- Boston University Alzheimer’s Disease Research Center, Boston University CTE Center, Boston University School of Medicine, Boston, MA, United States
- VA Boston Healthcare System, Boston, MA, United States
- Department of Veterans Affairs Medical Center, Bedford, MA, United States
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, United States
| |
Collapse
|
19
|
Insights into the multifaceted role of circular RNAs: implications for Parkinson's disease pathogenesis and diagnosis. NPJ Parkinsons Dis 2022; 8:7. [PMID: 35013342 PMCID: PMC8748951 DOI: 10.1038/s41531-021-00265-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 12/10/2021] [Indexed: 12/13/2022] Open
Abstract
Parkinson's disease (PD) is a complex, age-related, neurodegenerative disease whose etiology, pathology, and clinical manifestations remain incompletely understood. As a result, care focuses primarily on symptoms relief. Circular RNAs (circRNAs) are a large class of mostly noncoding RNAs that accumulate with aging in the brain and are increasingly shown to regulate all aspects of neuronal and glial development and function. They are generated by the spliceosome through the backsplicing of linear RNA. Although their biological role remains largely unknown, they have been shown to regulate transcription and splicing, act as decoys for microRNAs and RNA binding proteins, used as templates for translation, and serve as scaffolding platforms for signaling components. Considering that they are stable, diverse, and detectable in easily accessible biofluids, they are deemed promising biomarkers for diagnosing diseases. CircRNAs are differentially expressed in the brain of patients with PD, and growing evidence suggests that they regulate PD pathogenetic processes. Here, the biogenesis, expression, degradation, and detection of circRNAs, as well as their proposed functions, are reviewed. Thereafter, research linking circRNAs to PD-related processes, including aging, alpha-synuclein dysregulation, neuroinflammation, and oxidative stress is highlighted, followed by recent evidence for their use as prognostic and diagnostic biomarkers for PD.
Collapse
|
20
|
Reséndiz-Castillo LJ, Minjarez B, Reza-Zaldívar EE, Hernández-Sapiéns MA, Gutiérrez-Mercado YK, Canales-Aguirre AA. The effects of altered neurogenic microRNA levels and their involvement in the aggressiveness of periventricular glioblastoma. NEUROLOGÍA (ENGLISH EDITION) 2021; 37:781-793. [PMID: 34810139 DOI: 10.1016/j.nrleng.2019.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 07/08/2019] [Indexed: 10/19/2022] Open
Abstract
INTRODUCTION Glioblastoma multiforme is the most common primary brain tumour, with the least favourable prognosis. Despite numerous studies and medical advances, it continues to be lethal, with an average life expectancy of 15 months after chemo-radiotherapy. DEVELOPMENT Recent research has addressed several factors associated with the diagnosis and prognosis of glioblastoma; one significant factor is tumour localisation, particularly the subventricular zone, which represents one of the most active neurogenic niches of the adult human brain. Glioblastomas in this area are generally more aggressive, resulting in unfavourable prognosis and a shorter life expectancy. Currently, the research into microRNAs (miRNA) has intensified, revealing different expression patterns under physiological and pathophysiological conditions. It has been reported that the expression levels of certain miRNAs, mainly those related to neurogenic processes, are dysregulated in oncogenic events, thus favouring gliomagenesis and greater tumour aggressiveness. This review discusses some of the most important miRNAs involved in subventricular neurogenic processes and their association with glioblastoma aggressiveness. CONCLUSIONS MiRNA regulation and function play an important role in the development and progression of glioblastoma; understanding the alterations of certain miRNAs involved in both differentiation and neural and glial maturation could help us to better understand the malignant characteristics of glioblastoma.
Collapse
Affiliation(s)
- L J Reséndiz-Castillo
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, Jalisco, Mexico
| | - B Minjarez
- Centro Universitario de Ciencias Biológicas y Agropecuarias (CUCBA), Universidad de Guadalajara, Zapopan, Jalisco, Mexico
| | - E E Reza-Zaldívar
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, Jalisco, Mexico
| | - M A Hernández-Sapiéns
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, Jalisco, Mexico
| | - Y K Gutiérrez-Mercado
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, Jalisco, Mexico
| | - A A Canales-Aguirre
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, Jalisco, Mexico; Unidad de Evaluación Preclínica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, Jalisco, Mexico.
| |
Collapse
|
21
|
Abdelrahman AH, Eid OM, Ibrahim MH, Abd El-Fattah SN, Eid MM, Meguid NA. Evaluation of circulating miRNAs and mRNAs expression patterns in autism spectrum disorder. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2021. [DOI: 10.1186/s43042-021-00202-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Autism spectrum disorder is a condition related to brain development that affects a person’s perception and socialization, resulting in problems in social interaction and communication. It has no single known cause, yet several different genes appear to be involved in autism. As a genetically complex disease, dysregulation of miRNA expression and miRNA–mRNA interactions might be a feature of autism spectrum disorder. The aim of the current study was to investigate the expression profile of circulating miRNA-128, miRNA-7 and SHANK gene family in ASD patients and to assess the possible influence of miRNA-128 and miRNA-7 on SHANK genes, which might provide an insight into the pathogenic mechanisms of ASD and introduce noninvasive molecular biomarkers for the disease diagnosis and prognosis. Quantitative real-time PCR technique was employed to determine expression levels of miRNA-128, miRNA-7 and SHANK gene family in blood samples of 40 autistic cases along with 30 age- and sex-matched normal volunteer subjects.
Results
Our study revealed a statistical significant upregulation of miRNA-128 expression levels in ASD cases compared to controls (p value < 0.001). A statistical significant difference in SHANK-3 expression was encountered on comparing cases to controls (p value < 0.001). However, miRNA-7 expression showed no significant difference between the studied groups.
Conclusions
MiRNA-128 and SHANK-3 gene are emerging players in the field of ASD. They are promising candidates as noninvasive biomarkers in autism. Future studies are needed to emphasize their pivotal role.
Collapse
|
22
|
Buglyó G, Magyar Z, Romicsné Görbe É, Bánusz R, Csóka M, Micsik T, Mezei M, Yani JAS, Varga P, Sápi Z, Nagy B. miRNA Profiling of Hungarian Regressive Wilms' Tumor Formalin-Fixed Paraffin-Embedded (FFPE) Samples by Quantitative Real-Time Polymerase Chain Reaction (RT-PCR). Med Sci Monit 2021; 27:e932731. [PMID: 34608109 PMCID: PMC8501895 DOI: 10.12659/msm.932731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Wilms' tumor is a common renal malignancy of early childhood with a generally favorable prognosis depending upon histological subtype. It is becoming increasingly clear that differences in miRNA (microRNA) expression signature represent important clues helping us predict a tumor's response to chemotherapy. In our study, we aimed to reveal miRNAs deregulated in regressive Wilms' tumors from FFPE (formalin-fixed, paraffin-embedded) samples, also showing whether such samples are reliable miRNA sources in Wilms' tumor. MATERIAL AND METHODS Samples from 8 Hungarian patients (3 males, 5 females, aged 1 to 7 years) were analyzed by qRT-PCR (quantitative real-time PCR). A PCR array was used in a pilot experiment, and selected miRNAs (miR-128-3p, miR-184, miR-194-5p, miR-203a) were studied in the rest of the samples using individual primers. RESULTS miR-194-5p was underexpressed in all tumor samples. miR-184 and miR-203a were underexpressed in 7 cases, the exception being a case with a high ratio of necrotic blastemal tissue. Results obtained with miR-128-3p are difficult to interpret due to varying directions of expression changes. CONCLUSIONS We conclude that a downregulation of miR-184, miR-194-5p, and miR-203a expression is observed in both regressive and blastemal tumors, but larger-scale studies are needed to confirm whether the degree of their underexpression correlates with the number of blastemal elements in a sample. In most of our FFPE samples aged up to 9 years, RNA extraction provided miRNA with quantity and quality sufficient for qRT-PCR-based analysis, emphasizing the relevance of pathological archives as miRNA sources in future studies.
Collapse
Affiliation(s)
- Gergely Buglyó
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zsófia Magyar
- Department of Obstetrics and Gynaecology, Baross Street Division, Semmelweis University, Budapest, Hungary
| | - Éva Romicsné Görbe
- Department of Obstetrics and Gynaecology, Baross Street Division, Semmelweis University, Budapest, Hungary
| | - Rita Bánusz
- 2nd Department of Paediatrics, Semmelweis University, Budapest, Hungary
| | - Monika Csóka
- 2nd Department of Paediatrics, Semmelweis University, Budapest, Hungary
| | - Tamás Micsik
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Márta Mezei
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Jaxi Ayman Shawky Yani
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Péter Varga
- Department of Obstetrics and Gynaecology, Baross Street Division, Semmelweis University, Budapest, Hungary
| | - Zoltán Sápi
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Bálint Nagy
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
23
|
Wei GZ, Martin KA, Xing PY, Agrawal R, Whiley L, Wood TK, Hejndorf S, Ng YZ, Low JZY, Rossant J, Nechanitzky R, Holmes E, Nicholson JK, Tan EK, Matthews PM, Pettersson S. Tryptophan-metabolizing gut microbes regulate adult neurogenesis via the aryl hydrocarbon receptor. Proc Natl Acad Sci U S A 2021; 118:e2021091118. [PMID: 34210797 PMCID: PMC8271728 DOI: 10.1073/pnas.2021091118] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
While modulatory effects of gut microbes on neurological phenotypes have been reported, the mechanisms remain largely unknown. Here, we demonstrate that indole, a tryptophan metabolite produced by tryptophanase-expressing gut microbes, elicits neurogenic effects in the adult mouse hippocampus. Neurogenesis is reduced in germ-free (GF) mice and in GF mice monocolonized with a single-gene tnaA knockout (KO) mutant Escherichia coli unable to produce indole. External administration of systemic indole increases adult neurogenesis in the dentate gyrus in these mouse models and in specific pathogen-free (SPF) control mice. Indole-treated mice display elevated synaptic markers postsynaptic density protein 95 and synaptophysin, suggesting synaptic maturation effects in vivo. By contrast, neurogenesis is not induced by indole in aryl hydrocarbon receptor KO (AhR-/-) mice or in ex vivo neurospheres derived from them. Neural progenitor cells exposed to indole exit the cell cycle, terminally differentiate, and mature into neurons that display longer and more branched neurites. These effects are not observed with kynurenine, another AhR ligand. The indole-AhR-mediated signaling pathway elevated the expression of β-catenin, Neurog2, and VEGF-α genes, thus identifying a molecular pathway connecting gut microbiota composition and their metabolic function to neurogenesis in the adult hippocampus. Our data have implications for the understanding of mechanisms of brain aging and for potential next-generation therapeutic opportunities.
Collapse
Affiliation(s)
- George Zhang Wei
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921
- National Neuroscience Institute, Singapore 169857
| | - Katherine A Martin
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921
- National Neuroscience Institute, Singapore 169857
| | - Peter Yuli Xing
- The Singapore Centre for Environmental Life Sciences Engineering, School of Biological Sciences, Nanyang Technological University, Singapore 637551
- Interdisciplinary Graduate School, Nanyang Technological University, Singapore 637335
| | - Ruchi Agrawal
- The Singapore Centre for Environmental Life Sciences Engineering, School of Biological Sciences, Nanyang Technological University, Singapore 637551
| | - Luke Whiley
- Australian National Phenome Centre, Health Futures Institute, Murdoch University, Perth WA 6150, Australia
- Perron Institute for Neurological and Translational Science, Nedlands WA 6009, Australia
| | - Thomas K Wood
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA 16802
| | - Sophia Hejndorf
- Department of Neurobiology, Care and Society, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Yong Zhi Ng
- The School of Biological Sciences, Nanyang Technological University, Singapore 637551
| | - Jeremy Zhi Yan Low
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921
| | - Janet Rossant
- Program in Developmental and Stem Cell Biology, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Robert Nechanitzky
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON M5G 2C1, Canada
| | - Elaine Holmes
- Australian National Phenome Centre, Health Futures Institute, Murdoch University, Perth WA 6150, Australia
- Section for Nutrition Research, Imperial College London, London SW7 2AZ, United Kingdom
| | - Jeremy K Nicholson
- Australian National Phenome Centre, Health Futures Institute, Murdoch University, Perth WA 6150, Australia
- Institute of Global Health Innovation, Imperial College London, London SW7 2NA, United Kingdom
| | - Eng-King Tan
- National Neuroscience Institute, Singapore 169857
| | - Paul M Matthews
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921
- UK Dementia Research Institute, Imperial College London, London SW7 2AZ, United Kingdom
- Department of Surgery and Cancer, Imperial College London, London SW7 2AZ, United Kingdom
- Department of Brain Sciences, Imperial College London, London W12 0NN, United Kingdom
| | - Sven Pettersson
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921;
- National Neuroscience Institute, Singapore 169857
- Department of Neurobiology, Care and Society, Karolinska Institutet, 171 77 Stockholm, Sweden
- Faculty of Medical Sciences, Sunway University, 47500 Kuala Lumpur, Malaysia
| |
Collapse
|
24
|
Methylome-wide change associated with response to electroconvulsive therapy in depressed patients. Transl Psychiatry 2021; 11:347. [PMID: 34091594 PMCID: PMC8179923 DOI: 10.1038/s41398-021-01474-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/10/2021] [Accepted: 05/21/2021] [Indexed: 12/31/2022] Open
Abstract
Electroconvulsive therapy (ECT) is a quick-acting and powerful antidepressant treatment considered to be effective in treating severe and pharmacotherapy-resistant forms of depression. Recent studies have suggested that epigenetic mechanisms can mediate treatment response and investigations about the relationship between the effects of ECT and DNA methylation have so far largely taken candidate approaches. In the present study, we examined the effects of ECT on the methylome associated with response in depressed patients (n = 34), testing for differentially methylated CpG sites before the first and after the last ECT treatment. We identified one differentially methylated CpG site associated with the effect of ECT response (defined as >50% decrease in Hamilton Depression Rating Scale score, HDRS), TNKS (q < 0.05; p = 7.15 × 10-8). When defining response continuously (ΔHDRS), the top suggestive differentially methylated CpG site was in FKBP5 (p = 3.94 × 10-7). Regional analyses identified two differentially methylated regions on chromosomes 8 (Šídák's p = 0.0031) and 20 (Šídák's p = 4.2 × 10-5) associated with ΔHDRS. Functional pathway analysis did not identify any significant pathways. A confirmatory look at candidates previously proposed to be involved in ECT mechanisms found CpG sites associated with response only at the nominally significant level (p < 0.05). Despite the limited sample size, the present study was able to identify epigenetic change associated with ECT response suggesting that this approach, especially when involving larger samples, has the potential to inform the study of mechanisms involved in ECT and severe and treatment-resistant depression.
Collapse
|
25
|
Odabasi E, Batman U, Firat-Karalar EN. Unraveling the mysteries of centriolar satellites: time to rewrite the textbooks about the centrosome/cilium complex. Mol Biol Cell 2021; 31:866-872. [PMID: 32286929 PMCID: PMC7185976 DOI: 10.1091/mbc.e19-07-0402] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Centriolar satellites are membraneless granules that localize and move around centrosomes and cilia. Once referred to as structures with no obvious function, research in the past decade has identified satellites as key regulators of a wide range of cellular and organismal processes. Importantly, these studies have revealed a substantial overlap between functions, proteomes, and disease links of satellites with centrosomes and cilia. Therefore, satellites are now accepted as the “third component” of the vertebrate centrosome/cilium complex, which profoundly changes the way we think about the assembly, maintenance, and remodeling of the complex at the cellular and organismal levels. In this perspective, we first provide an overview of the cellular and structural complexities of centriolar satellites. We then describe the progress in the identification of the satellite interactome, which have paved the way to a molecular understanding of their mechanism of action and assembly mechanisms. After exploring current insights into their functions as recently described by loss-of-function studies and comparative evolutionary approaches, we discuss major unanswered questions regarding their functional and compositional diversity and their functions outside centrosomes and cilia.
Collapse
Affiliation(s)
- Ezgi Odabasi
- Department of Molecular Biology and Genetics, Koc University, Istanbul, Turkey
| | - Umut Batman
- Department of Molecular Biology and Genetics, Koc University, Istanbul, Turkey
| | | |
Collapse
|
26
|
Qiu Y, Zhao Z, Chen Q, Zhang B, Yang C. MiR-495 regulates cell proliferation and apoptosis in H 2O 2 stimulated rat spinal cord neurons through targeting signal transducer and activator of transcription 3 (STAT3). ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:461. [PMID: 33850858 PMCID: PMC8039649 DOI: 10.21037/atm-21-102] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background MicroRNA-495 (miR-495) is a post-translational modulator that performs several functions, and it is involved in several disease states. On the other hand, the physiological functions of miR-495 in H2O2 stimulated mouse spinal cord neuronal dysfunction have not yet been fully understood. Methods In this study, we speculated that miR-495 may regulate the expression of STAT3 in the processes of neuronal proliferation and apoptosis following spinal cord injury (SCI). Cell viability was assessed with methyl thiazolyl tetrazolium (MTT) assay. Caspase-3 activity was assayed with ELISA. Cellular apoptotic changes were measured with TUNEL assay. Intracellular ROS production was determined by measuring uptake of dichlorodihydrofluorescein diacetate (DCFH-DA; PCR was used to assay the mRNA expression of STAT3 gene bearing predicted targeting positions for miR-495, while qRT-PCR was used to measure miR-495 mRNA. Results The results demonstrated that treatment of SCNs with H2O2 led to a significant decrease in cell survival, while it enhanced apoptosis. The H2O2 treatment induced cell membrane dysfunction, and increased ROS levels and DNA damage. Interestingly, the expression of miR-495 was markedly suppressed when SCNs were exposed to H2O2. However, miR-495 overexpression reversed H2O2-induced cytotoxicity and apoptosis in SCNs. Moreover, H2O2 exposure elevated protein and mRNA concentrations of STAT3 in SCNs. Bioinformatics analysis showed likely binding domains of miR-495 in the 3'-untranslated regions of STAT3 in SCNs. MiR-495 loss-of-function and gain-of-function significantly up-regulated and down-regulated both STAT3 mRNA and protein expressions, respectively, in SCNs. Conclusions miR-495 overexpression inhibited H2O2-induced SCN dysfunction. This mechanism was mediated through the down-regulation of STAT3 expression.
Collapse
Affiliation(s)
- Yunfeng Qiu
- Department of Orthopedic, Luhe Hospital Affiliated of Yangzhou University Medical College, Nanjing, China
| | - Ziru Zhao
- Department of Orthopedics, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qi Chen
- Department of Orthopaedics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Bin Zhang
- Department of Orthopedics, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chuanjun Yang
- Department of Orthopedics, Anting Hospital, Shanghai, China
| |
Collapse
|
27
|
Impaired neurogenesis in the hippocampus of an adult VPS35 mutant mouse model of Parkinson's disease through interaction with APP. Neurobiol Dis 2021; 153:105313. [PMID: 33636388 DOI: 10.1016/j.nbd.2021.105313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 02/22/2021] [Indexed: 12/27/2022] Open
Abstract
Vacuolar protein sorting protein 35 (VPS35) is a core component of the retromer complex involved in regulating protein trafficking and retrieval. Recently, a missense mutation, Asp620Asn (D620N), in VPS35 (PARK17) has been identified as a pathogenic mutation for late-onset autosomal dominant Parkinson's disease (PD). Although PD is characterized by a range of motor symptoms associated with loss of dopaminergic neurons in the substantial nigra, non-motor symptoms such as impaired hippocampal neurogenesis were observed in both PD patients and animal models of PD caused by multiple PD-linked pathogenic genes such as alpha-synuclein and leucine-rich repeat kinase 2 (LRRK2). However, the role of the VPS35 D620N mutation in adult hippocampal neurogenesis remains unknown. Here, we showed that the VPS35 D620N mutation impaired hippocampal neurogenesis in adult transgenic mice expressing the VPS35 D620N gene. Specifically, we showed a reduction in the neural stem cell pool and neural proliferation and differentiation, retarded migration, and impaired neurite outgrowth in 3-month-old VPS35 D620N mutant mice. Moreover, we found that the VPS35 D620N mutant hyperphosphorylates amyloid precursor protein (APP) at Thr668and interacts with APP. Notably, by crossing the VPS35 D620N mutant mice with APP knockout (KO) mice, we showed that loss of APP function rescues VPS35 D620N-inhibited neurogenesis, neural migration, and maturation. Our study provides important evidence that APP is involved in the VPS35 D620N mutation in regulating adult neurogenesis, which sheds light on the pathogenic mechanisms in PD.
Collapse
|
28
|
Ravanidis S, Bougea A, Karampatsi D, Papagiannakis N, Maniati M, Stefanis L, Doxakis E. Differentially Expressed Circular RNAs in Peripheral Blood Mononuclear Cells of Patients with Parkinson's Disease. Mov Disord 2021; 36:1170-1179. [PMID: 33433033 PMCID: PMC8248110 DOI: 10.1002/mds.28467] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 11/18/2020] [Accepted: 12/08/2020] [Indexed: 12/12/2022] Open
Abstract
Background New noninvasive and affordable molecular approaches that will complement current practices and increase the accuracy of Parkinson's disease (PD) diagnosis are urgently needed. Circular RNAs (circRNAs) are stable noncoding RNAs that accumulate with aging in neurons and are increasingly shown to regulate all aspects of neuronal development and function. Objectives Τhe aims of this study were to identify differentially expressed circRNAs in blood mononuclear cells of patients with idiopathic PD and explore the competing endogenous RNA networks affected. Methods Eighty‐seven circRNAs were initially selected based on relatively high gene expression in the human brain. More than half of these were readily detectable in blood mononuclear cells using real‐time reverse transcription‐polymerase chain reaction. Comparative expression analysis was then performed in blood mononuclear cells from 60 control subjects and 60 idiopathic subjects with PD. Results Six circRNAs were significantly down‐regulated in patients with PD. The classifier that best distinguished PD consisted of four circRNAs with an area under the curve of 0.84. Cross‐linking immunoprecipitation‐sequencing data revealed that the RNA‐binding proteins bound by most of the deregulated circRNAs include the neurodegeneration‐associated FUS, TDP43, FMR1, and ATXN2. MicroRNAs predicted to be sequestered by most deregulated circRNAs have the Gene Ontology categories “protein modification” and “transcription factor activity” mostly enriched. Conclusions This is the first study that identifies specific circRNAs that may serve as diagnostic biomarkers for PD. Because they are highly expressed in the brain and are derived from genes with essential brain functions, they may also hint on the PD pathways affected. © 2021 Biomedical Research Foundation, Academy of Athens. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Stylianos Ravanidis
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Anastasia Bougea
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece.,Center of Clinical Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece.,First Department of Neurology, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Dimitra Karampatsi
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Nikolaos Papagiannakis
- Center of Clinical Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece.,First Department of Neurology, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Matina Maniati
- Center of Clinical Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Leonidas Stefanis
- Center of Clinical Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece.,First Department of Neurology, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Epaminondas Doxakis
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| |
Collapse
|
29
|
Li J, Zhu L, Su H, Liu D, Yan Z, Ni T, Wei H, Goh EL, Chen T. Regulation of miR-128 in the nucleus accumbens affects methamphetamine-induced behavioral sensitization by modulating proteins involved in neuroplasticity. Addict Biol 2021; 26:e12881. [PMID: 32058631 DOI: 10.1111/adb.12881] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 12/12/2019] [Accepted: 01/17/2020] [Indexed: 01/09/2023]
Abstract
Methamphetamine (METH) -induced behavioral sensitization depends on long-term neuroplasticity in the mesolimbic dopamine system, especially in the nucleus accumbens (NAc). miR-128, a brain enriched miRNA, was found to have abilities in regulating neuronal excitability and formation of fear-extinction memory. Here, we aim to identify the role of miR-128 on METH-induced locomotor sensitization of male mice. We identified a significant increase of miR-128 in the NAc of mice upon repeated-intermittent METH exposure but not acute METH administration. Microinjection of adeno-associated virus (AAV)-miR-128 over-expression and inhibition constructs into the NAc of mice resulted in enhanced METH-induced locomotor sensitization and attenuated effects of METH respectively. Isobaric tags for relative and absolute quantification (iTRAQ) technology and ingenuity pathway analysis (IPA) were carried out to uncover the potential molecular mechanisms underlying miR-128-regulated METH sensitization. Differentially expressed proteins, including 25 potential targets for miR-128 were annotated in regulatory pathways that modulate dendritic spines, synaptic transmission and neuritogenesis. Of which, Arf6, Cpeb3 and Nlgn1, were found to be participating in miR-128-regulated METH sensitization. Consistently, METH-induced abnormal changes of Arf6, Cpeb3 and Nlgn1 in the NAc of mice were also detected by qPCR and validated by western blot analysis. Thus, miR-128 may contribute to METH sensitization through controlling neuroplasticity. Our study suggested miR-128 was an important regulator of METH- induced sensitization and also provided the potential molecular networks of miR-128 in regulating METH-induced sensitization.
Collapse
Affiliation(s)
- Jiaqi Li
- College of Forensic Medicine Xi'an Jiaotong University Health Science Center Xi'an Shaanxi 710061 China
- The Key Laboratory of Health Ministry for Forensic Medicine, Xi'an Jiaotong University Shaanxi 710061 China
| | - Li Zhu
- College of Forensic Medicine Xi'an Jiaotong University Health Science Center Xi'an Shaanxi 710061 China
- The Key Laboratory of Health Ministry for Forensic Medicine, Xi'an Jiaotong University Shaanxi 710061 China
| | - Hang Su
- College of Forensic Medicine Xi'an Jiaotong University Health Science Center Xi'an Shaanxi 710061 China
- The Key Laboratory of Health Ministry for Forensic Medicine, Xi'an Jiaotong University Shaanxi 710061 China
| | - Dan Liu
- College of Forensic Medicine Xi'an Jiaotong University Health Science Center Xi'an Shaanxi 710061 China
- The Key Laboratory of Health Ministry for Forensic Medicine, Xi'an Jiaotong University Shaanxi 710061 China
| | - Zhilan Yan
- College of Forensic Medicine Xi'an Jiaotong University Health Science Center Xi'an Shaanxi 710061 China
- The Key Laboratory of Health Ministry for Forensic Medicine, Xi'an Jiaotong University Shaanxi 710061 China
| | - Tong Ni
- College of Forensic Medicine Xi'an Jiaotong University Health Science Center Xi'an Shaanxi 710061 China
- The Key Laboratory of Health Ministry for Forensic Medicine, Xi'an Jiaotong University Shaanxi 710061 China
| | - Han Wei
- College of Forensic Medicine Xi'an Jiaotong University Health Science Center Xi'an Shaanxi 710061 China
- The Key Laboratory of Health Ministry for Forensic Medicine, Xi'an Jiaotong University Shaanxi 710061 China
| | - Eyleen L.K. Goh
- Department of Research National Neuroscience Institute Singapore 308433
- Neuroscience and Mental Health Faculty, Lee Kong China School of Medicine Nanyang Technological University Singapore 308232
| | - Teng Chen
- College of Forensic Medicine Xi'an Jiaotong University Health Science Center Xi'an Shaanxi 710061 China
- The Key Laboratory of Health Ministry for Forensic Medicine, Xi'an Jiaotong University Shaanxi 710061 China
| |
Collapse
|
30
|
An evolutionarily acquired microRNA shapes development of mammalian cortical projections. Proc Natl Acad Sci U S A 2020; 117:29113-29122. [PMID: 33139574 PMCID: PMC7682328 DOI: 10.1073/pnas.2006700117] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The mammalian central nervous system contains unique projections from the cerebral cortex thought to underpin complex motor and cognitive skills, including the corticospinal tract and corpus callosum. The neurons giving rise to these projections—corticospinal and callosal projection neurons—develop from the same progenitors, but acquire strikingly different fates. The broad evolutionary conservation of known genes controlling cortical projection neuron fates raises the question of how the more narrowly conserved corticospinal and callosal projections evolved. We identify a microRNA cluster selectively expressed by corticospinal projection neurons and exclusive to placental mammals. One of these microRNAs promotes corticospinal fate via regulation of the callosal gene LMO4, suggesting a mechanism whereby microRNA regulation during development promotes evolution of neuronal diversity. The corticospinal tract is unique to mammals and the corpus callosum is unique to placental mammals (eutherians). The emergence of these structures is thought to underpin the evolutionary acquisition of complex motor and cognitive skills. Corticospinal motor neurons (CSMN) and callosal projection neurons (CPN) are the archetypal projection neurons of the corticospinal tract and corpus callosum, respectively. Although a number of conserved transcriptional regulators of CSMN and CPN development have been identified in vertebrates, none are unique to mammals and most are coexpressed across multiple projection neuron subtypes. Here, we discover 17 CSMN-enriched microRNAs (miRNAs), 15 of which map to a single genomic cluster that is exclusive to eutherians. One of these, miR-409-3p, promotes CSMN subtype identity in part via repression of LMO4, a key transcriptional regulator of CPN development. In vivo, miR-409-3p is sufficient to convert deep-layer CPN into CSMN. This is a demonstration of an evolutionarily acquired miRNA in eutherians that refines cortical projection neuron subtype development. Our findings implicate miRNAs in the eutherians’ increase in neuronal subtype and projection diversity, the anatomic underpinnings of their complex behavior.
Collapse
|
31
|
The roles of MicroRNAs in neural regenerative medicine. Exp Neurol 2020; 332:113394. [DOI: 10.1016/j.expneurol.2020.113394] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/15/2020] [Accepted: 06/25/2020] [Indexed: 12/22/2022]
|
32
|
Astroglial FMRP deficiency cell-autonomously up-regulates miR-128 and disrupts developmental astroglial mGluR5 signaling. Proc Natl Acad Sci U S A 2020; 117:25092-25103. [PMID: 32958647 DOI: 10.1073/pnas.2014080117] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The loss of fragile X mental retardation protein (FMRP) causes fragile X syndrome (FXS), the most common inherited intellectual disability. How the loss of FMRP alters protein expression and astroglial functions remains essentially unknown. Here we showed that selective loss of astroglial FMRP in vivo up-regulates a brain-enriched miRNA, miR-128-3p, in mouse and human FMRP-deficient astroglia, which suppresses developmental expression of astroglial metabotropic glutamate receptor 5 (mGluR5), a major receptor in mediating developmental astroglia to neuron communication. Selective in vivo inhibition of miR-128-3p in FMRP-deficient astroglia sufficiently rescues decreased mGluR5 function, while astroglial overexpression of miR-128-3p strongly and selectively diminishes developmental astroglial mGluR5 signaling. Subsequent transcriptome and proteome profiling further suggests that FMRP commonly and preferentially regulates protein expression through posttranscriptional, but not transcriptional, mechanisms in astroglia. Overall, our study defines an FMRP-dependent cell-autonomous miR pathway that selectively alters developmental astroglial mGluR5 signaling, unveiling astroglial molecular mechanisms involved in FXS pathogenesis.
Collapse
|
33
|
Feng Y, Yang H, Yue Y, Tian F. MicroRNAs and target genes in epileptogenesis. Epilepsia 2020; 61:2086-2096. [PMID: 32944964 DOI: 10.1111/epi.16687] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/15/2020] [Accepted: 08/17/2020] [Indexed: 12/14/2022]
Abstract
Epilepsy is a chronic brain dysfunction. Current antiepileptic medicines cannot prevent epileptogenesis. Increasing data have shown that microRNAs (miRNAs) are selectively altered within the epileptic hippocampi of experimental models and human tissues, and these alterations affect the genes that control epileptogenesis. Furthermore, manipulation of miRNAs in animal models can modify epileptogenesis. As a result, miRNAs have been proposed as promising targets for treating epilepsy. We searched PubMed using the terms "microRNAs/miRNAs AND epilepsy", "microRNAs/miRNAs AND epileptogenesis", and "microRNAs/miRNAs AND seizure". We selected the articles in which the relationship between miRNAs and target gene(s) was validated and manipulation of miRNAs in in vivo epilepsy models modified epileptogenesis during the chronic phase via gene regulation. A total of 13 miRNAs were found in the present review. Based on the current analysis of miRNAs and their target gene(s), each miRNA has limitations as a potential epilepsy target. Importantly, miR-211 or miR-128 transgenic mice displayed seizures. These findings highlight new developments for epileptogenesis prevention. Developing novel strategies to modify epileptogenesis will be effective in curing epilepsy patients. This article provides an overview of the clinical application of miRNAs as novel targets for epilepsy.
Collapse
Affiliation(s)
- Yanyan Feng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Haojun Yang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Yinyan Yue
- Department of Pediatrics, First Hospital of Zhengzhou University, Zhengzhou, China
| | - Fafa Tian
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
34
|
Jiang M, Vanan S, Tu HT, Zhang W, Zhang ZW, Chia SY, Jang SE, Zeng XX, Yu WP, Xu J, Guo KH, Zeng L. Amyloid precursor protein intracellular domain-dependent regulation of FOXO3a inhibits adult hippocampal neurogenesis. Neurobiol Aging 2020; 95:250-263. [PMID: 32866886 DOI: 10.1016/j.neurobiolaging.2020.07.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 07/14/2020] [Accepted: 07/29/2020] [Indexed: 10/23/2022]
Abstract
The amyloid precursor protein (APP) intracellular domain (AICD) is a metabolic by-product of APP produced through sequential proteolytic cleavage by α-, β-, and γ-secretases. The interaction between AICD and Fe65 has been reported to impair adult neurogenesis in vivo. However, the exact role of AICD in mediating neural stem cell fate remains unclear. To identify the role of AICD in neuronal proliferation and differentiation, as well as to clarify the molecular mechanisms underlying the role of AICD in neurogenesis, we first generated a mouse model expressing the Rosa26-based AICD transgene. AICD overexpression did not alter the spatiotemporal expression pattern of full-length APP or accumulation of its metabolites. In addition, AICD decreased the newly generated neural progenitor cell (NPC) pool, inhibited the proliferation and differentiation efficiency of NPCs, and increased cell death both in vitro and in vivo. Given that abnormal neurogenesis is often associated with depression-like behavior in adult mice, we conducted a forced swim test and tail suspension test with AICD mice and found a depression-like behavioral phenotype in AICD transgenic mice. Moreover, AICD stimulated FOXO3a transcriptional activation, which in turn negatively regulated AICD. In addition, functional loss of FOXO3a in NPCs derived from the hippocampal dentate gyrus of adult AICD transgenic mice rescued neurogenesis defects. AICD also increased the mRNA expression of FOXO3a target genes related to neurogenesis and cell death. These results suggest that FOXO3a is the functional target of AICD in neurogenesis regulation. Our study reveals the role of AICD in mediating neural stem cell fate to maintain homeostasis during brain development via interaction with FOXO3a.
Collapse
Affiliation(s)
- Mei Jiang
- Department of Neurobiology and Anatomy, Sun Yat-Sen University Zhongshan School of Medicine, Guangzhou, PR China; Neural Stem Cell Research Lab, Research Department, National Neuroscience Institute, Singapore
| | - Sarivin Vanan
- Neural Stem Cell Research Lab, Research Department, National Neuroscience Institute, Singapore
| | - Hai-Tao Tu
- Neural Stem Cell Research Lab, Research Department, National Neuroscience Institute, Singapore
| | - Wei Zhang
- Neural Stem Cell Research Lab, Research Department, National Neuroscience Institute, Singapore
| | - Zhi-Wei Zhang
- Neural Stem Cell Research Lab, Research Department, National Neuroscience Institute, Singapore
| | - Sook-Yoong Chia
- Neural Stem Cell Research Lab, Research Department, National Neuroscience Institute, Singapore
| | - Se Eun Jang
- Neural Stem Cell Research Lab, Research Department, National Neuroscience Institute, Singapore
| | - Xiao-Xia Zeng
- Neural Stem Cell Research Lab, Research Department, National Neuroscience Institute, Singapore
| | - Wei-Ping Yu
- Animal Gene Editing Laboratory, Biological resource Centre, A∗STAR, Singapore; Institute of Molecular and Cell Biology, A∗STAR, Proteos, Singapore
| | - Jie Xu
- Department of Neurobiology and Anatomy, Sun Yat-Sen University Zhongshan School of Medicine, Guangzhou, PR China.
| | - Kai-Hua Guo
- Department of Neurobiology and Anatomy, Sun Yat-Sen University Zhongshan School of Medicine, Guangzhou, PR China.
| | - Li Zeng
- Neural Stem Cell Research Lab, Research Department, National Neuroscience Institute, Singapore; Neuroscience and Behavioral Disorders Program, DUKE-NUS Graduate Medical School, Singapore; Lee Kong Chian School of Medicine, Nanyang Technology University, Novena Campus, Singapore.
| |
Collapse
|
35
|
Khoo ATT, Kim PJ, Kim HM, Je HS. Neural circuit analysis using a novel intersectional split intein-mediated split-Cre recombinase system. Mol Brain 2020; 13:101. [PMID: 32616061 PMCID: PMC7331137 DOI: 10.1186/s13041-020-00640-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 06/23/2020] [Indexed: 11/10/2022] Open
Abstract
The defining features of a neuron are its functional and anatomical connections with thousands of other neurons in the brain. Together, these neurons form functional networks that direct animal behavior. Current approaches that allow the interrogation of specific populations of neurons and neural circuits rely heavily on targeting their gene expression profiles or connectivity. However, these approaches are often unable to delineate specific neuronal populations. Here, we developed a novel intersectional split intein-mediated split-Cre recombinase system that can selectively label specific types of neurons based on their gene expression profiles and structural connectivity. We developed this system by splitting Cre recombinase into two fragments with evolved split inteins and subsequently expressed one fragment under the influence of a cell type-specific promoter in a transgenic animal, and delivered the other fragment via retrograde viral gene transfer. This approach results in the reconstitution of Cre recombinase in only specific population of neurons projecting from a specific brain region or in those of a specific neuronal type. Taken together, our split intein-based split-Cre system will be useful for sophisticated characterization of mammalian brain circuits.
Collapse
Affiliation(s)
- Audrey Tze Ting Khoo
- Neuroscience and Behavioural Disorders Programme, Duke-National University of Singapore (NUS) Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Paul Jong Kim
- Neuroscience and Behavioural Disorders Programme, Duke-National University of Singapore (NUS) Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Ho Min Kim
- Graduate School of Medical Science & Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.,Center for Biomolecular & Cellular Structure, Institute for Basic Science (IBS), Daejeon, 34126, Republic of Korea
| | - H Shawn Je
- Neuroscience and Behavioural Disorders Programme, Duke-National University of Singapore (NUS) Medical School, 8 College Road, Singapore, 169857, Singapore.
| |
Collapse
|
36
|
miR-128a Acts as a Regulator in Cardiac Development by Modulating Differentiation of Cardiac Progenitor Cell Populations. Int J Mol Sci 2020; 21:ijms21031158. [PMID: 32050579 PMCID: PMC7038042 DOI: 10.3390/ijms21031158] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/04/2020] [Accepted: 02/06/2020] [Indexed: 11/18/2022] Open
Abstract
MicroRNAs (miRs) appear to be major, yet poorly understood players in regulatory networks guiding cardiogenesis. We sought to identify miRs with unknown functions during cardiogenesis analyzing the miR-profile of multipotent Nkx2.5 enhancer cardiac progenitor cells (NkxCE-CPCs). Besides well-known candidates such as miR-1, we found about 40 miRs that were highly enriched in NkxCE-CPCs, four of which were chosen for further analysis. Knockdown in zebrafish revealed that only miR-128a affected cardiac development and function robustly. For a detailed analysis, loss-of-function and gain-of-function experiments were performed during in vitro differentiations of transgenic murine pluripotent stem cells. MiR-128a knockdown (1) increased Isl1, Sfrp5, and Hcn4 (cardiac transcription factors) but reduced Irx4 at the onset of cardiogenesis, (2) upregulated Isl1-positive CPCs, whereas NkxCE-positive CPCs were downregulated, and (3) increased the expression of the ventricular cardiomyocyte marker Myl2 accompanied by a reduced beating frequency of early cardiomyocytes. Overexpression of miR-128a (4) diminished the expression of Isl1, Sfrp5, Nkx2.5, and Mef2c, but increased Irx4, (5) enhanced NkxCE-positive CPCs, and (6) favored nodal-like cardiomyocytes (Tnnt2+, Myh6+, Shox2+) accompanied by increased beating frequencies. In summary, we demonstrated that miR-128a plays a so-far unknown role in early heart development by affecting the timing of CPC differentiation into various cardiomyocyte subtypes.
Collapse
|
37
|
Jiang Y, Wang Y, Sun Y, Jiang H. Long non-coding RNA Peg13 attenuates the sevoflurane toxicity against neural stem cells by sponging microRNA-128-3p to preserve Sox13 expression. PLoS One 2020; 15:e0243644. [PMID: 33296418 PMCID: PMC7725402 DOI: 10.1371/journal.pone.0243644] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 11/24/2020] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Exposure to anesthetics during brain development may impair neurological function, however, the mechanisms underlying anesthetic neurotoxicity are unclear. Recent studies indicate that long non-coding RNAs (lncRNAs) are crucial for regulating the functional brain development during neurogenesis. This study aimed to determine the regulatory effects and potential mechanisms of lncRNA Peg13 (Peg13) on sevoflurane exposure-related neurotoxicity against neural stem cells (NSCs). METHODS Mouse embryotic NSCs were isolated and their self-renewal and differentiation were characterized by immunofluorescence. NSCs were exposed to 4.1% sevoflurane 2 h daily for three consecutive days. The potential toxicities of sevoflurane against NSCs were evaluated by neurosphere formation, 5-ethynyl-2'-deoxyuridine (EdU) incorporation and flow cytometry assays. The Peg13, miR-128-3p and Sox13 expression in NSCs were quantified. The potential interactions among Peg13, miR-128-3p and Sox13 were analyzed by luciferase reporter assay. The effects of Peg13 and/or miR-128-3p over-expression on the sevoflurane-related neurotoxicity and Sox13 expression were determined in NSCs. RESULTS The isolated mouse embryotic NSCs displayed potent self-renewal ability and differentiated into neurons, astrocytes and oligodendrocytes in vitro, which were significantly inhibited by sevoflurane exposure. Sevoflurane exposure significantly down-regulated Peg13 and Sox13, but enhanced miR-128-3p expression in NSCs. Transfection with miR-128-3p mimics, but not the control, significantly mitigated the Peg13 or Sox13-regulated luciferase expression in 293T cells. Peg13 over-expression significantly reduced the sevoflurane-related neurotoxicity and increased Sox13 expression in NSCs, which were mitigated by miR-128-3p transfection. CONCLUSION Such data indicated that Peg13 mitigated the sevoflurane-related neurotoxicity by sponging miR-128-3p to preserve Sox13 expression in NSCs.
Collapse
Affiliation(s)
- Yunfeng Jiang
- Department of Anesthesiology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Center for Specialty Strategy Research of Shanghai Jiao Tong University China Hospital Development Institute, Shanghai, China
| | - Yue Wang
- Department of Anesthesiology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Center for Specialty Strategy Research of Shanghai Jiao Tong University China Hospital Development Institute, Shanghai, China
| | - Yu Sun
- Department of Anesthesiology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Center for Specialty Strategy Research of Shanghai Jiao Tong University China Hospital Development Institute, Shanghai, China
- * E-mail: (YS); (HJ)
| | - Hong Jiang
- Department of Anesthesiology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Center for Specialty Strategy Research of Shanghai Jiao Tong University China Hospital Development Institute, Shanghai, China
- * E-mail: (YS); (HJ)
| |
Collapse
|
38
|
Gao Y, Zhang R, Wei G, Dai S, Zhang X, Yang W, Li X, Bai C. Long Non-coding RNA Maternally Expressed 3 Increases the Expression of Neuron-Specific Genes by Targeting miR-128-3p in All-Trans Retinoic Acid-Induced Neurogenic Differentiation From Amniotic Epithelial Cells. Front Cell Dev Biol 2019; 7:342. [PMID: 31921854 PMCID: PMC6936004 DOI: 10.3389/fcell.2019.00342] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 12/03/2019] [Indexed: 12/16/2022] Open
Abstract
MicroRNA (miR)-128-3p is a brain-enriched miRNA that participates in the regulation of neural cell differentiation and the protection of neurons, but the mechanisms by which miR-128-3p regulates its target and downstream genes to influence cell fate from adult stem cells are poorly understood. In this study, we show down-regulation of miR-128-3p during all-trans retinoic acid (ATRA)-induced neurogenic differentiation from amniotic epithelial cells (AECs). We investigated miR-128-3p in both the Notch pathway and in the expression of neuron-specific genes predicted to be involved in miR-128-3p signaling to elucidate its role in the genetic regulation of downstream neurogenic differentiation. Our results demonstrate that miR-128-3p is a negative regulator for the transcription of the neuron-specific genes β III-tubulin, neuron-specific enolase (NSE), and polysialic acid-neural cell adhesion molecule (PSA-NCAM) via targeting Jagged 1 to inhibit activation of the Notch signaling pathway. We also used bioinformatics algorithms to screen for miR-128-3p interactions with long non-coding (lnc) RNA and circular RNA as competing endogenous RNAs to further elucidate underlying down-regulated molecular mechanisms. The lncRNA maternally expressed 3 is up-regulated by the ATRA/cAMP/CREB pathway, and it, in turn, is directly down-regulated by miR-128-3p to increase the amount of neuron differentiation. Endogenous miRNAs are, therefore, involved in neurogenic differentiation from AECs and should be considered during the development of effective cell transplant therapies for the treatment of neurodegenerative disease.
Collapse
Affiliation(s)
- Yuhua Gao
- Institute of Precision Medicine, School of Clinical Medicine, Jining Medical University, Jining, China.,Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ranxi Zhang
- Department of Spine Surgery, Qingdao Municipal Hospital, Qingdao, China
| | - Guanghe Wei
- Institute of Precision Medicine, School of Clinical Medicine, Jining Medical University, Jining, China
| | - Shanshan Dai
- Institute of Precision Medicine, School of Clinical Medicine, Jining Medical University, Jining, China
| | - Xue Zhang
- Institute of Precision Medicine, School of Clinical Medicine, Jining Medical University, Jining, China
| | - Wancai Yang
- Institute of Precision Medicine, School of Clinical Medicine, Jining Medical University, Jining, China.,Department of Pathology, University of Illinois at Chicago, Chicago, IL, United States
| | - Xiangchen Li
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.,College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Lin'an, China
| | - Chunyu Bai
- Institute of Precision Medicine, School of Clinical Medicine, Jining Medical University, Jining, China.,Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
39
|
Aamodt CM, Farias-Virgens M, White SA. Birdsong as a window into language origins and evolutionary neuroscience. Philos Trans R Soc Lond B Biol Sci 2019; 375:20190060. [PMID: 31735151 DOI: 10.1098/rstb.2019.0060] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Humans and songbirds share the key trait of vocal learning, manifested in speech and song, respectively. Striking analogies between these behaviours include that both are acquired during developmental critical periods when the brain's ability for vocal learning peaks. Both behaviours show similarities in the overall architecture of their underlying brain areas, characterized by cortico-striato-thalamic loops and direct projections from cortical neurons onto brainstem motor neurons that control the vocal organs. These neural analogies extend to the molecular level, with certain song control regions sharing convergent transcriptional profiles with speech-related regions in the human brain. This evolutionary convergence offers an unprecedented opportunity to decipher the shared neurogenetic underpinnings of vocal learning. A key strength of the songbird model is that it allows for the delineation of activity-dependent transcriptional changes in the brain that are driven by learned vocal behaviour. To capitalize on this advantage, we used previously published datasets from our laboratory that correlate gene co-expression networks to features of learned vocalization within and after critical period closure to probe the functional relevance of genes implicated in language. We interrogate specific genes and cellular processes through converging lines of evidence: human-specific evolutionary changes, intelligence-related phenotypes and relevance to vocal learning gene co-expression in songbirds. This article is part of the theme issue 'What can animal communication teach us about human language?'
Collapse
Affiliation(s)
- Caitlin M Aamodt
- Neuroscience Interdepartmental Program, University of California Los Angeles, CA 90095-7239, USA
| | - Madza Farias-Virgens
- Molecular, Cellular and Integrative Physiology Interdepartmental Program, University of California Los Angeles, CA 90095-7239, USA
| | - Stephanie A White
- Neuroscience Interdepartmental Program, University of California Los Angeles, CA 90095-7239, USA.,Molecular, Cellular and Integrative Physiology Interdepartmental Program, University of California Los Angeles, CA 90095-7239, USA.,Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA 90095-7239, USA
| |
Collapse
|
40
|
Translating neural stem cells to neurons in the mammalian brain. Cell Death Differ 2019; 26:2495-2512. [PMID: 31551564 DOI: 10.1038/s41418-019-0411-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 07/05/2019] [Accepted: 08/08/2019] [Indexed: 02/07/2023] Open
Abstract
The mammalian neocortex underlies our perception of sensory information, performance of motor activities, and higher-order cognition. During mammalian embryogenesis, radial glial precursor cells sequentially give rise to diverse populations of excitatory cortical neurons, followed by astrocytes and oligodendrocytes. A subpopulation of these embryonic neural precursors persists into adulthood as neural stem cells, which give rise to inhibitory interneurons and glia. Although the intrinsic mechanisms instructing the genesis of these distinct progeny have been well-studied, most work to date has focused on transcriptional, epigenetic, and cell-cycle control. Recent studies, however, have shown that posttranscriptional mechanisms also regulate the cell fate choices of transcriptionally primed neural precursors during cortical development. These mechanisms are mediated primarily by RNA-binding proteins and microRNAs that coordinately regulate mRNA translation, stability, splicing, and localization. Together, these findings point to an extensive network of posttranscriptional control and provide insight into both normal cortical development and disease. They also add another layer of complexity to brain development and raise important biological questions for future investigation.
Collapse
|
41
|
Lee JH, Choi JH, Chueng STD, Pongkulapa T, Yang L, Cho HY, Choi JW, Lee KB. Nondestructive Characterization of Stem Cell Neurogenesis by a Magneto-Plasmonic Nanomaterial-Based Exosomal miRNA Detection. ACS NANO 2019; 13:8793-8803. [PMID: 31361458 DOI: 10.1021/acsnano.9b01875] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The full realization of stem cell-based treatments for neurodegenerative diseases requires precise control and characterization of stem cell fate. Herein, we report a multifunctional magneto-plasmonic nanorod (NR)-based detection platform to address the limitations associated with the current destructive characterization methods of stem cell neurogenesis. Exosomes and their inner contents have been discovered to play critical roles in cell-cell interactions and intrinsic cellular regulations and have received wide attention as next-generation biomarkers. Moreover, exosomal microRNAs (miRNA) also offer an essential avenue for nondestructive molecular analyses of cell cytoplasm components. To this end, our developed nondestructive, selective, and sensitive detection platform has (i) an immunomagnetic active component for exosome isolation and (ii) a plasmonic/metal-enhanced fluorescence component for sensitive exosomal miRNA detection to characterize stem cell differentiation. In a proof-of-concept demonstration, our multifunctional magneto-plasmonic NR successfully detected the expression level of miRNA-124 and characterized neurogenesis of human-induced pluripotent stem cell-derived neural stem cells in a nondestructive and efficient manner. Furthermore, we demonstrated the versatility and feasibility of our multifunctional magneto-plasmonic NRs by characterizing a heterogeneous population of neural cells in an ex vivo rodent model. Collectively, we believe our multifunctional magneto-plasmonic NR-based exosomal miRNA detection platform has a great potential to investigate the function of cell-cell interactions and intrinsic cellular regulators for controlling stem cell differentiation.
Collapse
Affiliation(s)
- Jin-Ho Lee
- Department of Chemistry and Chemical Biology , Rutgers University , Piscataway , New Jersey 08854 , United States
- Department of Chemical and Biomolecular Engineering , Sogang University , Seoul 04107 , Republic of Korea
| | - Jin-Ha Choi
- Department of Chemistry and Chemical Biology , Rutgers University , Piscataway , New Jersey 08854 , United States
- Department of Chemical and Biomolecular Engineering , Sogang University , Seoul 04107 , Republic of Korea
| | - Sy-Tsong Dean Chueng
- Department of Chemistry and Chemical Biology , Rutgers University , Piscataway , New Jersey 08854 , United States
| | - Thanapat Pongkulapa
- Department of Chemistry and Chemical Biology , Rutgers University , Piscataway , New Jersey 08854 , United States
| | - Letao Yang
- Department of Chemistry and Chemical Biology , Rutgers University , Piscataway , New Jersey 08854 , United States
| | - Hyeon-Yeol Cho
- Department of Chemistry and Chemical Biology , Rutgers University , Piscataway , New Jersey 08854 , United States
- Department of Chemical and Biomolecular Engineering , Sogang University , Seoul 04107 , Republic of Korea
| | - Jeong-Woo Choi
- Department of Chemical and Biomolecular Engineering , Sogang University , Seoul 04107 , Republic of Korea
| | - Ki-Bum Lee
- Department of Chemistry and Chemical Biology , Rutgers University , Piscataway , New Jersey 08854 , United States
- Department of Life and Nanopharmaceutical Science, College of Pharmacy , Kyung Hee University , Seoul 02447 , Republic of Korea
| |
Collapse
|
42
|
Gheiratmand L, Coyaud E, Gupta GD, Laurent EMN, Hasegan M, Prosser SL, Gonçalves J, Raught B, Pelletier L. Spatial and proteomic profiling reveals centrosome-independent features of centriolar satellites. EMBO J 2019; 38:e101109. [PMID: 31304627 PMCID: PMC6627244 DOI: 10.15252/embj.2018101109] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 05/09/2019] [Accepted: 05/10/2019] [Indexed: 12/19/2022] Open
Abstract
Centriolar satellites are small electron-dense granules that cluster in the vicinity of centrosomes. Satellites have been implicated in multiple critical cellular functions including centriole duplication, centrosome maturation, and ciliogenesis, but their precise composition and assembly properties have remained poorly explored. Here, we perform in vivo proximity-dependent biotin identification (BioID) on 22 human satellite proteins, to identify 2,113 high-confidence interactions among 660 unique polypeptides. Mining this network, we validate six additional satellite components. Analysis of the satellite interactome, combined with subdiffraction imaging, reveals the existence of multiple unique microscopically resolvable satellite populations that display distinct protein interaction profiles. We further show that loss of satellites in PCM1-depleted cells results in a dramatic change in the satellite interaction landscape. Finally, we demonstrate that satellite composition is largely unaffected by centriole depletion or disruption of microtubules, indicating that satellite assembly is centrosome-independent. Together, our work offers the first systematic spatial and proteomic profiling of human centriolar satellites and paves the way for future studies aimed at better understanding the biogenesis and function(s) of these enigmatic structures.
Collapse
Affiliation(s)
- Ladan Gheiratmand
- Lunenfeld‐Tanenbaum Research InstituteMount Sinai HospitalTorontoONCanada
| | - Etienne Coyaud
- Princess Margaret Cancer CentreUniversity Health NetworkTorontoONCanada
| | - Gagan D Gupta
- Lunenfeld‐Tanenbaum Research InstituteMount Sinai HospitalTorontoONCanada
- Present address:
Department of Chemistry and BiologyRyerson UniversityTorontoONCanada
| | | | - Monica Hasegan
- Lunenfeld‐Tanenbaum Research InstituteMount Sinai HospitalTorontoONCanada
| | - Suzanna L Prosser
- Lunenfeld‐Tanenbaum Research InstituteMount Sinai HospitalTorontoONCanada
| | - João Gonçalves
- Lunenfeld‐Tanenbaum Research InstituteMount Sinai HospitalTorontoONCanada
| | - Brian Raught
- Princess Margaret Cancer CentreUniversity Health NetworkTorontoONCanada
- Department of Medical BiophysicsUniversity of TorontoTorontoONCanada
| | - Laurence Pelletier
- Lunenfeld‐Tanenbaum Research InstituteMount Sinai HospitalTorontoONCanada
- Department of Molecular GeneticsUniversity of TorontoTorontoONCanada
| |
Collapse
|
43
|
Zhang W, Tan YW, Yam WK, Tu H, Qiu L, Tan EK, Chu JJH, Zeng L. In utero infection of Zika virus leads to abnormal central nervous system development in mice. Sci Rep 2019; 9:7298. [PMID: 31086212 PMCID: PMC6513999 DOI: 10.1038/s41598-019-43303-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 04/16/2019] [Indexed: 12/14/2022] Open
Abstract
The World Health Organization has declared ZIKA virus (ZIKV) a global public health emergency, prompted by the association of ZIKV infections with severe brain abnormalities in the human fetus. ZIKV preferentially targets human neuronal precursor cells (NPCs) in both monolayer and cortical brain organoid culture systems and stunts their growth. Although ZIKV is well recognized to cause microcephaly, there is no systematic analysis to demonstrate the effect of ZIKV on central nervous system (CNS) development, including brain malformations and spinal cord dysfunction. Here, we conducted a longitudinal analysis to show that a novel mouse model (infected in utero and monitored after birth until adulthood) recapitulates the effects of ZIKV infection affecting neural stem cells fate and leads to a thinner cortex and a smaller brain. Furthermore, we demonstrate the effect of ZIKV on spinal cord function. Specifically, we found significant reductions in neuron numbers in the anterior horn of grey matter of the spinal cord and muscle dystrophy with a significant decrease in forepaw grip strength in the ZIKV group. Thus, the established mouse model of ZIKV infection leading to abnormal CNS development will help to further advance our understanding of the disease pathogenesis.
Collapse
Affiliation(s)
- Wei Zhang
- Neural Stem Cell Research Lab, Research Department, National Neuroscience Institute, Singapore, 308433, Singapore
| | - Yong Wah Tan
- Collaborative Translation Unit for HFMD, Institute of Molecular and Cell Biology, Agency of Science, Technology & Research (A STAR), Singapore, 138673, Singapore
| | - Wan Keat Yam
- Collaborative Translation Unit for HFMD, Institute of Molecular and Cell Biology, Agency of Science, Technology & Research (A STAR), Singapore, 138673, Singapore
| | - Haitao Tu
- Neural Stem Cell Research Lab, Research Department, National Neuroscience Institute, Singapore, 308433, Singapore
| | - Lifeng Qiu
- Neural Stem Cell Research Lab, Research Department, National Neuroscience Institute, Singapore, 308433, Singapore
| | - Eng King Tan
- Research Department, National Neuroscience Institute, SGH Campus, Singapore, 169856, Singapore.,Department of Neurology, National Neuroscience Institute, SGH Campus, Singapore, 169856, Singapore.,Neuroscience & Behavioral Disorders Program, DUKE-NUS Graduate Medical School, Singapore, 169857, Singapore
| | - Justin Jang Hann Chu
- Collaborative Translation Unit for HFMD, Institute of Molecular and Cell Biology, Agency of Science, Technology & Research (A STAR), Singapore, 138673, Singapore.,Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Li Zeng
- Neural Stem Cell Research Lab, Research Department, National Neuroscience Institute, Singapore, 308433, Singapore. .,Neuroscience & Behavioral Disorders Program, DUKE-NUS Graduate Medical School, Singapore, 169857, Singapore. .,Lee Kong Chian School of Medicine, Novena Campus, 11 Mandalay Road, Singapore, 308232, Singapore.
| |
Collapse
|
44
|
Liu P, Han Z, Ma Q, Liu T, Wang R, Tao Z, Li G, Li F, Zhang S, Li L, Ji X, Zhao H, Luo Y. Upregulation of MicroRNA-128 in the Peripheral Blood of Acute Ischemic Stroke Patients is Correlated with Stroke Severity Partially through Inhibition of Neuronal Cell Cycle Reentry. Cell Transplant 2019; 28:839-850. [PMID: 31037985 PMCID: PMC6719498 DOI: 10.1177/0963689719846848] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
MiR-128, one of the most enriched miRNAs in the human brain, has been reported to protect MCAO mice via inhibiting P38α MAPK. Whether it is involved in pathogenesis in acute ischemic stroke patients remains to be determined. The present study focused on the clinical importance of miR-128 and its underlying mechanisms. We detected miR-128 levels in the circulating lymphocytes, neutrophils, and plasma of acute ischemic stroke patients by using RT-PCR. miR-128 levels were significantly elevated in circulating lymphocytes, neutrophils, and plasma of patients with acute ischemic stroke. In addition, miR-128 levels in circulating lymphocytes correlated positively with the infarction volume, NIHSS scores at 7 days and mRS at 90 days after ischemic stroke onset. Subsequent KEGG pathway analysis showed that the MAPK signaling pathway and cell cycle are among the pathways targeted by miR-128. Although no correlation was found between miR-128 in plasma and peripheral inflammatory cell numbers, miR-128 decreased in the penumbra and increased in the infarction core of ipsilateral brain tissues in MCAO mice. Moreover, an in vitro study demonstrated that miR-128 antagomir aggravated primary neuronal damage and exacerbated cell cycle reactivation induced by OGD/R stimulation; the underlying mechanism involved increasing cyclin A2, PTEN, and ERK expression and promoting phosphorylation of PTEN and ERK. From the above results, we concluded that the upregulation of miR-128 in circulating lymphocytes of acute ischemic stroke patients was correlated with stroke severity and miR-128 antagomir exacerbated ischemia-reperfusion induced neuronal injury via promoting neuronal cell cycle reentry.
Collapse
Affiliation(s)
- Ping Liu
- 1 Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China.,Both the authors contributed equally to this article
| | - Ziping Han
- 1 Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China.,2 Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, China.,Both the authors contributed equally to this article
| | - Qingfeng Ma
- 1 Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Tao Liu
- 1 Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Rongliang Wang
- 1 Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China.,2 Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, China
| | - Zhen Tao
- 1 Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China.,2 Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, China
| | - Guangwen Li
- 1 Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Fangfang Li
- 1 Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Sijia Zhang
- 1 Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Lingzhi Li
- 1 Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Xuming Ji
- 1 Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China.,2 Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, China.,3 Beijing Institute for Brain Disorders, China
| | - Haiping Zhao
- 1 Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China.,2 Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, China
| | - Yumin Luo
- 1 Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China.,2 Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, China.,3 Beijing Institute for Brain Disorders, China
| |
Collapse
|
45
|
Odabasi E, Gul S, Kavakli IH, Firat-Karalar EN. Centriolar satellites are required for efficient ciliogenesis and ciliary content regulation. EMBO Rep 2019; 20:embr.201947723. [PMID: 31023719 PMCID: PMC6549029 DOI: 10.15252/embr.201947723] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/21/2019] [Accepted: 04/01/2019] [Indexed: 12/20/2022] Open
Abstract
Centriolar satellites are ubiquitous in vertebrate cells. They have recently emerged as key regulators of centrosome/cilium biogenesis, and their mutations are linked to ciliopathies. However, their precise functions and mechanisms of action remain poorly understood. Here, we generated a kidney epithelial cell line (IMCD3) lacking satellites by CRISPR/Cas9-mediated PCM1 deletion and investigated the cellular and molecular consequences of satellite loss. Cells lacking satellites still formed full-length cilia but at significantly lower numbers, with changes in the centrosomal and cellular levels of key ciliogenesis factors. Using these cells, we identified new ciliary functions of satellites such as regulation of ciliary content, Hedgehog signaling, and epithelial cell organization in three-dimensional cultures. However, other functions of satellites, namely proliferation, cell cycle progression, and centriole duplication, were unaffected in these cells. Quantitative transcriptomic and proteomic profiling revealed that loss of satellites affects transcription scarcely, but significantly alters the proteome. Importantly, the centrosome proteome mostly remains unaltered in the cells lacking satellites. Together, our findings identify centriolar satellites as regulators of efficient cilium assembly and function and provide insight into disease mechanisms of ciliopathies.
Collapse
Affiliation(s)
- Ezgi Odabasi
- Department of Molecular Biology and Genetics, Koç University, Istanbul, Turkey
| | - Seref Gul
- Department of Molecular Biology and Genetics, Koç University, Istanbul, Turkey.,Department of Chemical and Biological Engineering, Koç University, Istanbul, Turkey
| | - Ibrahim H Kavakli
- Department of Molecular Biology and Genetics, Koç University, Istanbul, Turkey.,Department of Chemical and Biological Engineering, Koç University, Istanbul, Turkey
| | | |
Collapse
|
46
|
Quesnel-Vallières M, Weatheritt RJ, Cordes SP, Blencowe BJ. Autism spectrum disorder: insights into convergent mechanisms from transcriptomics. Nat Rev Genet 2018; 20:51-63. [DOI: 10.1038/s41576-018-0066-2] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
47
|
Brunn A. The complex pericentriolar material 1 protein allows differentiation between myonuclei and nuclei of satellite cells of the skeletal muscle. Acta Physiol (Oxf) 2018; 223:e13103. [PMID: 29804318 DOI: 10.1111/apha.13103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Anna Brunn
- Department of Neuropathology; University Hospital of Cologne; Cologne Germany
| |
Collapse
|
48
|
Abstract
The noncoding portion of the genome, including microRNAs, has been fertile evolutionary soil for cortical development in primates. A major contribution to cortical expansion in primates is the generation of novel precursor cell populations. Because miRNA expression profiles track closely with cell identity, it is likely that numerous novel microRNAs have contributed to cellular diversity in the brain. The tools to determine the genomic context within which novel microRNAs emerge and how they become integrated into molecular circuitry are now in hand.
Collapse
Affiliation(s)
- Kenneth S Kosik
- Neuroscience Research Institute and Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, California 93106, USA;
| | - Tomasz Nowakowski
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, California 94143, USA.,Department of Anatomy, University of California, San Francisco, California 94158, USA
| |
Collapse
|
49
|
Rehfeld F, Maticzka D, Grosser S, Knauff P, Eravci M, Vida I, Backofen R, Wulczyn FG. The RNA-binding protein ARPP21 controls dendritic branching by functionally opposing the miRNA it hosts. Nat Commun 2018; 9:1235. [PMID: 29581509 PMCID: PMC5964322 DOI: 10.1038/s41467-018-03681-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 03/02/2018] [Indexed: 12/19/2022] Open
Abstract
About half of mammalian miRNA genes lie within introns of protein-coding genes, yet little is known about functional interactions between miRNAs and their host genes. The intronic miRNA miR-128 regulates neuronal excitability and dendritic morphology of principal neurons during mouse cerebral cortex development. Its conserved host genes, R3hdm1 and Arpp21, are predicted RNA-binding proteins. Here we use iCLIP to characterize ARPP21 recognition of uridine-rich sequences with high specificity for 3′UTRs. ARPP21 antagonizes miR-128 activity by co-regulating a subset of miR-128 target mRNAs enriched for neurodevelopmental functions. Protein–protein interaction data and functional assays suggest that ARPP21 acts as a positive post-transcriptional regulator by interacting with the translation initiation complex eIF4F. This molecular antagonism is reflected in inverse activities during dendritogenesis: miR-128 overexpression or knockdown of ARPP21 reduces dendritic complexity; ectopic ARPP21 leads to an increase. Thus, we describe a unique example of convergent function by two products of a single gene. Many microRNA encoding regions are within introns of other coding genes, and yet the molecular or functional interaction between the two is unclear. This study shows that miR-128′s function is opposed by its host gene ARPP21, and they have complementary effects on neuronal development.
Collapse
Affiliation(s)
- Frederick Rehfeld
- Institute for Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Daniel Maticzka
- Department of Computer Science, Albert-Ludwigs-Universität Freiburg, Georges-Köhler-Allee 106, 79110, Freiburg im Breisgau, Germany
| | - Sabine Grosser
- Institute for Integrative Neuroanatomy, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Pina Knauff
- Institute for Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Murat Eravci
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Thielallee 63, 14195, Berlin, Germany
| | - Imre Vida
- Institute for Integrative Neuroanatomy, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Rolf Backofen
- Department of Computer Science, Albert-Ludwigs-Universität Freiburg, Georges-Köhler-Allee 106, 79110, Freiburg im Breisgau, Germany
| | - F Gregory Wulczyn
- Institute for Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany.
| |
Collapse
|
50
|
Zhang Y, Shen B, Zhang D, Wang Y, Tang Z, Ni N, Jin X, Luo M, Sun H, Gu P. miR-29a regulates the proliferation and differentiation of retinal progenitors by targeting Rbm8a. Oncotarget 2018; 8:31993-32008. [PMID: 28404883 PMCID: PMC5458264 DOI: 10.18632/oncotarget.16669] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 03/17/2017] [Indexed: 12/19/2022] Open
Abstract
During development, tight regulation of the expansion of retinal progenitor cells (RPCs) and their differentiation into neuronal and glial cells is important for retinal formation and function. Our study demonstrated that microRNA (miR)-29a modulated the proliferation and differentiation of RPCs by suppressing RBM8A (one of the factors in the exon junction complex). Particularly, overexpression of miR-29a reduced RPC proliferation but accelerated RPC differentiation. By contrast, reduction of endogenous miR-29a elicited the opposite effects. Overexpression of miR-29a repressed the translation of Rbm8a, thus negatively regulating RPC proliferation and promoting the neuronal and glial differentiation of RPCs, and knockdown of endogenous Rbm8a phenocopied the observed effects of miR-29a overexpression. Furthermore, a luciferase reporter assay showed that miR-29a directly interacted with the Rbm8a mRNA 3′UTR, which indicated that Rbm8a is the direct target of miR-29a. To further verify the result, co-overexpression of the Rbm8a 3′ UTR-wt (plasmids into which the Rbm8a 3′ UTR sequence had been introduced) and miR-29a in RPCs rescued the phenotype associated with miR-29a overexpression, reversing the promotion of differentiation and inhibition of proliferation. These results show a novel mechanism by which miR-29a regulates the proliferation and differentiation of RPCs through Rbm8a.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China
| | - Bingqiao Shen
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China
| | - Dandan Zhang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China
| | - Yuyao Wang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China
| | - Zhimin Tang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China
| | - Ni Ni
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China
| | - Xiaoliang Jin
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China
| | - Min Luo
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China
| | - Hao Sun
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China
| | - Ping Gu
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China
| |
Collapse
|