1
|
Hayward R, Moore S, Artun D, Madhavan A, Harte E, Torres-Pérez JV, Nagy I. Transcriptional reprogramming post-peripheral nerve injury: A systematic review. Neurobiol Dis 2024; 200:106624. [PMID: 39097036 DOI: 10.1016/j.nbd.2024.106624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/27/2024] [Accepted: 07/30/2024] [Indexed: 08/05/2024] Open
Abstract
Neuropathic pain is characterised by periodic or continuous hyperalgesia, numbness, or allodynia, and results from insults to the somatosensory nervous system. Peripheral nerve injury induces transcriptional reprogramming in peripheral sensory neurons, contributing to increased spinal nociceptive input and the development of neuropathic pain. Effective treatment for neuropathic pain remains an unmet medical need as current therapeutics offer limited effectiveness and have undesirable effects. Understanding transcriptional changes in peripheral nerve injury-induced neuropathy might offer a path for novel analgesics. Our literature search identified 65 papers exploring transcriptomic changes post-peripheral nerve injury, many of which were conducted in animal models. We scrutinize their transcriptional changes data and conduct gene ontology enrichment analysis to reveal their common functional profile. Focusing on genes involved in 'sensory perception of pain' (GO:0019233), we identified transcriptional changes for different ion channels, receptors, and neurotransmitters, shedding light on its role in nociception. Examining peripheral sensory neurons subtype-specific transcriptional reprograming and regeneration-associated genes, we delved into downstream regulation of hypersensitivity. Identifying the temporal program of transcription regulatory mechanisms might help develop better therapeutics to target them effectively and selectively, thus preventing the development of neuropathic pain without affecting other physiological functions.
Collapse
Affiliation(s)
- R Hayward
- Nociception Group, Department of Surgery and Cancer, Division of Anaesthetics, Pain Medicine and Intensive Care, Chelsea and Westminster Hospital Campus, Imperial College London, 369 Fulham Road, London SW10 9FJ, UK
| | - S Moore
- Nociception Group, Department of Surgery and Cancer, Division of Anaesthetics, Pain Medicine and Intensive Care, Chelsea and Westminster Hospital Campus, Imperial College London, 369 Fulham Road, London SW10 9FJ, UK
| | - D Artun
- Nociception Group, Department of Surgery and Cancer, Division of Anaesthetics, Pain Medicine and Intensive Care, Chelsea and Westminster Hospital Campus, Imperial College London, 369 Fulham Road, London SW10 9FJ, UK
| | - A Madhavan
- Nociception Group, Department of Surgery and Cancer, Division of Anaesthetics, Pain Medicine and Intensive Care, Chelsea and Westminster Hospital Campus, Imperial College London, 369 Fulham Road, London SW10 9FJ, UK
| | - E Harte
- Nociception Group, Department of Surgery and Cancer, Division of Anaesthetics, Pain Medicine and Intensive Care, Chelsea and Westminster Hospital Campus, Imperial College London, 369 Fulham Road, London SW10 9FJ, UK
| | - J V Torres-Pérez
- Departament de Biologia Cel·lular, Biologia Funcional i Antropologia Física, Facultat de Ciències Biològiques, Universitat de València, C/Dr. Moliner 50, 46100 Burjassot, Spain.
| | - I Nagy
- Nociception Group, Department of Surgery and Cancer, Division of Anaesthetics, Pain Medicine and Intensive Care, Chelsea and Westminster Hospital Campus, Imperial College London, 369 Fulham Road, London SW10 9FJ, UK.
| |
Collapse
|
2
|
Wang Q, Ye Y, Yang L, Xiao L, Liu J, Zhang W, Du G. Painful diabetic neuropathy: The role of ion channels. Biomed Pharmacother 2024; 173:116417. [PMID: 38490158 DOI: 10.1016/j.biopha.2024.116417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/06/2024] [Accepted: 03/06/2024] [Indexed: 03/17/2024] Open
Abstract
Painful diabetic neuropathy (PDN) is a common chronic complication of diabetes that causes neuropathic pain and negatively affects the quality of life. The management of PDN is far from satisfactory. At present, interventions are primarily focused on symptomatic treatment. Ion channel disorders are a major cause of PDN, and a complete understanding of their roles and mechanisms may provide better options for the clinical treatment of PDN. Therefore, this review summarizes the important role of ion channels in PDN and the current drug development targeting these ion channels.
Collapse
Affiliation(s)
- Qi Wang
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Centre, West China Hospital, Sichuan University, Chengdu, China; National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Yifei Ye
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Centre, West China Hospital, Sichuan University, Chengdu, China; National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Linghui Yang
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Centre, West China Hospital, Sichuan University, Chengdu, China; National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Lifan Xiao
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Centre, West China Hospital, Sichuan University, Chengdu, China; National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Jin Liu
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Centre, West China Hospital, Sichuan University, Chengdu, China; National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Wensheng Zhang
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Centre, West China Hospital, Sichuan University, Chengdu, China; National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China.
| | - Guizhi Du
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Centre, West China Hospital, Sichuan University, Chengdu, China; National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
3
|
Mansfield M, Thacker M. Integrating jigsaw puzzle thinking into practice: the assessment of cervical spine radiculopathy. Curr Opin Support Palliat Care 2023; 17:135-141. [PMID: 37389587 DOI: 10.1097/spc.0000000000000656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
PURPOSE OF REVIEW Cervical spine radiculopathy (CSR) presents a complex socioeconomic problem for patients, clinicians, families, employers and healthcare systems. Due to the heterogeneity of clinical presentation and underlying mechanisms, clinical assessment can be challenging. This review will examine the literature on the underlying pathophysiology and studies investigating the holistic assessment strategies for this disabling condition. The authors will focus particular attention on the psychological factors associated with CSR and the physical and imaging strategies to establish a diagnosis. RECENT FINDINGS Contemporary CSR assessment should identify the underlying pathomechanisms and how this may impact the somatosensory nervous system integrity and function. No physical assessment test in isolation will establish CSR diagnosis; therefore, clinicians should utilise a cluster of tests and recognise the potential limitations as part of a clinical reasoning framework. The assessment of the somatosensory nervous system can provide insights into particular subgroups of CSR presentation, which may provide interesting opportunities to continue to enhance individualised assessment and management strategies for CSR. The interplay between psychological factors can influence the diagnosis and recovery times for a person with CSR, and clinicians should continue to explore how these factors may influence a person's prognosis. The authors will discuss the opportunities for future research and limitations of contemporary approaches to assessment, underpinned by evidence, and how this supports a clinical assessment to establish CSR diagnosis. SUMMARY Research should continue to investigate how clinicians assess the interplay between physical and psychological factors to inform the establishment of CSR. Specifically, there is a need to investigate the validity and reliability of combining somatosensory, motor and imaging assessment findings to reach a diagnosis and inform onward management plans.
Collapse
Affiliation(s)
- Michael Mansfield
- Faculty of Medicine and Health Sciences, University of East Anglia, Norwich
- School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston
- Centre of Precision Rehabilitation for Spinal Pain, University of Birmingham, Birmingham, UK
| | - Mick Thacker
- School of Physiotherapy, Royal College of Surgeons Ireland, Dublin 2, Ireland
| |
Collapse
|
4
|
Dolma S, Joshi A. The Node of Ranvier as an Interface for Axo-Glial Interactions: Perturbation of Axo-Glial Interactions in Various Neurological Disorders. J Neuroimmune Pharmacol 2023; 18:215-234. [PMID: 37285016 DOI: 10.1007/s11481-023-10072-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 05/19/2023] [Indexed: 06/08/2023]
Abstract
The action potential conduction along the axon is highly dependent on the healthy interactions between the axon and myelin-producing glial cells. Myelin, which facilitates action potential, is the protective insulation around the axon formed by Schwann cells and oligodendrocytes in the peripheral (PNS) and central nervous system (CNS), respectively. Myelin is a continuous structure with intermittent gaps called nodes of Ranvier, which are the sites enriched with ion channels, transmembrane, scaffolding, and cytoskeletal proteins. Decades-long extensive research has identified a comprehensive proteome with strictly regularized localization at the node of Ranvier. Concurrently, axon-glia interactions at the node of Ranvier have gathered significant attention as the pathophysiological targets for various neurodegenerative disorders. Numerous studies have shown the alterations in the axon-glia interactions culminating in neurological diseases. In this review, we have provided an update on the molecular composition of the node of Ranvier. Further, we have discussed in detail the consequences of disruption of axon-glia interactions during the pathogenesis of various CNS and PNS disorders.
Collapse
Affiliation(s)
- Sonam Dolma
- Department of Pharmacy, Birla Institute of Technology and Sciences- Pilani, Hyderabad campus, Telangana state, India
| | - Abhijeet Joshi
- Department of Pharmacy, Birla Institute of Technology and Sciences- Pilani, Hyderabad campus, Telangana state, India.
| |
Collapse
|
5
|
Radomski KL, Zi X, Lischka FW, Noble MD, Galdzicki Z, Armstrong RC. Acute axon damage and demyelination are mitigated by 4-aminopyridine (4-AP) therapy after experimental traumatic brain injury. Acta Neuropathol Commun 2022; 10:67. [PMID: 35501931 PMCID: PMC9059462 DOI: 10.1186/s40478-022-01366-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/11/2022] [Indexed: 11/10/2022] Open
Abstract
Damage to long axons in white matter tracts is a major pathology in closed head traumatic brain injury (TBI). Acute TBI treatments are needed that protect against axon damage and promote recovery of axon function to prevent long term symptoms and neurodegeneration. Our prior characterization of axon damage and demyelination after TBI led us to examine repurposing of 4-aminopyridine (4-AP), an FDA-approved inhibitor of voltage-gated potassium (Kv) channels. 4-AP is currently indicated to provide symptomatic relief for patients with chronic stage multiple sclerosis, which involves axon damage and demyelination. We tested clinically relevant dosage of 4-AP as an acute treatment for experimental TBI and found multiple benefits in corpus callosum axons. This randomized, controlled pre-clinical study focused on the first week after TBI, when axons are particularly vulnerable. 4-AP treatment initiated one day post-injury dramatically reduced axon damage detected by intra-axonal fluorescence accumulations in Thy1-YFP mice of both sexes. Detailed electron microscopy in C57BL/6 mice showed that 4-AP reduced pathological features of mitochondrial swelling, cytoskeletal disruption, and demyelination at 7 days post-injury. Furthermore, 4-AP improved the molecular organization of axon nodal regions by restoring disrupted paranode domains and reducing Kv1.2 channel dispersion. 4-AP treatment did not resolve deficits in action potential conduction across the corpus callosum, based on ex vivo electrophysiological recordings at 7 days post-TBI. Thus, this first study of 4-AP effects on axon damage in the acute period demonstrates a significant decrease in multiple pathological hallmarks of axon damage after experimental TBI.
Collapse
Affiliation(s)
- Kryslaine L. Radomski
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814 USA
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814 USA
| | - Xiaomei Zi
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814 USA
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814 USA
| | - Fritz W. Lischka
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814 USA
- Biomedical Instrumentation Center, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814 USA
| | - Mark D. Noble
- Department of Biomedical Genetics, School of Medicine and Dentistry, University of Rochester, 601 Elmwood Ave, Box 633, Rochester, NY 14642 USA
| | - Zygmunt Galdzicki
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814 USA
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814 USA
| | - Regina C. Armstrong
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814 USA
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814 USA
| |
Collapse
|
6
|
Seery N, Butzkueven H, O'Brien TJ, Monif M. Contemporary advances in antibody-mediated encephalitis: anti-LGI1 and anti-Caspr2 antibody (Ab)-mediated encephalitides. Autoimmun Rev 2022; 21:103074. [PMID: 35247644 DOI: 10.1016/j.autrev.2022.103074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 02/27/2022] [Indexed: 01/17/2023]
Abstract
Encephalitides with antibodies directed against leucine-rich glioma-inactivated 1 (LGI1) and contactin-associated protein-like 2 (Caspr2) represent two increasingly well characterised forms of autoimmune encephalitis. Both share overlapping and distinct clinical features, are mediated by autoantibodies directed against differing proteins complexed with voltage-gated potassium channels, with unique genetic predisposition identified to date. Herein we summarise disease mechanisms, clinical features, treatment considerations, prognostic factors and clinical outcomes regarding these disorders.
Collapse
Affiliation(s)
- Nabil Seery
- Department of Neuroscience, Central Clinical School, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, Victoria, Australia; Department of Neurology, Alfred Hospital, Melbourne, Victoria, Australia
| | - Helmut Butzkueven
- Department of Neuroscience, Central Clinical School, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, Victoria, Australia; Department of Neurology, Alfred Hospital, Melbourne, Victoria, Australia
| | - Terence J O'Brien
- Department of Neuroscience, Central Clinical School, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, Victoria, Australia; Department of Neurology, Alfred Hospital, Melbourne, Victoria, Australia
| | - Mastura Monif
- Department of Neuroscience, Central Clinical School, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, Victoria, Australia; Department of Neurology, Alfred Hospital, Melbourne, Victoria, Australia; Department of Neurology, Royal Melbourne Hospital, Melbourne, Victoria, Australia.
| |
Collapse
|
7
|
Britton OJ, Rodriguez B. A population of in silico models identifies the interplay between Nav 1.8 conductance and potassium currents as key in regulating human dorsal root ganglion neuron excitability. F1000Res 2022; 11:104. [PMID: 39290372 PMCID: PMC11406138 DOI: 10.12688/f1000research.74551.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/21/2021] [Indexed: 09/19/2024] Open
Abstract
Background: The Nav 1.8 sodium channel has a key role in generating repetitive action potentials in nociceptive human dorsal root ganglion neurons. Nav 1.8 is differentiated from other voltage-gated sodium channels by its unusually slow inactivation kinetics and depolarised voltage-dependence of activation. These features are particularly pronounced in the human Nav 1.8 channel and allow the channel to remain active during repolarisation. Gain-of-function mutations in Nav 1.8 have been linked to neuropathic pain and selective blockers of Nav 1.8 have been developed as potential new analgesics. However, it is not well understood how modulating the Nav 1.8 conductance alters neuronal excitability and how this depends on the balance of other ion channels expressed by nociceptive neurons. Methods: To investigate this, we developed a novel computational model of the human dorsal root ganglion neuron and used it to construct a population of models that mimicked inter-neuronal heterogeneity in ionic conductances and action potential morphology Results: By simulating changes to the Nav 1.8 conductance in the population of models, we found that moderately increasing the Nav 1.8 conductance led to increased firing rate, as expected, but increasing Nav 1.8 conductance beyond an inflection point caused firing rate to decrease. We found that the delayed rectifier and M-type potassium conductances were also critical for determining neuronal excitability. In particular, altering the delayed rectifier potassium conductance shifted the position of the Nav 1.8 inflection point and therefore the relationship between Nav 1.8 conductance and firing rate. Conclusions: Our results suggest that the effects of modulating Nav 1.8 in a nociceptive neuron can depend significantly on other conductances, particularly potassium conductances.
Collapse
Affiliation(s)
- Oliver J Britton
- Department of Computer Science, University of Oxford, Oxford, OX1 3QD, UK
| | - Blanca Rodriguez
- Department of Computer Science, University of Oxford, Oxford, OX1 3QD, UK
| |
Collapse
|
8
|
Alles SRA, Smith PA. Peripheral Voltage-Gated Cation Channels in Neuropathic Pain and Their Potential as Therapeutic Targets. FRONTIERS IN PAIN RESEARCH 2021; 2:750583. [PMID: 35295464 PMCID: PMC8915663 DOI: 10.3389/fpain.2021.750583] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 11/10/2021] [Indexed: 11/25/2022] Open
Abstract
The persistence of increased excitability and spontaneous activity in injured peripheral neurons is imperative for the development and persistence of many forms of neuropathic pain. This aberrant activity involves increased activity and/or expression of voltage-gated Na+ and Ca2+ channels and hyperpolarization activated cyclic nucleotide gated (HCN) channels as well as decreased function of K+ channels. Because they display limited central side effects, peripherally restricted Na+ and Ca2+ channel blockers and K+ channel activators offer potential therapeutic approaches to pain management. This review outlines the current status and future therapeutic promise of peripherally acting channel modulators. Selective blockers of Nav1.3, Nav1.7, Nav1.8, Cav3.2, and HCN2 and activators of Kv7.2 abrogate signs of neuropathic pain in animal models. Unfortunately, their performance in the clinic has been disappointing; some substances fail to meet therapeutic end points whereas others produce dose-limiting side effects. Despite this, peripheral voltage-gated cation channels retain their promise as therapeutic targets. The way forward may include (i) further structural refinement of K+ channel activators such as retigabine and ASP0819 to improve selectivity and limit toxicity; use or modification of Na+ channel blockers such as vixotrigine, PF-05089771, A803467, PF-01247324, VX-150 or arachnid toxins such as Tap1a; the use of Ca2+ channel blockers such as TTA-P2, TTA-A2, Z 944, ACT709478, and CNCB-2; (ii) improving methods for assessing "pain" as opposed to nociception in rodent models; (iii) recognizing sex differences in pain etiology; (iv) tailoring of therapeutic approaches to meet the symptoms and etiology of pain in individual patients via quantitative sensory testing and other personalized medicine approaches; (v) targeting genetic and biochemical mechanisms controlling channel expression using anti-NGF antibodies such as tanezumab or re-purposed drugs such as vorinostat, a histone methyltransferase inhibitor used in the management of T-cell lymphoma, or cercosporamide a MNK 1/2 inhibitor used in treatment of rheumatoid arthritis; (vi) combination therapy using drugs that are selective for different channel types or regulatory processes; (vii) directing preclinical validation work toward the use of human or human-derived tissue samples; and (viii) application of molecular biological approaches such as clustered regularly interspaced short palindromic repeats (CRISPR) technology.
Collapse
Affiliation(s)
- Sascha R A Alles
- Department of Anesthesiology and Critical Care Medicine, University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Peter A Smith
- Department of Pharmacology, Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
9
|
Studying Independent Kcna6 Knock-out Mice Reveals Toxicity of Exogenous LacZ to Central Nociceptor Terminals and Differential Effects of Kv1.6 on Acute and Neuropathic Pain Sensation. J Neurosci 2021; 41:9141-9162. [PMID: 34544832 DOI: 10.1523/jneurosci.0187-21.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 11/21/2022] Open
Abstract
The potassium channel Kv1.6 has recently been implicated as a major modulatory channel subunit expressed in primary nociceptors. Furthermore, its expression at juxtaparanodes of myelinated primary afferents is induced following traumatic nerve injury as part of an endogenous mechanism to reduce hyperexcitability and pain-related hypersensitivity. In this study, we compared two mouse models of constitutive Kv1.6 knock-out (KO) achieved by different methods: traditional gene trap via homologous recombination and CRISPR-mediated excision. Both Kv1.6 KO mouse lines exhibited an unexpected reduction in sensitivity to noxious heat stimuli, to differing extents: the Kv1.6 mice produced via gene trap had a far more significant hyposensitivity. These mice (Kcna6lacZ ) expressed the bacterial reporter enzyme LacZ in place of Kv1.6 as a result of the gene trap mechanism, and we found that their central primary afferent presynaptic terminals developed a striking neurodegenerative phenotype involving accumulation of lipid species, development of "meganeurites," and impaired transmission to dorsal horn wide dynamic range neurons. The anatomic defects were absent in CRISPR-mediated Kv1.6 KO mice (Kcna6 -/-) but were present in a third mouse model expressing exogenous LacZ in nociceptors under the control of a Nav1.8-promoted Cre recombinase. LacZ reporter enzymes are thus intrinsically neurotoxic to sensory neurons and may induce pathologic defects in transgenic mice, which has confounding implications for the interpretation of gene KOs using lacZ Nonetheless, in Kcna6 -/- mice not affected by LacZ, we demonstrated a significant role for Kv1.6 regulating acute noxious thermal sensitivity, and both mechanical and thermal pain-related hypersensitivity after nerve injury.SIGNIFICANCE STATEMENT In recent decades, the expansion of technologies to experimentally manipulate the rodent genome has contributed significantly to the field of neuroscience. While introduction of enzymatic or fluorescent reporter proteins to label neuronal populations is now commonplace, often potential toxicity effects are not fully considered. We show a role of Kv1.6 in acute and neuropathic pain states through analysis of two mouse models lacking Kv1.6 potassium channels: one with additional expression of LacZ and one without. We show that LacZ reporter enzymes induce unintended defects in sensory neurons, with an impact on behavioral data outcomes. To summarize we highlight the importance of Kv1.6 in recovery of normal sensory function following nerve injury, and careful interpretation of data from LacZ reporter models.
Collapse
|
10
|
Middleton SJ, Perez-Sanchez J, Dawes JM. The structure of sensory afferent compartments in health and disease. J Anat 2021; 241:1186-1210. [PMID: 34528255 PMCID: PMC9558153 DOI: 10.1111/joa.13544] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/12/2021] [Accepted: 08/30/2021] [Indexed: 12/20/2022] Open
Abstract
Primary sensory neurons are a heterogeneous population of cells able to respond to both innocuous and noxious stimuli. Like most neurons they are highly compartmentalised, allowing them to detect, convey and transfer sensory information. These compartments include specialised sensory endings in the skin, the nodes of Ranvier in myelinated axons, the cell soma and their central terminals in the spinal cord. In this review, we will highlight the importance of these compartments to primary afferent function, describe how these structures are compromised following nerve damage and how this relates to neuropathic pain.
Collapse
Affiliation(s)
- Steven J Middleton
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | | | - John M Dawes
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
11
|
Schmid AB, Fundaun J, Tampin B. [Entrapment neuropathies: a contemporary approach to pathophysiology, clinical assessment, and management : German version]. Schmerz 2021; 35:419-433. [PMID: 34505948 DOI: 10.1007/s00482-021-00584-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2021] [Indexed: 10/20/2022]
Abstract
Entrapment neuropathies such as carpal tunnel syndrome, radiculopathies, or radicular pain are the most common peripheral neuropathies and also the most common cause for neuropathic pain. Despite their high prevalence, they often remain challenging to diagnose and manage in a clinical setting. Summarising the evidence from both preclinical and clinical studies, this review provides an update on the aetiology and pathophysiology of entrapment neuropathies. Potenzial mechanisms are put in perspective with clinical findings. The contemporary assessment is discussed and diagnostic pitfalls highlighted. The evidence for the noninvasive and surgical management of common entrapment neuropathies is summarised and future areas of research are identified.
Collapse
Affiliation(s)
- Annina B Schmid
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford University, West Wing Level 6, OX3 9DU, Oxford, Großbritannien.
| | - Joel Fundaun
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford University, West Wing Level 6, OX3 9DU, Oxford, Großbritannien.,High Country Physical Therapy, Laramie, WY, USA
| | - Brigitte Tampin
- Department of Physiotherapy, Sir Charles Gairdner Hospital, Perth, Westaustralien, Australien.,School of Physiotherapy and Exercise Science, Curtin University, Westaustralien, Australien.,Fakultät Wirtschafts- und Sozialwissenschaften, Hochschule Osnabrück, Osnabrück, Deutschland
| |
Collapse
|
12
|
MacDonald DI, Luiz AP, Iseppon F, Millet Q, Emery EC, Wood JN. Silent cold-sensing neurons contribute to cold allodynia in neuropathic pain. Brain 2021; 144:1711-1726. [PMID: 33693512 PMCID: PMC8320254 DOI: 10.1093/brain/awab086] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/29/2020] [Accepted: 12/17/2020] [Indexed: 11/25/2022] Open
Abstract
Patients with neuropathic pain often experience innocuous cooling as excruciating pain. The cell and molecular basis of this cold allodynia is little understood. We used in vivo calcium imaging of sensory ganglia to investigate how the activity of peripheral cold-sensing neurons was altered in three mouse models of neuropathic pain: oxaliplatin-induced neuropathy, partial sciatic nerve ligation, and ciguatera poisoning. In control mice, cold-sensing neurons were few in number and small in size. In neuropathic animals with cold allodynia, a set of normally silent large diameter neurons became sensitive to cooling. Many of these silent cold-sensing neurons responded to noxious mechanical stimuli and expressed the nociceptor markers Nav1.8 and CGRPα. Ablating neurons expressing Nav1.8 resulted in diminished cold allodynia. The silent cold-sensing neurons could also be activated by cooling in control mice through blockade of Kv1 voltage-gated potassium channels. Thus, silent cold-sensing neurons are unmasked in diverse neuropathic pain states and cold allodynia results from peripheral sensitization caused by altered nociceptor excitability.
Collapse
Affiliation(s)
- Donald Iain MacDonald
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK
| | - Ana P Luiz
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK
| | - Federico Iseppon
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK
| | - Queensta Millet
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK
| | - Edward C Emery
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK
| | - John N Wood
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK
| |
Collapse
|
13
|
Chesnut M, Hartung T, Hogberg H, Pamies D. Human Oligodendrocytes and Myelin In Vitro to Evaluate Developmental Neurotoxicity. Int J Mol Sci 2021; 22:7929. [PMID: 34360696 PMCID: PMC8347131 DOI: 10.3390/ijms22157929] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/14/2021] [Accepted: 07/21/2021] [Indexed: 01/01/2023] Open
Abstract
Neurodevelopment is uniquely sensitive to toxic insults and there are concerns that environmental chemicals are contributing to widespread subclinical developmental neurotoxicity (DNT). Increased DNT evaluation is needed due to the lack of such information for most chemicals in common use, but in vivo studies recommended in regulatory guidelines are not practical for the large-scale screening of potential DNT chemicals. It is widely acknowledged that developmental neurotoxicity is a consequence of disruptions to basic processes in neurodevelopment and that testing strategies using human cell-based in vitro systems that mimic these processes could aid in prioritizing chemicals with DNT potential. Myelination is a fundamental process in neurodevelopment that should be included in a DNT testing strategy, but there are very few in vitro models of myelination. Thus, there is a need to establish an in vitro myelination assay for DNT. Here, we summarize the routes of myelin toxicity and the known models to study this particular endpoint.
Collapse
Affiliation(s)
- Megan Chesnut
- Center for Alternatives to Animal Testing (CAAT), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (M.C.); (T.H.)
| | - Thomas Hartung
- Center for Alternatives to Animal Testing (CAAT), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (M.C.); (T.H.)
- Center for Alternatives to Animal Testing (CAAT-Europe), University of Konstanz, 78464 Konstanz, Germany
| | - Helena Hogberg
- Center for Alternatives to Animal Testing (CAAT), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (M.C.); (T.H.)
| | - David Pamies
- Center for Alternatives to Animal Testing (CAAT), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (M.C.); (T.H.)
- Department of Physiology, University of Lausanne, 1005 Lausanne, Switzerland
- Swiss Centre for Applied Human Toxicology (SCAHT), 4055 Basel, Switzerland
| |
Collapse
|
14
|
Rosner J, Negraeff M, Bélanger LM, Tsang A, Ritchie L, Mac-Thiong JM, Christie S, Wilson JR, Dhall S, Charest-Morin R, Street J, Ailon T, Paquette S, Dea N, Fisher CG, Dvorak MF, Finnerup NB, Kwon BK, Kramer JLK. Characterization of Hyperacute Neuropathic Pain after Spinal Cord Injury: A Prospective Study. THE JOURNAL OF PAIN 2021; 23:89-97. [PMID: 34302956 DOI: 10.1016/j.jpain.2021.06.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 06/19/2021] [Accepted: 06/25/2021] [Indexed: 10/20/2022]
Abstract
There is currently a lack of information regarding neuropathic pain in the very early stages of spinal cord injury (SCI). In the present study, neuropathic pain was assessed using the Douleur Neuropathique 4 Questions (DN4) for the patient's worst pain within the first 5 days of injury (i.e., hyperacute) and on follow-up at 3, 6, and 12 months. Within the hyperacute time frame (i.e., 5 days), at- and below-level neuropathic pain were reported as the worst pain in 23% (n = 18) and 5% (n = 4) of individuals with SCI, respectively. Compared to the neuropathic pain observed in this hyperacute setting, late presenting neuropathic pain was characterized by more intense painful electrical and cold sensations, but less itching sensations. Phenotypic differences between acute and late neuropathic pain support the incorporation of timing into a mechanism-based classification of neuropathic pain after SCI. The diagnosis of acute neuropathic pain after SCI is challenged by the presence of nociceptive and neuropathic pains, with the former potentially masking the latter. This may lead to an underestimation of the incidence of neuropathic pain during the very early, hyperacute time points post-injury. TRIAL REGISTRATION: ClinicalTrials.gov (Identifier: NCT01279811) PERSPECTIVE: This article presents distinct pain phenotypes of hyperacute and late presenting neuropathic pain after spinal cord injury and highlights the challenges of pain assessments in the acute phase after injury. This information may be relevant to clinical trial design and broaden our understanding of neuropathic pain mechanisms after spinal cord injury.
Collapse
Affiliation(s)
- Jan Rosner
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada; Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland; Department of Neurology, University Hospital Bern, Inselspital, University of Bern, Bern, Switzerland
| | - Michael Negraeff
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada; Department of Anesthesiology, Pharmacology, and Therapeutics, Faculty of Medicine, University of British Columbia, British Columbia, Canada
| | - Lise M Bélanger
- Vancouver Spine Program, Vancouver General Hospital, Vancouver, British Columbia, Canada
| | - Angela Tsang
- Vancouver Spine Program, Vancouver General Hospital, Vancouver, British Columbia, Canada
| | - Leanna Ritchie
- Vancouver Spine Program, Vancouver General Hospital, Vancouver, British Columbia, Canada
| | - Jean-Marc Mac-Thiong
- Hôpital du Sacré-Coeur de Montréal, Montréal, Quebec, Canada; Faculty of Medicine, Université de Montréal, Montréal, Quebec, Canada
| | - Sean Christie
- Division of Neurosurgery, Department of Surgery, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Jefferson R Wilson
- Division of Neurosurgery, Department of Surgery, University of Toronto, St Michael's Hospital, Toronto, Ontario, Canada
| | - Sanjay Dhall
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California
| | - Raphaële Charest-Morin
- Vancouver Spine Surgery Institute, Department of Orthopaedics, University of British Columbia, Vancouver, British Columbia, Canada
| | - John Street
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada; Vancouver Spine Surgery Institute, Department of Orthopaedics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Tamir Ailon
- Division of Neurosurgery, University of British Columbia, Vancouver, British Columbia, Canada
| | - Scott Paquette
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada; Division of Neurosurgery, University of British Columbia, Vancouver, British Columbia, Canada
| | - Nicolas Dea
- Division of Neurosurgery, University of British Columbia, Vancouver, British Columbia, Canada
| | - Charles G Fisher
- Vancouver Spine Surgery Institute, Department of Orthopaedics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Marcel F Dvorak
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada; Vancouver Spine Surgery Institute, Department of Orthopaedics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Nanna B Finnerup
- Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
| | - Brian K Kwon
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada; Vancouver Spine Surgery Institute, Department of Orthopaedics, University of British Columbia, Vancouver, British Columbia, Canada
| | - John L K Kramer
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada; Department of Anesthesiology, Pharmacology, and Therapeutics, Faculty of Medicine, University of British Columbia, British Columbia, Canada.
| |
Collapse
|
15
|
Ion Channels as New Attractive Targets to Improve Re-Myelination Processes in the Brain. Int J Mol Sci 2021; 22:ijms22147277. [PMID: 34298893 PMCID: PMC8305962 DOI: 10.3390/ijms22147277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 12/20/2022] Open
Abstract
Multiple sclerosis (MS) is the most demyelinating disease of the central nervous system (CNS) characterized by neuroinflammation. Oligodendrocyte progenitor cells (OPCs) are cycling cells in the developing and adult CNS that, under demyelinating conditions, migrate to the site of lesions and differentiate into mature oligodendrocytes to remyelinate damaged axons. However, this process fails during disease chronicization due to impaired OPC differentiation. Moreover, OPCs are crucial players in neuro-glial communication as they receive synaptic inputs from neurons and express ion channels and neurotransmitter/neuromodulator receptors that control their maturation. Ion channels are recognized as attractive therapeutic targets, and indeed ligand-gated and voltage-gated channels can both be found among the top five pharmaceutical target groups of FDA-approved agents. Their modulation ameliorates some of the symptoms of MS and improves the outcome of related animal models. However, the exact mechanism of action of ion-channel targeting compounds is often still unclear due to the wide expression of these channels on neurons, glia, and infiltrating immune cells. The present review summarizes recent findings in the field to get further insights into physio-pathophysiological processes and possible therapeutic mechanisms of drug actions.
Collapse
|
16
|
Zhang L, Peng Z, Bian W, Zhu P, Tang B, Liao WP, Su T. Functional Differences Between Two Kv1.1 RNA Editing Isoforms: a Comparative Study on Neuronal Overexpression in Mouse Prefrontal Cortex. Mol Neurobiol 2021; 58:2046-2060. [PMID: 33411244 DOI: 10.1007/s12035-020-02229-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 11/24/2020] [Indexed: 10/22/2022]
Abstract
The Shaker-related potassium channel Kv1.1 subunit has important implications for controlling neuronal excitabilities. A particular recoding by A-to-I RNA editing at I400 of Kv1.1 mRNA is an underestimated mechanism for fine-tuning the properties of Kv1.1-containing channels. Knowledge about functional differences between edited (I400V) and non-edited Kv1.1 isoforms is insufficient, especially in neurons. To understand their different roles, the two Kv1.1 isoforms were overexpressed in the prefrontal cortex via local adeno-associated virus-mediated gene delivery. The I400V isoform showed a higher competitiveness in membrane translocalization, but failed to reduce current-evoked discharges and showed weaker impact on spiking-frequency adaptation in the transduced neurons. The non-edited Kv1.1 overexpression led to slight elevations in both fast- and non-inactivating current components of macroscopic potassium current. By contrast, the I400V overexpression did not impact the fast-inactivating current component. Further isolation of Kv1.1-specific current by its specific blocker dendrotoxin-κ showed that both isoforms did result in significant increases in current amplitude, whereas the I400V was less efficient in contributing the fast-inactivating current component. Voltage-dependent properties of the fast-inactivating current component did not alter for both isoforms. For recovery kinetics, the I400V showed a significant acceleration of recovery from fast inactivation. The gene delivery of the I400V rather than the wild type exhibited anxiolytic activities, which was assessed by an open field test. These results suggest that the Kv1.1 RNA editing isoforms have different properties and outcomes, reflecting the functional and phenotypic significance of the Kv1.1 RNA editing in neurons.
Collapse
Affiliation(s)
- Liting Zhang
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Chang-gang-dong Road 250, Guangzhou, 510260, China.,Key Laboratory of Neurogenetics and Channelopathies of the Ministry of Education of China, Guangzhou, China
| | - Zetong Peng
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Chang-gang-dong Road 250, Guangzhou, 510260, China.,Key Laboratory of Neurogenetics and Channelopathies of the Ministry of Education of China, Guangzhou, China
| | - Wenjun Bian
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Chang-gang-dong Road 250, Guangzhou, 510260, China.,Key Laboratory of Neurogenetics and Channelopathies of the Ministry of Education of China, Guangzhou, China
| | - Pingping Zhu
- Department of Neurology, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, China
| | - Bin Tang
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Chang-gang-dong Road 250, Guangzhou, 510260, China.,Key Laboratory of Neurogenetics and Channelopathies of the Ministry of Education of China, Guangzhou, China
| | - Wei-Ping Liao
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Chang-gang-dong Road 250, Guangzhou, 510260, China.,Key Laboratory of Neurogenetics and Channelopathies of the Ministry of Education of China, Guangzhou, China
| | - Tao Su
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Chang-gang-dong Road 250, Guangzhou, 510260, China. .,Key Laboratory of Neurogenetics and Channelopathies of the Ministry of Education of China, Guangzhou, China.
| |
Collapse
|
17
|
Functional Coupling of Slack Channels and P2X3 Receptors Contributes to Neuropathic Pain Processing. Int J Mol Sci 2021; 22:ijms22010405. [PMID: 33401689 PMCID: PMC7795269 DOI: 10.3390/ijms22010405] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/19/2020] [Accepted: 12/29/2020] [Indexed: 12/16/2022] Open
Abstract
The sodium-activated potassium channel Slack (KNa1.1, Slo2.2, or Kcnt1) is highly expressed in populations of sensory neurons, where it mediates the sodium-activated potassium current (IKNa) and modulates neuronal activity. Previous studies suggest that Slack is involved in the processing of neuropathic pain. However, mechanisms underlying the regulation of Slack activity in this context are poorly understood. Using whole-cell patch-clamp recordings we found that Slack-mediated IKNa in sensory neurons of mice is reduced after peripheral nerve injury, thereby contributing to neuropathic pain hypersensitivity. Interestingly, Slack is closely associated with ATP-sensitive P2X3 receptors in a population of sensory neurons. In vitro experiments revealed that Slack-mediated IKNa may be bidirectionally modulated in response to P2X3 activation. Moreover, mice lacking Slack show altered nocifensive responses to P2X3 stimulation. Our study identifies P2X3/Slack signaling as a mechanism contributing to hypersensitivity after peripheral nerve injury and proposes a potential novel strategy for treatment of neuropathic pain.
Collapse
|
18
|
Assembly and Function of the Juxtaparanodal Kv1 Complex in Health and Disease. Life (Basel) 2020; 11:life11010008. [PMID: 33374190 PMCID: PMC7824554 DOI: 10.3390/life11010008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 02/07/2023] Open
Abstract
The precise axonal distribution of specific potassium channels is known to secure the shape and frequency of action potentials in myelinated fibers. The low-threshold voltage-gated Kv1 channels located at the axon initial segment have a significant influence on spike initiation and waveform. Their role remains partially understood at the juxtaparanodes where they are trapped under the compact myelin bordering the nodes of Ranvier in physiological conditions. However, the exposure of Kv1 channels in de- or dys-myelinating neuropathy results in alteration of saltatory conduction. Moreover, cell adhesion molecules associated with the Kv1 complex, including Caspr2, Contactin2, and LGI1, are target antigens in autoimmune diseases associated with hyperexcitability such as encephalitis, neuromyotonia, or neuropathic pain. The clustering of Kv1.1/Kv1.2 channels at the axon initial segment and juxtaparanodes is based on interactions with cell adhesion molecules and cytoskeletal linkers. This review will focus on the trafficking and assembly of the axonal Kv1 complex in the peripheral and central nervous system (PNS and CNS), during development, and in health and disease.
Collapse
|
19
|
Smith PA. K + Channels in Primary Afferents and Their Role in Nerve Injury-Induced Pain. Front Cell Neurosci 2020; 14:566418. [PMID: 33093824 PMCID: PMC7528628 DOI: 10.3389/fncel.2020.566418] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/21/2020] [Indexed: 12/12/2022] Open
Abstract
Sensory abnormalities generated by nerve injury, peripheral neuropathy or disease are often expressed as neuropathic pain. This type of pain is frequently resistant to therapeutic intervention and may be intractable. Numerous studies have revealed the importance of enduring increases in primary afferent excitability and persistent spontaneous activity in the onset and maintenance of peripherally induced neuropathic pain. Some of this activity results from modulation, increased activity and /or expression of voltage-gated Na+ channels and hyperpolarization-activated cyclic nucleotide-gated (HCN) channels. K+ channels expressed in dorsal root ganglia (DRG) include delayed rectifiers (Kv1.1, 1.2), A-channels (Kv1.4, 3.3, 3.4, 4.1, 4.2, and 4.3), KCNQ or M-channels (Kv7.2, 7.3, 7.4, and 7.5), ATP-sensitive channels (KIR6.2), Ca2+-activated K+ channels (KCa1.1, 2.1, 2.2, 2.3, and 3.1), Na+-activated K+ channels (KCa4.1 and 4.2) and two pore domain leak channels (K2p; TWIK related channels). Function of all K+ channel types is reduced via a multiplicity of processes leading to altered expression and/or post-translational modification. This also increases excitability of DRG cell bodies and nociceptive free nerve endings, alters axonal conduction and increases neurotransmitter release from primary afferent terminals in the spinal dorsal horn. Correlation of these cellular changes with behavioral studies provides almost indisputable evidence for K+ channel dysfunction in the onset and maintenance of neuropathic pain. This idea is underlined by the observation that selective impairment of just one subtype of DRG K+ channel can produce signs of pain in vivo. Whilst it is established that various mediators, including cytokines and growth factors bring about injury-induced changes in DRG function and excitability, evidence presently available points to a seminal role for interleukin 1β (IL-1β) in control of K+ channel function. Despite the current state of knowledge, attempts to target K+ channels for therapeutic pain management have met with limited success. This situation may change with the advent of personalized medicine. Identification of specific sensory abnormalities and genetic profiling of individual patients may predict therapeutic benefit of K+ channel activators.
Collapse
Affiliation(s)
- Peter A. Smith
- Department of Pharmacology and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
20
|
Schmid AB, Fundaun J, Tampin B. Entrapment neuropathies: a contemporary approach to pathophysiology, clinical assessment, and management. Pain Rep 2020; 5:e829. [PMID: 32766466 PMCID: PMC7382548 DOI: 10.1097/pr9.0000000000000829] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 05/04/2020] [Accepted: 05/30/2020] [Indexed: 12/18/2022] Open
Abstract
Entrapment neuropathies such as carpal tunnel syndrome, radiculopathies, or radicular pain are the most common peripheral neuropathies and also the most common cause for neuropathic pain. Despite their high prevalence, they often remain challenging to diagnose and manage in a clinical setting. Summarising the evidence from both preclinical and clinical studies, this review provides an update on the aetiology and pathophysiology of entrapment neuropathies. Potential mechanisms are put in perspective with clinical findings. The contemporary assessment is discussed and diagnostic pitfalls highlighted. The evidence for the noninvasive and surgical management of common entrapment neuropathies is summarised and future areas of research are identified.
Collapse
Affiliation(s)
- Annina B. Schmid
- Nuffield Department of Clinical Neurosciences, Oxford University, Oxford, United Kingdom
| | - Joel Fundaun
- Nuffield Department of Clinical Neurosciences, Oxford University, Oxford, United Kingdom
- High Country Physical Therapy, Laramie, WY, USA
| | - Brigitte Tampin
- Department of Physiotherapy, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia
- School of Physiotherapy and Exercise Science, Curtin University, Western Australia, Australia
- Faculty of Business Management and Social Sciences, Hochschule Osnabrück, University of Applied Sciences, Osnabrück, Germany
| |
Collapse
|
21
|
Stack E, McMurray S, McMurray G, Wade J, Clark M, Young G, Marquette K, Jain S, Kelleher K, Chen T, Lin Q, Bloom L, Lin L, Finlay W, Suzuki R, Cunningham O. In vitro affinity optimization of an anti-BDNF monoclonal antibody translates to improved potency in targeting chronic pain states in vivo. MAbs 2020; 12:1755000. [PMID: 32329655 PMCID: PMC7188400 DOI: 10.1080/19420862.2020.1755000] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The role of brain-derived neurotrophic factor (BDNF) signaling in chronic pain has been well documented. Given the important central role of BDNF in long term plasticity and memory, we sought to engineer a high affinity, peripherally-restricted monoclonal antibody against BDNF to modulate pain. BDNF shares 100% sequence homology across human and rodents; thus, we selected chickens as an alternative immune host for initial antibody generation. Here, we describe the affinity optimization of complementarity-determining region-grafted, chicken-derived R3bH01, an anti-BDNF antibody specifically blocking the TrkB receptor interaction. Antibody optimization led to the identification of B30, which has a > 300-fold improvement in affinity based on BIAcore, an 800-fold improvement in potency in a cell-based pERK assay and demonstrates exquisite selectivity over related neurotrophins. Affinity improvements measured in vitro translated to in vivo pharmacological activity, with B30 demonstrating a 30-fold improvement in potency over parental R3bH01 in a peripheral nerve injury model. We further demonstrate that peripheral BDNF plays a role in maintaining the plasticity of sensory neurons following nerve damage, with B30 reversing neuron hyperexcitability associated with heat and mechanical stimuli in a dose-dependent fashion. In summary, our data demonstrate that effective sequestration of BDNF via a high affinity neutralizing antibody has potential utility in modulating the pathophysiological mechanisms that drive chronic pain states.
Collapse
Affiliation(s)
| | | | | | - Jason Wade
- Biomedicine Design, Pfizer, Dublin, Ireland.,Biomedicine Design, Pfizer, Cambridge, US
| | | | | | | | | | | | - Ting Chen
- Biomedicine Design, Pfizer, Cambridge, US
| | | | | | - Laura Lin
- Biomedicine Design, Pfizer, Cambridge, US
| | | | | | | |
Collapse
|
22
|
Lin Y, Lin CS, Chang T, Lee J, Tani J, Chen H, Sung J. Early sensory neurophysiological changes in prediabetes. J Diabetes Investig 2020; 11:458-465. [PMID: 31563156 PMCID: PMC7078118 DOI: 10.1111/jdi.13151] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 09/19/2019] [Accepted: 09/25/2019] [Indexed: 12/14/2022] Open
Abstract
AIMS/INTRODUCTION To elucidate whether axonal changes arise in the prediabetic state and to find a biomarker for early detection of neurophysiological changes. MATERIALS AND METHODS We enrolled asymptomatic diabetes patients, as well as prediabetic and normoglycemic individuals to test sensory nerve excitability, and we analyzed those findings and their correlation with clinical profiles. RESULTS In nerve excitability tests, superexcitability in the recovery cycle showed increasing changes in the normoglycemic, prediabetes and diabetes cohorts (-19.09 ± 4.56% in normoglycemia, -22.39 ± 3.16% in prediabetes and -23.71 ± 5.15% in diabetes, P = 0.002). Relatively prolonged distal sensory latency was observed in the median nerve (3.12 ± 0.29 ms in normoglycemia, 3.23 ± 0.38 ms in prediabetes and 3.45 ± 0.43 ms in diabetes, P = 0.019). Superexcitability was positively correlated with fasting plasma glucose (r = 0.291, P = 0.009) and glycated hemoglobin (r = 0.331, P = 0.003) in all participants. CONCLUSIONS Sensory superexcitability and latencies are the most sensitive parameters for detecting preclinical physiological dysfunction in prediabetes. In addition, changes in favor of superexcitability were positively correlated with glycated hemoglobin for all participants. These results suggest that early axonal changes start in the prediabetic stage, and that the monitoring strategy for polyneuropathy should start as early as prediabetes.
Collapse
Affiliation(s)
- Yi‐Chen Lin
- Department of NeurologyTaipei Municipal Wanfang HospitalTaipei Medical UniversityTaipeiTaiwan
- Neuroscience InstituteTaipei Medical UniversityTaipeiTaiwan
| | - Cindy Shin‐Yi Lin
- Neural Regenerative MedicineCollege of Medical Science and TechnologyTaipei Medical University and National Health Research InstitutesTaipeiTaiwan
- The Kam Ling Barbara Lo Chair in Neurodegenerative DisordersCentral Clinical SchoolFaculty of Medicine and Health, Brain and Mind CenterThe University of SydneySydneyAustralia
| | - Tsui‐San Chang
- Department of NeurologyTaipei Municipal Wanfang HospitalTaipei Medical UniversityTaipeiTaiwan
- Neuroscience InstituteTaipei Medical UniversityTaipeiTaiwan
- Department of NeurologySchool of Medicine, College of MedicineTaipei Medical UniversityTaipeiTaiwan
| | - Jing‐Er Lee
- Department of NeurologyTaipei Municipal Wanfang HospitalTaipei Medical UniversityTaipeiTaiwan
- Neuroscience InstituteTaipei Medical UniversityTaipeiTaiwan
| | - Jowy Tani
- Department of NeurologyTaipei Municipal Wanfang HospitalTaipei Medical UniversityTaipeiTaiwan
- Neuroscience InstituteTaipei Medical UniversityTaipeiTaiwan
- Neural Regenerative MedicineCollege of Medical Science and TechnologyTaipei Medical University and National Health Research InstitutesTaipeiTaiwan
- Ph.D. Program for Neural Regenerative MedicineCollege of Medical Science and TechnologyTaipei Medical University and National Health Research InstitutesTaipeiTaiwan
| | - Hung‐Ju Chen
- Department of NeurologyTaipei Municipal Wanfang HospitalTaipei Medical UniversityTaipeiTaiwan
- Neuroscience InstituteTaipei Medical UniversityTaipeiTaiwan
| | - Jia‐Ying Sung
- Department of NeurologyTaipei Municipal Wanfang HospitalTaipei Medical UniversityTaipeiTaiwan
- Neuroscience InstituteTaipei Medical UniversityTaipeiTaiwan
- Department of NeurologySchool of Medicine, College of MedicineTaipei Medical UniversityTaipeiTaiwan
| |
Collapse
|
23
|
Suminaite D, Lyons DA, Livesey MR. Myelinated axon physiology and regulation of neural circuit function. Glia 2019; 67:2050-2062. [PMID: 31233642 PMCID: PMC6772175 DOI: 10.1002/glia.23665] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/28/2019] [Accepted: 06/06/2019] [Indexed: 12/15/2022]
Abstract
The study of structural and functional plasticity in the central nervous system (CNS) to date has focused primarily on that of neurons and synapses. However, more recent studies implicate glial cells as key regulators of neural circuit function. Among these, the myelinating glia of the CNS, oligodendrocytes, have been shown to be responsive to extrinsic signals including neuronal activity, and in turn, tune neurophysiological function. Due to the fact that myelin fundamentally alters the conduction properties of axons, much attention has focused on how dynamic regulation of myelination might represent a form of functional plasticity. Here, we highlight recent research that indicates that it is not only myelin, but essentially all the function-regulating components of the myelinated axon that are responsive to neuronal activity. For example, the axon initial segment, nodes of Ranvier, heminodes, axonal termini, and the morphology of the axon itself all exhibit the potential to respond to neuronal activity, and in so doing might underpin specific functional outputs. We also highlight emerging evidence that the myelin sheath itself has a rich physiology capable of influencing axonal physiology. We suggest that to fully understand nervous system plasticity we need to consider the fact that myelinated axon is an integrated functional unit and adaptations that influence the entire functional unit are likely to underpin modifications to neural circuit function.
Collapse
Affiliation(s)
| | - David A. Lyons
- Centre for Discovery Brain SciencesUniversity of EdinburghEdinburghUK
| | | |
Collapse
|
24
|
朱 时, 刘 丹, 胡 卫, 杨 红. [Effect of cinobufagin on transient outward potassium current in dorsal root ganglion cells of rats with cancer-induced bone pain]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2019; 39:1078-1082. [PMID: 31640967 PMCID: PMC6881743 DOI: 10.12122/j.issn.1673-4254.2019.09.12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Indexed: 01/26/2023]
Abstract
OBJECTIVE To observe the effect of cinobufagin on transient outward potassium current (IA) in rat dorsal root ganglion cells of cancer-induced bone pain (CIBP) and explore the possible analgesic mechanism of cinobufagin. METHODS Whole cell patch clamp technique was used to examine the effect of cionbufagin on IA in acutely isolated dorsal root ganglion (DRG) cells from normal SD rats and rats with bone cancer pain. RESULTS The DRG cells from rats with CIBP showed obviously decreased IA current density, an activation curve shift to the right, and an inactivation curve shift to the left. Cinobufagin treatment significantly increased the IA current density and reversed the changes in the activation and inactivation curves in the DRG cells. CONCLUSIONS IA current is decreased in DRG neurons from rats with CIBP. Cinobufagin can regulate the activation and inactivation of IA current in the DRG cells, which may be related to its analgesic mechanism.
Collapse
Affiliation(s)
- 时钰 朱
- />三峡大学医学院,湖北 宜昌 443002Medical College of China Three Gorges University, Yichang 443002, China
| | - 丹 刘
- />三峡大学医学院,湖北 宜昌 443002Medical College of China Three Gorges University, Yichang 443002, China
| | - 卫 胡
- />三峡大学医学院,湖北 宜昌 443002Medical College of China Three Gorges University, Yichang 443002, China
| | - 红卫 杨
- />三峡大学医学院,湖北 宜昌 443002Medical College of China Three Gorges University, Yichang 443002, China
| |
Collapse
|
25
|
Abstract
The global epidemic of prediabetes and diabetes has led to a corresponding epidemic of complications of these disorders. The most prevalent complication is neuropathy, of which distal symmetric polyneuropathy (for the purpose of this Primer, referred to as diabetic neuropathy) is very common. Diabetic neuropathy is a loss of sensory function beginning distally in the lower extremities that is also characterized by pain and substantial morbidity. Over time, at least 50% of individuals with diabetes develop diabetic neuropathy. Glucose control effectively halts the progression of diabetic neuropathy in patients with type 1 diabetes mellitus, but the effects are more modest in those with type 2 diabetes mellitus. These findings have led to new efforts to understand the aetiology of diabetic neuropathy, along with new 2017 recommendations on approaches to prevent and treat this disorder that are specific for each type of diabetes. In parallel, new guidelines for the treatment of painful diabetic neuropathy using distinct classes of drugs, with an emphasis on avoiding opioid use, have been issued. Although our understanding of the complexities of diabetic neuropathy has substantially evolved over the past decade, the distinct mechanisms underlying neuropathy in type 1 and type 2 diabetes remains unknown. Future discoveries on disease pathogenesis will be crucial to successfully address all aspects of diabetic neuropathy, from prevention to treatment.
Collapse
|
26
|
Feldman EL, Callaghan BC, Pop-Busui R, Zochodne DW, Wright DE, Bennett DL, Bril V, Russell JW, Viswanathan V. Diabetic neuropathy. Nat Rev Dis Primers 2019; 5:42. [PMID: 31197183 PMCID: PMC7096070 DOI: 10.1038/s41572-019-0097-9] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The global epidemic of prediabetes and diabetes has led to a corresponding epidemic of complications of these disorders. The most prevalent complication is neuropathy, of which distal symmetric polyneuropathy (for the purpose of this Primer, referred to as diabetic neuropathy) is very common. Diabetic neuropathy is a loss of sensory function beginning distally in the lower extremities that is also characterized by pain and substantial morbidity. Over time, at least 50% of individuals with diabetes develop diabetic neuropathy. Glucose control effectively halts the progression of diabetic neuropathy in patients with type 1 diabetes mellitus, but the effects are more modest in those with type 2 diabetes mellitus. These findings have led to new efforts to understand the aetiology of diabetic neuropathy, along with new 2017 recommendations on approaches to prevent and treat this disorder that are specific for each type of diabetes. In parallel, new guidelines for the treatment of painful diabetic neuropathy using distinct classes of drugs, with an emphasis on avoiding opioid use, have been issued. Although our understanding of the complexities of diabetic neuropathy has substantially evolved over the past decade, the distinct mechanisms underlying neuropathy in type 1 and type 2 diabetes remains unknown. Future discoveries on disease pathogenesis will be crucial to successfully address all aspects of diabetic neuropathy, from prevention to treatment.
Collapse
Affiliation(s)
- Eva L. Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA.,
| | | | - Rodica Pop-Busui
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes (MEND), University of Michigan, Ann Arbor, MI, USA
| | - Douglas W. Zochodne
- Division of Neurology, Department of Medicine and the Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Douglas E. Wright
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - David L. Bennett
- Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, UK
| | - Vera Bril
- Division of Neurology, Department of Medicine, University of Toronto and University Health Network, Toronto, Ontario, Canada.,Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - James W. Russell
- Department of Neurology, University of Maryland and VA Maryland Health Care System, Baltimore, MD, USA
| | | |
Collapse
|
27
|
Abstract
Voltage-gated potassium (Kv) channels are increasingly recognised as key regulators of nociceptive excitability. Kcns1 is one of the first potassium channels to be associated with neuronal hyperexcitability and mechanical sensitivity in the rat, as well as pain intensity and risk of developing chronic pain in humans. Here, we show that in mice, Kcns1 is predominantly expressed in the cell body and axons of myelinated sensory neurons positive for neurofilament-200, including Aδ-fiber nociceptors and low-threshold Aβ mechanoreceptors. In the spinal cord, Kcns1 was detected in laminae III to V of the dorsal horn where most sensory A fibers terminate, as well as large motoneurons of the ventral horn. To investigate Kcns1 function specifically in the periphery, we generated transgenic mice in which the gene is deleted in all sensory neurons but retained in the central nervous system. Kcns1 ablation resulted in a modest increase in basal mechanical pain, with no change in thermal pain processing. After neuropathic injury, Kcns1 KO mice exhibited exaggerated mechanical pain responses and hypersensitivity to both noxious and innocuous cold, consistent with increased A-fiber activity. Interestingly, Kcns1 deletion also improved locomotor performance in the rotarod test, indicative of augmented proprioceptive signalling. Our results suggest that restoring Kcns1 function in the periphery may be of some use in ameliorating mechanical and cold pain in chronic states.
Collapse
|
28
|
Zemel BM, Ritter DM, Covarrubias M, Muqeem T. A-Type K V Channels in Dorsal Root Ganglion Neurons: Diversity, Function, and Dysfunction. Front Mol Neurosci 2018; 11:253. [PMID: 30127716 PMCID: PMC6088260 DOI: 10.3389/fnmol.2018.00253] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 07/04/2018] [Indexed: 12/13/2022] Open
Abstract
A-type voltage-gated potassium (Kv) channels are major regulators of neuronal excitability that have been mainly characterized in the central nervous system. By contrast, there is a paucity of knowledge about the molecular physiology of these Kv channels in the peripheral nervous system, including highly specialized and heterogenous dorsal root ganglion (DRG) neurons. Although all A-type Kv channels display pore-forming subunits with similar structural properties and fast inactivation, their voltage-, and time-dependent properties and modulation are significantly different. These differences ultimately determine distinct physiological roles of diverse A-type Kv channels, and how their dysfunction might contribute to neurological disorders. The importance of A-type Kv channels in DRG neurons is highlighted by recent studies that have linked their dysfunction to persistent pain sensitization. Here, we review the molecular neurophysiology of A-type Kv channels with an emphasis on those that have been identified and investigated in DRG nociceptors (Kv1.4, Kv3.4, and Kv4s). Also, we discuss evidence implicating these Kv channels in neuropathic pain resulting from injury, and present a perspective of outstanding challenges that must be tackled in order to discover novel treatments for intractable pain disorders.
Collapse
Affiliation(s)
- Benjamin M. Zemel
- Vollum Institute, Oregon Health and Science University, Portland, OR, United States
| | - David M. Ritter
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Manuel Covarrubias
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College and Jefferson College of Life Sciences at Thomas Jefferson University, Philadelphia, PA, United States
| | - Tanziyah Muqeem
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College and Jefferson College of Life Sciences at Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
29
|
Lefaucheur JP. New insights into the pathophysiology of primary hemifacial spasm. Neurochirurgie 2018; 64:87-93. [DOI: 10.1016/j.neuchi.2017.12.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 12/28/2017] [Accepted: 12/29/2017] [Indexed: 12/21/2022]
|
30
|
Chen L, Huang J, Zhao P, Persson AK, Dib-Hajj FB, Cheng X, Tan A, Waxman SG, Dib-Hajj SD. Conditional knockout of Na V1.6 in adult mice ameliorates neuropathic pain. Sci Rep 2018; 8:3845. [PMID: 29497094 PMCID: PMC5832877 DOI: 10.1038/s41598-018-22216-w] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 02/19/2018] [Indexed: 01/09/2023] Open
Abstract
Voltage-gated sodium channels NaV1.7, NaV1.8 and NaV1.9 have been the focus for pain studies because their mutations are associated with human pain disorders, but the role of NaV1.6 in pain is less understood. In this study, we selectively knocked out NaV1.6 in dorsal root ganglion (DRG) neurons, using NaV1.8-Cre directed or adeno-associated virus (AAV)-Cre mediated approaches, and examined the specific contribution of NaV1.6 to the tetrodotoxin-sensitive (TTX-S) current in these neurons and its role in neuropathic pain. We report here that NaV1.6 contributes up to 60% of the TTX-S current in large, and 34% in small DRG neurons. We also show NaV1.6 accumulates at nodes of Ranvier within the neuroma following spared nerve injury (SNI). Although NaV1.8-Cre driven NaV1.6 knockout does not alter acute, inflammatory or neuropathic pain behaviors, AAV-Cre mediated NaV1.6 knockout in adult mice partially attenuates SNI-induced mechanical allodynia. Additionally, AAV-Cre mediated NaV1.6 knockout, mostly in large DRG neurons, significantly attenuates excitability of these neurons after SNI and reduces NaV1.6 accumulation at nodes of Ranvier at the neuroma. Together, NaV1.6 in NaV1.8-positive neurons does not influence pain thresholds under normal or pathological conditions, but NaV1.6 in large NaV1.8-negative DRG neurons plays an important role in neuropathic pain.
Collapse
Affiliation(s)
- Lubin Chen
- Department of Neurology, Yale University School of Medicine, New Haven, CT, 06510, USA.,Center for Neuroscience & Regeneration Research, Yale University School of Medicine, New Haven, CT, 06510, USA.,Rehabilitation Research Center, VA Connecticut Healthcare System, West Haven, CT, 06516, USA
| | - Jianying Huang
- Department of Neurology, Yale University School of Medicine, New Haven, CT, 06510, USA.,Center for Neuroscience & Regeneration Research, Yale University School of Medicine, New Haven, CT, 06510, USA.,Rehabilitation Research Center, VA Connecticut Healthcare System, West Haven, CT, 06516, USA
| | - Peng Zhao
- Department of Neurology, Yale University School of Medicine, New Haven, CT, 06510, USA.,Center for Neuroscience & Regeneration Research, Yale University School of Medicine, New Haven, CT, 06510, USA.,Rehabilitation Research Center, VA Connecticut Healthcare System, West Haven, CT, 06516, USA
| | - Anna-Karin Persson
- Department of Neurology, Yale University School of Medicine, New Haven, CT, 06510, USA.,Center for Neuroscience & Regeneration Research, Yale University School of Medicine, New Haven, CT, 06510, USA.,Rehabilitation Research Center, VA Connecticut Healthcare System, West Haven, CT, 06516, USA
| | - Fadia B Dib-Hajj
- Department of Neurology, Yale University School of Medicine, New Haven, CT, 06510, USA.,Center for Neuroscience & Regeneration Research, Yale University School of Medicine, New Haven, CT, 06510, USA.,Rehabilitation Research Center, VA Connecticut Healthcare System, West Haven, CT, 06516, USA
| | - Xiaoyang Cheng
- Department of Neurology, Yale University School of Medicine, New Haven, CT, 06510, USA.,Center for Neuroscience & Regeneration Research, Yale University School of Medicine, New Haven, CT, 06510, USA.,Rehabilitation Research Center, VA Connecticut Healthcare System, West Haven, CT, 06516, USA
| | - Andrew Tan
- Department of Neurology, Yale University School of Medicine, New Haven, CT, 06510, USA.,Center for Neuroscience & Regeneration Research, Yale University School of Medicine, New Haven, CT, 06510, USA.,Rehabilitation Research Center, VA Connecticut Healthcare System, West Haven, CT, 06516, USA
| | - Stephen G Waxman
- Department of Neurology, Yale University School of Medicine, New Haven, CT, 06510, USA.,Center for Neuroscience & Regeneration Research, Yale University School of Medicine, New Haven, CT, 06510, USA.,Rehabilitation Research Center, VA Connecticut Healthcare System, West Haven, CT, 06516, USA
| | - Sulayman D Dib-Hajj
- Department of Neurology, Yale University School of Medicine, New Haven, CT, 06510, USA. .,Center for Neuroscience & Regeneration Research, Yale University School of Medicine, New Haven, CT, 06510, USA. .,Rehabilitation Research Center, VA Connecticut Healthcare System, West Haven, CT, 06516, USA.
| |
Collapse
|
31
|
Megat S, Price TJ. Therapeutic opportunities for pain medicines via targeting of specific translation signaling mechanisms. NEUROBIOLOGY OF PAIN 2018; 4:8-19. [PMID: 30211342 PMCID: PMC6130820 DOI: 10.1016/j.ynpai.2018.02.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A common underlying cause of chronic pain is a phenotypic change in nociceptors in the peripheral nervous system. Translation regulation signaling pathways control gene expression changes that drive chronic pain. We focus on developments in pharmacology around translation regulation signaling that may yield new pain therapeutics.
As the population of the world ages and as more and more people survive diseases that used to be primary causes of mortality, the incidence of severe chronic pain in most of the world has risen dramatically. This type of pain is very difficult to treat and the opioid overdose epidemic that has become a leading cause of death in the United States and other parts of the world highlights the urgent need to develop new pain therapeutics. A common underlying cause of severe chronic pain is a phenotypic change in pain-sensing neurons in the peripheral nervous system called nociceptors. These neurons play a vital role in detecting potentially injurious stimuli, but when these neurons start to detect very low levels of inflammatory meditators or become spontaneously active, they send spurious pain signals to the brain that are significant drivers of chronic pain. An important question is what drives this phenotypic shift in nociceptors from quiescence under most conditions to sensitization to a broad variety of stimuli and spontaneous activity. The goal of this review is to discuss the critical role that specific translation regulation signaling pathways play in controlling gene expression changes that drive nociceptor sensitization and may underlie the development of spontaneous activity. The focus will be on advances in technologies that allow for identification of such targets and on developments in pharmacology around translation regulation signaling that may yield new pain therapeutics. A key advantage of pharmacological manipulation of these signaling events is that they may reverse phenotypic shifts in nociceptors that drive chronic pain thereby creating the first generation of disease modifying drugs for chronic pain.
Collapse
Affiliation(s)
- Salim Megat
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, USA
| | - Theodore J Price
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, USA
| |
Collapse
|
32
|
Immune or Genetic-Mediated Disruption of CASPR2 Causes Pain Hypersensitivity Due to Enhanced Primary Afferent Excitability. Neuron 2018; 97:806-822.e10. [PMID: 29429934 PMCID: PMC6011627 DOI: 10.1016/j.neuron.2018.01.033] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 12/04/2017] [Accepted: 01/12/2018] [Indexed: 11/22/2022]
Abstract
Human autoantibodies to contactin-associated protein-like 2 (CASPR2) are often associated with neuropathic pain, and CASPR2 mutations have been linked to autism spectrum disorders, in which sensory dysfunction is increasingly recognized. Human CASPR2 autoantibodies, when injected into mice, were peripherally restricted and resulted in mechanical pain-related hypersensitivity in the absence of neural injury. We therefore investigated the mechanism by which CASPR2 modulates nociceptive function. Mice lacking CASPR2 (Cntnap2−/−) demonstrated enhanced pain-related hypersensitivity to noxious mechanical stimuli, heat, and algogens. Both primary afferent excitability and subsequent nociceptive transmission within the dorsal horn were increased in Cntnap2−/− mice. Either immune or genetic-mediated ablation of CASPR2 enhanced the excitability of DRG neurons in a cell-autonomous fashion through regulation of Kv1 channel expression at the soma membrane. This is the first example of passive transfer of an autoimmune peripheral neuropathic pain disorder and demonstrates that CASPR2 has a key role in regulating cell-intrinsic dorsal root ganglion (DRG) neuron excitability. Treatment with human CASPR2-Abs causes mechanical hypersensitivity in mice CASPR2-Abs remain PNS restricted and enhance pain behavior without neural injury Pain behavior is increased in Cntnap2−/− mice (lacking full-length CASPR2) CASPR2 regulates DRG cell excitability via Kv1 channel trafficking to the membrane
Collapse
|
33
|
Liu CH, Chang HM, Wu TH, Chen LY, Yang YS, Tseng TJ, Liao WC. Rearrangement of potassium ions and Kv1.1/Kv1.2 potassium channels in regenerating axons following end-to-end neurorrhaphy: ionic images from TOF-SIMS. Histochem Cell Biol 2017; 148:407-416. [PMID: 28405806 DOI: 10.1007/s00418-017-1570-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2017] [Indexed: 11/28/2022]
Abstract
The voltage-gated potassium channels Kv1.1 and Kv1.2 that cluster at juxtaparanodal (JXP) regions are essential in the regulation of nerve excitability and play a critical role in axonal conduction. When demyelination occurs, Kv1.1/Kv1.2 activity increases, suppressing the membrane potential nearly to the equilibrium potential of K+, which results in an axonal conduction blockade. The recovery of K+-dependent communication signals and proper clustering of Kv1.1/Kv1.2 channels at JXP regions may directly reflect nerve regeneration following peripheral nerve injury. However, little is known about potassium channel expression and its relationship with the dynamic potassium ion distribution at the node of Ranvier during the regenerative process of peripheral nerve injury (PNI). In the present study, end-to-end neurorrhaphy (EEN) was performed using an in vivo model of PNI. The distribution of K+ at regenerating axons following EEN was detected by time-of-flight secondary-ion mass spectrometry. The specific localization and expression of Kv1.1/Kv1.2 channels were examined by confocal microscopy and western blotting. Our data showed that the re-establishment of K+ distribution and intensity was correlated with the functional recovery of compound muscle action potential morphology in EEN rats. Furthermore, the re-clustering of Kv1.1/1.2 channels 1 and 3 months after EEN at the nodal region of the regenerating nerve corresponded to changes in the K+ distribution. This study provided direct evidence of K+ distribution in regenerating axons for the first time. We proposed that the Kv1.1/Kv1.2 channels re-clustered at the JXP regions of regenerating axons are essential for modulating the proper patterns of K+ distribution in axons for maintaining membrane potential stability after EEN.
Collapse
Affiliation(s)
- Chiung-Hui Liu
- Department of Anatomy, Faculty of Medicine, Chung Shan Medical University, No. 110, Sec. 1, Jianguo N. Rd, Taichung, 40201, Taiwan.,Department of Medical Education, Chung Shan Medical University Hospital, No. 110, Sec. 1, Jianguo N. Rd, Taichung, Taiwan
| | - Hung-Ming Chang
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Tsung-Huan Wu
- Department of Anatomy, Faculty of Medicine, Chung Shan Medical University, No. 110, Sec. 1, Jianguo N. Rd, Taichung, 40201, Taiwan
| | - Li-You Chen
- Department of Anatomy, Faculty of Medicine, Chung Shan Medical University, No. 110, Sec. 1, Jianguo N. Rd, Taichung, 40201, Taiwan
| | - Yin-Shuo Yang
- Department of Anatomy, Faculty of Medicine, Chung Shan Medical University, No. 110, Sec. 1, Jianguo N. Rd, Taichung, 40201, Taiwan
| | - To-Jung Tseng
- Department of Anatomy, Faculty of Medicine, Chung Shan Medical University, No. 110, Sec. 1, Jianguo N. Rd, Taichung, 40201, Taiwan
| | - Wen-Chieh Liao
- Department of Anatomy, Faculty of Medicine, Chung Shan Medical University, No. 110, Sec. 1, Jianguo N. Rd, Taichung, 40201, Taiwan. .,Department of Pediatrics, Chung Shan Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
34
|
Role of the Excitability Brake Potassium Current I KD in Cold Allodynia Induced by Chronic Peripheral Nerve Injury. J Neurosci 2017; 37:3109-3126. [PMID: 28179555 DOI: 10.1523/jneurosci.3553-16.2017] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 01/24/2017] [Accepted: 01/26/2017] [Indexed: 11/21/2022] Open
Abstract
Cold allodynia is a common symptom of neuropathic and inflammatory pain following peripheral nerve injury. The mechanisms underlying this disabling sensory alteration are not entirely understood. In primary somatosensory neurons, cold sensitivity is mainly determined by a functional counterbalance between cold-activated TRPM8 channels and Shaker-like Kv1.1-1.2 channels underlying the excitability brake current IKD Here we studied the role of IKD in damage-triggered painful hypersensitivity to innocuous cold. We found that cold allodynia induced by chronic constriction injury (CCI) of the sciatic nerve in mice, was related to both an increase in the proportion of cold-sensitive neurons (CSNs) in DRGs contributing to the sciatic nerve, and a decrease in their cold temperature threshold. IKD density was reduced in high-threshold CSNs from CCI mice compared with sham animals, with no differences in cold-induced TRPM8-dependent current density. The electrophysiological properties and neurochemical profile of CSNs revealed an increase of nociceptive-like phenotype among neurons from CCI animals compared with sham mice. These results were validated using a mathematical model of CSNs, including IKD and TRPM8, showing that a reduction in IKD current density shifts the thermal threshold to higher temperatures and that the reduction of this current induces cold sensitivity in former cold-insensitive neurons expressing low levels of TRPM8-like current. Together, our results suggest that cold allodynia is largely due to a functional downregulation of IKD in both high-threshold CSNs and in a subpopulation of polymodal nociceptors expressing TRPM8, providing a general molecular and neural mechanism for this sensory alteration.SIGNIFICANCE STATEMENT This paper unveils the critical role of the brake potassium current IKD in damage-triggered cold allodynia. Using a well-known form of nerve injury and combining behavioral analysis, calcium imaging, patch clamping, and pharmacological tools, validated by mathematical modeling, we determined that the functional expression of IKD is reduced in sensory neurons in response to peripheral nerve damage. This downregulation not only enhances cold sensitivity of high-threshold cold thermoreceptors signaling cold discomfort, but it also transforms a subpopulation of polymodal nociceptors signaling pain into neurons activated by mild temperature drops. Our results suggest that cold allodynia is linked to a reduction of IKD in both high-threshold cold thermoreceptors and nociceptors expressing TRPM8, providing a general model for this form of cold-induced pain.
Collapse
|
35
|
González A, Herrera G, Ugarte G, Restrepo C, Piña R, Pertusa M, Orio P, Madrid R. IKD Current in Cold Transduction and Damage-Triggered Cold Hypersensitivity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1015:265-277. [PMID: 29080031 DOI: 10.1007/978-3-319-62817-2_14] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In primary sensory neurons of the spinal and trigeminal somatosensory system, cold-sensitivity is strongly dependent on the functional balance between TRPM8 channels, the main molecular entity responsible for the cold-activated excitatory current, and Shaker-like Kv1.1-1.2 potassium channels, the molecular counterpart underlying the excitability brake current IKD. This slow-inactivating outward K+ current reduces the excitability of cold thermoreceptor neurons increasing their thermal threshold, and prevents unspecific activation by cold of neurons of other somatosensory modalities. Here we examine the main biophysical properties of this current in primary sensory neurons, its central role in cold thermotransduction, and its contribution to alterations in cold sensitivity triggered by peripheral nerve damage.
Collapse
Affiliation(s)
- Alejandro González
- Departamento de Biología, Facultad de Química y Biología, and Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Universidad de Santiago de Chile, Alameda L. Bdo. O'Higgins 3363, 9160000, Santiago, Chile
| | - Gaspar Herrera
- Centro Interdisciplinario de Neurociencia de Valparaíso and Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, 2340000, Valparaíso, Chile
| | - Gonzalo Ugarte
- Departamento de Biología, Facultad de Química y Biología, and Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Universidad de Santiago de Chile, Alameda L. Bdo. O'Higgins 3363, 9160000, Santiago, Chile
| | - Carlos Restrepo
- Departamento de Biología, Facultad de Química y Biología, and Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Universidad de Santiago de Chile, Alameda L. Bdo. O'Higgins 3363, 9160000, Santiago, Chile
| | - Ricardo Piña
- Departamento de Biología, Facultad de Química y Biología, and Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Universidad de Santiago de Chile, Alameda L. Bdo. O'Higgins 3363, 9160000, Santiago, Chile
| | - María Pertusa
- Departamento de Biología, Facultad de Química y Biología, and Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Universidad de Santiago de Chile, Alameda L. Bdo. O'Higgins 3363, 9160000, Santiago, Chile
| | - Patricio Orio
- Centro Interdisciplinario de Neurociencia de Valparaíso and Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, 2340000, Valparaíso, Chile
| | - Rodolfo Madrid
- Departamento de Biología, Facultad de Química y Biología, and Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Universidad de Santiago de Chile, Alameda L. Bdo. O'Higgins 3363, 9160000, Santiago, Chile.
| |
Collapse
|
36
|
Griggs RB, Yermakov LM, Susuki K. Formation and disruption of functional domains in myelinated CNS axons. Neurosci Res 2016; 116:77-87. [PMID: 27717670 DOI: 10.1016/j.neures.2016.09.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 09/19/2016] [Accepted: 09/23/2016] [Indexed: 12/15/2022]
Abstract
Communication in the central nervous system (CNS) occurs through initiation and propagation of action potentials at excitable domains along axons. Action potentials generated at the axon initial segment (AIS) are regenerated at nodes of Ranvier through the process of saltatory conduction. Proper formation and maintenance of the molecular structure at the AIS and nodes are required for sustaining conduction fidelity. In myelinated CNS axons, paranodal junctions between the axolemma and myelinating oligodendrocytes delineate nodes of Ranvier and regulate the distribution and localization of specialized functional elements, such as voltage-gated sodium channels and mitochondria. Disruption of excitable domains and altered distribution of functional elements in CNS axons is associated with demyelinating diseases such as multiple sclerosis, and is likely a mechanism common to other neurological disorders. This review will provide a brief overview of the molecular structure of the AIS and nodes of Ranvier, as well as the distribution of mitochondria in myelinated axons. In addition, this review highlights important structural and functional changes within myelinated CNS axons that are associated with neurological dysfunction.
Collapse
Affiliation(s)
- Ryan B Griggs
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
| | - Leonid M Yermakov
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
| | - Keiichiro Susuki
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States.
| |
Collapse
|