1
|
Skulborstad A, Goulbourne NC. A chemo-mechanical constitutive model for muscle activation in bat wing skins. J R Soc Interface 2024; 21:20230593. [PMID: 38981517 DOI: 10.1098/rsif.2023.0593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 04/17/2024] [Indexed: 07/11/2024] Open
Abstract
Birds, bats and insects have evolved unique wing structures to achieve a wide range of flight capabilities. Insects have relatively stiff and passive wings, birds have a complex and hierarchical feathered structure and bats have an articulated skeletal system integrated with a highly stretchable skin. The compliant skin of the wing distinguishes bats from all other flying animals and contributes to bats' remarkable, highly manoeuvrable flight performance and high energetic efficiency. The structural and functional complexity of the bat wing skin is one of the least understood although important elements of the bat flight anatomy. The wing skin has two unusual features: a discrete array of very soft elastin fibres and a discrete array of skeletal muscle fibres. The latter is intriguing because skeletal muscle is typically attached to bone, so the arrangement of intramembranous muscle in soft skin raises questions about its role in flight. In this paper, we develop a multi-scale chemo-mechanical constitutive model for bat wing skin. The chemo-mechanical model links cross-bridge cycling to a structure-based continuum model that describes the active viscoelastic behaviour of the soft anisotropic skin tissue. Continuum models at the tissue length-scale are valuable as they are easily implemented in commercial finite element codes to solve problems involving complex geometries, loading and boundary conditions. The constitutive model presented in this paper will be used in detailed finite element simulations to improve our understanding of the mechanics of bat flight in the context of wing kinematics and aerodynamic performance.
Collapse
Affiliation(s)
| | - N C Goulbourne
- Aerospace Engineering, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
2
|
Smiley KO, Munley KM, Aghi K, Lipshutz SE, Patton TM, Pradhan DS, Solomon-Lane TK, Sun SED. Sex diversity in the 21st century: Concepts, frameworks, and approaches for the future of neuroendocrinology. Horm Behav 2024; 157:105445. [PMID: 37979209 PMCID: PMC10842816 DOI: 10.1016/j.yhbeh.2023.105445] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/11/2023] [Accepted: 10/18/2023] [Indexed: 11/20/2023]
Abstract
Sex is ubiquitous and variable throughout the animal kingdom. Historically, scientists have used reductionist methodologies that rely on a priori sex categorizations, in which two discrete sexes are inextricably linked with gamete type. However, this binarized operationalization does not adequately reflect the diversity of sex observed in nature. This is due, in part, to the fact that sex exists across many levels of biological analysis, including genetic, molecular, cellular, morphological, behavioral, and population levels. Furthermore, the biological mechanisms governing sex are embedded in complex networks that dynamically interact with other systems. To produce the most accurate and scientifically rigorous work examining sex in neuroendocrinology and to capture the full range of sex variability and diversity present in animal systems, we must critically assess the frameworks, experimental designs, and analytical methods used in our research. In this perspective piece, we first propose a new conceptual framework to guide the integrative study of sex. Then, we provide practical guidance on research approaches for studying sex-associated variables, including factors to consider in study design, selection of model organisms, experimental methodologies, and statistical analyses. We invite fellow scientists to conscientiously apply these modernized approaches to advance our biological understanding of sex and to encourage academically and socially responsible outcomes of our work. By expanding our conceptual frameworks and methodological approaches to the study of sex, we will gain insight into the unique ways that sex exists across levels of biological organization to produce the vast array of variability and diversity observed in nature.
Collapse
Affiliation(s)
- Kristina O Smiley
- Department of Psychological and Brain Sciences, University of Massachusetts Amherst, 639 North Pleasant Street, Morrill IVN Neuroscience, Amherst, MA 01003, USA.
| | - Kathleen M Munley
- Department of Psychology, University of Houston, 3695 Cullen Boulevard, Houston, TX 77204, USA.
| | - Krisha Aghi
- Department of Integrative Biology and Physiology, University of California Los Angeles, 405 Hilgard Ave, Los Angeles, CA 90095, USA.
| | - Sara E Lipshutz
- Department of Biology, Duke University, 130 Science Drive, Durham, NC 27708, USA.
| | - Tessa M Patton
- Bioinformatics Program, Loyola University Chicago, 1032 West Sheridan Road, LSB 317, Chicago, IL 60660, USA.
| | - Devaleena S Pradhan
- Department of Biological Sciences, Idaho State University, 921 South 8th Avenue, Mail Stop 8007, Pocatello, ID 83209, USA.
| | - Tessa K Solomon-Lane
- Scripps, Pitzer, Claremont McKenna Colleges, 925 North Mills Avenue, Claremont, CA 91711, USA.
| | - Simón E D Sun
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
3
|
Fuxjager MJ, Ryder TB, Moody NM, Alfonso C, Balakrishnan CN, Barske J, Bosholn M, Boyle WA, Braun EL, Chiver I, Dakin R, Day LB, Driver R, Fusani L, Horton BM, Kimball RT, Lipshutz S, Mello CV, Miller ET, Webster MS, Wirthlin M, Wollman R, Moore IT, Schlinger BA. Systems biology as a framework to understand the physiological and endocrine bases of behavior and its evolution-From concepts to a case study in birds. Horm Behav 2023; 151:105340. [PMID: 36933440 DOI: 10.1016/j.yhbeh.2023.105340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 02/10/2023] [Accepted: 02/21/2023] [Indexed: 03/18/2023]
Abstract
Organismal behavior, with its tremendous complexity and diversity, is generated by numerous physiological systems acting in coordination. Understanding how these systems evolve to support differences in behavior within and among species is a longstanding goal in biology that has captured the imagination of researchers who work on a multitude of taxa, including humans. Of particular importance are the physiological determinants of behavioral evolution, which are sometimes overlooked because we lack a robust conceptual framework to study mechanisms underlying adaptation and diversification of behavior. Here, we discuss a framework for such an analysis that applies a "systems view" to our understanding of behavioral control. This approach involves linking separate models that consider behavior and physiology as their own networks into a singular vertically integrated behavioral control system. In doing so, hormones commonly stand out as the links, or edges, among nodes within this system. To ground our discussion, we focus on studies of manakins (Pipridae), a family of Neotropical birds. These species have numerous physiological and endocrine specializations that support their elaborate reproductive displays. As a result, manakins provide a useful example to help imagine and visualize the way systems concepts can inform our appreciation of behavioral evolution. In particular, manakins help clarify how connectedness among physiological systems-which is maintained through endocrine signaling-potentiate and/or constrain the evolution of complex behavior to yield behavioral differences across taxa. Ultimately, we hope this review will continue to stimulate thought, discussion, and the emergence of research focused on integrated phenotypes in behavioral ecology and endocrinology.
Collapse
Affiliation(s)
- Matthew J Fuxjager
- Department of Ecology, Evolution, and Organismal Biology, Brown University, Providence, RI 02906, USA.
| | - T Brandt Ryder
- Migratory Bird Center, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC 20013, USA
| | - Nicole M Moody
- Department of Ecology, Evolution, and Organismal Biology, Brown University, Providence, RI 02906, USA
| | - Camilo Alfonso
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24060, USA
| | | | - Julia Barske
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, USA
| | - Mariane Bosholn
- Animal Behavior Lab, Ecology Department, National Institute for Amazon Research, Manaus, Amazonas, Brazil
| | - W Alice Boyle
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Edward L Braun
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Ioana Chiver
- GIGA Neurosciences, University of Liège, Liege, Belgium
| | - Roslyn Dakin
- Migratory Bird Center, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC 20013, USA
| | - Lainy B Day
- Department of Biology, University of Mississippi, University, MS 38677, USA
| | - Robert Driver
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | - Leonida Fusani
- Department of Behavioral and Cognitive Biology, University of Vienna, and Konrad Lorenz Institute of Ethology, University of Veterinary Medicine, Vienna
| | - Brent M Horton
- Department of Biology, Millersville University, Millersville, PA 17551, USA
| | - Rebecca T Kimball
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Sara Lipshutz
- Department of Biology, Loyola University Chicago, Chicago, IL 60660, USA
| | - Claudio V Mello
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR 97239, USA
| | | | - Michael S Webster
- Cornell Lab of Ornithology, Ithaca, NY 14853, USA; Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Morgan Wirthlin
- Computational Biology Department, Carnegie Melon University, Pittsburgh, PA 15213, USA
| | - Roy Wollman
- Department of Physiology and Integrative Biology, University of California, Los Angeles, CA 90095, USA
| | - Ignacio T Moore
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24060, USA
| | - Barney A Schlinger
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, USA; Department of Physiology and Integrative Biology, University of California, Los Angeles, CA 90095, USA; Smithsonian Tropical Research Institute, Panama City, Panama.
| |
Collapse
|
4
|
Clark CJ, Hutchinson JR, Garland T. The Inverse Krogh Principle: All Organisms Are Worthy of Study. Physiol Biochem Zool 2023; 96:1-16. [PMID: 36626844 DOI: 10.1086/721620] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
AbstractKrogh's principle states, "For such a large number of problems there will be some animal of choice, or a few such animals, on which it can be most conveniently studied." The downside of picking a question first and then finding an ideal organism on which to study it is that it will inevitably leave many organisms neglected. Here, we promote the inverse Krogh principle: all organisms are worthy of study. The inverse Krogh principle and the Krogh principle are not opposites. Rather, the inverse Krogh principle emphasizes a different starting point for research: start with a biological unit, such as an organism, clade, or specific organism trait, then seek or create tractable research questions. Even the hardest-to-study species have research questions that can be asked of them: Where does it fall within the tree of life? What resources does it need to survive and reproduce? How does it differ from close relatives? Does it have unique adaptations? The Krogh and inverse Krogh approaches are complementary, and many research programs naturally include both. Other considerations for picking a study species include extreme species, species informative for phylogenetic analyses, and the creation of models when a suitable species does not exist. The inverse Krogh principle also has pitfalls. A scientist that picks the organism first might choose a research question not really suited to the organism, and funding agencies rarely fund organism-centered grant proposals. The inverse Krogh principle does not call for all organisms to receive the same amount of research attention. As knowledge continues to accumulate, some organisms-models-will inevitably have more known about them than others. Rather, it urges a broader search across organismal diversity to find sources of inspiration for research questions and the motivation needed to pursue them.
Collapse
|
5
|
Abstract
Abstract
Among size-dimorphic animals, a few clades such as hummingbirds show “reversed” sexual size dimorphism: females tend to be the larger sex. What selects for this pattern? Sexual selection for flight performance could drive the evolution of smaller, more agile males, either for male-male combat or female choice for aerial courtship displays. Alternately, natural selection can select for female fecundity (e.g., egg size influences female body size), or sex differences in foraging niche could favor body size differences. The sexual selection hypotheses predict that dimorphism extends to other aspects of flight morphology (e.g., flight muscle size) whereas the natural selection hypotheses predict that male and female flight morphologies are isometric, and the niche differentiation hypothesis predicts that bill dimorphism is correlated with size dimorphism. We tested these predictions through phylogenetic comparative analyses of flight morphology, wingbeat frequency, and courtship behaviors, focused on 30 species within the “bee” hummingbird clade (tribe Mellisugini). There is no correlation between bill morphology and dimorphism. Relative to females, males tend to be smaller, have proportionately shorter wings and higher hovering wingbeat frequencies, but also longer keels and larger flight muscles. Male wingbeat frequencies are greatly elevated during aerial displays, and the species with the greatest wingbeat frequencies have the greatest dimorphism. Of the four hypotheses for dimorphism, the data best support the hypothesis that female choice for courtship displays has selected for aerial agility and small size in male hummingbirds.
Collapse
Affiliation(s)
- Sean C Wilcox
- Department of Evolution, Ecology and Organismal Biology, University of California , Riverside, CA 92521 , USA
- Biological Sciences Department, Moorpark College , Moorpark, CA 93021 , USA
| | - Christopher J Clark
- Department of Evolution, Ecology and Organismal Biology, University of California , Riverside, CA 92521 , USA
| |
Collapse
|
6
|
Schwark RW, Fuxjager MJ, Schmidt MF. Proposing a neural framework for the evolution of elaborate courtship displays. eLife 2022; 11:e74860. [PMID: 35639093 PMCID: PMC9154748 DOI: 10.7554/elife.74860] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 05/06/2022] [Indexed: 11/15/2022] Open
Abstract
In many vertebrates, courtship occurs through the performance of elaborate behavioral displays that are as spectacular as they are complex. The question of how sexual selection acts upon these animals' neuromuscular systems to transform a repertoire of pre-existing movements into such remarkable (if not unusual) display routines has received relatively little research attention. This is a surprising gap in knowledge, given that unraveling this extraordinary process is central to understanding the evolution of behavioral diversity and its neural control. In many vertebrates, courtship displays often push the limits of neuromuscular performance, and often in a ritualized manner. These displays can range from songs that require rapid switching between two independently controlled 'voice boxes' to precisely choreographed acrobatics. Here, we propose a framework for thinking about how the brain might not only control these displays, but also shape their evolution. Our framework focuses specifically on a major midbrain area, which we view as a likely important node in the orchestration of the complex neural control of behavior used in the courtship process. This area is the periaqueductal grey (PAG), as studies suggest that it is both necessary and sufficient for the production of many instinctive survival behaviors, including courtship vocalizations. Thus, we speculate about why the PAG, as well as its key inputs, might serve as targets of sexual selection for display behavior. In doing so, we attempt to combine core ideas about the neural control of behavior with principles of display evolution. Our intent is to spur research in this area and bring together neurobiologists and behavioral ecologists to more fully understand the role that the brain might play in behavioral innovation and diversification.
Collapse
Affiliation(s)
- Ryan W Schwark
- Department of Biology, University of PennsylvaniaPhiladelphiaUnited States
- Neuroscience Graduate Group, University of PennsylvaniaPhiladelphiaUnited States
| | - Matthew J Fuxjager
- Department of Ecology, Evolution, and Organismal Biology, Brown UniversityProvidenceUnited States
| | - Marc F Schmidt
- Department of Biology, University of PennsylvaniaPhiladelphiaUnited States
- Neuroscience Graduate Group, University of PennsylvaniaPhiladelphiaUnited States
| |
Collapse
|
7
|
Abstract
The process by which new complex traits evolve has been a persistent conundrum throughout the history of evolutionary inquiry. How multiple physiological changes at the organism level and genetic changes at the molecular level combine is still unclear for many traits. Here, we studied the displays of manakins, who beat their wings together at nearly twice the speed of other songbirds to produce a loud “snap” that attracts mates. We simultaneously analyzed evolution of gene expression levels and gene sequences to identify key genes related to muscle contractions and tissue regeneration after stress. Our results show how innovative behavioral traits evolve as a layered process where recent molecular shifts build on ancestral genetic evolutionary changes. Identifying the molecular process of complex trait evolution is a core goal of biology. However, pinpointing the specific context and timing of trait-associated changes within the molecular evolutionary history of an organism remains an elusive goal. We study this topic by exploring the molecular basis of elaborate courtship evolution, which represents an extraordinary example of trait innovation. Within the behaviorally diverse radiation of Central and South American manakin birds, species from two separate lineages beat their wings together using specialized “superfast” muscles to generate a “snap” that helps attract mates. Here, we develop an empirical approach to analyze phylogenetic lineage-specific shifts in gene expression in the key snap-performing muscle and then integrate these findings with comparative transcriptomic sequence analysis. We find that rapid wing displays are associated with changes to a wide range of molecular processes that underlie extreme muscle performance, including changes to calcium trafficking, myocyte homeostasis and metabolism, and hormone action. We furthermore show that these changes occur gradually in a layered manner across the species history, wherein which ancestral genetic changes to many of these molecular systems are built upon by later species-specific shifts that likely finalized the process of display performance adaptation. Our study demonstrates the potential for combining phylogenetic modeling of tissue-specific gene expression shifts with phylogenetic analysis of lineage-specific sequence changes to reveal holistic evolutionary histories of complex traits.
Collapse
|
8
|
Fuxjager MJ, Fusani L, Schlinger BA. Physiological innovation and the evolutionary elaboration of courtship behaviour. Anim Behav 2022. [DOI: 10.1016/j.anbehav.2021.03.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
White ND, Batz ZA, Braun EL, Braun MJ, Carleton KL, Kimball RT, Swaroop A. A novel exome probe set captures phototransduction genes across birds (Aves) enabling efficient analysis of vision evolution. Mol Ecol Resour 2021; 22:587-601. [PMID: 34652059 DOI: 10.1111/1755-0998.13496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/17/2021] [Accepted: 08/20/2021] [Indexed: 11/27/2022]
Abstract
The diversity of avian visual phenotypes provides a framework for studying mechanisms of trait diversification generally, and the evolution of vertebrate vision, specifically. Previous research has focused on opsins, but to fully understand visual adaptation, we must study the complete phototransduction cascade (PTC). Here, we developed a probe set that captures exonic regions of 46 genes representing the PTC and other light responses. For a subset of species, we directly compared gene capture between our probe set and low-coverage whole genome sequencing (WGS), and we discuss considerations for choosing between these methods. Finally, we developed a unique strategy to avoid chimeric assembly by using "decoy" reference sequences. We successfully captured an average of 64% of our targeted exome in 46 species across 14 orders using the probe set and had similar recovery using the WGS data. Compared to WGS or transcriptomes, our probe set: (1) reduces sequencing requirements by efficiently capturing vision genes, (2) employs a simpler bioinformatic pipeline by limiting required assembly and negating annotation, and (3) eliminates the need for fresh tissues, enabling researchers to leverage existing museum collections. We then utilized our vision exome data to identify positively selected genes in two evolutionary scenarios-evolution of night vision in nocturnal birds and evolution of high-speed vision specific to manakins (Pipridae). We found parallel positive selection of SLC24A1 in both scenarios, implicating the alteration of rod response kinetics, which could improve color discrimination in dim light conditions and/or facilitate higher temporal resolution.
Collapse
Affiliation(s)
- Noor D White
- Neurobiology Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA.,Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, District of Columbia, USA.,Behavior, Ecology, Evolution and Systematics Program, University of Maryland, College Park, Maryland, USA
| | - Zachary A Batz
- Neurobiology Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Edward L Braun
- Department of Biology, University of Florida, Gainesville, Florida, USA
| | - Michael J Braun
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, District of Columbia, USA.,Behavior, Ecology, Evolution and Systematics Program, University of Maryland, College Park, Maryland, USA.,Department of Biology, University of Maryland, College Park, Maryland, USA
| | - Karen L Carleton
- Behavior, Ecology, Evolution and Systematics Program, University of Maryland, College Park, Maryland, USA.,Department of Biology, University of Maryland, College Park, Maryland, USA
| | - Rebecca T Kimball
- Department of Biology, University of Florida, Gainesville, Florida, USA
| | - Anand Swaroop
- Neurobiology Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
10
|
Janisch J, Mitoyen C, Perinot E, Spezie G, Fusani L, Quigley C. Video Recording and Analysis of Avian Movements and Behavior: Insights from Courtship Case Studies. Integr Comp Biol 2021; 61:1378-1393. [PMID: 34037219 PMCID: PMC8516111 DOI: 10.1093/icb/icab095] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Video recordings are useful tools for advancing our understanding of animal movements and behavior. Over the past decades, a burgeoning area of behavioral research has put forward innovative methods to investigate animal movement using video analysis, which includes motion capture and machine learning algorithms. These tools are particularly valuable for the study of elaborate and complex motor behaviors, but can be challenging to use. We focus in particular on elaborate courtship displays, which commonly involve rapid and/or subtle motor patterns. Here, we review currently available tools and provide hands-on guidelines for implementing these techniques in the study of avian model species. First, we suggest a set of possible strategies and solutions for video acquisition based on different model systems, environmental conditions, and time or financial budget. We then outline the available options for video analysis and illustrate how different analytical tools can be chosen to draw inference about animal motor performance. Finally, a detailed case study describes how these guidelines have been implemented to study courtship behavior in golden-collared manakins (Manacus vitellinus).
Collapse
Affiliation(s)
- Judith Janisch
- Konrad Lorenz Institute of Ethology, University of Veterinary Medicine, 1160 Vienna, Austria
| | - Clementine Mitoyen
- Department of Cognitive Biology, University of Vienna, 1090 Vienna, Austria
| | - Elisa Perinot
- Konrad Lorenz Institute of Ethology, University of Veterinary Medicine, 1160 Vienna, Austria
| | - Giovanni Spezie
- Konrad Lorenz Institute of Ethology, University of Veterinary Medicine, 1160 Vienna, Austria
| | - Leonida Fusani
- Konrad Lorenz Institute of Ethology, University of Veterinary Medicine, 1160 Vienna, Austria
- Department of Cognitive Biology, University of Vienna, 1090 Vienna, Austria
| | - Cliodhna Quigley
- Konrad Lorenz Institute of Ethology, University of Veterinary Medicine, 1160 Vienna, Austria
- Department of Cognitive Biology, University of Vienna, 1090 Vienna, Austria
- Vienna Cognitive Science Hub, University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
11
|
Green PA, McHenry MJ, Rico-Guevara A. Mechanoethology: The Physical Mechanisms of Behavior. Integr Comp Biol 2021; 61:613-623. [PMID: 34124767 PMCID: PMC8427180 DOI: 10.1093/icb/icab133] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 03/31/2021] [Accepted: 06/11/2021] [Indexed: 11/14/2022] Open
Abstract
Research that integrates animal behavior theory with mechanics-including biomechanics, physiology, and functional morphology-can reveal how organisms accomplish tasks crucial to their fitness. Despite the insights that can be gained from this interdisciplinary approach, biomechanics commonly neglects a behavioral context and behavioral research generally does not consider mechanics. Here, we aim to encourage the study of "mechanoethology," an area of investigation intended to encompass integrative studies of mechanics and behavior. Using examples from the literature, including papers in this issue, we show how these fields can influence each other in three ways: (1) the energy required to execute behaviors is driven by the kinematics of movement, and mechanistic studies of movement can benefit from consideration of its behavioral context; (2) mechanics sets physical limits on what behaviors organisms execute, while behavior influences ecological and evolutionary limits on mechanical systems; and (3) sensory behavior is underlain by the mechanics of sensory structures, and sensory systems guide whole-organism movement. These core concepts offer a foundation for mechanoethology research. However, future studies focused on merging behavior and mechanics may reveal other ways by which these fields are linked, leading to further insights in integrative organismal biology.
Collapse
Affiliation(s)
- P A Green
- Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn TR10 9FE, UK
| | - M J McHenry
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697, USA
| | - A Rico-Guevara
- Department of Biology, University of Washington, Seattle, WA 98105, USA
- Burke Museum of Natural History and Culture, University of Washington, Seattle, WA 98105, USA
| |
Collapse
|
12
|
Schuppe ER, Rutter AR, Roberts TJ, Fuxjager MJ. Evolutionary and Biomechanical Basis of Drumming Behavior in Woodpeckers. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.649146] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Understanding how and why behavioral traits diversify during the course of evolution is a longstanding goal of organismal biologists. Historically, this topic is examined from an ecological perspective, where behavioral evolution is thought to occur in response to selection pressures that arise through different social and environmental factors. Yet organismal physiology and biomechanics also play a role in this process by defining the types of behavioral traits that are more or less likely to arise. Our paper explores the interplay between ecological, physiological, and mechanical factors that shape the evolution of an elaborate display in woodpeckers called the drum. Individuals produce this behavior by rapidly hammering their bill on trees in their habitat, and it serves as an aggressive signal during territorial encounters. We describe how different components of the display—namely, speed (bill strikes/beats sec–1), length (total number of beats), and rhythm—differentially evolve likely in response to sexual selection by male-male competition, whereas other components of the display appear more evolutionarily static, possibly due to morphological or physiological constraints. We synthesize research related to principles of avian muscle physiology and ecology to guide inferences about the biomechanical basis of woodpecker drumming. Our aim is to introduce the woodpecker as an ideal study system to study the physiological basis of behavioral evolution and how it relates to selection born through different ecological factors.
Collapse
|
13
|
Alfonso C, Jones BC, Vernasco BJ, Moore IT. Integrative Studies of Sexual Selection in Manakins, a Clade of Charismatic Tropical Birds. Integr Comp Biol 2021; 61:1267-1280. [PMID: 34251421 DOI: 10.1093/icb/icab158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/07/2021] [Accepted: 07/07/2021] [Indexed: 11/14/2022] Open
Abstract
The neotropical manakins (family Pipridae) provide a great opportunity for integrative studies of sexual selection as nearly all of the 51 species are lek-breeding, an extreme form of polygyny, and highly sexually dimorphic both in appearance and behavior. Male courtship displays are often elaborate and include auditory cues, both vocal and mechanical, as well as visual elements. In addition, the displays are often extremely rapid, highly acrobatic, and, in some species, multiple males perform coordinated displays that form the basis of long-term coalitions. Male manakins also exhibit unique neuroendocrine, physiological, and anatomical adaptations to support the performance of these complex displays and the maintenance of their intricate social systems. The Manakin Genomics Research Coordination Network (Manakin RCN, https://www.manakinsrcn.org) has brought together researchers (many in this symposium and this issue) from across disciplines to address the implications of sexual selection on evolution, ecology, behavior, and physiology in manakins. The objective of this paper is to present some of the most pertinent and integrative manakin research as well as introducing the papers presented in this issue. The results discussed at the manakin symposium, part of the 2021 Society for Integrative and Comparative Biology Conference, highlight the remarkable genomic, behavioral, and physiological adaptations as well as the evolutionary causes and consequences of strong sexual selection pressures that are evident in manakins.
Collapse
Affiliation(s)
- Camilo Alfonso
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Blake C Jones
- Science and Mathematics, Bennington College, 1 College Dr., Bennington, VT 05201, USA
| | - Ben J Vernasco
- School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Ignacio T Moore
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
14
|
Bennett KFP, Lim HC, Braun MJ. Sexual selection and introgression in avian hybrid zones: Spotlight on Manacus. Integr Comp Biol 2021; 61:1291-1309. [PMID: 34128981 DOI: 10.1093/icb/icab135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Hybrid zones offer a window into the processes and outcomes of evolution, from species formation or fusion to genomic underpinnings of specific traits and isolating mechanisms. Sexual selection is believed to be an important factor in speciation processes, and hybrid zones present special opportunities to probe its impact. The manakins (Aves, Pipridae) are a promising group in which to study the interplay of sexual selection and natural hybridization: they show substantial variation across the family in the strength of sexual selection they experience, they readily hybridize within and between genera, and they appear to have formed hybrid species, a rare event in birds. A hybrid zone between two manakins in the genus Manacus is unusual in that plumage and behavioral traits of one species have introgressed asymmetrically into populations of the second species through positive sexual selection, then apparently stalled at a river barrier. This is one of a handful of documented examples of asymmetric sexual trait introgression with a known selective mechanism. It offers opportunities to examine reproductive isolation, introgression, plumage color evolution, and natural factors enhancing or constraining the effects of sexual selection in real time. Here, we review previous work in this system, propose new hypotheses for observed patterns, and recommend approaches to test them.
Collapse
Affiliation(s)
- Kevin F P Bennett
- Behavior, Ecology, Evolution, and Systematics Program, University of Maryland, College Park, MD, USA.,Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Haw Chuan Lim
- Department of Biology, George Mason University, Manassas, VA, USA.,Center for Conservation Genomics, Smithsonian Conservation Biology Institute, Washington, DC, USA
| | - Michael J Braun
- Behavior, Ecology, Evolution, and Systematics Program, University of Maryland, College Park, MD, USA.,Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| |
Collapse
|
15
|
Smith SM, Eigerman AR, LeCure KM, Kironde E, Privett-Mendoza AG, Fuxjager MJ, Preininger D, Mangiamele LA. Androgen Receptor Modulates Multimodal Displays in the Bornean Rock Frog (Staurois parvus). Integr Comp Biol 2021; 61:221-230. [PMID: 34009301 DOI: 10.1093/icb/icab042] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Multimodal communication is common in the animal kingdom. It occurs when animals display by stimulating two or more receiver sensory systems, and often arises when selection favors multiple ways to send messages to conspecifics. Mechanisms of multimodal display behavior are poorly understood, particularly with respect to how animals coordinate the production of different signals. One important question is whether all components in a multimodal display share an underlying physiological basis, or whether different components are regulated independently. We investigated the influence of androgen receptors (ARs) on the production of both visual and vocal signal components in the multimodal display repertoire of the Bornean rock frog (Staurois parvus). To assess the role of AR in signal production, we treated reproductively active adult males with the antiandrogen flutamide (FLUT) and measured the performance of each component signal in the multimodal display. Our results show that blocking AR inhibited the production of multiple visual signals, including a conspicuous visual signal known as the "foot flag," which is produced by rotating the hind limb above the body. However, FLUT treatment caused no measurable change in vocal signaling behavior, or in the frequency or fine temporal properties of males' calls. Our study, therefore, suggests that activation of AR is not a physiological prerequisite to the coordination of multiple signals, in that it either does not regulate all signaling behaviors in a male's display repertoire or it does so only in a context-dependent manner.
Collapse
Affiliation(s)
- Sarah M Smith
- Department of Biological Sciences, Smith College, Northampton, MA 01063, USA
| | - Amelia R Eigerman
- Department of Biological Sciences, Smith College, Northampton, MA 01063, USA
| | - Kerry M LeCure
- Department of Biological Sciences, Smith College, Northampton, MA 01063, USA
| | - Eseza Kironde
- Department of Biological Sciences, Smith College, Northampton, MA 01063, USA
| | | | - Matthew J Fuxjager
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA
| | - Doris Preininger
- Department of Evolutionary Biology, University of Vienna, Vienna, Austria.,Vienna Zoo, Vienna, Austria
| | - Lisa A Mangiamele
- Department of Biological Sciences, Smith College, Northampton, MA 01063, USA
| |
Collapse
|
16
|
Schlinger BA, Chiver I. Behavioral Sex Differences and Hormonal Control in a Bird with an Elaborate Courtship Display. Integr Comp Biol 2021; 61:1319-1328. [PMID: 33885763 DOI: 10.1093/icb/icab033] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Gonadal hormones can activate performance of reproductive behavior in adult animals, but also organize sex-specific neural circuits developmentally. Few studies have examined the hormonal basis of sex differences in the performance of elaborate, physically complex and energetic male courtship displays. Here we describe our studies over more than 20 years examining sex difference and hormonal control of courtship in Golden-collared manakins (Manacus vitellinus) of Panamaian rainforests. Our recent studies of birds studied in an artificial "lek" in a rainforest aviary provide many new insights. Wild and captive males and females differ markedly in their performance of male-typical behaviors. Testosterone (T) treatment augments performance of virtually all of these behaviors in juvenile males with low levels of circulating T. By contrast, T-treatment of females (with low circulating T) either failed to activate some behaviors or activated male behaviors weakly or strongly. These results are discussed within a framework of our appreciation for hormonal vs genetic basis for sex differences in behavior with speculation about the neural mechanisms producing these patterns of hormonal activation.
Collapse
Affiliation(s)
- Barney A Schlinger
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095.,Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095.,Smithsonian Tropical Research Institute, Panama City, Panama
| | | |
Collapse
|
17
|
Tobiansky DJ, Miles MC, Goller F, Fuxjager MJ. Androgenic modulation of extraordinary muscle speed creates a performance trade-off with endurance. J Exp Biol 2020; 223:jeb222984. [PMID: 32291320 DOI: 10.1242/jeb.222984] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/04/2020] [Indexed: 12/30/2022]
Abstract
Performance trade-offs can dramatically alter an organism's evolutionary trajectory by making certain phenotypic outcomes unattainable. Understanding how these trade-offs arise from an animal's design is therefore an important goal of biology. To explore this topic, we studied how androgenic hormones, which regulate skeletal muscle function, influence performance trade-offs relevant to different components of complex reproductive behaviour. We conducted this work in golden-collared manakins (Manacus vitellinus), a neotropical bird in which males court females by rapidly snapping their wings together above their back. Androgens help mediate this behavior by radically increasing the twitch speed of a dorsal wing muscle (scapulohumeralis caudalis, SH), which actuates the bird's wing-snap. Through hormone manipulations and in situ muscle recordings, we tested how these positive effects on SH speed influence trade-offs with endurance. Indeed, this latter trait impacts the display by shaping signal length. We found that androgen-dependent increases in SH speed incur a cost to endurance, particularly when this muscle performs at its functional limits. Moreover, when behavioural data were overlaid on our muscle recordings, displaying animals appeared to balance display speed with fatigue-induced muscle fusion (physiological tetanus) to generate the fastest possible signal while maintaining an appropriate signal duration. Our results point to androgen action as a functional trigger of trade-offs in sexual performance - these hormones enhance one element of a courtship display, but in doing so, impede another.
Collapse
Affiliation(s)
- Daniel J Tobiansky
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA
| | - Meredith C Miles
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA
| | - Franz Goller
- Department of Biology, The University of Utah, Salt Lake City, UT 84112, USA
- Institute for Zoophysiology, University of Münster, 48149 Münster, Germany
| | - Matthew J Fuxjager
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA
| |
Collapse
|
18
|
Schuppe ER, Miles MC, Fuxjager MJ. Evolution of the androgen receptor: Perspectives from human health to dancing birds. Mol Cell Endocrinol 2020; 499:110577. [PMID: 31525432 DOI: 10.1016/j.mce.2019.110577] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 09/04/2019] [Accepted: 09/09/2019] [Indexed: 12/23/2022]
Abstract
Androgenic hormones orchestrate the development and activation of diverse reproductive phenotypes across vertebrates. Although extensive work investigates how selection for these traits modifies individual elements of this signaling system (e.g., hormone or androgen receptor [AR] levels), we know less about natural variation in the AR sequence across vertebrates. Our knowledge of AR sequence mutations is largely limited to work in human patients or cell-lines, providing a framework to contextualize single mutations at the expense of evolutionary timescale. Here we unite both perspectives in a review that explores the functional significance of AR on a domain-by-domain basis, using existing knowledge to highlight how and why each region might evolve. We then examine AR sequence variation on different timescales by examining sequence variation in clades originating in the Cambrian (vertebrates; >500 mya) and Cretaceous (birds; >65 mya). In each case, we characterize how the receptor has changed over time and discuss which regions are most likely to evolve in response to selection. Overall, domains that are required for androgenic signaling to function (e.g., DNA- and ligand-binding) tend to be conserved. Meanwhile, areas that interface with co-regulatory molecules can exhibit notable variation even between closely related species. We propose that accumulating mutations in regulatory regions is one way that AR structure might act as a substrate for selection to guide the evolution of reproductive traits. By synthesizing literature across disciplines and highlighting the evolutionary potential of specific AR regions, we hope to inspire new avenues of integrative research into endocrine system evolution.
Collapse
Affiliation(s)
- Eric R Schuppe
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, 14853, USA
| | - Meredith C Miles
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, 02912, USA
| | - Matthew J Fuxjager
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, 02912, USA.
| |
Collapse
|
19
|
Miles MC, Schuppe ER, Ligon RM, Fuxjager MJ. Macroevolutionary patterning of woodpecker drums reveals how sexual selection elaborates signals under constraint. Proc Biol Sci 2019; 285:rspb.2017.2628. [PMID: 29467264 PMCID: PMC5832706 DOI: 10.1098/rspb.2017.2628] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 01/29/2018] [Indexed: 11/23/2022] Open
Abstract
Sexual selection drives elaboration in animal displays used for competition and courtship, but this process is opposed by morphological constraints on signal design. How do interactions between selection and constraint shape display evolution? One possibility is that sexual selection continues exaggeration under constraint by operating differentially on each signal component in complex, modular displays. This is seldom studied on a phylogenetic scale, but we address the issue herein by studying macroevolutionary patterning of woodpecker drum displays. These territorial displays are produced when an individual rapidly hits its bill on a hard surface, and drums vary across species in the number of beats included (length) and the rate of drumbeat production (speed). We report that species body size limits drum speed, but not drum length. As a result of this biomechanical constraint, there is less standing variation in speed than length. We also uncover a positive relationship between sexual size dimorphism and the unconstrained trait (length), but with no effect on speed. This suggests that when morphology limits the exaggeration of one component, sexual selection instead exaggerates the unconstrained trait. Modular displays therefore provide the basis for selection to find novel routes to phenotypic elaboration after previous ones are closed.
Collapse
Affiliation(s)
- Meredith C Miles
- Department of Biology, Wake Forest University, Winston-Salem, NC 27101, USA
| | - Eric R Schuppe
- Department of Biology, Wake Forest University, Winston-Salem, NC 27101, USA
| | - R Miller Ligon
- Department of Biology, Wake Forest University, Winston-Salem, NC 27101, USA
| | - Matthew J Fuxjager
- Department of Biology, Wake Forest University, Winston-Salem, NC 27101, USA
| |
Collapse
|
20
|
Fuxjager MJ, Schuppe ER. Androgenic signaling systems and their role in behavioral evolution. J Steroid Biochem Mol Biol 2018; 184:47-56. [PMID: 29883693 DOI: 10.1016/j.jsbmb.2018.06.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 05/25/2018] [Accepted: 06/04/2018] [Indexed: 12/13/2022]
Abstract
Sex steroids mediate the organization and activation of masculine reproductive phenotypes in diverse vertebrate taxa. However, the effects of sex steroid action in this context vary tremendously, in that steroid action influences reproductive physiology and behavior in markedly different ways (even among closely related species). This leads to the idea that the mechanisms underlying sex steroid action similarly differ across vertebrates in a manner that supports diversification of important sexual traits. Here, we highlight the Evolutionary Potential Hypothesis as a framework for understanding how androgen-dependent reproductive behavior evolves. This idea posits that the cellular mechanisms underlying androgenic action can independently evolve within a given target tissue to adjust the hormone's functional effects. The result is a seemingly endless number of permutations in androgenic signaling pathways that can be mapped onto the incredible diversity of reproductive phenotypes. One reason this hypothesis is important is because it shifts current thinking about the evolution of steroid-dependent traits away from an emphasis on circulating steroid levels and toward a focus on molecular mechanisms of hormone action. To this end, we also provide new empirical data suggesting that certain cellular modulators of androgen action-namely, the co-factors that dynamically adjust transcritpional effects of steroid action either up or down-are also substrates on which evolution can act. We then close the review with a detailed look at a case study in the golden-collared manakin (Manacus vitellinus). Work in this tropical bird shows how androgenic signaling systems are modified in specific parts of the skeletal muscle system to enhance motor performance necessary to produce acrobatic courtship displays. Altogether, this paper seeks to develop a platform to better understand how steroid action influences the evolution of complex animal behavior.
Collapse
Affiliation(s)
- Matthew J Fuxjager
- Department of Biology, Wake Forest University, 455 Vine Street, Winston-Salem, NC 27101, United States.
| | - Eric R Schuppe
- Department of Biology, Wake Forest University, 455 Vine Street, Winston-Salem, NC 27101, United States
| |
Collapse
|
21
|
Miles MC, Goller F, Fuxjager MJ. Physiological constraint on acrobatic courtship behavior underlies rapid sympatric speciation in bearded manakins. eLife 2018; 7:e40630. [PMID: 30375331 PMCID: PMC6207423 DOI: 10.7554/elife.40630] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 10/11/2018] [Indexed: 12/28/2022] Open
Abstract
Physiology's role in speciation is poorly understood. Motor systems, for example, are widely thought to shape this process because they can potentiate or constrain the evolution of key traits that help mediate speciation. Previously, we found that Neotropical manakin birds have evolved one of the fastest limb muscles on record to support innovations in acrobatic courtship display (Fuxjager et al., 2016a). Here, we show how this modification played an instrumental role in the sympatric speciation of a manakin genus, illustrating that muscle specializations fostered divergence in courtship display speed, which may generate assortative mating. However, innovations in contraction-relaxation cycling kinetics that underlie rapid muscle performance are also punctuated by a severe speed-endurance trade-off, blocking further exaggeration of display speed. Sexual selection therefore potentiated phenotypic displacement in a trait critical to mate choice, all during an extraordinarily fast species radiation-and in doing so, pushed muscle performance to a new boundary altogether.
Collapse
Affiliation(s)
| | - Franz Goller
- University of UtahSalt Lake CityUnited States
- Institute for ZoophysiologyUniversity of MünsterGermany
| | | |
Collapse
|
22
|
Ingersoll R, Lentink D. How the hummingbird wingbeat is tuned for efficient hovering. ACTA ACUST UNITED AC 2018; 221:221/20/jeb178228. [PMID: 30323114 DOI: 10.1242/jeb.178228] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 08/09/2018] [Indexed: 11/20/2022]
Abstract
Both hummingbirds and insects flap their wings to hover. Some insects, like fruit flies, improve efficiency by lifting their body weight equally over the upstroke and downstroke, while utilizing elastic recoil during stroke reversal. It is unclear whether hummingbirds converged on a similar elastic storage solution, because of asymmetries in their lift generation and specialized flight muscle apparatus. The muscles are activated a quarter of a stroke earlier than in larger birds, and contract superfast, which cannot be explained by previous stroke-averaged analyses. We measured the aerodynamic force and kinematics of Anna's hummingbirds to resolve wing torque and power within the wingbeat. Comparing these wingbeat-resolved aerodynamic weight support measurements with those of fruit flies, hawk moths and a generalist bird, the parrotlet, we found that hummingbirds have about the same low induced power losses as the two insects, lower than that of the generalist bird in slow hovering flight. Previous analyses emphasized how bird flight muscles have to overcome wing drag midstroke. We found that high wing inertia revises this for hummingbirds - the pectoralis has to coordinate upstroke to downstroke reversal while the supracoracoideus coordinates downstroke to upstroke reversal. Our mechanistic analysis aligns with all previous muscle recordings and shows how early activation helps furnish elastic recoil through stroke reversal to stay within the physiological limits of muscles. Our findings thus support Weis-Fogh's hypothesis that flies and hummingbirds have converged on a mechanically efficient wingbeat to meet the high energetic demands of hovering flight. These insights can help improve the efficiency of flapping robots.
Collapse
Affiliation(s)
- Rivers Ingersoll
- Department of Mechanical Engineering, Stanford University, Palo Alto, CA 94305, USA
| | - David Lentink
- Department of Mechanical Engineering, Stanford University, Palo Alto, CA 94305, USA
| |
Collapse
|
23
|
Animal choreography of song and dance: a case study in the Montezuma oropendola, Psarocolius montezuma. Anim Behav 2018. [DOI: 10.1016/j.anbehav.2018.04.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
24
|
Schuppe ER, Fuxjager MJ. High‐speed displays encoding motor skill trigger elevated territorial aggression in downy woodpeckers. Funct Ecol 2017. [DOI: 10.1111/1365-2435.13010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Eric R. Schuppe
- Department of Biology Wake Forest University Winston‐Salem NC USA
| | | |
Collapse
|
25
|
Mead AF, Osinalde N, Ørtenblad N, Nielsen J, Brewer J, Vellema M, Adam I, Scharff C, Song Y, Frandsen U, Blagoev B, Kratchmarova I, Elemans CP. Fundamental constraints in synchronous muscle limit superfast motor control in vertebrates. eLife 2017; 6. [PMID: 29165242 PMCID: PMC5699865 DOI: 10.7554/elife.29425] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 10/29/2017] [Indexed: 12/12/2022] Open
Abstract
Superfast muscles (SFMs) are extremely fast synchronous muscles capable of contraction rates up to 250 Hz, enabling precise motor execution at the millisecond time scale. SFM phenotypes have been discovered in most major vertebrate lineages, but it remains unknown whether all SFMs share excitation-contraction coupling pathway adaptations for speed, and if SFMs arose once, or from independent evolutionary events. Here, we demonstrate that to achieve rapid actomyosin crossbridge kinetics bat and songbird SFM express myosin heavy chain genes that are evolutionarily and ontologically distinct. Furthermore, we show that all known SFMs share multiple functional adaptations that minimize excitation-contraction coupling transduction times. Our results suggest that SFM evolved independently in sound-producing organs in ray-finned fish, birds, and mammals, and that SFM phenotypes operate at a maximum operational speed set by fundamental constraints in synchronous muscle. Consequentially, these constraints set a fundamental limit to the maximum speed of fine motor control. Across animals, different muscle types have evolved to perform vastly different tasks at different speeds. For example, tortoise leg muscles move slowly over several seconds, while the flight muscles of a hummingbird move quickly dozens of times per second. The speed record holders among vertebrates are the so-called superfast muscles, which can move up to 250 times per second. Superfast muscles power the alarming rattle of rattlesnakes, courtship calls in fish, rapid echolocation calls in bats and the elaborate vocal gymnastics of songbirds. Thus these extreme muscles are all around us and are always involved in sound production. Did superfast muscles evolve from a common ancestor? And how do different superfast muscles achieve their extreme behavior? To answer these questions, Mead et al. studied the systems known to limit contraction speed in all currently known superfast muscles found in rattlesnakes, toadfish, bats and songbirds. This revealed that all the muscles share certain specific adaptations that allow superfast contractions. Furthermore, the three fastest examples – toadfish, songbird and bat – have nearly identical maximum speeds. Although this appears to support the idea that the adaptations all evolved from a shared ancestor, Mead et al. found evidence that suggests otherwise. Each of the three superfast muscles are powered by a different motor protein, which argues strongly in favor of the muscles evolving independently. The existence of such similar mechanisms and performance in independently evolved muscles raises the possibility that the fastest contraction rates measured by Mead et al. represent a maximum speed limit for all vertebrate muscles. Any technical failure in a racecar most likely will slow it down, while the same failure in a robustly engineered family car may not be so noticeable. Similarly in superfast muscle many cellular and molecular systems need to perform maximally. Therefore by understanding how these extreme muscles work, we also gain a better understanding of how normal muscles contract.
Collapse
Affiliation(s)
- Andrew F Mead
- Department of Biology, University of Vermont, Burlington, United States
| | - Nerea Osinalde
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Niels Ørtenblad
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Joachim Nielsen
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Jonathan Brewer
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Michiel Vellema
- Department of Biology, University of Southern Denmark, Odense, Denmark
| | - Iris Adam
- Institute of Biology, Freie Universität Berlin, Berlin, Germany
| | | | - Yafeng Song
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Ulrik Frandsen
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Blagoy Blagoev
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Irina Kratchmarova
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Coen Ph Elemans
- Department of Biology, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
26
|
Fuxjager MJ, Miles MC, Goller F, Petersen J, Yancey J. Androgens Support Male Acrobatic Courtship Behavior by Enhancing Muscle Speed and Easing the Severity of Its Tradeoff With Force. Endocrinology 2017; 158:4038-4046. [PMID: 28938418 DOI: 10.1210/en.2017-00599] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 08/23/2017] [Indexed: 01/08/2023]
Abstract
Steroid hormone action in the brain regulates many animals' elaborate social displays used for courtship and competition, but it is increasingly recognized that the periphery may also be a site for potent steroidal modulation of complex behavior. However, the mechanisms of such "bottom-up" regulation of behavioral outflow are largely unclear. To study this problem, we examined how androgenic sex hormones act through the skeletal muscular system to mediate elaborate courtship acrobatics in a tropical bird called the golden-collared manakin. As part of their display, males snap their wings together above their backs at rates that are at least 2× faster than the normal wing-beat frequency used for flight. This behavior, called the roll-snap, is actuated by repeatedly activating a humeral retractor muscle-the scapulohumeralis caudalis (SH)-which produces contraction-relaxation cycling speeds similar to the "superfast" muscles of other taxa. We report that endogenous androgenic activation of androgen receptor (AR) sustains this muscle's exceptionally rapid contractile kinetics, allowing the tissue to generate distinct wing movements at oscillation frequencies >100 Hz. We also show that these effects are rooted in an AR-dependent increase to contractile velocity, which incurs no detectable cost to force generation. Thus, AR enhances SH speed necessary for courtship display performance while avoiding the expected tradeoff with strength that could otherwise negatively influence aspects of flight. Peripheral AR therefore not only sets up the muscular system to perform a complex wing display, but does so in a way that balances the functional requirements of this muscle for other life-sustaining behavior.
Collapse
Affiliation(s)
- Matthew J Fuxjager
- Department of Biology, Wake Forest University, Winston-Salem, North Carolina 27109
| | - Meredith C Miles
- Department of Biology, Wake Forest University, Winston-Salem, North Carolina 27109
| | - Franz Goller
- Department of Biology, University of Utah, Salt Lake City, Utah 84112
| | - John Petersen
- Department of Biology, Wake Forest University, Winston-Salem, North Carolina 27109
| | - Julia Yancey
- Department of Biology, Wake Forest University, Winston-Salem, North Carolina 27109
| |
Collapse
|
27
|
Fuxjager MJ, Fusani L, Goller F, Trost L, Maat AT, Gahr M, Chiver I, Ligon RM, Chew J, Schlinger BA. Neuromuscular mechanisms of an elaborate wing display in the golden-collared manakin ( Manacus vitellinus). ACTA ACUST UNITED AC 2017; 220:4681-4688. [PMID: 29061685 DOI: 10.1242/jeb.167270] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 10/18/2017] [Indexed: 01/26/2023]
Abstract
Many species perform elaborate physical displays to court mates and compete with rivals, but the biomechanical mechanisms underlying such behavior are poorly understood. We address this issue by studying the neuromuscular origins of display behavior in a small tropical passerine bird, the golden-collared manakin (Manacus vitellinus). Males of this species court females by dancing around the forest floor and rapidly snapping their wings together above their back. Using radio-telemetry, we collected electromyographic (EMG) recordings from the three main muscles that control avian forelimb movement, and found how these different muscles are activated to generate various aspects of display behavior. The muscle that raises the wing (supracoracoideus, SC) and the primary muscle that retracts the wing (scapulohumeralis caudalis, SH) were activated during the wing-snap, whereas the pectoralis (PEC), the main wing depressor, was not. SC activation began before wing elevation commenced, with further activation occurring gradually. By contrast, SH activation was swift, starting soon after wing elevation and peaking shortly after the snap. The intensity of this SH activation was comparable to that which occurs during flapping, whereas the SC activation was much lower. Thus, light activation of the SC likely helps position the wings above the back, so that quick, robust SH activation can drive these appendages together to generate the firecracker-like snap sonation. This is one of the first looks at the neuromuscular mechanisms that underlie the actuation of a dynamic courtship display, and it demonstrates that even complex, whole-body display movements can be studied with transmitter-aided EMG techniques.
Collapse
Affiliation(s)
- Matthew J Fuxjager
- Department of Biology, Wake Forest University, Winston-Salem, NC 27109, USA
| | - Leonida Fusani
- Konrad Lorenz Institute of Ethology, University of Veterinary Medicine, Vienna, Austria.,Department of Cognitive Biology, University of Vienna, 1160 Vienna, Austria
| | - Franz Goller
- Department of Biology, University of Utah, Salt Lake City, UT 84112, USA
| | - Lisa Trost
- Department of Behavioral Neurobiology, Max Planck Institute for Ornithology, Seewiesen, 82319, Germany
| | - Andries Ter Maat
- Department of Behavioral Neurobiology, Max Planck Institute for Ornithology, Seewiesen, 82319, Germany
| | - Manfred Gahr
- Department of Behavioral Neurobiology, Max Planck Institute for Ornithology, Seewiesen, 82319, Germany
| | - Ioana Chiver
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - R Miller Ligon
- Department of Biology, Wake Forest University, Winston-Salem, NC 27109, USA
| | - Jennifer Chew
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Barney A Schlinger
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA.,Department of Ecology and Evolution, University of California, Los Angeles, Los Angeles, CA 90095, USA.,Smithsonian Tropical Research Institute, Balboa, Ancón, Panama
| |
Collapse
|
28
|
Evolution of the androgen-induced male phenotype. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2017; 204:81-92. [DOI: 10.1007/s00359-017-1215-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 09/11/2017] [Accepted: 09/14/2017] [Indexed: 12/20/2022]
|
29
|
Chiver I, Schlinger BA. Clearing up the court: sex and the endocrine basis of display-court manipulation. Anim Behav 2017. [DOI: 10.1016/j.anbehav.2017.07.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
30
|
Fuxjager MJ, Schuppe ER, Hoang J, Chew J, Shah M, Schlinger BA. Expression of 5α- and 5β-reductase in spinal cord and muscle of birds with different courtship repertoires. Front Zool 2016; 13:25. [PMID: 27293470 PMCID: PMC4901407 DOI: 10.1186/s12983-016-0156-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 05/30/2016] [Indexed: 12/19/2022] Open
Abstract
Background Through the actions of one or more isoforms of the enzyme 5α-reductase in many male reproductive tissues, circulating testosterone (T) undergoes metabolic conversion into 5α-dihydrotestosterone (DHT), which binds to and activates androgen receptors (AR) with greater potency than T. In birds, T is also subject to local inactivation into 5β-DHT by the enzyme 5β-reductase. Male golden-collared manakins perform an androgen-dependent and physically elaborate courtship display, and these birds express androgen receptors in skeletal muscles and spinal cord at levels far greater than those expressed in species with more limited courtship routines, including male zebra finches. To determine if local T metabolism facilitates or impedes activation of male manakin courtship, we examined expression of two isoforms of 5α-reductase, as well as 5β-reductase, in forelimb muscles and spinal cords of males and females of the two aforementioned species. Results We found that all enzymes were expressed in all tissues, with patterns that partially predict a functional role for 5α-reductase in these birds, especially in both muscle and spinal cord of male manakins. Moreover, we found that 5β-reductase was markedly different between species, with far lower levels in golden-collared manakins, compared to zebra finches. Thus, modification to neuromuscular deactivation of T may also play a functional role in adaptive behavioral modulation. Conclusions Given that such a role for 5α-reductase in androgen-sensitive mammalian skeletal muscle is in dispute, our data suggest that, in birds, local metabolism may play a key role in providing active androgenic substrates to peripheral neuromuscular systems. Similarly, we provide the first evidence that 5β-reductase is expressed broadly through an organism and may be an important factor that regulates androgenic modulation of neuromuscular functioning.
Collapse
Affiliation(s)
- Matthew J Fuxjager
- Department of Biology, Wake Forest University, 228 Winston Hall, Winston-Salem, NC 27109 USA ; Center for Molecular Communication and Signaling, Wake Forest University, Winston-Salem, USA
| | - Eric R Schuppe
- Department of Biology, Wake Forest University, 228 Winston Hall, Winston-Salem, NC 27109 USA
| | - John Hoang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, USA
| | - Jennifer Chew
- Department of Integrative Biology and Physiology, University of California, Los Angeles, USA
| | - Mital Shah
- Department of Integrative Biology and Physiology, University of California, Los Angeles, USA
| | - Barney A Schlinger
- Department of Integrative Biology and Physiology, University of California, Los Angeles, USA ; Laboratory of Neuroendocrinology, Brain Research Institute, University of California, Los Angeles, USA ; Department of Ecology and Evolutionary Biology, University of California, Los Angeles, USA ; Smithsonian Tropical Research Institute, Balboa, Ancon, Republic of Panama
| |
Collapse
|
31
|
Mangiamele LA, Fuxjager MJ, Schuppe ER, Taylor RS, Hödl W, Preininger D. Increased androgenic sensitivity in the hind limb muscular system marks the evolution of a derived gestural display. Proc Natl Acad Sci U S A 2016; 113:5664-9. [PMID: 27143723 PMCID: PMC4878525 DOI: 10.1073/pnas.1603329113] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Physical gestures are prominent features of many species' multimodal displays, yet how evolution incorporates body and leg movements into animal signaling repertoires is unclear. Androgenic hormones modulate the production of reproductive signals and sexual motor skills in many vertebrates; therefore, one possibility is that selection for physical signals drives the evolution of androgenic sensitivity in select neuromotor pathways. We examined this issue in the Bornean rock frog (Staurois parvus, family: Ranidae). Males court females and compete with rivals by performing both vocalizations and hind limb gestural signals, called "foot flags." Foot flagging is a derived display that emerged in the ranids after vocal signaling. Here, we show that administration of testosterone (T) increases foot flagging behavior under seminatural conditions. Moreover, using quantitative PCR, we also find that adult male S. parvus maintain a unique androgenic phenotype, in which androgen receptor (AR) in the hind limb musculature is expressed at levels ∼10× greater than in two other anuran species, which do not produce foot flags (Rana pipiens and Xenopus laevis). Finally, because males of all three of these species solicit mates with calls, we accordingly detect no differences in AR expression in the vocal apparatus (larynx) among taxa. The results show that foot flagging is an androgen-dependent gestural signal, and its emergence is associated with increased androgenic sensitivity within the hind limb musculature. Selection for this novel gestural signal may therefore drive the evolution of increased AR expression in key muscles that control signal production to support adaptive motor performance.
Collapse
Affiliation(s)
- Lisa A Mangiamele
- Department of Biological Sciences, Smith College, Northampton, MA 01063
| | | | - Eric R Schuppe
- Department of Biology, Wake Forest University, Winston-Salem, NC 27109
| | - Rebecca S Taylor
- Department of Biological Sciences, Smith College, Northampton, MA 01063
| | - Walter Hödl
- Department of Integrative Zoology, University of Vienna, A-1090 Vienna, Austria
| | - Doris Preininger
- Department of Integrative Zoology, University of Vienna, A-1090 Vienna, Austria; Vienna Zoo, A-1130 Vienna, Austria
| |
Collapse
|