1
|
Velez-Brochero M, Behera P, Afreen KS, Odle A, Rajsbaum R. Ubiquitination in viral entry and replication: Mechanisms and implications. Adv Virus Res 2024; 119:1-38. [PMID: 38897707 DOI: 10.1016/bs.aivir.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
The ubiquitination process is a reversible posttranslational modification involved in many essential cellular functions, such as innate immunity, cell signaling, trafficking, protein stability, and protein degradation. Viruses can use the ubiquitin system to efficiently enter host cells, replicate and evade host immunity, ultimately enhancing viral pathogenesis. Emerging evidence indicates that enveloped viruses can carry free (unanchored) ubiquitin or covalently ubiquitinated viral structural proteins that can increase the efficiency of viral entry into host cells. Furthermore, viruses continuously evolve and adapt to take advantage of the host ubiquitin machinery, highlighting its importance during virus infection. This review discusses the battle between viruses and hosts, focusing on how viruses hijack the ubiquitination process at different steps of the replication cycle, with a specific emphasis on viral entry. We discuss how ubiquitination of viral proteins may affect tropism and explore emerging therapeutics strategies targeting the ubiquitin system for antiviral drug discovery.
Collapse
Affiliation(s)
- Maria Velez-Brochero
- Center for Virus-Host-Innate Immunity and Department of Medicine, Rutgers Biomedical and Health Sciences, Institute for Infectious and Inflammatory Diseases, Rutgers University, Newark, NJ, United States
| | - Padmanava Behera
- Center for Virus-Host-Innate Immunity and Department of Medicine, Rutgers Biomedical and Health Sciences, Institute for Infectious and Inflammatory Diseases, Rutgers University, Newark, NJ, United States
| | - Kazi Sabrina Afreen
- Center for Virus-Host-Innate Immunity and Department of Medicine, Rutgers Biomedical and Health Sciences, Institute for Infectious and Inflammatory Diseases, Rutgers University, Newark, NJ, United States
| | - Abby Odle
- Center for Virus-Host-Innate Immunity and Department of Medicine, Rutgers Biomedical and Health Sciences, Institute for Infectious and Inflammatory Diseases, Rutgers University, Newark, NJ, United States
| | - Ricardo Rajsbaum
- Center for Virus-Host-Innate Immunity and Department of Medicine, Rutgers Biomedical and Health Sciences, Institute for Infectious and Inflammatory Diseases, Rutgers University, Newark, NJ, United States.
| |
Collapse
|
2
|
Zhang L, Li Y, Kuhn JH, Zhang K, Song Q, Liu F. Polyubiquitylated rice stripe virus NS3 translocates to the nucleus to promote cytosolic virus replication via miRNA-induced fibrillin 2 upregulation. PLoS Pathog 2024; 20:e1012112. [PMID: 38507423 PMCID: PMC10984529 DOI: 10.1371/journal.ppat.1012112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 04/01/2024] [Accepted: 03/11/2024] [Indexed: 03/22/2024] Open
Abstract
Viruses are encapsidated mobile genetic elements that rely on host cells for replication. Several cytoplasmic RNA viruses synthesize proteins and/or RNAs that translocate to infected cell nuclei. However, the underlying mechanisms and role(s) of cytoplasmic-nuclear trafficking are unclear. We demonstrate that infection of small brown planthoppers with rice stripe virus (RSV), a negarnaviricot RNA virus, results in K63-linked polyubiquitylation of RSV's nonstructural protein 3 (NS3) at residue K127 by the RING ubiquitin ligase (E3) LsRING. In turn, ubiquitylation leads to NS3 trafficking from the cytoplasm to the nucleus, where NS3 regulates primary miRNA pri-miR-92 processing through manipulation of the microprocessor complex, resulting in accumulation of upregulated miRNA lst-miR-92. We show that lst-miR-92 regulates the expression of fibrillin 2, an extracellular matrix protein, thereby increasing RSV loads. Our results highlight the manipulation of intranuclear, cytoplasmic, and extracellular components by an RNA virus to promote its own replication in an insect vector.
Collapse
Affiliation(s)
- Lu Zhang
- College of Plant Protection; Yángzhōu University; Yángzhōu, Jiāngsū Province; China
| | - Yao Li
- College of Plant Protection; Yángzhōu University; Yángzhōu, Jiāngsū Province; China
| | - Jens H. Kuhn
- Integrated Research Facility at Fort Detrick; National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick; Frederick, Maryland; United States of America
| | - Kun Zhang
- College of Plant Protection; Yángzhōu University; Yángzhōu, Jiāngsū Province; China
| | - Qisheng Song
- Division of Plant Science and Technology; College of Agriculture; Food and Natural Resources; University of Missouri; Columbia, Missouri; United States of America
| | - Fang Liu
- College of Plant Protection; Yángzhōu University; Yángzhōu, Jiāngsū Province; China
| |
Collapse
|
3
|
Yang W, Hou L, Wang B, Wu J, Zha C, Wu W. Integration of transcriptome and machine learning to identify the potential key genes and regulatory networks affecting drip loss in pork. J Anim Sci 2024; 102:skae164. [PMID: 38865489 PMCID: PMC11214104 DOI: 10.1093/jas/skae164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/10/2024] [Indexed: 06/14/2024] Open
Abstract
Low level of drip loss (DL) is an important quality characteristic of meat with high economic value. However, the key genes and regulatory networks contributing to DL in pork remain largely unknown. To accurately identify the key genes affecting DL in muscles postmortem, 12 Duroc × (Landrace × Yorkshire) pigs with extremely high (n = 6, H group) and low (n = 6, L group) DL at both 24 and 48 h postmortem were selected for transcriptome sequencing. The analysis of differentially expressed genes and weighted gene co-expression network analysis (WGCNA) were performed to find the overlapping genes using the transcriptome data, and functional enrichment and protein-protein interaction (PPI) network analysis were conducted using the overlapping genes. Moreover, we used machine learning to identify the key genes and regulatory networks related to DL based on the interactive genes of the PPI network. Finally, nine potential key genes (IRS1, ESR1, HSPA6, INSR, SPOP, MSTN, LGALS4, MYLK2, and FRMD4B) mainly associated with the MAPK signaling pathway, the insulin signaling pathway, and the calcium signaling pathway were identified, and a single-gene set enrichment analysis (GSEA) was performed to further annotate the functions of these potential key genes. The GSEA results showed that these genes are mainly related to ubiquitin-mediated proteolysis and oxidative reactions. Taken together, our results indicate that the potential key genes influencing DL are mainly related to insulin signaling mediated differences in glycolysis and ubiquitin-mediated changes in muscle structure and improve the understanding of gene expression and regulation related to DL and contribute to future molecular breeding for improving pork quality.
Collapse
Affiliation(s)
- Wen Yang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Liming Hou
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Binbin Wang
- Institute of Animal Husbandry and Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jian Wu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Chengwan Zha
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Wangjun Wu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
4
|
Artcibasova A, Wang L, Anchisi S, Yamauchi Y, Schmolke M, Matthias P, Stelling J. A quantitative model for virus uncoating predicts influenza A infectivity. Cell Rep 2023; 42:113558. [PMID: 38103200 DOI: 10.1016/j.celrep.2023.113558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/13/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
For virus infection of new host cells, the disassembly of the protective outer protein shell (capsid) is a critical step, but the mechanisms and host-virus interactions underlying the dynamic, active, and regulated uncoating process are largely unknown. Here, we develop an experimentally supported, multiscale kinetics model that elucidates mechanisms of influenza A virus (IAV) uncoating in cells. Biophysical modeling demonstrates that interactions between capsid M1 proteins, host histone deacetylase 6 (HDAC6), and molecular motors can physically break the capsid in a tug-of-war mechanism. Biochemical analysis and biochemical-biophysical modeling identify unanchored ubiquitin chains as essential and allow robust prediction of uncoating efficiency in cells. Remarkably, the different infectivity of two clinical strains can be ascribed to a single amino acid variation in M1 that affects binding to HDAC6. By identifying crucial modules of viral infection kinetics, the mechanisms and models presented here could help formulate novel strategies for broad-range antiviral treatment.
Collapse
Affiliation(s)
- Alina Artcibasova
- Department of Biosystems Science and Engineering and SIB Swiss Institute of Bioinformatics, ETH Zurich, 4058 Basel, Switzerland
| | - Longlong Wang
- Friedrich Miescher Institute for Biomedical Research (FMI), 4058 Basel, Switzerland; Faculty of Sciences, University of Basel, 4031 Basel, Switzerland
| | - Stephanie Anchisi
- Department of Microbiology and Molecular Medicine and Geneva Center of Inflammation Research, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Yohei Yamauchi
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Mirco Schmolke
- Department of Microbiology and Molecular Medicine and Geneva Center of Inflammation Research, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Patrick Matthias
- Friedrich Miescher Institute for Biomedical Research (FMI), 4058 Basel, Switzerland; Faculty of Sciences, University of Basel, 4031 Basel, Switzerland.
| | - Jörg Stelling
- Department of Biosystems Science and Engineering and SIB Swiss Institute of Bioinformatics, ETH Zurich, 4058 Basel, Switzerland.
| |
Collapse
|
5
|
Gu L, Jin X, Liang H, Yang C, Zhang Y. Upregulation of CSNK1A1 induced by ITGB5 confers to hepatocellular carcinoma resistance to sorafenib in vivo by disrupting the EPS15/EGFR complex. Pharmacol Res 2023; 192:106789. [PMID: 37149115 DOI: 10.1016/j.phrs.2023.106789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/08/2023]
Abstract
Oral multitarget tyrosine kinase inhibitors (TKIs), such as sorafenib, which suppress tumor cell proliferation and tumor angiogenesis, have been approved to treat patients with hepatocellular carcinoma (HCC). Of note, only approximately 30% of patients can benefit from TKIs, and this population usually acquires drug resistance within 6 months. In this study, we intended to explore the mechanism associated with regulating the sensitivity of HCC to TKIs. We revealed that integrin subunit β 5 (ITGB5) is abnormally expressed in HCC and contributes to decreased the sensitivity of HCC to sorafenib. Mechanistically, unbiased mass spectrometry analysis using ITGB5 antibodies revealed that ITGB5 interacts with EPS15 to prevent the degradation of EGFR in HCC cells, which activates AKT-mTOR signaling and the MAPK pathway to reduce the sensitivity of HCC cells to sorafenib. In addition, mass spectrometry analysis showed that CSNK1A1 binds to ITGB5 in HCC cells. Further study indicated that ITGB5 increased the protein level of CSNK1A1 through the EGFR-AKT-mTOR pathway in HCC. Upregulated CSNK1A1 phosphorylates ITGB5 to enhance the interaction between ITGB5 and EPS15 and activate EGFR in HCC cells. Thus, we identified a positive feedback loop between ITGB5-EPS15-EGFR-CSNK1A1 in HCC cells. This finding provides a theoretical basis for the future development of therapeutic strategies to improve the anti-HCC efficacy of sorafenib.
Collapse
Affiliation(s)
- Li Gu
- Department of Gastroenterology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xin Jin
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China; Uro-Oncology Institute of Central South University, Changsha, Hunan, 410011, China; Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Huaiyuan Liang
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China; Uro-Oncology Institute of Central South University, Changsha, Hunan, 410011, China; Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Chong Yang
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province & Organ Transplantation Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, Sichuan, China.
| | - Yu Zhang
- Hepatobiliary and Pancreatic Surgery Department, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, Sichuan, China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, 610072, Sichuan, China.
| |
Collapse
|
6
|
Koreny L, Mercado-Saavedra BN, Klinger CM, Barylyuk K, Butterworth S, Hirst J, Rivera-Cuevas Y, Zaccai NR, Holzer VJC, Klingl A, Dacks JB, Carruthers VB, Robinson MS, Gras S, Waller RF. Stable endocytic structures navigate the complex pellicle of apicomplexan parasites. Nat Commun 2023; 14:2167. [PMID: 37061511 PMCID: PMC10105704 DOI: 10.1038/s41467-023-37431-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 03/17/2023] [Indexed: 04/17/2023] Open
Abstract
Apicomplexan parasites have immense impacts on humanity, but their basic cellular processes are often poorly understood. Where endocytosis occurs in these cells, how conserved this process is with other eukaryotes, and what the functions of endocytosis are across this phylum are major unanswered questions. Using the apicomplexan model Toxoplasma, we identified the molecular composition and behavior of unusual, fixed endocytic structures. Here, stable complexes of endocytic proteins differ markedly from the dynamic assembly/disassembly of these machineries in other eukaryotes. We identify that these endocytic structures correspond to the 'micropore' that has been observed throughout the Apicomplexa. Moreover, conserved molecular adaptation of this structure is seen in apicomplexans including the kelch-domain protein K13 that is central to malarial drug-resistance. We determine that a dominant function of endocytosis in Toxoplasma is plasma membrane homeostasis, rather than parasite nutrition, and that these specialized endocytic structures originated early in infrakingdom Alveolata likely in response to the complex cell pellicle that defines this medically and ecologically important ancient eukaryotic lineage.
Collapse
Affiliation(s)
- Ludek Koreny
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QW, UK
| | | | - Christen M Klinger
- Division of Infectious Diseases, Department of Medicine, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | | | - Simon Butterworth
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QW, UK
| | - Jennifer Hirst
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 1QW, UK
| | - Yolanda Rivera-Cuevas
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Nathan R Zaccai
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 1QW, UK
| | - Victoria J C Holzer
- Plant Development, Ludwig-Maximilians-University Munich, Planegg-Martinsried, 82152, Germany
| | - Andreas Klingl
- Plant Development, Ludwig-Maximilians-University Munich, Planegg-Martinsried, 82152, Germany
| | - Joel B Dacks
- Division of Infectious Diseases, Department of Medicine, University of Alberta, Edmonton, AB, T6G 2R3, Canada
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, 370 05, Czech Republic
| | - Vern B Carruthers
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Margaret S Robinson
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 1QW, UK
| | - Simon Gras
- Experimental Parasitology, Department for Veterinary Sciences, Ludwig-Maximilians-University Munich, Planegg-Martinsried, 82152, Germany.
| | - Ross F Waller
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QW, UK.
| |
Collapse
|
7
|
Sanada S, Maekawa M, Tate S, Nakaoka H, Fujisawa Y, Sayama K, Higashiyama S. SPOP is essential for DNA replication licensing through maintaining translation of CDT1 and CDC6 in HaCaT cells. Biochem Biophys Res Commun 2023; 651:30-38. [PMID: 36791496 DOI: 10.1016/j.bbrc.2023.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 02/03/2023] [Indexed: 02/05/2023]
Abstract
Speckle-type pox virus and zinc finger (POZ) protein (SPOP), a substrate recognition receptor for the cullin-3/RING ubiquitin E3 complex, leads to the ubiquitination of >40 of its target substrates. Since a variety of point mutations in the substrate-binding domain of SPOP have been identified in cancers, including prostate and endometrial cancers, the pathological roles of those cancer-associated SPOP mutants have been extensively elucidated. In this study, we evaluated the cellular functions of wild-type SPOP in non-cancerous human keratinocyte-derived HaCaT cells expressing wild-type SPOP gene. SPOP knockdown using siRNA in HaCaT cells dramatically reduced cell growth and arrested their cell cycles at G1/S phase. The expression of DNA replication licensing factors CDT1 and CDC6 in HaCaT cells drastically decreased on SPOP knockdown as their translation was inhibited. CDT1 and CDC6 downregulation induced p21 expression without p53 activation. Our results suggest that SPOP is essential for DNA replication licensing in non-cancerous keratinocyte HaCaT cells.
Collapse
Affiliation(s)
- Sayoko Sanada
- Department of Dermatology, Ehime University Graduate School of Medicine, Toon, Ehime, 791-0295, Japan; Department of Biochemistry and Molecular Genetics, Ehime University Graduate School of Medicine, Toon, Ehime, 791-0295, Japan
| | - Masashi Maekawa
- Department of Biochemistry and Molecular Genetics, Ehime University Graduate School of Medicine, Toon, Ehime, 791-0295, Japan; Division of Cell Growth and Tumor Regulation, Proteo-Science Center, Ehime University, Toon, Ehime, 791-0295, Japan.
| | - Sota Tate
- Department of Biochemistry and Molecular Genetics, Ehime University Graduate School of Medicine, Toon, Ehime, 791-0295, Japan; Division of Cell Growth and Tumor Regulation, Proteo-Science Center, Ehime University, Toon, Ehime, 791-0295, Japan
| | - Hiroki Nakaoka
- Department of Dermatology, Ehime University Graduate School of Medicine, Toon, Ehime, 791-0295, Japan
| | - Yasuhiro Fujisawa
- Department of Dermatology, Ehime University Graduate School of Medicine, Toon, Ehime, 791-0295, Japan
| | - Koji Sayama
- Department of Dermatology, Ehime University Graduate School of Medicine, Toon, Ehime, 791-0295, Japan
| | - Shigeki Higashiyama
- Department of Biochemistry and Molecular Genetics, Ehime University Graduate School of Medicine, Toon, Ehime, 791-0295, Japan; Division of Cell Growth and Tumor Regulation, Proteo-Science Center, Ehime University, Toon, Ehime, 791-0295, Japan; Department of Oncogenesis and Tumor Regulation, Osaka International Cancer Institute, Chuo-ku, Osaka, 541-8567, Japan.
| |
Collapse
|
8
|
Lin HH, Kuo MW, Fan TC, Yu AL, Yu J. YULINK regulates vascular formation in zebrafish and HUVECs. Biol Res 2023; 56:7. [PMID: 36843032 PMCID: PMC9969694 DOI: 10.1186/s40659-023-00415-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 01/18/2023] [Indexed: 02/28/2023] Open
Abstract
BACKGROUND The distinct arterial and venous cell fates are dictated by a combination of various genetic factors which form diverse types of blood vessels such as arteries, veins, and capillaries. We report here that YULINK protein is involved in vasculogenesis, especially venous formation. METHODS In this manuscript, we employed gene knockdown, yeast two-hybrid, FLIM-FRET, immunoprecipitation, and various imaging technologies to investigate the role of YULINK gene in zebrafish and human umbilical vein endothelial cells (HUVECs). RESULTS Knockdown of YULINK during the arterial-venous developmental stage of zebrafish embryos led to the defective venous formation and abnormal vascular plexus formation. Knockdown of YULINK in HUVECs impaired their ability to undergo cell migration and differentiation into a capillary-like tube formation. In addition, the phosphorylated EPHB4 was decreased in YULINK knockdown HUVECs. Yeast two-hybrid, FLIM-FRET, immunoprecipitation, as well as imaging technologies showed that YULINK colocalized with endosome related proteins (EPS15, RAB33B or TICAM2) and markers (Clathrin and RHOB). VEGF-induced VEGFR2 internalization was also compromised in YULINK knockdown HUVECs, demonstrating to the involvement of YULINK. CONCLUSION This study suggests that YULINK regulates vasculogenesis, possibly through endocytosis in zebrafish and HUVECs.
Collapse
Affiliation(s)
- Hsin-Hung Lin
- grid.28665.3f0000 0001 2287 1366Chemical Biology and Molecular Biophysics Program, International Graduate Program, Academia Sinica, Taipei, Taiwan ,grid.454210.60000 0004 1756 1461Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, 333 Taoyuan, Taiwan
| | - Ming-Wei Kuo
- grid.454210.60000 0004 1756 1461Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, 333 Taoyuan, Taiwan
| | - Tan-Chi Fan
- grid.454210.60000 0004 1756 1461Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, 333 Taoyuan, Taiwan
| | - Alice L. Yu
- grid.454210.60000 0004 1756 1461Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, 333 Taoyuan, Taiwan ,grid.266100.30000 0001 2107 4242Department of Pediatrics, University of California, San Diego, CA USA
| | - John Yu
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, 333, Taoyuan, Taiwan. .,Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
9
|
Berlin I, Sapmaz A, Stévenin V, Neefjes J. Ubiquitin and its relatives as wizards of the endolysosomal system. J Cell Sci 2023; 136:288517. [PMID: 36825571 PMCID: PMC10022685 DOI: 10.1242/jcs.260101] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
Abstract
The endolysosomal system comprises a dynamic constellation of vesicles working together to sense and interpret environmental cues and facilitate homeostasis. Integrating extracellular information with the internal affairs of the cell requires endosomes and lysosomes to be proficient in decision-making: fusion or fission; recycling or degradation; fast transport or contacts with other organelles. To effectively discriminate between these options, the endolysosomal system employs complex regulatory strategies that crucially rely on reversible post-translational modifications (PTMs) with ubiquitin (Ub) and ubiquitin-like (Ubl) proteins. The cycle of conjugation, recognition and removal of different Ub- and Ubl-modified states informs cellular protein stability and behavior at spatial and temporal resolution and is thus well suited to finetune macromolecular complex assembly and function on endolysosomal membranes. Here, we discuss how ubiquitylation (also known as ubiquitination) and its biochemical relatives orchestrate endocytic traffic and designate cargo fate, influence membrane identity transitions and support formation of membrane contact sites (MCSs). Finally, we explore the opportunistic hijacking of Ub and Ubl modification cascades by intracellular bacteria that remodel host trafficking pathways to invade and prosper inside cells.
Collapse
Affiliation(s)
- Ilana Berlin
- Oncode Institute, Department of Cell and Chemical Biology, Leiden University Medical Center LUMC, Einthovenweg 20, 2300RC Leiden, The Netherlands
| | - Aysegul Sapmaz
- Oncode Institute, Department of Cell and Chemical Biology, Leiden University Medical Center LUMC, Einthovenweg 20, 2300RC Leiden, The Netherlands
| | - Virginie Stévenin
- Oncode Institute, Department of Cell and Chemical Biology, Leiden University Medical Center LUMC, Einthovenweg 20, 2300RC Leiden, The Netherlands
| | - Jacques Neefjes
- Oncode Institute, Department of Cell and Chemical Biology, Leiden University Medical Center LUMC, Einthovenweg 20, 2300RC Leiden, The Netherlands
| |
Collapse
|
10
|
Miyake Y, Hara Y, Umeda M, Banerjee I. Influenza A Virus: Cellular Entry. Subcell Biochem 2023; 106:387-401. [PMID: 38159235 DOI: 10.1007/978-3-031-40086-5_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
The frequent emergence of pathogenic viruses with pandemic potential has posed a significant threat to human health and economy, despite enormous advances in our understanding of infection mechanisms and devising countermeasures through developing various prophylactic and therapeutic strategies. The recent coronavirus disease (COVID-19) pandemic has re-emphasised the importance of rigorous research on virus infection mechanisms and highlighted the need for our preparedness for potential pandemics. Although viruses cannot self-replicate, they tap into host cell factors and processes for their entry, propagation and dissemination. Upon entering the host cells, viruses ingeniously utilise the innate biological functions of the host cell to replicate themselves and maintain their existence in the hosts. Influenza A virus (IAV), which has a negative-sense, single-stranded RNA as its genome, is no exception. IAVs are enveloped viruses with a lipid bilayer derived from the host cell membrane and have a surface covered with the spike glycoprotein haemagglutinin (HA) and neuraminidase (NA). Viral genome is surrounded by an M1 shell, forming a "capsid" in the virus particle. IAV particles use HA to recognise sialic acids on the cell surface of lung epithelial cells for their attachment. After attachment to the cell surface, IAV particles are endocytosed and sorted into the early endosomes. Subsequently, as the early endosomes mature into late endosomes, the endosomal lumen becomes acidified, and the low pH of the late endosomes induces conformational reaggangements in the HA to initiate fusion between the endosomal and viral membranes. Upon fusion, the viral capsid disintegrates and the viral ribonucleoprotein (vRNP) complexes containing the viral genome are released into the cytosol. The process of viral capsid disintegration is called "uncoating". After successful uncoating, the vRNPs are imported into the nucleus by importin α/β (IMP α/β), where viral replication and transcription take place and the new vRNPs are assembled. Recently, we have biochemically elucidated the molecular mechanisms of the processes of viral capsid uncoating subsequent viral genome dissociation. In this chapter, we present the molecular details of the viral uncoating process.
Collapse
Affiliation(s)
- Yasuyuki Miyake
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
- Institute for Advanced Research (IAR), Nagoya University, Nagoya, Japan.
| | - Yuya Hara
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Miki Umeda
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Indranil Banerjee
- Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali (IISER Mohali), Mohali, India.
| |
Collapse
|
11
|
Noh JY, Lee IP, Han NR, Kim M, Min YK, Lee SY, Yun SH, Kim SI, Park T, Chung H, Park D, Lee CH. Additive Effect of CD73 Inhibitor in Colorectal Cancer Treatment With CDK4/6 Inhibitor Through Regulation of PD-L1. Cell Mol Gastroenterol Hepatol 2022; 14:769-788. [PMID: 35843546 PMCID: PMC9424593 DOI: 10.1016/j.jcmgh.2022.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/08/2022] [Accepted: 07/08/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND & AIMS Although cancer immunotherapies are effective for advanced-stage cancers, there are no clinically approved immunotherapies for colon cancers (CRCs). Therefore, there is a high demand for the development of novel therapies. Extracellular adenosine-mediated signaling is considered a promising target for advanced-stage cancers that are nonresponsive to programmed death 1 (PD-1)-/programmed death-ligand 1 (PD-L1)-targeted immunotherapies. In this study, we aimed to elucidate novel tumorigenic mechanisms of extracellular adenosine. METHODS To investigate the effects of extracellular adenosine on tumor-associated macrophages, peripheral blood-derived human macrophages were treated with adenosine and analyzed using flow cytometry and Western blot. Changes in adenosine-treated macrophages were further assessed using multi-omics analysis, including total RNA sequencing and proteomics. Colon cancer mouse models were used to measure the therapeutic efficacy of AB680 and palbociclib. We also used tissue microarrays of patients with CRC, to evaluate their clinical relevance. RESULTS Extracellular adenosine-mediated reduction of cyclin D1 (CCND1) was found to be critical for the regulation of immune checkpoint molecules and PD-L1 levels in human macrophages, indicating that post-translational modification of PD-L1 is affected by adenosine. A potent CD73 selective inhibitor, AB680, reversed the effects of adenosine on CCND1 and PD-L1. This result strongly suggests that AB680 is a combinatory therapeutic option to overcome the undesired side effects of the cyclin-dependent kinase 4/6 inhibitor, palbociclib, which increases PD-L1 expression in tumors. Because palbociclib is undergoing clinical trials for metastatic CRC in combination with cetuximab (clinical trial number: NCT03446157), we validated that the combination of AB680 and palbociclib significantly improved anti-tumor efficacy in CRC animal models, thereby highlighting it as a novel immunotherapeutic strategy. We further assessed whether the level of CCND1 in tumor-associated macrophages was indeed reduced in tumor sections obtained from patients with CRC, for evaluating the clinical relevance of this strategy. CONCLUSIONS In this study, we demonstrated that a novel combination therapy of AB680 and palbociclib may be advantageous for the treatment of CRC.
Collapse
Affiliation(s)
- Ji-Yoon Noh
- Aging convergence research center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - In Pyo Lee
- R&D Center, SCBIO Co, Ltd, Daejeon, Republic of Korea,Therapeutics & Biotechnology Division, Drug Discovery Platform Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon, Republic of Korea
| | - Na Rae Han
- R&D Center, SCBIO Co, Ltd, Daejeon, Republic of Korea,Therapeutics & Biotechnology Division, Drug Discovery Platform Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon, Republic of Korea
| | - Miok Kim
- R&D Center, SCBIO Co, Ltd, Daejeon, Republic of Korea,Therapeutics & Biotechnology Division, Drug Discovery Platform Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon, Republic of Korea
| | - Yong Ki Min
- R&D Center, SCBIO Co, Ltd, Daejeon, Republic of Korea,Therapeutics & Biotechnology Division, Drug Discovery Platform Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon, Republic of Korea
| | - Sang-Yeop Lee
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Ochang, Republic of Korea
| | - Sung Ho Yun
- Center for Research Equipment, Korea Basic Science Institute, Ochang, Republic of Korea
| | - Seung Il Kim
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Ochang, Republic of Korea
| | - Tamina Park
- Department of Predictive Toxicology, Korea Institute of Toxicology (KIT), Daejeon, Korea
| | - Hyunmin Chung
- Aging convergence research center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea,College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Daeui Park
- Department of Predictive Toxicology, Korea Institute of Toxicology (KIT), Daejeon, Korea,Dr Daeui Park, Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, Korea. tel: +82-42-610-8251.
| | - Chang Hoon Lee
- R&D Center, SCBIO Co, Ltd, Daejeon, Republic of Korea,Therapeutics & Biotechnology Division, Drug Discovery Platform Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon, Republic of Korea,Correspondence Address correspondence to: Dr Chang Hoon Lee, Therapeutics & Biotechnology Division, Drug Discovery Platform Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon, Republic of Korea. tel: +82-42-860-7414.
| |
Collapse
|
12
|
Shi W, Jiang L, Ye M, Wang B, Chang Y, Shan Z, Wang X, Hu Y, Chen H, Li C. A Single Amino Acid Residue R144 of SNX16 Affects Its Ability to Inhibit the Replication of Influenza A Virus. Viruses 2022; 14:825. [PMID: 35458555 PMCID: PMC9032038 DOI: 10.3390/v14040825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 02/01/2023] Open
Abstract
Influenza A virus (IAV) is an important zoonotic pathogen, posing a severe burden for the health of both animals and humans. Many host factors are involved in the life cycle of IAV to regulate its replication. Herein, we identified sorting nexin-16 (SNX16) as a new host factor that negatively modulates the replication of IAV. When transiently overexpressed in cells, SNX16 appears to be expressed as two obvious bands. Mutagenesis analysis indicated that the amino acid residue R144 of SNX16 was responsible for its two-band expression phenotype. We found that the R144A mutation of SNX16 changed its cellular distribution in A549 cells and partially weakened the inhibitory effect of SNX16 on IAV replication. Further investigation revealed that SNX16 could negatively regulate the early stage of the replication cycle of IAV. Taken together, our results demonstrated that SNX16 is a novel restriction host factor for the replication of IAV by engaging in the early stage of IAV life cycle, and a single amino acid residue at position 144 plays an important role in the cellular distribution and anti-influenza function of SNX16.
Collapse
Affiliation(s)
- Wenjun Shi
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (W.S.); (X.W.)
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (L.J.); (M.Y.); (B.W.); (Y.C.); (Z.S.); (Y.H.)
| | - Li Jiang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (L.J.); (M.Y.); (B.W.); (Y.C.); (Z.S.); (Y.H.)
| | - Miaomiao Ye
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (L.J.); (M.Y.); (B.W.); (Y.C.); (Z.S.); (Y.H.)
| | - Bo Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (L.J.); (M.Y.); (B.W.); (Y.C.); (Z.S.); (Y.H.)
| | - Yu Chang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (L.J.); (M.Y.); (B.W.); (Y.C.); (Z.S.); (Y.H.)
| | - Zhibo Shan
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (L.J.); (M.Y.); (B.W.); (Y.C.); (Z.S.); (Y.H.)
| | - Xuyuan Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (W.S.); (X.W.)
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (L.J.); (M.Y.); (B.W.); (Y.C.); (Z.S.); (Y.H.)
| | - Yuzhen Hu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (L.J.); (M.Y.); (B.W.); (Y.C.); (Z.S.); (Y.H.)
| | - Hualan Chen
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (W.S.); (X.W.)
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (L.J.); (M.Y.); (B.W.); (Y.C.); (Z.S.); (Y.H.)
| | - Chengjun Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (L.J.); (M.Y.); (B.W.); (Y.C.); (Z.S.); (Y.H.)
| |
Collapse
|
13
|
The E3 ubiquitin ligase adaptor Tango10 links the core circadian clock to neuropeptide and behavioral rhythms. Proc Natl Acad Sci U S A 2021; 118:2110767118. [PMID: 34799448 PMCID: PMC8617488 DOI: 10.1073/pnas.2110767118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2021] [Indexed: 11/18/2022] Open
Abstract
Circadian transcriptional timekeepers in pacemaker neurons drive profound daily rhythms in sleep and wake. Here we reveal a molecular pathway that links core transcriptional oscillators to neuronal and behavioral rhythms. Using two independent genetic screens, we identified mutants of Transport and Golgi organization 10 (Tango10) with poor behavioral rhythmicity. Tango10 expression in pacemaker neurons expressing the neuropeptide PIGMENT-DISPERSING FACTOR (PDF) is required for robust rhythms. Loss of Tango10 results in elevated PDF accumulation in nerve terminals even in mutants lacking a functional core clock. TANGO10 protein itself is rhythmically expressed in PDF terminals. Mass spectrometry of TANGO10 complexes reveals interactions with the E3 ubiquitin ligase CULLIN 3 (CUL3). CUL3 depletion phenocopies Tango10 mutant effects on PDF even in the absence of the core clock gene timeless Patch clamp electrophysiology in Tango10 mutant neurons demonstrates elevated spontaneous firing potentially due to reduced voltage-gated Shaker-like potassium currents. We propose that Tango10/Cul3 transduces molecular oscillations from the core clock to neuropeptide release important for behavioral rhythms.
Collapse
|
14
|
Immunomodulatory effect of NEDD8-activating enzyme inhibition in Multiple Myeloma: upregulation of NKG2D ligands and sensitization to Natural Killer cell recognition. Cell Death Dis 2021; 12:836. [PMID: 34482362 PMCID: PMC8418610 DOI: 10.1038/s41419-021-04104-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/11/2021] [Accepted: 08/18/2021] [Indexed: 11/29/2022]
Abstract
Multiple Myeloma (MM) is an incurable hematologic malignancy of terminally differentiated plasma cells (PCs), where immune interactions play a key role in the control of cancer cell growth and survival. In particular, MM is characterized by a highly immunosuppressive bone marrow microenvironment where the anticancer/cytotoxic activity of Natural Killer (NK) cells is impaired. This study is focused on understanding whether modulation of neddylation can regulate NK cell-activating ligands expression and sensitize MM to NK cell killing. Neddylation is a post-translational modification that adds a ubiquitin-like protein, NEDD8, to selected substrate proteins, affecting their stability, conformation, subcellular localization, and function. We found that pharmacologic inhibition of neddylation using a small-molecule inhibitor, MLN4924/Pevonedistat, increases the expression of the NK cell-activating receptor NKG2D ligands MICA and MICB on the plasma membrane of different MM cell lines and patient-derived PCs, leading to enhanced NK cell degranulation. Mechanistically, MICA expression is upregulated at mRNA level, and this is the result of an increased promoter activity after the inhibition of IRF4 and IKZF3, two transcriptional repressors of this gene. Differently, MLN4924/Pevonedistat induced accumulation of MICB on the plasma membrane with no change of its mRNA levels, indicating a post-translational regulatory mechanism. Moreover, inhibition of neddylation can cooperate with immunomodulatory drugs (IMiDs) in upregulating MICA surface levels in MM cells due to increased expression of CRBN, the cellular target of these drugs. In summary, MLN4924/Pevonedistat sensitizes MM to NK cell recognition, adding novel information on the anticancer activity of neddylation inhibition.
Collapse
|
15
|
Yang M, Han YM, Han Q, Rong XZ, Liu XF, Ln XY. KCTD11 inhibits progression of lung cancer by binding to β-catenin to regulate the activity of the Wnt and Hippo pathways. J Cell Mol Med 2021; 25:9411-9426. [PMID: 34453479 PMCID: PMC8500973 DOI: 10.1111/jcmm.16883] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 08/02/2021] [Accepted: 08/04/2021] [Indexed: 12/11/2022] Open
Abstract
KCTD11 has been reported to be a potential tumour suppressor in several tumour types. However, the expression of KCTD11 and its role has not been reported in human non‐small cell lung cancer (NSCLC). Whether its potential molecular mechanism is related to its BTB domain is also unknown. The expression of KCTD11 in 139 NSCLC tissue samples was detected by immunohistochemistry, and its correlation with clinicopathological factors was analysed. The effect of KCTD11 on the biological behaviour of lung cancer cells was verified in vitro and in vivo. Its effect on the epithelial‐mesenchymal transition(EMT)process and the Wnt/β‐catenin and Hippo/YAP pathways were observed by Western blot, dual‐luciferase assay, RT‐qPCR, immunofluorescence and immunoprecipitation. KCTD11 is under‐expressed in lung cancer tissues and cells and was negatively correlated with the degree of differentiation, tumour‐node‐metastasis (TNM) stage and lymph node metastasis. Low KCTD11 expression was associated with poor prognosis. KCTD11 overexpression inhibited the proliferation and migration of lung cancer cells. Further studies indicated that KCTD11 inhibited the Wnt pathway, activated the Hippo pathway and inhibited EMT processes by inhibiting the nuclear translocation of β‐catenin and YAP. KCTD11 lost its stimulatory effect on the Hippo pathway after knock down of β‐catenin. These findings confirm that KCTD11 inhibits β‐catenin and YAP nuclear translocation as well as the malignant phenotype of lung cancer cells by interacting with β‐catenin. This provides an important experimental basis for the interaction between KCTD11, β‐catenin and YAP, further revealing the link between the Wnt and Hippo pathways.
Collapse
Affiliation(s)
- Man Yang
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China.,Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ya-Mei Han
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Qiang Han
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Xue-Zhu Rong
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Xiao-Fang Liu
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Xu-Yong Ln
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| |
Collapse
|
16
|
Wang Y, Liu YY, Chen MB, Cheng KW, Qi LN, Zhang ZQ, Peng Y, Li KR, Liu F, Chen G, Cao C. Neuronal-driven glioma growth requires Gαi1 and Gαi3. Theranostics 2021; 11:8535-8549. [PMID: 34373757 PMCID: PMC8343996 DOI: 10.7150/thno.61452] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 07/08/2021] [Indexed: 12/17/2022] Open
Abstract
Neuroligin-3 (NLGN3) is necessary and sufficient to promote glioma cell growth. The recruitment of Gαi1/3 to the ligand-activated receptor tyrosine kinases (RTKs) is essential for mediating oncogenic signaling. Methods: Various genetic strategies were utilized to examine the requirement of Gαi1/3 in NLGN3-driven glioma cell growth. Results: NLGN3-induced Akt-mTORC1 and Erk activation was inhibited by decreasing Gαi1/3 expression. In contrast ectopic Gαi1/3 overexpression enhanced NLGN3-induced signaling. In glioma cells, NLGN3-induced cell growth, proliferation and migration were attenuated by Gαi1/3 depletion with shRNA, but facilitated with Gαi1/3 overexpression. Significantly, Gαi1/3 silencing inhibited orthotopic growth of patient-derived glioma xenografts in mouse brain, whereas forced Gαi1/3-overexpression in primary glioma xenografts significantly enhanced growth. The growth of brain-metastatic human lung cancer cells in mouse brain was largely inhibited with Gαi1/3 silencing. It was however expedited with ectopic Gαi1/3 overexpression. In human glioma Gαi3 upregulation was detected, correlating with poor prognosis. Conclusion: Gαi1/3 mediation of NLGN3-induced signaling is essential for neuronal-driven glioma growth.
Collapse
|
17
|
Moreira EA, Yamauchi Y, Matthias P. How Influenza Virus Uses Host Cell Pathways during Uncoating. Cells 2021; 10:1722. [PMID: 34359892 PMCID: PMC8305448 DOI: 10.3390/cells10071722] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/25/2021] [Accepted: 07/02/2021] [Indexed: 12/15/2022] Open
Abstract
Influenza is a zoonotic respiratory disease of major public health interest due to its pandemic potential, and a threat to animals and the human population. The influenza A virus genome consists of eight single-stranded RNA segments sequestered within a protein capsid and a lipid bilayer envelope. During host cell entry, cellular cues contribute to viral conformational changes that promote critical events such as fusion with late endosomes, capsid uncoating and viral genome release into the cytosol. In this focused review, we concisely describe the virus infection cycle and highlight the recent findings of host cell pathways and cytosolic proteins that assist influenza uncoating during host cell entry.
Collapse
Affiliation(s)
| | - Yohei Yamauchi
- Faculty of Life Sciences, School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK;
| | - Patrick Matthias
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland;
- Faculty of Sciences, University of Basel, 4031 Basel, Switzerland
| |
Collapse
|
18
|
Nishiyama K, Maekawa M, Nakagita T, Nakayama J, Kiyoi T, Chosei M, Murakami A, Kamei Y, Takeda H, Takada Y, Higashiyama S. CNKSR1 serves as a scaffold to activate an EGFR phosphatase via exclusive interaction with RhoB-GTP. Life Sci Alliance 2021; 4:4/9/e202101095. [PMID: 34187934 PMCID: PMC8321701 DOI: 10.26508/lsa.202101095] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 12/15/2022] Open
Abstract
CNKSR1 functions as a scaffold protein for activation of an EGFR phosphatase, PTPRH, at the plasma membrane through the exclusive interaction with RhoB-GTP which is constitutively degraded by the CUL3/KCTD10 E3 complex. Epidermal growth factor receptor (EGFR) and human EGFR 2 (HER2) phosphorylation drives HER2-positive breast cancer cell proliferation. Enforced activation of phosphatases for those receptors could be a therapeutic option for HER2-positive breast cancers. Here, we report that degradation of an endosomal small GTPase, RhoB, by the ubiquitin ligase complex cullin-3 (CUL3)/KCTD10 is essential for both EGFR and HER2 phosphorylation in HER2-positive breast cancer cells. Using human protein arrays produced in a wheat cell-free protein synthesis system, RhoB-GTP, and protein tyrosine phosphatase receptor type H (PTPRH) were identified as interacting proteins of connector enhancer of kinase suppressor of Ras1 (CNKSR1). Mechanistically, constitutive degradation of RhoB, which is mediated by the CUL3/KCTD10 E3 complex, enabled CNKSR1 to interact with PTPRH at the plasma membrane resulting in inactivation of EGFR phosphatase activity. Depletion of CUL3 or KCTD10 led to the accumulation of RhoB-GTP at the plasma membrane followed by its interaction with CNKSR1, which released activated PTPRH from CNKSR1. This study suggests a mechanism of PTPRH activation through the exclusive binding of RhoB-GTP to CNKSR1.
Collapse
Affiliation(s)
- Kanako Nishiyama
- Department of Hepato-Biliary-Pancreatic Surgery and Breast Surgery, Ehime University Graduate School of Medicine, Toon, Japan.,Department of Biochemistry and Molecular Genetics, Ehime University Graduate School of Medicine, Toon, Japan
| | - Masashi Maekawa
- Department of Biochemistry and Molecular Genetics, Ehime University Graduate School of Medicine, Toon, Japan .,Division of Cell Growth and Tumor Regulation, Proteo-Science Center, Ehime University, Toon, Japan
| | - Tomoya Nakagita
- Division of Proteo-Drug-Discovery Sciences, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Jun Nakayama
- Division of Cellular Signaling, National Cancer Center Research Institute, Chuo-ku, Japan
| | - Takeshi Kiyoi
- Division of Analytical Bio-medicine, Advanced Research Support Center, Ehime University, Toon, Japan
| | - Mami Chosei
- Division of Cell Growth and Tumor Regulation, Proteo-Science Center, Ehime University, Toon, Japan
| | - Akari Murakami
- Department of Hepato-Biliary-Pancreatic Surgery and Breast Surgery, Ehime University Graduate School of Medicine, Toon, Japan
| | - Yoshiaki Kamei
- Department of Hepato-Biliary-Pancreatic Surgery and Breast Surgery, Ehime University Graduate School of Medicine, Toon, Japan
| | - Hiroyuki Takeda
- Division of Proteo-Drug-Discovery Sciences, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Yasutsugu Takada
- Department of Hepato-Biliary-Pancreatic Surgery and Breast Surgery, Ehime University Graduate School of Medicine, Toon, Japan
| | - Shigeki Higashiyama
- Department of Biochemistry and Molecular Genetics, Ehime University Graduate School of Medicine, Toon, Japan .,Division of Cell Growth and Tumor Regulation, Proteo-Science Center, Ehime University, Toon, Japan.,Department of Molecular and Cellular Biology, Osaka International Cancer Institute, Chuo-ku, Osaka, Japan
| |
Collapse
|
19
|
Abstract
My coworkers and I have used animal viruses and their interaction with host cells to investigate cellular processes difficult to study by other means. This approach has allowed us to branch out in many directions, including membrane protein characterization, endocytosis, secretion, protein folding, quality control, and glycobiology. At the same time, our aim has been to employ cell biological approaches to expand the fundamental understanding of animal viruses and their pathogenic lifestyles. We have studied mechanisms of host cell entry and the uncoating of incoming viruses as well as the synthesis, folding, maturation, and intracellular movement of viral proteins and molecular assemblies. I have had the privilege to work in institutions in four different countries. The early years in Finland (the University of Helsinki) were followed by 6 years in Germany (European Molecular Biology Laboratory), 16 years in the United States (Yale School of Medicine), and 16 years in Switzerland (ETH Zurich).
Collapse
Affiliation(s)
- Ari Helenius
- Institute of Biochemistry, ETH Zurich, Zurich 8093, Switzerland;
| |
Collapse
|
20
|
Gruenberg J. Life in the lumen: The multivesicular endosome. Traffic 2021; 21:76-93. [PMID: 31854087 PMCID: PMC7004041 DOI: 10.1111/tra.12715] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/30/2019] [Accepted: 10/31/2019] [Indexed: 12/12/2022]
Abstract
The late endosomes/endo‐lysosomes of vertebrates contain an atypical phospholipid, lysobisphosphatidic acid (LBPA) (also termed bis[monoacylglycero]phosphate [BMP]), which is not detected elsewhere in the cell. LBPA is abundant in the membrane system present in the lumen of this compartment, including intralumenal vesicles (ILVs). In this review, the current knowledge on LBPA and LBPA‐containing membranes will be summarized, and their role in the control of endosomal cholesterol will be outlined. Some speculations will also be made on how this system may be overwhelmed in the cholesterol storage disorder Niemann‐Pick C. Then, the roles of intralumenal membranes in endo‐lysosomal dynamics and functions will be discussed in broader terms. Likewise, the mechanisms that drive the biogenesis of intralumenal membranes, including ESCRTs, will also be discussed, as well as their diverse composition and fate, including degradation in lysosomes and secretion as exosomes. This review will also discuss how intralumenal membranes are hijacked by pathogenic agents during intoxication and infection, and what is the biochemical composition and function of the intra‐endosomal lumenal milieu. Finally, this review will allude to the size limitations imposed on intralumenal vesicle functions and speculate on the possible role of LBPA as calcium chelator in the acidic calcium stores of endo‐lysosomes.
Collapse
Affiliation(s)
- Jean Gruenberg
- Biochemistry Department, University of Geneva, Geneva, Switzerland
| |
Collapse
|
21
|
Mishra R, Sengül GF, Candiello E, Schu P. Synaptic AP2 CCV life cycle regulation by the Eps15, ITSN1, Sgip1/AP2, synaptojanin1 interactome. Sci Rep 2021; 11:8007. [PMID: 33850201 PMCID: PMC8044098 DOI: 10.1038/s41598-021-87591-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 03/30/2021] [Indexed: 11/18/2022] Open
Abstract
The AP1/σ1B knockout causes impaired synaptic vesicle recycling and enhanced protein sorting into endosomes, leading to severe intellectual disability. These disturbances in synaptic protein sorting induce as a secondary phenotype the upregulation of AP2 CCV mediated endocytosis. Synapses contain canonical AP2 CCV and AP2 CCV with a more stable coat and thus extended life time. In AP1/σ1B knockout synapses, pool sizes of both CCV classes are doubled. Additionally, stable CCV of the knockout are more stabilised than stable wt CCV. One mechanism responsible for enhanced CCV stabilisation is the reduction of synaptojanin1 CCV levels, the PI-4,5-P2 phosphatase essential for AP2 membrane dissociation. To identify mechanisms regulating synaptojanin1 recruitment, we compared synaptojanin1 CCV protein interactome levels and CCV protein interactions between both CCV classes from wt and knockout mice. We show that ITSN1 determines synaptojanin1 CCV levels. Sgip1/AP2 excess hinders synaptojanin1 binding to ITSN1, further lowering its levels. ITSN1 levels are determined by Eps15, not Eps15L1. In addition, the data reveal that reduced amounts of pacsin1 can be counter balanced by its enhanced activation. These data exemplify the complexity of CCV life cycle regulation and indicate how cargo proteins determine the life cycle of their CCV.
Collapse
Affiliation(s)
- R Mishra
- Department of Cellular Biochemistry, University Medical Center, Georg-August University Göttingen, Humboldtallee 23, 37073, Göttingen, Germany
- Department of Clinical Neurosciences, John Van Geest Centre for Brain Repair, University of Cambridge, Cambridge, England, UK
| | - G F Sengül
- Department of Cellular Biochemistry, University Medical Center, Georg-August University Göttingen, Humboldtallee 23, 37073, Göttingen, Germany
| | - E Candiello
- Department of Cellular Biochemistry, University Medical Center, Georg-August University Göttingen, Humboldtallee 23, 37073, Göttingen, Germany
- Institute for Cancer Research and Treatment (IRCC), Turin, Italy
| | - P Schu
- Department of Cellular Biochemistry, University Medical Center, Georg-August University Göttingen, Humboldtallee 23, 37073, Göttingen, Germany.
| |
Collapse
|
22
|
Bai JY, Li Y, Xue GH, Li KR, Zheng YF, Zhang ZQ, Jiang Q, Liu YY, Zhou XZ, Cao C. Requirement of Gαi1 and Gαi3 in interleukin-4-induced signaling, macrophage M2 polarization and allergic asthma response. Theranostics 2021; 11:4894-4909. [PMID: 33754034 PMCID: PMC7978294 DOI: 10.7150/thno.56383] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/28/2021] [Indexed: 12/12/2022] Open
Abstract
IL-4 induces Akt activation in macrophages, required for full M2 (alternative) polarization. We examined the roles of Gαi1 and Gαi3 in M2 polarization using multiple genetic methods. Methods and Results: In MEFs and primary murine BMDMs, Gαi1/3 shRNA, knockout or dominant negative mutations attenuated IL-4-induced IL4Rα endocytosis, Gab1 recruitment as well as Akt activation, leaving STAT6 signaling unaffected. Following IL-4 stimulation, Gαi1/3 proteins associated with the intracellular domain of IL-4Rα and the APPL1 adaptor, to mediate IL-4Rα endosomal traffic and Gab1-Akt activation in BMDMs. In contrast, gene silencing of Gαi1/3 with shRNA or knockout resulted in BMDMs that were refractory to IL-4-induced M2 polarization. Conversely, Gαi1/3-overexpressed BMDMs displayed preferred M2 response with IL-4 stimulation. In primary human macrophages IL-4-induced Akt activation and Th2 genes expression were inhibited with Gαi1/3 silencing, but augmented with Gαi1/3 overexpression. In Gαi1/3 double knockout (DKO) mice, M2 polarization, by injection of IL-4 complex or chitin, was potently inhibited. Moreover, in a murine model of asthma, ovalbumin-induced airway inflammation and hyperresponsiveness were largely impaired in Gαi1/3 DKO mice. Conclusion: These findings highlight novel and essential roles for Gαi1/3 in regulating IL-4-induced signaling, macrophage M2 polarization and allergic asthma response.
Collapse
|
23
|
Asmar AJ, Beck DB, Werner A. Control of craniofacial and brain development by Cullin3-RING ubiquitin ligases: Lessons from human disease genetics. Exp Cell Res 2020; 396:112300. [PMID: 32986984 PMCID: PMC10627151 DOI: 10.1016/j.yexcr.2020.112300] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/16/2020] [Accepted: 09/20/2020] [Indexed: 12/19/2022]
Abstract
Metazoan development relies on intricate cell differentiation, communication, and migration pathways, which ensure proper formation of specialized cell types, tissues, and organs. These pathways are crucially controlled by ubiquitylation, a reversible post-translational modification that regulates the stability, activity, localization, or interaction landscape of substrate proteins. Specificity of ubiquitylation is ensured by E3 ligases, which bind substrates and co-operate with E1 and E2 enzymes to mediate ubiquitin transfer. Cullin3-RING ligases (CRL3s) are a large class of multi-subunit E3s that have emerged as important regulators of cell differentiation and development. In particular, recent evidence from human disease genetics, animal models, and mechanistic studies have established their involvement in the control of craniofacial and brain development. Here, we summarize regulatory principles of CRL3 assembly, substrate recruitment, and ubiquitylation that allow this class of E3s to fulfill their manifold functions in development. We further review our current mechanistic understanding of how specific CRL3 complexes orchestrate neuroectodermal differentiation and highlight diseases associated with their dysregulation. Based on evidence from human disease genetics, we propose that other unknown CRL3 complexes must help coordinate craniofacial and brain development and discuss how combining emerging strategies from the field of disease gene discovery with biochemical and human pluripotent stem cell approaches will likely facilitate their identification.
Collapse
Affiliation(s)
- Anthony J Asmar
- Stem Cell Biochemistry Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
| | - David B Beck
- Stem Cell Biochemistry Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA; Metabolic, Cardiovascular and Inflammatory Disease Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Achim Werner
- Stem Cell Biochemistry Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
24
|
Yang T, Yeoh LM, Tutor MV, Dixon MW, McMillan PJ, Xie SC, Bridgford JL, Gillett DL, Duffy MF, Ralph SA, McConville MJ, Tilley L, Cobbold SA. Decreased K13 Abundance Reduces Hemoglobin Catabolism and Proteotoxic Stress, Underpinning Artemisinin Resistance. Cell Rep 2020; 29:2917-2928.e5. [PMID: 31775055 DOI: 10.1016/j.celrep.2019.10.095] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 09/08/2019] [Accepted: 10/23/2019] [Indexed: 01/09/2023] Open
Abstract
Increased tolerance of Plasmodium falciparum to front-line artemisinin antimalarials (ARTs) is associated with mutations in Kelch13 (K13), although the precise role of K13 remains unclear. Here, we show that K13 mutations result in decreased expression of this protein, while mislocalization of K13 mimics resistance-conferring mutations, pinpointing partial loss of function of K13 as the relevant molecular event. K13-GFP is associated with ∼170 nm diameter doughnut-shaped structures at the parasite periphery, consistent with the location and dimensions of cytostomes. Moreover, the hemoglobin-peptide profile of ring-stage parasites is reduced when K13 is mislocalized. We developed a pulse-SILAC approach to quantify protein turnover and observe less disruption to protein turnover following ART exposure when K13 is mislocalized. Our findings suggest that K13 regulates digestive vacuole biogenesis and the uptake/degradation of hemoglobin and that ART resistance is mediated by a decrease in heme-dependent drug activation, less proteotoxicity, and increased survival of parasite ring stages.
Collapse
Affiliation(s)
- Tuo Yang
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Lee M Yeoh
- Department of Microbiology and Immunology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Madel V Tutor
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Matthew W Dixon
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Paul J McMillan
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Melbourne, VIC 3010, Australia; Biological Optical Microscopy Platform, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Stanley C Xie
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Jessica L Bridgford
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - David L Gillett
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Michael F Duffy
- Department of Microbiology and Immunology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Stuart A Ralph
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Malcolm J McConville
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Leann Tilley
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Melbourne, VIC 3010, Australia.
| | - Simon A Cobbold
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Melbourne, VIC 3010, Australia.
| |
Collapse
|
25
|
Maekawa M, Higashiyama S. The Roles of SPOP in DNA Damage Response and DNA Replication. Int J Mol Sci 2020; 21:ijms21197293. [PMID: 33023230 PMCID: PMC7582541 DOI: 10.3390/ijms21197293] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 09/30/2020] [Accepted: 09/30/2020] [Indexed: 12/20/2022] Open
Abstract
Speckle-type BTB/POZ protein (SPOP) is a substrate recognition receptor of the cullin-3 (CUL3)/RING type ubiquitin E3 complex. To date, approximately 30 proteins have been identified as ubiquitinated substrates of the CUL3/SPOP complex. Pathologically, missense mutations in the substrate-binding domain of SPOP have been found in prostate and endometrial cancers. Prostate and endometrial cancer-associated SPOP mutations lose and increase substrate-binding ability, respectively. Expression of these SPOP mutants, thus, causes aberrant turnovers of the substrate proteins, leading to tumor formation. Although the molecular properties of SPOP and its cancer-associated mutants have been intensively elucidated, their cellular functions remain unclear. Recently, a number of studies have uncovered the critical role of SPOP and its mutants in DNA damage response and DNA replication. In this review article, we summarize the physiological functions of SPOP as a “gatekeeper” of genome stability.
Collapse
Affiliation(s)
- Masashi Maekawa
- Division of Cell Growth and Tumor Regulation, Proteo-Science Center, Ehime University, Toon 791-0295, Japan;
- Department of Biochemistry and Molecular Genetics, Ehime University Graduate School of Medicine, Toon 791-0295, Japan
- Correspondence: ; Tel.: +81-89-960-5254
| | - Shigeki Higashiyama
- Division of Cell Growth and Tumor Regulation, Proteo-Science Center, Ehime University, Toon 791-0295, Japan;
- Department of Biochemistry and Molecular Genetics, Ehime University Graduate School of Medicine, Toon 791-0295, Japan
| |
Collapse
|
26
|
Bauer M, Flatt JW, Seiler D, Cardel B, Emmenlauer M, Boucke K, Suomalainen M, Hemmi S, Greber UF. The E3 Ubiquitin Ligase Mind Bomb 1 Controls Adenovirus Genome Release at the Nuclear Pore Complex. Cell Rep 2020; 29:3785-3795.e8. [PMID: 31851912 DOI: 10.1016/j.celrep.2019.11.064] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/15/2019] [Accepted: 11/14/2019] [Indexed: 01/06/2023] Open
Abstract
Adenoviruses (AdVs) cause respiratory, ocular, and gastrointestinal tract infection and inflammation in immunocompetent people and life-threatening disease upon immunosuppression. AdV vectors are widely used in gene therapy and vaccination. Incoming particles attach to nuclear pore complexes (NPCs) of post-mitotic cells, then rupture and deliver viral DNA (vDNA) to the nucleus or misdeliver to the cytosol. Our genome-wide RNAi screen in AdV-infected cells identified the RING-type E3 ubiquitin ligase Mind bomb 1 (Mib1) as a proviral host factor for AdV infection. Mib1 is implicated in Notch-Delta signaling, ciliary biogenesis, and RNA innate immunity. Mib1 depletion arrested incoming AdVs at NPCs. Induced expression of full-length but not ligase-defective Mib1 in knockout cells triggered vDNA uncoating from NPC-tethered virions, nuclear import, misdelivery of vDNA, and vDNA expression. Mib1 is an essential host factor for AdV uncoating in human cells, and it provides a new concept for licensing virion DNA delivery through the NPC.
Collapse
Affiliation(s)
- Michael Bauer
- Department of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland; Life Science Zurich Graduate School, ETH and University of Zurich, 8057 Zurich, Switzerland
| | - Justin W Flatt
- Department of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland; Institute of Biotechnology, University of Helsinki, 00790 Helsinki, Finland; Department of Biosciences, University of Helsinki, 00790 Helsinki, Finland
| | - Daria Seiler
- Department of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
| | - Bettina Cardel
- Department of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
| | | | - Karin Boucke
- Department of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
| | - Maarit Suomalainen
- Department of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
| | - Silvio Hemmi
- Department of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
| | - Urs F Greber
- Department of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland.
| |
Collapse
|
27
|
The E3 ligase adaptor molecule SPOP regulates fetal hemoglobin levels in adult erythroid cells. Blood Adv 2020; 3:1586-1597. [PMID: 31126914 DOI: 10.1182/bloodadvances.2019032318] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 04/23/2019] [Indexed: 12/21/2022] Open
Abstract
Reactivation of fetal hemoglobin (HbF) production benefits patients with sickle cell disease and β-thalassemia. To identify new HbF regulators that might be amenable to pharmacologic control, we screened a protein domain-focused CRISPR-Cas9 library targeting chromatin regulators, including BTB domain-containing proteins. Speckle-type POZ protein (SPOP), a substrate adaptor of the CUL3 ubiquitin ligase complex, emerged as a novel HbF repressor. Depletion of SPOP or overexpression of a dominant negative version significantly raised fetal globin messenger RNA and protein levels with minimal detrimental effects on normal erythroid maturation, as determined by transcriptome and proteome analyses. SPOP controls HbF expression independently of the major transcriptional HbF repressors BCL11A and LRF. Finally, pharmacologic HbF inducers cooperate with SPOP depletion during HbF upregulation. Our study implicates SPOP and the CUL3 ubiquitin ligase system in controlling HbF production in human erythroid cells and may offer new therapeutic strategies for the treatment of β-hemoglobinopathies.
Collapse
|
28
|
K13, the Cytostome, and Artemisinin Resistance. Trends Parasitol 2020; 36:533-544. [DOI: 10.1016/j.pt.2020.03.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/23/2020] [Accepted: 03/23/2020] [Indexed: 02/03/2023]
|
29
|
Long M, Kranjc T, Mysior MM, Simpson JC. RNA Interference Screening Identifies Novel Roles for RhoBTB1 and RhoBTB3 in Membrane Trafficking Events in Mammalian Cells. Cells 2020; 9:cells9051089. [PMID: 32354068 PMCID: PMC7291084 DOI: 10.3390/cells9051089] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/22/2020] [Accepted: 04/25/2020] [Indexed: 12/19/2022] Open
Abstract
In the endomembrane system of mammalian cells, membrane traffic processes require a high degree of regulation in order to ensure their specificity. The range of molecules that participate in trafficking events is truly vast, and much attention to date has been given to the Rab family of small GTPases. However, in recent years, a role in membrane traffic for members of the Rho GTPase family, in particular Cdc42, has emerged. This prompted us to develop and apply an image-based high-content screen, initially focussing on the Golgi complex, using RNA interference to systematically perturb each of the 21 Rho family members and assess their importance to the overall organisation of this organelle. Analysis of our data revealed previously unreported roles for two atypical Rho family members, RhoBTB1 and RhoBTB3, in membrane traffic events. We find that depletion of RhoBTB3 affects the morphology of the Golgi complex and causes changes in the trafficking speeds of carriers operating at the interface of the Golgi and endoplasmic reticulum. In addition, RhoBTB3 was found to be present on these carriers. Depletion of RhoBTB1 was also found to cause a disturbance to the Golgi architecture, however, this phenotype seems to be linked to endocytosis and retrograde traffic pathways. RhoBTB1 was found to be associated with early endosomal intermediates, and changes in the levels of RhoBTB1 not only caused profound changes to the organisation and distribution of endosomes and lysosomes, but also resulted in defects in the delivery of two different classes of cargo molecules to downstream compartments. Together, our data reveal new roles for these atypical Rho family members in the endomembrane system.
Collapse
|
30
|
Clark A, Burleson M. SPOP and cancer: a systematic review. Am J Cancer Res 2020; 10:704-726. [PMID: 32266086 PMCID: PMC7136909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 02/27/2020] [Indexed: 06/11/2023] Open
Abstract
The initiation and progression of cancer is dependent on the acquisition of mutations in oncogenes or tumor suppressor genes that ultimately leads to the dysregulation of key regulatory pathways. Though these mutations often occur in direct regulators of such pathways, some may confer tumorigenic potential by indirectly targeting several pathways congruently thereby exerting pleiotropic effects. In recent years, the tumor suppressor gene Speckle Type POZ Protein (SPOP) has gained a lot of attention as it has been found to be altered in a variety of different cancers. SPOP appears to exert pleiotropic tumorigenic effects as multiple different regulatory pathways become dysregulated upon SPOP alterations. SPOP has been identified as an E3 ubiquitin ligase substrate binding subunit of the proteasome complex. Since protein degradation is critical in regulating proper cellular function it is not surprising that the proteasome pathway is often found to be disrupted in cancer. Many studies have now indicated that mutations or changes in the expression of SPOP are one of several underlying reasons of proteasome pathway disruption in different cancers. Ultimately, either SPOP downregulation or mutation promotes stabilization of direct SPOP targets which subsequently promotes cancer through the dysregulation of key regulatory pathways. In this review, we will discuss the current literature on cancer-specific SPOP alterations as well the SPOP targets that are stabilized, and the pathways that are dysregulated, as a result.
Collapse
Affiliation(s)
- Alison Clark
- Department of Biology, University of Texas at San AntonioSan Antonio, TX, USA
| | - Marieke Burleson
- Department of Biology, University of The Incarnate WordSan Antonio, TX, USA
| |
Collapse
|
31
|
Abstract
Influenza A virus (IAV) is an enveloped virus of the Orthomyxoviridae with a negative-sense single-stranded RNA genome. During virus cell entry, viral and cellular cues are delivered in a stepwise manner within two distinct cellular compartments-the endosomes and the cytosol. Endosome maturation primes the viral core for uncoating by cytosolic host proteins and host-mediated virus disaggregation is essential for genome import and replication in the nucleus. Recent evidence shows that two well-known cellular proteins-histone deacetylase 6 (HDAC6) and karyopherin-β2 (kapβ2)-uncoat influenza virus. HDAC6 is 1 of 11 HDACs and an X-linked, cytosolic lysine deacetylase. Under normal cellular conditions HDAC6 is the tubulin deacetylase. Under proteasomal stress HDAC6 binds unanchored ubiquitin, dynein and myosin II to sequester misfolded protein aggregates for autophagy. Kapβ2 is a member of the importin β family that transports RNA-binding proteins into the nucleus by binding to disordered nuclear localization signals (NLSs) known as PY-NLS. Kapβ2 is emerging as a universal uncoating factor for IAV and human immunodeficiency virus type 1 (HIV-1). Kapβ2 can also reverse liquid-liquid phase separation (LLPS) of RNA-binding proteins by promoting their disaggregation. Thus, it is becoming evident that key players in the management of cellular condensates and membraneless organelles are potent virus uncoating factors. This emerging concept reveals implications in viral pathogenesis, as well as, the promise for cell-targeted therapeutic strategies to block universal virus uncoating pathways hijacked by enveloped RNA viruses.
Collapse
Affiliation(s)
- Yohei Yamauchi
- School of Cellular & Molecular Medicine, University of Bristol, Bristol, United Kingdom.
| |
Collapse
|
32
|
CRL3s: The BTB-CUL3-RING E3 Ubiquitin Ligases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1217:211-223. [PMID: 31898230 DOI: 10.1007/978-981-15-1025-0_13] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The ubiquitin proteasome pathway is one of the major regulatory tools used by eukaryotic cells. The evolutionarily conserved cullin family proteins can assemble as many as >600 distinct E3 ubiquitin ligase complexes that regulate diverse cellular pathways. In most of Cullin-RING ubiquitin ligase (CRL) complexes, separate linker and adaptor proteins build the substrate recognition module. Differently, a single BTB-containing adaptor molecule utilizing two protein interaction sites can link the CUL3 scaffold to the substrate, forming as many as 188 CUL3-BTB E3 ligase complexes in mammals. Here, we review the most recent studies on CRL3 complexes, with a focus on the model for CUL3 assembly with its BTB-containing substrate receptors. Also, we summarize the current knowledge of CRL3 substrates and their relevant biological functions. Next, we discuss the mutual exclusivity of somatic mutations in KEAP1, NRF2, and CUL3 in human lung cancer. Finally, we highlight new strategies to expand CUL3 substrates and discuss outstanding questions remaining in the field.
Collapse
|
33
|
Larson GP, Tran V, Yú S, Caì Y, Higgins CA, Smith DM, Baker SF, Radoshitzky SR, Kuhn JH, Mehle A. EPS8 Facilitates Uncoating of Influenza A Virus. Cell Rep 2019; 29:2175-2183.e4. [PMID: 31747592 PMCID: PMC6929677 DOI: 10.1016/j.celrep.2019.10.064] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 08/20/2019] [Accepted: 10/15/2019] [Indexed: 12/02/2022] Open
Abstract
All viruses balance interactions between cellular machinery co-opted to support replication and host factors deployed to halt the infection. We use gene correlation analysis to perform an unbiased screen for host factors involved in influenza A virus (FLUAV) infection. Our screen identifies the cellular factor epidermal growth factor receptor pathway substrate 8 (EPS8) as the highest confidence pro-viral candidate. Knockout and overexpression of EPS8 confirm its importance in enhancing FLUAV infection and titers. Loss of EPS8 does not affect virion attachment, uptake, or fusion. Rather, our data show that EPS8 specifically functions during virion uncoating. EPS8 physically associates with incoming virion components, and subsequent nuclear import of released ribonucleoprotein complexes is significantly delayed in the absence of EPS8. Our study identifies EPS8 as a host factor important for uncoating, a crucial step of FLUAV infection during which the interface between the virus and host is still being discovered.
Collapse
Affiliation(s)
- Gloria P Larson
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Vy Tran
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Shuǐqìng Yú
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, NIH, Frederick, MD 21702, USA
| | - Yíngyún Caì
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, NIH, Frederick, MD 21702, USA
| | - Christina A Higgins
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Danielle M Smith
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Steven F Baker
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Sheli R Radoshitzky
- Molecular and Translational Sciences Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA
| | - Jens H Kuhn
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, NIH, Frederick, MD 21702, USA
| | - Andrew Mehle
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
34
|
Harel T, Peshes-Yaloz N, Bacharach E, Gat-Viks I. Predicting Phenotypic Diversity from Molecular and Genetic Data. Genetics 2019; 213:297-311. [PMID: 31352366 PMCID: PMC6727812 DOI: 10.1534/genetics.119.302463] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 07/04/2019] [Indexed: 01/03/2023] Open
Abstract
Despite the importance of complex phenotypes, an in-depth understanding of the combined molecular and genetic effects on a phenotype has yet to be achieved. Here, we introduce InPhenotype, a novel computational approach for complex phenotype prediction, where gene-expression data and genotyping data are integrated to yield quantitative predictions of complex physiological traits. Unlike existing computational methods, InPhenotype makes it possible to model potential regulatory interactions between gene expression and genomic loci without compromising the continuous nature of the molecular data. We applied InPhenotype to synthetic data, exemplifying its utility for different data parameters, as well as its superiority compared to current methods in both prediction quality and the ability to detect regulatory interactions of genes and genomic loci. Finally, we show that InPhenotype can provide biological insights into both mouse and yeast datasets.
Collapse
Affiliation(s)
- Tom Harel
- School of Molecular Cell Biology and Biotechnology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, 6997801 Israe
| | - Naama Peshes-Yaloz
- School of Molecular Cell Biology and Biotechnology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, 6997801 Israe
| | - Eran Bacharach
- School of Molecular Cell Biology and Biotechnology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, 6997801 Israe
| | - Irit Gat-Viks
- School of Molecular Cell Biology and Biotechnology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, 6997801 Israe
| |
Collapse
|
35
|
Jerabkova K, Sumara I. Cullin 3, a cellular scripter of the non-proteolytic ubiquitin code. Semin Cell Dev Biol 2019; 93:100-110. [DOI: 10.1016/j.semcdb.2018.12.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 12/20/2018] [Accepted: 12/20/2018] [Indexed: 11/29/2022]
|
36
|
Guo DF, Rahmouni K. The Bardet-Biedl syndrome protein complex regulates cell migration and tissue repair through a Cullin-3/RhoA pathway. Am J Physiol Cell Physiol 2019; 317:C457-C465. [PMID: 31216194 DOI: 10.1152/ajpcell.00498.2018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cell motility and migration play critical roles in various physiological processes and disease states. Here, we show that the BBBsome, a macromolecule composed of eight Bardet-Biedl syndrome (BBS) proteins including BBS1, is a critical determinant of cell migration and wound healing. Fibroblast cells derived from mice or humans harboring a homozygous missense mutation (BBS1M390R/M390R) that disrupt the BBSome exhibit defects in migration and wound healing. Furthermore, we demonstrate that BBS1M390R/M390R mice have significantly delayed wound closure. In line with this, we provide data suggesting that BBS1M390R/M390R fibroblasts have impaired platelet-derived growth factor-AA (PDGF) receptor-α signaling, a key regulator of directional cell migration acting as a chemoattractant during postnatal migration responses such as wound healing. In addition, we show that BBS1M390R/M390R fibroblasts have upregulated RhoA expression and activity. The relevance of RhoA upregulation is demonstrated by the ability of RhoA-kinase inhibitor Y27632 to partially rescue the migration defect of BBS1M390R/M390R fibroblasts cells. We also show that accumulation of RhoA protein in BBS1M390R/M390R fibroblasts cells is associated with reduction and inactivation of the ubiquitin ligase Cullin-3. Consistent with this, Cullin-3 inhibition with MLN4924 is sufficient to reduce migration of normal fibroblasts. These data implicate the BBSome in cell motility and tissue repair through a mechanism that involves PDGF receptor signaling and Cullin-3-mediated control of RhoA.
Collapse
Affiliation(s)
- Deng-Fu Guo
- Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Kamal Rahmouni
- Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa.,Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa.,Obesity Education and Research Initiative, University of Iowa Carver College of Medicine, Iowa City, Iowa.,Fraternal Order of Eagles Diabetes Research, University of Iowa Carver College of Medicine, Iowa City, Iowa.,Veterans Affairs Health Care System, Iowa City, Iowa
| |
Collapse
|
37
|
Sakai R, Fukuda R, Unida S, Aki M, Ono Y, Endo A, Kusumi S, Koga D, Fukushima T, Komada M, Okiyoneda T. The integral function of the endocytic recycling compartment is regulated by RFFL-mediated ubiquitylation of Rab11 effectors. J Cell Sci 2019; 132:jcs.228007. [PMID: 30659120 DOI: 10.1242/jcs.228007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 01/03/2019] [Indexed: 12/11/2022] Open
Abstract
Endocytic trafficking is regulated by ubiquitylation (also known as ubiquitination) of cargoes and endocytic machineries. The role of ubiquitylation in lysosomal delivery has been well documented, but its role in the recycling pathway is largely unknown. Here, we report that the ubiquitin (Ub) ligase RFFL regulates ubiquitylation of endocytic recycling regulators. An RFFL dominant-negative (DN) mutant induced clustering of endocytic recycling compartments (ERCs) and delayed endocytic cargo recycling without affecting lysosomal traffic. A BioID RFFL interactome analysis revealed that RFFL interacts with the Rab11 effectors EHD1, MICALL1 and class I Rab11-FIPs. The RFFL DN mutant strongly captured these Rab11 effectors and inhibited their ubiquitylation. The prolonged interaction of RFFL with Rab11 effectors was sufficient to induce the clustered ERC phenotype and to delay cargo recycling. RFFL directly ubiquitylates these Rab11 effectors in vitro, but RFFL knockout (KO) only reduced the ubiquitylation of Rab11-FIP1. RFFL KO had a minimal effect on the ubiquitylation of EHD1, MICALL1, and Rab11-FIP2, and failed to delay transferrin recycling. These results suggest that multiple Ub ligases including RFFL regulate the ubiquitylation of Rab11 effectors, determining the integral function of the ERC.
Collapse
Affiliation(s)
- Ryohei Sakai
- Department of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin University, Hyogo 669-1337, Japan
| | - Ryosuke Fukuda
- Department of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin University, Hyogo 669-1337, Japan
| | - Shin Unida
- Department of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin University, Hyogo 669-1337, Japan
| | - Misaki Aki
- Department of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin University, Hyogo 669-1337, Japan
| | - Yuji Ono
- Department of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin University, Hyogo 669-1337, Japan
| | - Akinori Endo
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Satoshi Kusumi
- Division of Morphological Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8544, Japan
| | - Daisuke Koga
- Department of Microscopic Anatomy and Cell Biology, Asahikawa Medical University, Asahikawa 078-8510, Hokkaido, Japan
| | - Toshiaki Fukushima
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Masayuki Komada
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Tsukasa Okiyoneda
- Department of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin University, Hyogo 669-1337, Japan
| |
Collapse
|
38
|
Helenius A. Virus Entry: Looking Back and Moving Forward. J Mol Biol 2018; 430:1853-1862. [PMID: 29709571 PMCID: PMC7094621 DOI: 10.1016/j.jmb.2018.03.034] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/15/2018] [Accepted: 03/16/2018] [Indexed: 12/29/2022]
Abstract
Research over a period of more than half a century has provided a reasonably accurate picture of mechanisms involved in animal virus entry into their host cells. Successive steps in entry include binding to receptors, endocytosis, passage through one or more membranes, targeting to specific sites within the cell, and uncoating of the genome. For some viruses, the molecular interactions are known in great detail. However, as more viruses are analyzed, and as the focus shifts from tissue culture to in vivo experiments, it is evident that viruses display considerable redundancy and flexibility in receptor usage, endocytic mechanism, location of penetration, and uncoating mechanism. For many viruses, the picture is still elusive because the interactions that they engage in rely on sophisticated adaptation to complex cellular functions and defense mechanisms. Studies using a broad combination of technologies have provided detailed information on the entry and uncoating of many animal viruses. Not only the identity of cell surface receptors but their distribution in plasma membrane and in microdomains defines cell tropism and infection efficiency. The majority of viruses enter by endocytic mechanisms and penetrate into the cytosol intracellularly from a variety of different organelles. The picture is often elusive because many viruses display redundancy in receptor choice and entry strategy.
Collapse
Affiliation(s)
- Ari Helenius
- ETH Zurich, Institute of Biochemistry, Otto-Stern-Weg 3, Zurich 8093, Switzerland.
| |
Collapse
|
39
|
Critchley WR, Pellet-Many C, Ringham-Terry B, Harrison MA, Zachary IC, Ponnambalam S. Receptor Tyrosine Kinase Ubiquitination and De-Ubiquitination in Signal Transduction and Receptor Trafficking. Cells 2018; 7:E22. [PMID: 29543760 PMCID: PMC5870354 DOI: 10.3390/cells7030022] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 03/09/2018] [Accepted: 03/13/2018] [Indexed: 12/13/2022] Open
Abstract
Receptor tyrosine kinases (RTKs) are membrane-based sensors that enable rapid communication between cells and their environment. Evidence is now emerging that interdependent regulatory mechanisms, such as membrane trafficking, ubiquitination, proteolysis and gene expression, have substantial effects on RTK signal transduction and cellular responses. Different RTKs exhibit both basal and ligand-stimulated ubiquitination, linked to trafficking through different intracellular compartments including the secretory pathway, plasma membrane, endosomes and lysosomes. The ubiquitin ligase superfamily comprising the E1, E2 and E3 enzymes are increasingly implicated in this post-translational modification by adding mono- and polyubiquitin tags to RTKs. Conversely, removal of these ubiquitin tags by proteases called de-ubiquitinases (DUBs) enables RTK recycling for another round of ligand sensing and signal transduction. The endocytosis of basal and activated RTKs from the plasma membrane is closely linked to controlled proteolysis after trafficking and delivery to late endosomes and lysosomes. Proteolytic RTK fragments can also have the capacity to move to compartments such as the nucleus and regulate gene expression. Such mechanistic diversity now provides new opportunities for modulating RTK-regulated cellular responses in health and disease states.
Collapse
Affiliation(s)
- William R Critchley
- Endothelial Cell Biology Unit, School of Molecular & Cellular Biology, University of Leeds, Leeds LS2 9JT, UK.
| | - Caroline Pellet-Many
- Centre for Cardiovascular Biology & Medicine, Rayne Building, University College London, London WC1E 6PT, UK.
| | - Benjamin Ringham-Terry
- Centre for Cardiovascular Biology & Medicine, Rayne Building, University College London, London WC1E 6PT, UK.
| | | | - Ian C Zachary
- Centre for Cardiovascular Biology & Medicine, Rayne Building, University College London, London WC1E 6PT, UK.
| | - Sreenivasan Ponnambalam
- Endothelial Cell Biology Unit, School of Molecular & Cellular Biology, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
40
|
Cheng X, Zheng J, Li G, Göbel V, Zhang H. Degradation for better survival? Role of ubiquitination in epithelial morphogenesis. Biol Rev Camb Philos Soc 2018; 93:1438-1460. [PMID: 29493067 DOI: 10.1111/brv.12404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 01/31/2018] [Accepted: 02/05/2018] [Indexed: 02/06/2023]
Abstract
As a prevalent post-translational modification, ubiquitination is essential for many developmental processes. Once covalently attached to the small and conserved polypeptide ubiquitin (Ub), a substrate protein can be directed to perform specific biological functions via its Ub-modified form. Three sequential catalytic reactions contribute to this process, among which E3 ligases serve to identify target substrates and promote the activated Ub to conjugate to substrate proteins. Ubiquitination has great plasticity, with diverse numbers, topologies and modifications of Ub chains conjugated at different substrate residues adding a layer of complexity that facilitates a huge range of cellular functions. Herein, we highlight key advances in the understanding of ubiquitination in epithelial morphogenesis, with an emphasis on the latest insights into its roles in cellular events involved in polarized epithelial tissue, including cell adhesion, asymmetric localization of polarity determinants and cytoskeletal organization. In addition, the physiological roles of ubiquitination are discussed for typical examples of epithelial morphogenesis, such as lung branching, vascular development and synaptic formation and plasticity. Our increased understanding of ubiquitination in epithelial morphogenesis may provide novel insights into the molecular mechanisms underlying epithelial regeneration and maintenance.
Collapse
Affiliation(s)
- Xiaoxiang Cheng
- Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Jun Zheng
- Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Gang Li
- Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Verena Göbel
- Department of Pediatrics, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114,, U.S.A
| | - Hongjie Zhang
- Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| |
Collapse
|
41
|
Abstract
Influenza, a serious illness of humans and domesticated animals, has been studied intensively for many years. It therefore provides an example of how much we can learn from detailed studies of an infectious disease and of how even the most intensive scientific research leaves further questions to answer. This introduction is written for researchers who have become interested in one of these unanswered questions, but who may not have previously worked on influenza. To investigate these questions, researchers must not only have a firm grasp of relevant methods and protocols; they must also be familiar with the basic details of our current understanding of influenza. This article therefore briefly covers the burden of disease that has driven influenza research, summarizes how our thinking about influenza has evolved over time, and sets out key features of influenza viruses by discussing how we classify them and what we understand of their replication. It does not aim to be comprehensive, as any researcher will read deeply into the specific areas that have grasped their interest. Instead, it aims to provide a general summary of how we came to think about influenza in the way we do now, in the hope that the reader's own research will help us to understand it better.
Collapse
Affiliation(s)
| | - Yohei Yamauchi
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK.
| |
Collapse
|
42
|
Caldieri G, Malabarba MG, Di Fiore PP, Sigismund S. EGFR Trafficking in Physiology and Cancer. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2018; 57:235-272. [PMID: 30097778 DOI: 10.1007/978-3-319-96704-2_9] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Signaling from the epidermal growth factor receptor (EGFR) elicits multiple biological responses, including cell proliferation, migration, and survival. Receptor endocytosis and trafficking are critical physiological processes that control the strength, duration, diversification, and spatial restriction of EGFR signaling through multiple mechanisms, which we review in this chapter. These mechanisms include: (i) regulation of receptor density and activation at the cell surface; (ii) concentration of receptors into distinct nascent endocytic structures; (iii) commitment of the receptor to different endocytic routes; (iv) endosomal sorting and postendocytic trafficking of the receptor through distinct pathways, and (v) recycling to restricted regions of the cell surface. We also highlight how communication between organelles controls EGFR activity along the endocytic route. Finally, we illustrate how abnormal trafficking of EGFR oncogenic mutants, as well as alterations of the endocytic machinery, contributes to aberrant EGFR signaling in cancer.
Collapse
Affiliation(s)
- Giusi Caldieri
- Dipartimento di Oncologia ed Emato-oncologia, Università degli Studi di Milano, Via Santa Sofia 9/1, 20122, Milan, Italy
- Istituto Europeo di Oncologia, Via Ripamonti 435, 20141, Milan, Italy
| | - Maria Grazia Malabarba
- Dipartimento di Oncologia ed Emato-oncologia, Università degli Studi di Milano, Via Santa Sofia 9/1, 20122, Milan, Italy
- Istituto Europeo di Oncologia, Via Ripamonti 435, 20141, Milan, Italy
| | - Pier Paolo Di Fiore
- Dipartimento di Oncologia ed Emato-oncologia, Università degli Studi di Milano, Via Santa Sofia 9/1, 20122, Milan, Italy
- Istituto Europeo di Oncologia, Via Ripamonti 435, 20141, Milan, Italy
| | - Sara Sigismund
- Dipartimento di Oncologia ed Emato-oncologia, Università degli Studi di Milano, Via Santa Sofia 9/1, 20122, Milan, Italy.
- Istituto Europeo di Oncologia, Via Ripamonti 435, 20141, Milan, Italy.
| |
Collapse
|
43
|
Podinovskaia M, Spang A. The Endosomal Network: Mediators and Regulators of Endosome Maturation. ENDOCYTOSIS AND SIGNALING 2018; 57:1-38. [DOI: 10.1007/978-3-319-96704-2_1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
44
|
Cullin 3-Based Ubiquitin Ligases as Master Regulators of Mammalian Cell Differentiation. Trends Biochem Sci 2017; 43:95-107. [PMID: 29249570 DOI: 10.1016/j.tibs.2017.11.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 11/23/2017] [Accepted: 11/25/2017] [Indexed: 01/09/2023]
Abstract
Specificity of the ubiquitin proteasome system is controlled by ubiquitin E3 ligases, including their major representatives, the multisubunit cullin-RING ubiquitin (Ub) ligases (CRLs). More than 200 different CRLs are divided into seven families according to their cullin scaffolding proteins (CUL1-7) around which they are assembled. Research over two decades has revealed that different CRL families are specialized to fulfill specific cellular functions. Whereas many CUL1-based CRLs (CRL1s) ubiquitylate cell cycle regulators, CRL4 complexes often associate with chromatin to control DNA metabolism. Based on studies about differentiation programs of mesenchymal stem cells (MSCs), including myogenesis, neurogenesis, chondrogenesis, osteogenesis and adipogenesis, we propose here that CRL3 complexes evolved to fulfill a pivotal role in mammalian cell differentiation.
Collapse
|
45
|
Fosdahl AM, Dietrich M, Schink KO, Malik MS, Skeie M, Bertelsen V, Stang E. ErbB3 interacts with Hrs and is sorted to lysosomes for degradation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:2241-2252. [DOI: 10.1016/j.bbamcr.2017.08.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 08/24/2017] [Accepted: 08/30/2017] [Indexed: 01/28/2023]
|
46
|
Comparative Profiling of Ubiquitin Proteasome System Interplay with Influenza A Virus PB2 Polymerase Protein Recapitulating Virus Evolution in Humans. mSphere 2017; 2:mSphere00330-17. [PMID: 29202037 PMCID: PMC5700371 DOI: 10.1128/msphere.00330-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 11/02/2017] [Indexed: 02/07/2023] Open
Abstract
Influenza A viruses (IAVs) are responsible for mild-to-severe seasonal respiratory illness of public health concern worldwide, and the risk of avian strain outbreaks in humans is a constant threat. Elucidating the requisites of IAV adaptation to humans is thus of prime importance. In this study, we explored how PB2 replication proteins of IAV strains with different levels of virulence in humans hijack a major protein modification pathway of the human host cell, the ubiquitin proteasome system (UPS). We found that the PB2 protein engages in an extended interplay with the UPS that evolved along with the virus’s adaptation to humans. This suggests that UPS hijacking underlies the efficient infection of humans and can be used as an indicator for evaluation of the potential of avian IAVs to infect humans. Several UPS factors were found to be necessary for infection with circulating IAV strains, pointing to potential targets for therapeutic approaches. The optimized exploitation of cell resources is one cornerstone of a successful infection. Differential mapping of host-pathogen protein-protein interactions (PPIs) on the basis of comparative interactomics of multiple strains is an effective strategy to highlight correlations between host proteome hijacking and biological or pathogenic traits. Here, we developed an interactomic pipeline to deliver high-confidence comparative maps of PPIs between a given pathogen and the human ubiquitin proteasome system (UPS). This subarray of the human proteome represents a range of essential cellular functions and promiscuous targets for many viruses. The screening pipeline was applied to the influenza A virus (IAV) PB2 polymerase proteins of five strains representing different levels of virulence in humans. An extensive PB2-UPS interplay has been detected that recapitulates the evolution of IAVs in humans. Functional validation with several IAV strains, including the seasonal H1N1pdm09 and H3N2 viruses, confirmed the biological relevance of most identified UPS factors and revealed strain-independent and strain-specific effects of UPS factor invalidation on IAV infection. This strategy is applicable to proteins from any other virus or pathogen, providing a valuable resource with which to explore the UPS-pathogen interplay and its relationship with pathogenicity. IMPORTANCE Influenza A viruses (IAVs) are responsible for mild-to-severe seasonal respiratory illness of public health concern worldwide, and the risk of avian strain outbreaks in humans is a constant threat. Elucidating the requisites of IAV adaptation to humans is thus of prime importance. In this study, we explored how PB2 replication proteins of IAV strains with different levels of virulence in humans hijack a major protein modification pathway of the human host cell, the ubiquitin proteasome system (UPS). We found that the PB2 protein engages in an extended interplay with the UPS that evolved along with the virus’s adaptation to humans. This suggests that UPS hijacking underlies the efficient infection of humans and can be used as an indicator for evaluation of the potential of avian IAVs to infect humans. Several UPS factors were found to be necessary for infection with circulating IAV strains, pointing to potential targets for therapeutic approaches.
Collapse
|
47
|
Maekawa M, Tanigawa K, Sakaue T, Hiyoshi H, Kubota E, Joh T, Watanabe Y, Taguchi T, Higashiyama S. Cullin-3 and its adaptor protein ANKFY1 determine the surface level of integrin β1 in endothelial cells. Biol Open 2017; 6:1707-1719. [PMID: 29038302 PMCID: PMC5703617 DOI: 10.1242/bio.029579] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Angiogenesis, the formation of new blood vessels from the pre-existing vasculature, is related to numerous pathophysiological events. We previously reported that a RING ubiquitin ligase complex scaffold protein, cullin-3 (CUL3), and one of its adaptor proteins, BAZF, regulated angiogenesis in the mouse retina by suppressing Notch signaling. However, the degree of inhibition of angiogenesis was made greater by CUL3 depletion than by BAZF depletion, suggesting other roles of CUL3 in angiogenesis besides the regulation of Notch signaling. In the present study, we found that CUL3 was critical for the cell surface level of integrin β1, an essential cell adhesion molecule for angiogenesis in HUVECs. By siRNA screening of 175 BTBPs, a family of adaptor proteins for CUL3, we found that ANKFY1/Rabankyrin-5, an early endosomal BTBP, was also critical for localization of surface integrin β1 and angiogenesis. CUL3 interacted with ANKFY1 and was required for the early endosomal localization of ANKFY1. These data suggest that CUL3/ANKFY1 regulates endosomal membrane traffic of integrin β1. Our results highlight the multiple roles of CUL3 in angiogenesis, which are mediated through distinct CUL3-adaptor proteins.
Collapse
Affiliation(s)
- Masashi Maekawa
- Division of Cell Growth and Tumor Regulation, Proteo-Science Center, Ehime University, Matsuyama 791-0295, Japan .,Department of Biochemistry and Molecular Genetics, Ehime University Graduate School of Medicine, Matsuyama 791-0295, Japan
| | - Kazufumi Tanigawa
- Department of Biochemistry and Molecular Genetics, Ehime University Graduate School of Medicine, Matsuyama 791-0295, Japan.,Department of Gastrointestinal Surgery and Surgical Oncology, Ehime University Graduate School of Medicine, Matsuyama 791-0295, Japan
| | - Tomohisa Sakaue
- Division of Cell Growth and Tumor Regulation, Proteo-Science Center, Ehime University, Matsuyama 791-0295, Japan.,Department of Cardiovascular and Thoracic Surgery, Ehime University Graduate School of Medicine, Matsuyama 791-0295, Japan
| | - Hiromi Hiyoshi
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya City 467-8601, Japan
| | - Eiji Kubota
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya City 467-8601, Japan
| | - Takashi Joh
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya City 467-8601, Japan
| | - Yuji Watanabe
- Department of Gastrointestinal Surgery and Surgical Oncology, Ehime University Graduate School of Medicine, Matsuyama 791-0295, Japan
| | - Tomohiko Taguchi
- Department of Health Chemistry, Graduate School of Pharmaceutical Science, University of Tokyo, Tokyo 113-0033, Japan.,Pathological Cell Biology Laboratory, Graduate School of Pharmaceutical Science, University of Tokyo, Tokyo 113-0033, Japan
| | - Shigeki Higashiyama
- Division of Cell Growth and Tumor Regulation, Proteo-Science Center, Ehime University, Matsuyama 791-0295, Japan .,Department of Biochemistry and Molecular Genetics, Ehime University Graduate School of Medicine, Matsuyama 791-0295, Japan
| |
Collapse
|
48
|
Cul3 neddylation is crucial for gradual lipid droplet formation during adipogenesis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:1405-1412. [PMID: 28499918 DOI: 10.1016/j.bbamcr.2017.05.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 05/08/2017] [Indexed: 01/04/2023]
Abstract
Cullin 3 (Cul3) belongs to the family of cullins (Cul1-7) providing the scaffold for cullin-RING ubiquitin (Ub) ligases (CRLs), which are activated by neddylation and represent essential E3 ligases of the Ub proteasome system. During adipogenic differentiation neddylated Cul3 accumulates in LiSa-2 preadipocytes. Downregulation of Cul3 and inhibition of neddylation by MLN4924 blocks the formation of lipid droplets (LDs), the lipid storage organelles and markers of adipogenesis. Neddylation of Cul3 coincides with an increase of Rab18, a GTPase associated with LDs. Immunoprecipitation and confocal fluorescence microscopy revealed physical association of Cul3 and Rab18 at the membrane of LDs. RhoA, a suppressor of adipogenesis decreased during differentiation. Our results in LiSa-2 cells, but also mouse embryonic fibroblasts revealed a connection between Cul3, Rab18 and RhoA. Downregulation of Cul3 led to a marked increase in RhoA protein expression after 6days of LiSa-2 cell differentiation, suggesting that Cul3 is involved in the regulation of RhoA stability.
Collapse
|
49
|
Clague MJ, Urbé S. Integration of cellular ubiquitin and membrane traffic systems: focus on deubiquitylases. FEBS J 2017; 284:1753-1766. [PMID: 28064438 PMCID: PMC5484354 DOI: 10.1111/febs.14007] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 12/29/2016] [Accepted: 01/06/2017] [Indexed: 12/17/2022]
Abstract
The cell is comprised of integrated multilevel protein networks or systems. The ubiquitin, protein homeostasis and membrane trafficking systems are highly integrated. Here, we look at the influence of reversible ubiquitylation on membrane trafficking and organelle dynamics. We review the regulation of endocytic sorting, selective autophagy and the secretory pathway by ubiquitin signals, with a particular focus on detailing the contribution of deubiquitylating enzymes.
Collapse
Affiliation(s)
- Michael J Clague
- Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, UK
| | - Sylvie Urbé
- Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, UK
| |
Collapse
|
50
|
Abstract
At every step of their replication cycle influenza viruses depend heavily on their host cells. The multifaceted interactions that occur between the virus and its host cell determine the outcome of the infection, including efficiency of progeny virus production, tropism, and pathogenicity. In order to understand viral disease and develop therapies for influenza it is therefore pertinent to study the intricate interplay between influenza viruses and their required host factors. Here, we review the current knowledge on host cell factors required by influenza virus at the different stages of the viral replication cycle. We also discuss the roles of host factors in zoonotic transmission of influenza viruses and their potential for developing novel antivirals.
Collapse
|