1
|
Shukla S, Paul S, Garcia J, Zhong Y, Juste S, Beauchemin K, Bartholomew B. Conformational switching of Arp5 subunit regulates INO80 chromatin remodeling. Nucleic Acids Res 2025; 53:gkae1187. [PMID: 39676660 PMCID: PMC11754651 DOI: 10.1093/nar/gkae1187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 09/25/2024] [Accepted: 12/10/2024] [Indexed: 12/17/2024] Open
Abstract
The INO80 chromatin remodeler is a versatile enzyme capable of several functions, including spacing nucleosomes equal distances apart, precise positioning of nucleosomes based on DNA shape/sequence and exchanging histone dimers. Within INO80, the Arp5 subunit plays a central role in INO80 remodeling, evidenced by its interactions with the histone octamer, nucleosomal and extranucleosomal DNA, and its necessity in linking INO80's ATPase activity to nucleosome movement. We find two distinct regions of Arp5 binding near the acidic pocket of nucleosomes. One region has an arginine anchor that binds nucleosomes and is vital for INO80 mobilizing nucleosomes. The other region has a hydrophobic/acid patch of Leu and Asp that binds free histone H2A-H2B dimers. These two regions have different roles in remodeling nucleosomes as seen both in vitro and in vivo and the hydrophobic/acidic patch of Arp5 is likely needed for displacing DNA from the H2A-H2B surface and dimer exchange by INO80.
Collapse
Affiliation(s)
- Shagun Shukla
- Department of Epigenetics and Molecular Carcinogenesis, UT MD Anderson Cancer Center, 1901 East Rd., Houston, TX 77054, USA
| | - Somnath Paul
- Department of Epigenetics and Molecular Carcinogenesis, UT MD Anderson Cancer Center, 1901 East Rd., Houston, TX 77054, USA
| | - Jeison Garcia
- Department of Epigenetics and Molecular Carcinogenesis, UT MD Anderson Cancer Center, 1901 East Rd., Houston, TX 77054, USA
- Department of Internal Medicine, Division of Medical Genetics, McGovern Medical School, UT Health Science Center at Houston, 6431 Fannie St., Houston, TX 77030, USA
| | - Yuan Zhong
- Department of Epigenetics and Molecular Carcinogenesis, UT MD Anderson Cancer Center, 1901 East Rd., Houston, TX 77054, USA
| | - Sara Sanz Juste
- Department of Epigenetics and Molecular Carcinogenesis, UT MD Anderson Cancer Center, 1901 East Rd., Houston, TX 77054, USA
| | - Karissa Beauchemin
- Department of Epigenetics and Molecular Carcinogenesis, UT MD Anderson Cancer Center, 1901 East Rd., Houston, TX 77054, USA
- Department of Biology, Texas A&M University, 525 Lubbock St, College Station, TX 77843-3474, USA
| | - Blaine Bartholomew
- Department of Epigenetics and Molecular Carcinogenesis, UT MD Anderson Cancer Center, 1901 East Rd., Houston, TX 77054, USA
| |
Collapse
|
2
|
Du K, Wu J, Wang J, Xie W, Yin L, Li X, Li C, Dong A. The chromatin remodeling factor OsINO80 promotes H3K27me3 and H3K9me2 deposition and maintains TE silencing in rice. Nat Commun 2024; 15:10919. [PMID: 39738209 DOI: 10.1038/s41467-024-55387-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 12/05/2024] [Indexed: 01/01/2025] Open
Abstract
The INO80 chromatin remodeling complex plays a critical role in shaping the dynamic chromatin environment. The diverse functions of the evolutionarily conserved INO80 complex have been widely reported. However, the role of INO80 in modulating the histone variant H2A.Z is controversial. Moreover, whether INO80 helps regulate heterochromatin remains unknown. Here, we characterize the regulatory effects of OsINO80 on protein-coding genes and transposable elements (TEs) in rice. Upon OsINO80 overexpression in rice, we found three types of OsINO80-occupied regions with different chromatin signatures: type I (enriched with H2A.Z), type II (enriched with H3K9me2), and type III (deficient in H2A.Z/H3K9me2). Loss of OsINO80 results in a decrease in H3K27me3, but not H2A.Z, at type I regions as well as a decrease in H3K9me2 at type II regions, which correlates with TE activation and transposition. Our findings reveal that OsINO80 facilitates H3K27me3 establishment, promotes H3K9me2 deposition, and maintains TE silencing.
Collapse
Affiliation(s)
- Kangxi Du
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, PR China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, PR China
| | - Jiabing Wu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, PR China
| | - Jiachen Wang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, PR China
| | - Wenhao Xie
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, PR China
| | - Liufan Yin
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, PR China
| | - Xiang Li
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, PR China
| | - Chao Li
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, PR China
| | - Aiwu Dong
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, PR China.
| |
Collapse
|
3
|
Tonsager AJ, Zukowski A, Radebaugh CA, Weirich A, Stargell LA, Ramachandran S. The Histone Chaperone Spn1 Preserves Chromatin Protections at Promoters and Nucleosome Positioning in Open Reading Frames. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.14.585010. [PMID: 38559248 PMCID: PMC10979989 DOI: 10.1101/2024.03.14.585010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Spn1 is a multifunctional histone chaperone that associates with RNA polymerase II during elongation and is essential for life in eukaryotes. While previous work has elucidated regions of the protein important for its many interactions, it is unknown how these domains contribute to the maintenance of chromatin structure. Here, we employ digestion by micrococcal nuclease followed by single-stranded library preparation and sequencing (MNase-SSP) to characterize chromatin structure in Saccharomyces cerevisiae expressing wild-type or mutants of Spn1. We mapped protections of all sizes genome-wide, and surprisingly, we observed a widespread loss of short fragments over nucleosome-depleted regions (NDRs) at promoters in the Spn1-K192N-containing strain, indicating critical functions of Spn1 in maintaining normal chromatin architecture outside open reading frames. Additionally, there are shifts in DNA protections in the Spn1 mutant expressing strains over open reading frames, which indicate changes in nucleosome and subnucleosome positioning. This was observed in markedly different mutant Spn1 strains, demonstrating that multiple functions of Spn1 are required to maintain proper chromatin structure in open reading frames. Taken together, our results reveal a previously unknown role of Spn1 in the maintenance of NDR architecture and deepen our understanding of Spn1-dependent chromatin maintenance over transcribed regions.
Collapse
|
4
|
Garcia J, Paul S, Shukla S, Zhong Y, Beauchemin K, Bartholomew B. Conformational switching of Arp5 subunit differentially regulates INO80 chromatin remodeling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.10.593625. [PMID: 38766108 PMCID: PMC11100795 DOI: 10.1101/2024.05.10.593625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
The INO80 chromatin remodeler is a versatile enzyme capable of several functions, including spacing nucleosomes equal distances apart, precise positioning of nucleosomes based on DNA shape/sequence and exchanging histone dimers. Within INO80, the Arp5 subunit plays a central role in INO80 remodeling, evidenced by its interactions with the histone octamer, nucleosomal and extranucleosomal DNA, and its necessity in linking INO80's ATPase activity to nucleosome movement. Our investigation reveals that the grappler domain of Arp5 interacts with the acidic pocket of nucleosomes through two distinct mechanisms: an arginine anchor or a hydrophobic/acidic patch. These two modes of binding serve distinct functions within INO80 as shown in vivo by mutations in these regions resulting in varying phenotypes and in vitro by diverse effects on nucleosome mobilization. Our findings suggest that the hydrophobic/acidic patch of Arp5 is likely important for dimer exchange by INO80, while the arginine anchor is crucial for mobilizing nucleosomes.
Collapse
Affiliation(s)
- Jeison Garcia
- Department of Epigenetics and Molecular Carcinogenesis, UT MD Anderson Cancer Center, Houston, TX 77054
- Department of Internal Medicine, Division of Medical Genetics. McGovern Medical School, UT Health Science Center at Houston, TX 77030
- These authors contributed equally
| | - Somnath Paul
- Department of Epigenetics and Molecular Carcinogenesis, UT MD Anderson Cancer Center, Houston, TX 77054
- These authors contributed equally
| | - Shagun Shukla
- Department of Epigenetics and Molecular Carcinogenesis, UT MD Anderson Cancer Center, Houston, TX 77054
- These authors contributed equally
| | - Yuan Zhong
- Department of Epigenetics and Molecular Carcinogenesis, UT MD Anderson Cancer Center, Houston, TX 77054
| | - Karissa Beauchemin
- Department of Epigenetics and Molecular Carcinogenesis, UT MD Anderson Cancer Center, Houston, TX 77054
- Department of Biology, Texas A&M University, College Station, TX 77843-3474
| | - Blaine Bartholomew
- Department of Epigenetics and Molecular Carcinogenesis, UT MD Anderson Cancer Center, Houston, TX 77054
| |
Collapse
|
5
|
Rogers AM, Neri NR, Chigweshe L, Holmes SG. Histone variant H2A.Z and linker histone H1 influence chromosome condensation in Saccharomyces cerevisiae. Genetics 2024; 226:iyae022. [PMID: 38366024 PMCID: PMC10990423 DOI: 10.1093/genetics/iyae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 10/15/2023] [Accepted: 01/17/2024] [Indexed: 02/18/2024] Open
Abstract
Chromosome condensation is essential for the fidelity of chromosome segregation during mitosis and meiosis. Condensation is associated both with local changes in nucleosome structure and larger-scale alterations in chromosome topology mediated by the condensin complex. We examined the influence of linker histone H1 and variant histone H2A.Z on chromosome condensation in budding yeast cells. Linker histone H1 has been implicated in local and global compaction of chromatin in multiple eukaryotes, but we observe normal condensation of the rDNA locus in yeast strains lacking H1. However, deletion of the yeast HTZ1 gene, coding for variant histone H2A.Z, causes a significant defect in rDNA condensation. Loss of H2A.Z does not change condensin association with the rDNA locus or significantly affect condensin mRNA levels. Prior studies reported that several phenotypes caused by loss of H2A.Z are suppressed by eliminating Swr1, a key component of the SWR complex that deposits H2A.Z in chromatin. We observe that an htz1Δ swr1Δ strain has near-normal rDNA condensation. Unexpectedly, we find that elimination of the linker histone H1 can also suppress the rDNA condensation defect of htz1Δ strains. Our experiments demonstrate that histone H2A.Z promotes chromosome condensation, in part by counteracting activities of histone H1 and the SWR complex.
Collapse
Affiliation(s)
- Anna M Rogers
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT 06459, USA
| | - Nola R Neri
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT 06459, USA
| | - Lorencia Chigweshe
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT 06459, USA
| | - Scott G Holmes
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT 06459, USA
| |
Collapse
|
6
|
Chen X, Xu Y. Interplay between the transcription preinitiation complex and the +1 nucleosome. Trends Biochem Sci 2024; 49:145-155. [PMID: 38218671 DOI: 10.1016/j.tibs.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/27/2023] [Accepted: 12/01/2023] [Indexed: 01/15/2024]
Abstract
Eukaryotic transcription starts with the assembly of a preinitiation complex (PIC) on core promoters. Flanking this region is the +1 nucleosome, the first nucleosome downstream of the core promoter. While this nucleosome is rich in epigenetic marks and plays a key role in transcription regulation, how the +1 nucleosome interacts with the transcription machinery has been a long-standing question. Here, we summarize recent structural and functional studies of the +1 nucleosome in complex with the PIC. We specifically focus on how differently organized promoter-nucleosome templates affect the assembly of the PIC and PIC-Mediator on chromatin and result in distinct transcription initiation.
Collapse
Affiliation(s)
- Xizi Chen
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, New Cornerstone Science Laboratory, State Key Laboratory of Genetic Engineering, Department of Biochemistry and Biophysics, School of Life Sciences, Shanghai Key Laboratory of Radiation Oncology, and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Yanhui Xu
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, New Cornerstone Science Laboratory, State Key Laboratory of Genetic Engineering, Department of Biochemistry and Biophysics, School of Life Sciences, Shanghai Key Laboratory of Radiation Oncology, and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China.
| |
Collapse
|
7
|
Hardtke HA, Zhang YJ. Collaborators or competitors: the communication between RNA polymerase II and the nucleosome during eukaryotic transcription. Crit Rev Biochem Mol Biol 2024; 59:1-19. [PMID: 38288999 PMCID: PMC11209794 DOI: 10.1080/10409238.2024.2306365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 01/12/2024] [Indexed: 04/22/2024]
Abstract
Decades of scientific research have been devoted to unraveling the intricacies of eukaryotic transcription since the groundbreaking discovery of eukaryotic RNA polymerases in the late 1960s. RNA polymerase II, the polymerase responsible for mRNA synthesis, has always attracted the most attention. Despite its structural resemblance to its bacterial counterpart, eukaryotic RNA polymerase II faces a unique challenge in progressing transcription due to the presence of nucleosomes that package DNA in the nuclei. In this review, we delve into the impact of RNA polymerase II and histone signaling on the progression of eukaryotic transcription. We explore the pivotal points of interactions that bridge the RNA polymerase II and histone signaling systems. Finally, we present an analysis of recent cryo-electron microscopy structures, which captured RNA polymerase II-nucleosome complexes at different stages of the transcription cycle. The combination of the signaling crosstalk and the direct visualization of RNA polymerase II-nucleosome complexes provides a deeper understanding of the communication between these two major players in eukaryotic transcription.
Collapse
Affiliation(s)
- Haley A. Hardtke
- Department of Molecular Biosciences, University of Texas, Austin
| | - Y. Jessie Zhang
- Department of Molecular Biosciences, University of Texas, Austin
| |
Collapse
|
8
|
Nishimura M, Fujii T, Tanaka H, Maehara K, Morishima K, Shimizu M, Kobayashi Y, Nozawa K, Takizawa Y, Sugiyama M, Ohkawa Y, Kurumizaka H. Genome-wide mapping and cryo-EM structural analyses of the overlapping tri-nucleosome composed of hexasome-hexasome-octasome moieties. Commun Biol 2024; 7:61. [PMID: 38191828 PMCID: PMC10774305 DOI: 10.1038/s42003-023-05694-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 12/11/2023] [Indexed: 01/10/2024] Open
Abstract
The nucleosome is a fundamental unit of chromatin in which about 150 base pairs of DNA are wrapped around a histone octamer. The overlapping di-nucleosome has been proposed as a product of chromatin remodeling around the transcription start site, and previously found as a chromatin unit, in which about 250 base pairs of DNA continuously bind to the histone core composed of a hexamer and an octamer. In the present study, our genome-wide analysis of human cells suggests another higher nucleosome stacking structure, the overlapping tri-nucleosome, which wraps about 300-350 base-pairs of DNA in the region downstream of certain transcription start sites of actively transcribed genes. We determine the cryo-electron microscopy (cryo-EM) structure of the overlapping tri-nucleosome, in which three subnucleosome moieties, hexasome, hexasome, and octasome, are associated by short connecting DNA segments. Small angle X-ray scattering and coarse-grained molecular dynamics simulation analyses reveal that the cryo-EM structure of the overlapping tri-nucleosome may reflect its structure in solution. Our findings suggest that nucleosome stacking structures composed of hexasome and octasome moieties may be formed by nucleosome remodeling factors around transcription start sites for gene regulation.
Collapse
Affiliation(s)
- Masahiro Nishimura
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, 111 TW, Alexander Drive, Research Triangle Park, NC, 27707, USA
| | - Takeru Fujii
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi, Fukuoka, 812-0054, Japan
| | - Hiroki Tanaka
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
- Department of Structural Virology, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo, 162-8655, Japan
| | - Kazumitsu Maehara
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi, Fukuoka, 812-0054, Japan
| | - Ken Morishima
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori, Sennan-gun, Osaka, 590-0494, Japan
| | - Masahiro Shimizu
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori, Sennan-gun, Osaka, 590-0494, Japan
| | - Yuki Kobayashi
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Kayo Nozawa
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan
| | - Yoshimasa Takizawa
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Masaaki Sugiyama
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori, Sennan-gun, Osaka, 590-0494, Japan
| | - Yasuyuki Ohkawa
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi, Fukuoka, 812-0054, Japan.
| | - Hitoshi Kurumizaka
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan.
| |
Collapse
|
9
|
Azizan S, Selvarajah SA, Tang J, Jeninga MD, Schulz D, Pareek K, Herr T, Day KP, De Koning-Ward TF, Petter M, Duffy MF. The P. falciparum alternative histones Pf H2A.Z and Pf H2B.Z are dynamically acetylated and antagonized by PfSir2 histone deacetylases at heterochromatin boundaries. mBio 2023; 14:e0201423. [PMID: 37882786 PMCID: PMC10746207 DOI: 10.1128/mbio.02014-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/18/2023] [Indexed: 10/27/2023] Open
Abstract
IMPORTANCE The malaria parasite Plasmodium falciparum relies on variant expression of members of multi-gene families as a strategy for environmental adaptation to promote parasite survival and pathogenesis. These genes are located in transcriptionally silenced DNA regions. A limited number of these genes escape gene silencing, and switching between them confers variant fitness on parasite progeny. Here, we show that PfSir2 histone deacetylases antagonize DNA-interacting acetylated alternative histones at the boundaries between active and silent DNA. This finding implicates acetylated alternative histones in the mechanism regulating P. falciparum variant gene silencing and thus malaria pathogenesis. This work also revealed that acetylation of alternative histones at promoters is dynamically associated with promoter activity across the genome, implicating acetylation of alternative histones in gene regulation genome wide. Understanding mechanisms of gene regulation in P. falciparum may aid in the development of new therapeutic strategies for malaria, which killed 619,000 people in 2021.
Collapse
Affiliation(s)
- Suffian Azizan
- School of BioSciences, The University of Melbourne, Melbourne, Australia
- Bio21 Institute, Parkville, Victoria, Australia
| | - Shamista A. Selvarajah
- School of BioSciences, The University of Melbourne, Melbourne, Australia
- Bio21 Institute, Parkville, Victoria, Australia
| | - Jingyi Tang
- School of Medicine, Faculty of Health, Deakin University, Geelong Waurn Ponds Campus, Waurn Ponds, Australia
| | - Myriam D. Jeninga
- Universitätsklinikum Erlangen, Mikrobiologisches Institut – Klinische Mikrobiologie, Immunologie und Hygiene, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | | | - Kapil Pareek
- Universitätsklinikum Erlangen, Mikrobiologisches Institut – Klinische Mikrobiologie, Immunologie und Hygiene, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Tamara Herr
- Universitätsklinikum Erlangen, Mikrobiologisches Institut – Klinische Mikrobiologie, Immunologie und Hygiene, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Karen P. Day
- Bio21 Institute, Parkville, Victoria, Australia
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Tania F. De Koning-Ward
- School of Medicine, Faculty of Health, Deakin University, Geelong Waurn Ponds Campus, Waurn Ponds, Australia
| | - Michaela Petter
- Universitätsklinikum Erlangen, Mikrobiologisches Institut – Klinische Mikrobiologie, Immunologie und Hygiene, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Michael F. Duffy
- Bio21 Institute, Parkville, Victoria, Australia
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
10
|
Converso C, Pierrakeas L, Chan L, Chowdhury S, Kuznetsov VI, Denu JM, Luk E. Nucleic acid sequence contributes to remodeler-mediated targeting of histone H2A.Z. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.06.570360. [PMID: 38106078 PMCID: PMC10723385 DOI: 10.1101/2023.12.06.570360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
The variant histone H2A.Z is inserted into nucleosomes immediately downstream of promoters and is important for transcription. The site-specific deposition of H2A.Z is catalyzed by SWR, a conserved chromatin remodeler with affinity for promoter-proximal nucleosome depleted regions (NDRs) and histone acetylation. By comparing the genomic distribution of H2A.Z in wild-type and SWR-deficient cells, we found that SWR is also responsible for depositing H2A.Z at thousands of non-canonical sites not directly linked to NDRs or histone acetylation. To understand the targeting mechanism of H2A.Z, we presented SWR with a library of nucleosomes isolated from yeast and characterized those preferred by SWR. We found that SWR prefers nucleosomes associated with intergenic over coding regions, especially when polyadenine tracks are present. Insertion of polyadenine sequences into recombinant nucleosomes near the H2A-H2B binding site stimulated the H2A.Z insertion activity of SWR. Therefore, the genome is encoded with information contributing to remodeler-mediated targeting of H2A.Z.
Collapse
|
11
|
Brouwer I, Kerklingh E, van Leeuwen F, Lenstra TL. Dynamic epistasis analysis reveals how chromatin remodeling regulates transcriptional bursting. Nat Struct Mol Biol 2023; 30:692-702. [PMID: 37127821 DOI: 10.1038/s41594-023-00981-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 03/30/2023] [Indexed: 05/03/2023]
Abstract
Transcriptional bursting has been linked to the stochastic positioning of nucleosomes. However, how bursting is regulated by the remodeling of promoter nucleosomes is unknown. Here, we use single-molecule live-cell imaging of GAL10 transcription in Saccharomyces cerevisiae to measure how bursting changes upon combined perturbations of chromatin remodelers, the transcription factor Gal4 and preinitiation complex components. Using dynamic epistasis analysis, we reveal how the remodeling of different nucleosomes regulates transcriptional bursting parameters. At the nucleosome covering the Gal4 binding sites, RSC and Gal4 binding synergistically facilitate each burst. Conversely, nucleosome remodeling at the TATA box controls only the first burst upon galactose induction. At canonical TATA boxes, the nucleosomes are displaced by TBP binding to allow for transcription activation even in the absence of remodelers. Overall, our results reveal how promoter nucleosome remodeling together with Gal4 and preinitiation complex binding regulates transcriptional bursting.
Collapse
Affiliation(s)
- Ineke Brouwer
- Division of Gene Regulation, the Netherlands Cancer Institute, Oncode Institute, Amsterdam, the Netherlands
| | - Emma Kerklingh
- Division of Gene Regulation, the Netherlands Cancer Institute, Oncode Institute, Amsterdam, the Netherlands
| | - Fred van Leeuwen
- Division of Gene Regulation, the Netherlands Cancer Institute, Amsterdam, the Netherlands
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Tineke L Lenstra
- Division of Gene Regulation, the Netherlands Cancer Institute, Oncode Institute, Amsterdam, the Netherlands.
| |
Collapse
|
12
|
Abril-Garrido J, Dienemann C, Grabbe F, Velychko T, Lidschreiber M, Wang H, Cramer P. Structural basis of transcription reduction by a promoter-proximal +1 nucleosome. Mol Cell 2023:S1097-2765(23)00255-1. [PMID: 37148879 DOI: 10.1016/j.molcel.2023.04.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/16/2023] [Accepted: 04/11/2023] [Indexed: 05/08/2023]
Abstract
At active human genes, the +1 nucleosome is located downstream of the RNA polymerase II (RNA Pol II) pre-initiation complex (PIC). However, at inactive genes, the +1 nucleosome is found further upstream, at a promoter-proximal location. Here, we establish a model system to show that a promoter-proximal +1 nucleosome can reduce RNA synthesis in vivo and in vitro, and we analyze its structural basis. We find that the PIC assembles normally when the edge of the +1 nucleosome is located 18 base pairs (bp) downstream of the transcription start site (TSS). However, when the nucleosome edge is located further upstream, only 10 bp downstream of the TSS, the PIC adopts an inhibited state. The transcription factor IIH (TFIIH) shows a closed conformation and its subunit XPB contacts DNA with only one of its two ATPase lobes, inconsistent with DNA opening. These results provide a mechanism for nucleosome-dependent regulation of transcription initiation.
Collapse
Affiliation(s)
- Julio Abril-Garrido
- Max Planck Institute for Multidisciplinary Sciences, Department of Molecular Biology, Am Fassberg 11, 37077 Göttingen, Germany
| | - Christian Dienemann
- Max Planck Institute for Multidisciplinary Sciences, Department of Molecular Biology, Am Fassberg 11, 37077 Göttingen, Germany
| | - Frauke Grabbe
- Max Planck Institute for Multidisciplinary Sciences, Department of Molecular Biology, Am Fassberg 11, 37077 Göttingen, Germany
| | - Taras Velychko
- Max Planck Institute for Multidisciplinary Sciences, Department of Molecular Biology, Am Fassberg 11, 37077 Göttingen, Germany
| | - Michael Lidschreiber
- Max Planck Institute for Multidisciplinary Sciences, Department of Molecular Biology, Am Fassberg 11, 37077 Göttingen, Germany
| | - Haibo Wang
- Max Planck Institute for Multidisciplinary Sciences, Department of Molecular Biology, Am Fassberg 11, 37077 Göttingen, Germany.
| | - Patrick Cramer
- Max Planck Institute for Multidisciplinary Sciences, Department of Molecular Biology, Am Fassberg 11, 37077 Göttingen, Germany.
| |
Collapse
|
13
|
Neumann H, Jeronimo C, Lucier JF, Pasquier E, Robert F, Wellinger RJ, Gaudreau L. The Histone Variant H2A.Z C-Terminal Domain Has Locus-Specific Differential Effects on H2A.Z Occupancy and Nucleosome Localization. Microbiol Spectr 2023; 11:e0255022. [PMID: 36815792 PMCID: PMC10100702 DOI: 10.1128/spectrum.02550-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 01/05/2023] [Indexed: 02/24/2023] Open
Abstract
The incorporation of histone variant H2A.Z into nucleosomes creates specialized chromatin domains that regulate DNA-templated processes, such as gene transcription. In Saccharomyces cerevisiae, the diverging H2A.Z C terminus is thought to provide the H2A.Z exclusive functions. To elucidate the roles of this H2A.Z C terminus genome-wide, we used derivatives in which the C terminus was replaced with the corresponding region of H2A (ZA protein), or the H2A region plus a transcriptional activating peptide (ZA-rII'), with the intent of regenerating the H2A.Z-dependent regulation globally. The distribution of these H2A.Z derivatives indicates that the H2A.Z C-terminal region is crucial for both maintaining the occupation level of H2A.Z and the proper positioning of targeted nucleosomes. Interestingly, the specific contribution on incorporation efficiency versus nucleosome positioning varies enormously depending on the locus analyzed. Specifically, the role of H2A.Z in global transcription regulation relies on its C-terminal region. Remarkably, however, this mostly involves genes without a H2A.Z nucleosome in the promoter. Lastly, we demonstrate that the main chaperone complex which deposits H2A.Z to gene regulatory region (SWR1-C) is necessary to localize all H2A.Z derivatives at their specific loci, indicating that the differential association of these derivatives is not due to impaired interaction with SWR1-C. IMPORTANCE We provide evidence that the Saccharomyces cerevisiae C-terminal region of histone variant H2A.Z can mediate its special function in performing gene regulation by interacting with effector proteins and chaperones. These functional interactions allow H2A.Z not only to incorporate to very specific gene regulatory regions, but also to facilitate the gene expression process. To achieve this, we used a chimeric protein which lacks the native H2A.Z C-terminal region but contains an acidic activating region, a module that is known to interact with components of chromatin-remodeling entities and/or transcription modulators. We reasoned that because this activating region can fulfill the role of the H2A.Z C-terminal region, at least in part, the role of the latter would be to interact with these activating region targets.
Collapse
Affiliation(s)
- Hannah Neumann
- Department of Biology, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Celia Jeronimo
- Montreal Clinical Research Institute, Montréal, Quebec, Canada
| | - Jean-François Lucier
- Department of Biology, Université de Sherbrooke, Sherbrooke, Quebec, Canada
- Center for Computational Science, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Emeline Pasquier
- Department of Microbiology and Infectious Diseases, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - François Robert
- Montreal Clinical Research Institute, Montréal, Quebec, Canada
- Department of Medicine, Université de Montréal, Montréal, Quebec, Canada
| | - Raymund J. Wellinger
- Department of Microbiology and Infectious Diseases, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Luc Gaudreau
- Department of Biology, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
14
|
Chen X, Wang X, Liu W, Ren Y, Qu X, Li J, Yin X, Xu Y. Structures of +1 nucleosome-bound PIC-Mediator complex. Science 2022; 378:62-68. [PMID: 36201575 DOI: 10.1126/science.abn8131] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
RNA polymerase II-mediated eukaryotic transcription starts with the assembly of the preinitiation complex (PIC) on core promoters. The +1 nucleosome is well positioned about 40 base pairs downstream of the transcription start site (TSS) and is commonly known as a barrier of transcription. The +1 nucleosome-bound PIC-Mediator structures show that PIC-Mediator prefers binding to T40N nucleosome located 40 base pairs downstream of TSS and contacts T50N but not the T70N nucleosome. The nucleosome facilitates the organization of PIC-Mediator on the promoter by binding TFIIH subunit p52 and Mediator subunits MED19 and MED26 and may contribute to transcription initiation. PIC-Mediator exhibits multiple nucleosome-binding patterns, supporting a structural role of the +1 nucleosome in the coordination of PIC-Mediator assembly. Our study reveals the molecular mechanism of PIC-Mediator organization on chromatin and underscores the significance of the +1 nucleosome in regulating transcription initiation.
Collapse
Affiliation(s)
- Xizi Chen
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Department of Biochemistry and Biophysics, School of Life Sciences, Shanghai Key Laboratory of Radiation Oncology, and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Xinxin Wang
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Department of Biochemistry and Biophysics, School of Life Sciences, Shanghai Key Laboratory of Radiation Oncology, and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Weida Liu
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Department of Biochemistry and Biophysics, School of Life Sciences, Shanghai Key Laboratory of Radiation Oncology, and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Yulei Ren
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Department of Biochemistry and Biophysics, School of Life Sciences, Shanghai Key Laboratory of Radiation Oncology, and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Xuechun Qu
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Department of Biochemistry and Biophysics, School of Life Sciences, Shanghai Key Laboratory of Radiation Oncology, and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Jiabei Li
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Department of Biochemistry and Biophysics, School of Life Sciences, Shanghai Key Laboratory of Radiation Oncology, and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Xiaotong Yin
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Department of Biochemistry and Biophysics, School of Life Sciences, Shanghai Key Laboratory of Radiation Oncology, and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Yanhui Xu
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Department of Biochemistry and Biophysics, School of Life Sciences, Shanghai Key Laboratory of Radiation Oncology, and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China.,The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, China, Department of Systems Biology for Medicine, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China.,Human Phenome Institute, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200433, China
| |
Collapse
|
15
|
Peil K, Värv S, Ilves I, Kristjuhan K, Jürgens H, Kristjuhan A. Transcriptional regulator Taf14 binds DNA and is required for the function of transcription factor TFIID in the absence of histone H2A.Z. J Biol Chem 2022; 298:102369. [PMID: 35970389 PMCID: PMC9478928 DOI: 10.1016/j.jbc.2022.102369] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 08/05/2022] [Accepted: 08/07/2022] [Indexed: 11/16/2022] Open
Abstract
The transcriptional regulator Taf14 is a component of multiple protein complexes involved in transcription initiation and chromatin remodeling in yeast cells. Although Taf14 is not required for cell viability, it becomes essential in conditions where the formation of the transcription preinitiation complex is hampered. The specific role of Taf14 in mediating transcription initiation and preinitiation complex formation is unclear. Here, we explored its role in the general transcription factor IID by mapping Taf14 genetic and proteomic interactions and found that it was needed for the function of the complex if Htz1, the yeast homolog of histone H2A.Z, was absent from chromatin. Dissecting the functional domains of Taf14 revealed that the linker region between the YEATS and ET domains was required for cell viability in the absence of Htz1 protein. We further show that the linker region of Taf14 interacts with DNA. We propose that providing additional DNA binding capacity might be a general role of Taf14 in the recruitment of protein complexes to DNA and chromatin.
Collapse
Affiliation(s)
- Kadri Peil
- Institute of Molecular and Cell Biology, University of Tartu; Riia 23, Tartu 51010, Estonia
| | - Signe Värv
- Institute of Molecular and Cell Biology, University of Tartu; Riia 23, Tartu 51010, Estonia
| | - Ivar Ilves
- Institute of Technology, University of Tartu; Nooruse 1, Tartu 50411, Estonia
| | - Kersti Kristjuhan
- Institute of Molecular and Cell Biology, University of Tartu; Riia 23, Tartu 51010, Estonia
| | - Henel Jürgens
- Institute of Molecular and Cell Biology, University of Tartu; Riia 23, Tartu 51010, Estonia
| | - Arnold Kristjuhan
- Institute of Molecular and Cell Biology, University of Tartu; Riia 23, Tartu 51010, Estonia.
| |
Collapse
|
16
|
Carcamo CC, Poyton MF, Ranjan A, Park G, Louder RK, Feng XA, Kim JM, Dzu T, Wu C, Ha T. ATP binding facilitates target search of SWR1 chromatin remodeler by promoting one-dimensional diffusion on DNA. eLife 2022; 11:e77352. [PMID: 35876491 PMCID: PMC9365391 DOI: 10.7554/elife.77352] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 07/22/2022] [Indexed: 12/01/2022] Open
Abstract
One-dimensional (1D) target search is a well-characterized phenomenon for many DNA-binding proteins but is poorly understood for chromatin remodelers. Herein, we characterize the 1D scanning properties of SWR1, a conserved yeast chromatin remodeler that performs histone exchange on +1 nucleosomes adjacent to a nucleosome-depleted region (NDR) at gene promoters. We demonstrate that SWR1 has a kinetic binding preference for DNA of NDR length as opposed to gene-body linker length DNA. Using single and dual color single-particle tracking on DNA stretched with optical tweezers, we directly observe SWR1 diffusion on DNA. We found that various factors impact SWR1 scanning, including ATP which promotes diffusion through nucleotide binding rather than ATP hydrolysis. A DNA-binding subunit, Swc2, plays an important role in the overall diffusive behavior of the complex, as the subunit in isolation retains similar, although faster, scanning properties as the whole remodeler. ATP-bound SWR1 slides until it encounters a protein roadblock, of which we tested dCas9 and nucleosomes. The median diffusion coefficient, 0.024 μm2/s, in the regime of helical sliding, would mediate rapid encounter of NDR-flanking nucleosomes at length scales found in cellular chromatin.
Collapse
Affiliation(s)
- Claudia C Carcamo
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins UniversityBaltimoreUnited States
| | - Matthew F Poyton
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins UniversityBaltimoreUnited States
| | - Anand Ranjan
- Department of Biology, Johns Hopkins UniversityBaltimoreUnited States
| | - Giho Park
- Department of Biology, Johns Hopkins UniversityBaltimoreUnited States
| | - Robert K Louder
- Department of Biology, Johns Hopkins UniversityBaltimoreUnited States
| | - Xinyu A Feng
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins UniversityBaltimoreUnited States
| | - Jee Min Kim
- Department of Biology, Johns Hopkins UniversityBaltimoreUnited States
| | - Thuc Dzu
- Department of Biology, Johns Hopkins UniversityBaltimoreUnited States
| | - Carl Wu
- Department of Biology, Johns Hopkins UniversityBaltimoreUnited States
| | - Taekjip Ha
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins UniversityBaltimoreUnited States
- Howard Hughes Medical InstituteBaltimoreUnited States
- Johns Hopkins University, Department of Biomedical EngineeringBaltimoreUnited States
- Johns Hopkins University, Department of BiophysicsBaltimoreUnited States
| |
Collapse
|
17
|
HDA-2-Containing Complex Is Required for Activation of Catalase-3 Expression in Neurospora crassa. mBio 2022; 13:e0135122. [PMID: 35699373 PMCID: PMC9426557 DOI: 10.1128/mbio.01351-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It is essential for aerobic organisms to maintain the homeostasis of intracellular reactive oxygen species (ROS) for survival and adaptation to the environment. In line with other eukaryotes, the catalase of Neurospora crassa is an important enzyme for clearing ROS, and its expression is tightly regulated by the growth phase and various oxidative stresses. Our study reveals that, in N. crassa, histone deacetylase 2 (HDA-2) and its catalytic activity positively regulate the expression of the catalase-3 (cat-3) gene. HDA-2, SIF-2, and SNT-1 may form a subcomplex with such a regulation role. As expected, deletion of HDA-2 or SIF-2 subunit increased acetylation levels of histone H4, indicating that loss of HDA-2 complex fails to deacetylate H4 at the cat-3 locus. Furthermore, loss of HDA-2 or its catalytic activity led to dramatic decreases of TFIIB and RNA polymerase II (RNAP II) recruitment at the cat-3 locus and also resulted in high deposition of H2A.Z at the promoter and transcription start site (TSS) regions of the cat-3 gene. Collectively, this study strongly demonstrates that the HDA-2-containing complex activates the transcription of the cat-3 gene by facilitating preinitiation complex (PIC) assembly and antagonizing the inhibition of H2A.Z at the cat-3 locus through H4 acetylation. IMPORTANCE Clearance of reactive oxygen species (ROS) is critical to the survival of aerobic organisms. In the model filamentous fungus Neurospora crassa, catalase-3 (cat-3) expression is activated in response to H2O2-induced ROS stress. We found that histone deacetylase 2 (HDA-2) positively regulates cat-3 transcription in N. crassa; this is widely divergent from the classical repressive role of most histone deacetylases. Like HDA-2, the SIF-2 or SNT-1 subunit of HDA-2-containing complex plays a positive role in cat-3 transcription. Furthermore, we also found that HDA-2-containing complex provides an appropriate chromatin environment to facilitate PIC assembly and to antagonize the inhibition role of H2A.Z at the cat-3 locus through H4 acetylation. Taken together, our results establish a mechanism for how the HDA-2-containing complex regulates transcription of the cat-3 gene in N. crassa.
Collapse
|
18
|
Karl LA, Peritore M, Galanti L, Pfander B. DNA Double Strand Break Repair and Its Control by Nucleosome Remodeling. Front Genet 2022; 12:821543. [PMID: 35096025 PMCID: PMC8790285 DOI: 10.3389/fgene.2021.821543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 12/23/2021] [Indexed: 12/12/2022] Open
Abstract
DNA double strand breaks (DSBs) are repaired in eukaryotes by one of several cellular mechanisms. The decision-making process controlling DSB repair takes place at the step of DNA end resection, the nucleolytic processing of DNA ends, which generates single-stranded DNA overhangs. Dependent on the length of the overhang, a corresponding DSB repair mechanism is engaged. Interestingly, nucleosomes-the fundamental unit of chromatin-influence the activity of resection nucleases and nucleosome remodelers have emerged as key regulators of DSB repair. Nucleosome remodelers share a common enzymatic mechanism, but for global genome organization specific remodelers have been shown to exert distinct activities. Specifically, different remodelers have been found to slide and evict, position or edit nucleosomes. It is an open question whether the same remodelers exert the same function also in the context of DSBs. Here, we will review recent advances in our understanding of nucleosome remodelers at DSBs: to what extent nucleosome sliding, eviction, positioning and editing can be observed at DSBs and how these activities affect the DSB repair decision.
Collapse
Affiliation(s)
- Leonhard Andreas Karl
- Resarch Group DNA Replication and Genome Integrity, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Martina Peritore
- Resarch Group DNA Replication and Genome Integrity, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Lorenzo Galanti
- Resarch Group DNA Replication and Genome Integrity, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Boris Pfander
- Resarch Group DNA Replication and Genome Integrity, Max Planck Institute of Biochemistry, Martinsried, Germany
| |
Collapse
|
19
|
Chakraborty P, Magnuson T. INO80 requires a polycomb subunit to regulate the establishment of poised chromatin in murine spermatocytes. Development 2022; 149:273926. [PMID: 35006254 PMCID: PMC8881737 DOI: 10.1242/dev.200089] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 11/23/2021] [Indexed: 01/12/2023]
Abstract
INO80 is the catalytic subunit of the INO80-chromatin remodeling complex that is involved in DNA replication, repair and transcription regulation. Ino80 deficiency in murine spermatocytes (Ino80cKO) results in pachytene arrest of spermatocytes due to incomplete synapsis and aberrant DNA double-strand break repair, which leads to apoptosis. RNA-seq on Ino80cKO spermatocytes revealed major changes in transcription, indicating that an aberrant transcription program arises upon INO80 depletion. In Ino80WT spermatocytes, genome-wide analysis showed that INO80-binding sites were mostly promoter proximal and necessary for the regulation of spermatogenic gene expression, primarily of premeiotic and meiotic genes. Furthermore, most of the genes poised for activity, as well as those genes that are active, shared INO80 binding. In Ino80cKO spermatocytes, most poised genes demonstrated de-repression due to reduced H3K27me3 enrichment and, in turn, showed increased expression levels. INO80 interacts with the core PRC2 complex member SUZ12 and promotes its recruitment. Furthermore, INO80 mediates H2A.Z incorporation at the poised promoters, which was reduced in Ino80cKO spermatocytes. Taken together, INO80 is emerging as a major regulator of the meiotic transcription program by mediating poised chromatin establishment through SUZ12 binding.
Collapse
Affiliation(s)
- Prabuddha Chakraborty
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7264, USA
| | - Terry Magnuson
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7264, USA,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7264, USA,Author for correspondence ()
| |
Collapse
|
20
|
Brewis HT, Wang AY, Gaub A, Lau JJ, Stirling PC, Kobor MS. What makes a histone variant a variant: Changing H2A to become H2A.Z. PLoS Genet 2021; 17:e1009950. [PMID: 34871303 PMCID: PMC8675926 DOI: 10.1371/journal.pgen.1009950] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 12/16/2021] [Accepted: 11/16/2021] [Indexed: 01/01/2023] Open
Abstract
Chromatin structure and underlying DNA accessibility is modulated by the incorporation of histone variants. H2A.Z, a variant of the H2A core histone family, plays a distinct and essential role in a diverse set of biological functions including gene regulation and maintenance of heterochromatin-euchromatin boundaries. Although it is currently unclear how the replacement of H2A with H2A.Z can regulate gene expression, the variance in their amino acid sequence likely contributes to their functional differences. To tease apart regions of H2A.Z that confer its unique identity, a set of plasmids expressing H2A-H2A.Z hybrids from the native H2A.Z promoter were examined for their ability to recapitulate H2A.Z function. First, we found that the H2A.Z M6 region was necessary and sufficient for interaction with the SWR1-C chromatin remodeler. Remarkably, the combination of only 9 amino acid changes, the H2A.Z M6 region, K79 and L81 (two amino acids in the α2-helix), were sufficient to fully rescue growth phenotypes of the htz1Δ mutant. Furthermore, combining three unique H2A.Z regions (K79 and L81, M6, C-terminal tail) was sufficient for expression of H2A.Z-dependent heterochromatin-proximal genes and GAL1 derepression. Surprisingly, hybrid constructs that restored the transcription of H2A.Z-dependent genes, did not fully recapitulate patterns of H2A.Z-specific enrichment at the tested loci. This suggested that H2A.Z function in transcription regulation may be at least partially independent of its specific localization in chromatin. Together, this work has identified three regions that can confer specific H2A.Z-identity to replicative H2A, furthering our understanding of what makes a histone variant a variant.
Collapse
Affiliation(s)
- Hilary T. Brewis
- Centre for Molecular Medicine and Therapeutics, BC Children’s Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Alice Y. Wang
- Centre for Molecular Medicine and Therapeutics, BC Children’s Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Aline Gaub
- Centre for Molecular Medicine and Therapeutics, BC Children’s Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Justine J. Lau
- Centre for Molecular Medicine and Therapeutics, BC Children’s Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Peter C. Stirling
- Terry Fox Laboratory, BC Cancer, Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Michael S. Kobor
- Centre for Molecular Medicine and Therapeutics, BC Children’s Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| |
Collapse
|
21
|
Singh AK, Schauer T, Pfaller L, Straub T, Mueller-Planitz F. The biogenesis and function of nucleosome arrays. Nat Commun 2021; 12:7011. [PMID: 34853297 PMCID: PMC8636622 DOI: 10.1038/s41467-021-27285-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 11/09/2021] [Indexed: 11/24/2022] Open
Abstract
Numerous chromatin remodeling enzymes position nucleosomes in eukaryotic cells. Aside from these factors, transcription, DNA sequence, and statistical positioning of nucleosomes also shape the nucleosome landscape. The precise contributions of these processes remain unclear due to their functional redundancy in vivo. By incisive genome engineering, we radically decreased their redundancy in Saccharomyces cerevisiae. The transcriptional machinery strongly disrupts evenly spaced nucleosomes. Proper nucleosome density and DNA sequence are critical for their biogenesis. The INO80 remodeling complex helps space nucleosomes in vivo and positions the first nucleosome over genes in an H2A.Z-independent fashion. INO80 requires its Arp8 subunit but unexpectedly not the Nhp10 module for spacing. Cells with irregularly spaced nucleosomes suffer from genotoxic stress including DNA damage, recombination and transpositions. We derive a model of the biogenesis of the nucleosome landscape and suggest that it evolved not only to regulate but also to protect the genome.
Collapse
Affiliation(s)
- Ashish Kumar Singh
- grid.5252.00000 0004 1936 973XMolecular Biology, Biomedical Center, Faculty of Medicine, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, München, Germany
| | - Tamás Schauer
- grid.5252.00000 0004 1936 973XBioinformatics Unit, Biomedical Center, Faculty of Medicine, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, München, Germany
| | - Lena Pfaller
- grid.5252.00000 0004 1936 973XMolecular Biology, Biomedical Center, Faculty of Medicine, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, München, Germany ,grid.419481.10000 0001 1515 9979Present Address: Novartis Institutes for BioMedical Research, 4056 Basel, Switzerland
| | - Tobias Straub
- grid.5252.00000 0004 1936 973XBioinformatics Unit, Biomedical Center, Faculty of Medicine, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, München, Germany
| | - Felix Mueller-Planitz
- Molecular Biology, Biomedical Center, Faculty of Medicine, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, München, Germany. .,Institute of Physiological Chemistry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany.
| |
Collapse
|
22
|
Biswas J, Li W, Singer RH, Coleman RA. Imaging Organization of RNA Processing within the Nucleus. Cold Spring Harb Perspect Biol 2021; 13:a039453. [PMID: 34127450 PMCID: PMC8635003 DOI: 10.1101/cshperspect.a039453] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Within the nucleus, messenger RNA is generated and processed in a highly organized and regulated manner. Messenger RNA processing begins during transcription initiation and continues until the RNA is translated and degraded. Processes such as 5' capping, alternative splicing, and 3' end processing have been studied extensively with biochemical methods and more recently with single-molecule imaging approaches. In this review, we highlight how imaging has helped understand the highly dynamic process of RNA processing. We conclude with open questions and new technological developments that may further our understanding of RNA processing.
Collapse
Affiliation(s)
- Jeetayu Biswas
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Weihan Li
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Robert H Singer
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Robert A Coleman
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| |
Collapse
|
23
|
Zhang J, Gundu A, Strahl BD. Recognition of acetylated histone by Yaf9 regulates metabolic cycling of transcription initiation and chromatin regulatory factors. Genes Dev 2021; 35:1678-1692. [PMID: 34819351 PMCID: PMC8653784 DOI: 10.1101/gad.348904.121] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 11/02/2021] [Indexed: 12/14/2022]
Abstract
How transcription programs rapidly adjust to changing metabolic and cellular cues remains poorly defined. Here, we reveal a function for the Yaf9 component of the SWR1-C and NuA4 chromatin regulatory complexes in maintaining timely transcription of metabolic genes across the yeast metabolic cycle (YMC). By reading histone acetylation during the oxidative and respiratory phase of the YMC, Yaf9 recruits SWR1-C and NuA4 complexes to deposit H2A.Z and acetylate H4, respectively. Increased H2A.Z and H4 acetylation during the oxidative phase promotes transcriptional initiation and chromatin machinery occupancy and is associated with reduced RNA polymerase II levels at genes-a pattern reversed during transition from oxidative to reductive metabolism. Prevention of Yaf9-H3 acetyl reading disrupted this pattern of transcriptional and chromatin regulator recruitment and impaired the timely transcription of metabolic genes. Together, these findings reveal that Yaf9 contributes to a dynamic chromatin and transcription initiation factor signature that is necessary for the proper regulation of metabolic gene transcription during the YMC. They also suggest that unique regulatory mechanisms of transcription exist at distinct metabolic states.
Collapse
Affiliation(s)
- Jibo Zhang
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Aakanksha Gundu
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Brian D Strahl
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA.,Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
24
|
Lewis TS, Sokolova V, Jung H, Ng H, Tan D. Structural basis of chromatin regulation by histone variant H2A.Z. Nucleic Acids Res 2021; 49:11379-11391. [PMID: 34643712 PMCID: PMC8565303 DOI: 10.1093/nar/gkab907] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 09/20/2021] [Accepted: 09/23/2021] [Indexed: 02/06/2023] Open
Abstract
The importance of histone variant H2A.Z in transcription regulation has been well established, yet its mechanism-of-action remains enigmatic. Conflicting evidence exists in support of both an activating and a repressive role of H2A.Z in transcription. Here we report cryo-electron microscopy (cryo-EM) structures of nucleosomes and chromatin fibers containing H2A.Z and those containing canonical H2A. The structures show that H2A.Z incorporation results in substantial structural changes in both nucleosome and chromatin fiber. While H2A.Z increases the mobility of DNA terminus in nucleosomes, it simultaneously enables nucleosome arrays to form a more regular and condensed chromatin fiber. We also demonstrated that H2A.Z’s ability to enhance nucleosomal DNA mobility is largely attributed to its characteristic shorter C-terminus. Our study provides the structural basis for H2A.Z-mediated chromatin regulation, showing that the increase flexibility of the DNA termini in H2A.Z nucleosomes is central to its dual-functions in chromatin regulation and in transcription.
Collapse
Affiliation(s)
- Tyler S Lewis
- Department of Pharmacological Sciences, Stony Brook University; Stony Brook, NY 11794, USA
| | - Vladyslava Sokolova
- Department of Pharmacological Sciences, Stony Brook University; Stony Brook, NY 11794, USA
| | - Harry Jung
- Department of Pharmacological Sciences, Stony Brook University; Stony Brook, NY 11794, USA
| | - Honkit Ng
- Department of Pharmacological Sciences, Stony Brook University; Stony Brook, NY 11794, USA.,Cryo Electron Microscopy Resource Center, Rockefeller University; New York, NY 10065, USA
| | - Dongyan Tan
- Department of Pharmacological Sciences, Stony Brook University; Stony Brook, NY 11794, USA
| |
Collapse
|
25
|
Xue M, Zhang H, Zhao F, Zhao T, Li H, Jiang D. The INO80 chromatin remodeling complex promotes thermomorphogenesis by connecting H2A.Z eviction and active transcription in Arabidopsis. MOLECULAR PLANT 2021; 14:1799-1813. [PMID: 34242850 DOI: 10.1016/j.molp.2021.07.001] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 06/12/2021] [Accepted: 07/01/2021] [Indexed: 06/13/2023]
Abstract
Global warming poses a major threat to plant growth and crop production. In some plants, including Arabidopsis thaliana, elevated temperatures induce a series of morphological and developmental adjustments termed thermomorphogenesis, which facilitates plant cooling under high-temperature conditions. Plant thermal response is suppressed by histone variant H2A.Z. At warm temperatures, H2A.Z is evicted from nucleosomes at thermoresponsive genes, resulting in changes in their expression. However, the mechanisms that regulate H2A.Z eviction and subsequent transcriptional changes are largely unknown. Here, we show that the INO80 chromatin remodeling complex (INO80-C) promotes thermomorphogenesis and activates the expression of thermoresponsive and auxin-related genes. INO80-C associates with PHYTOCHROME-INTERACTING FACTOR 4 (PIF4), a potent regulator of thermomorphogenesis, and mediates temperature-induced H2A.Z eviction at PIF4 targets. Moreover, INO80-C directly interacts with COMPASS-like and transcription elongation factors to promote active histone modification, histone H3 lysine 4 trimethylation, and RNA polymerase II elongation, leading to the thermal induction of transcription. Notably, the transcription elongation factors SPT4 and SPT5 are required for H2A.Z eviction at PIF4 targets, suggesting the cooperation of INO80-C and transcription elongation in H2A.Z removal. Taken together, these results suggest that the (PIF4)-(INO80-C)-(COMPASS-like)-(transcription elongator) module controls plant thermal response, thereby establishing a link between H2A.Z eviction and active transcription.
Collapse
Affiliation(s)
- Mande Xue
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Huairen Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Fengyue Zhao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Ting Zhao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Hui Li
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Danhua Jiang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
26
|
Cheon Y, Han S, Kim T, Hwang D, Lee D. The chromatin remodeler Ino80 mediates RNAPII pausing site determination. Genome Biol 2021; 22:294. [PMID: 34663418 PMCID: PMC8524862 DOI: 10.1186/s13059-021-02500-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 09/15/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Promoter-proximal pausing of RNA polymerase II (RNAPII) is a critical step for the precise regulation of gene expression. Despite the apparent close relationship between promoter-proximal pausing and nucleosome, the role of chromatin remodeler governing this step has mainly remained elusive. RESULTS Here, we report highly confined RNAPII enrichments downstream of the transcriptional start site in Saccharomyces cerevisiae using PRO-seq experiments. This non-uniform distribution of RNAPII exhibits both similar and different characteristics with promoter-proximal pausing in Schizosaccharomyces pombe and metazoans. Interestingly, we find that Ino80p knockdown causes a significant upstream transition of promoter-proximal RNAPII for a subset of genes, relocating RNAPII from the main pausing site to the alternative pausing site. The proper positioning of RNAPII is largely dependent on nucleosome context. We reveal that the alternative pausing site is closely associated with the + 1 nucleosome, and nucleosome architecture around the main pausing site of these genes is highly phased. In addition, Ino80p knockdown results in an increase in fuzziness and a decrease in stability of the + 1 nucleosome. Furthermore, the loss of INO80 also leads to the shift of promoter-proximal RNAPII toward the alternative pausing site in mouse embryonic stem cells. CONCLUSIONS Based on our collective results, we hypothesize that the highly conserved chromatin remodeler Ino80p is essential in establishing intact RNAPII pausing during early transcription elongation in various organisms, from budding yeast to mouse.
Collapse
Affiliation(s)
- Youngseo Cheon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea
| | - Sungwook Han
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea
| | - Taemook Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea
| | - Daehee Hwang
- School of Biological Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Daeyoup Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea.
| |
Collapse
|
27
|
Zhao T, Vvedenskaya IO, Lai WKM, Basu S, Pugh BF, Nickels BE, Kaplan CD. Ssl2/TFIIH function in transcription start site scanning by RNA polymerase II in Saccharomyces cerevisiae. eLife 2021; 10:e71013. [PMID: 34652274 PMCID: PMC8589449 DOI: 10.7554/elife.71013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 10/14/2021] [Indexed: 12/31/2022] Open
Abstract
In Saccharomyces cerevisiae, RNA polymerase II (Pol II) selects transcription start sites (TSSs) by a unidirectional scanning process. During scanning, a preinitiation complex (PIC) assembled at an upstream core promoter initiates at select positions within a window ~40-120 bp downstream. Several lines of evidence indicate that Ssl2, the yeast homolog of XPB and an essential and conserved subunit of the general transcription factor (GTF) TFIIH, drives scanning through its DNA-dependent ATPase activity, therefore potentially controlling both scanning rate and scanning extent (processivity). To address questions of how Ssl2 functions in promoter scanning and interacts with other initiation activities, we leveraged distinct initiation-sensitive reporters to identify novel ssl2 alleles. These ssl2 alleles, many of which alter residues conserved from yeast to human, confer either upstream or downstream TSS shifts at the model promoter ADH1 and genome-wide. Specifically, tested ssl2 alleles alter TSS selection by increasing or narrowing the distribution of TSSs used at individual promoters. Genetic interactions of ssl2 alleles with other initiation factors are consistent with ssl2 allele classes functioning through increasing or decreasing scanning processivity but not necessarily scanning rate. These alleles underpin a residue interaction network that likely modulates Ssl2 activity and TFIIH function in promoter scanning. We propose that the outcome of promoter scanning is determined by two functional networks, the first being Pol II activity and factors that modulate it to determine initiation efficiency within a scanning window, and the second being Ssl2/TFIIH and factors that modulate scanning processivity to determine the width of the scanning widow.
Collapse
Affiliation(s)
- Tingting Zhao
- Department of Biological Sciences, University of PittsburghPittsburghUnited States
| | - Irina O Vvedenskaya
- Department of Genetics and Waksman Institute, Rutgers UniversityPiscatawayUnited States
| | - William KM Lai
- Department of Molecular Biology and Genetics, Cornell UniversityIthacaUnited States
| | - Shrabani Basu
- Department of Biological Sciences, University of PittsburghPittsburghUnited States
| | - B Franklin Pugh
- Department of Molecular Biology and Genetics, Cornell UniversityIthacaUnited States
| | - Bryce E Nickels
- Department of Genetics and Waksman Institute, Rutgers UniversityPiscatawayUnited States
| | - Craig D Kaplan
- Department of Biological Sciences, University of PittsburghPittsburghUnited States
| |
Collapse
|
28
|
Yu H, Wang J, Lackford B, Bennett B, Li JL, Hu G. INO80 promotes H2A.Z occupancy to regulate cell fate transition in pluripotent stem cells. Nucleic Acids Res 2021; 49:6739-6755. [PMID: 34139016 DOI: 10.1093/nar/gkab476] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 05/10/2021] [Accepted: 06/08/2021] [Indexed: 12/27/2022] Open
Abstract
The INO80 chromatin remodeler is involved in many chromatin-dependent cellular functions. However, its role in pluripotency and cell fate transition is not fully defined. We examined the impact of Ino80 deletion in the naïve and primed pluripotent stem cells. We found that Ino80 deletion had minimal effect on self-renewal and gene expression in the naïve state, but led to cellular differentiation and de-repression of developmental genes in the transition toward and maintenance of the primed state. In the naïve state, INO80 pre-marked gene promoters that would adopt bivalent histone modifications by H3K4me3 and H3K27me3 upon transition into the primed state. In the primed state, in contrast to its known role in H2A.Z exchange, INO80 promoted H2A.Z occupancy at these bivalent promoters and facilitated H3K27me3 installation and maintenance as well as downstream gene repression. Together, our results identified an unexpected function of INO80 in H2A.Z deposition and gene regulation. We showed that INO80-dependent H2A.Z occupancy is a critical licensing step for the bivalent domains, and thereby uncovered an epigenetic mechanism by which chromatin remodeling, histone variant deposition and histone modification coordinately control cell fate.
Collapse
Affiliation(s)
- Hongyao Yu
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Jiajia Wang
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Brad Lackford
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Brian Bennett
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Jian-Liang Li
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Guang Hu
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| |
Collapse
|
29
|
Host Chromatin Regulators Required for Aggregatibacter actinomycetemcomitans Cytolethal Distending Toxin Activity in Saccharomyces cerevisiae Model. Infect Immun 2021; 89:e0003621. [PMID: 33941581 DOI: 10.1128/iai.00036-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cytolethal distending toxin (CDT) is a bacterial genotoxin that causes host cell cycle arrest and death. We previously employed a Saccharomyces cerevisiae model with inducible expression of the CDT catalytic subunit from Aggregatibacter actinomycetemcomitans, AaCdtB, and showed that a wide variety of host factors play a role in facilitating the activity of CdtB. Our observation that a yeast H2B mutant defective in chromatin condensation was partially resistant to CdtB implies that chromatin structure may affect CDT function. In this study, we identified host chromatin regulatory genes required for CdtB cytotoxicity. We found that the deletion of HTZ1 or certain subunits of SWR, INO80, and SIR complexes increased cellular resistance to CdtB. We hypothesized that CdtB may interact with Htz1 or the chromatin, but immunoprecipitation experiments failed to detect physical interaction between CdtB and Htz1 or the chromatin. However, we observed reduced nuclear localization of CdtB in several mutants, suggesting that impaired nuclear translocation may, at least partly, explain the mechanisms of CdtB resistance. In addition, mutations in chromatin regulatory genes induce changes in the global gene expression profile, and these may indirectly affect CdtB toxicity. Our results suggest that decreased expression of endoplasmic reticulum (ER)-Golgi transport-related genes that may be involved in CdtB transport and/or increased expression of DNA repair genes may contribute to CdtB resistance. These results suggest that the functions of chromatin regulators may contribute to the activity of CDT in host cells.
Collapse
|
30
|
|
31
|
INO80C Remodeler Maintains Genomic Stability by Preventing Promiscuous Transcription at Replication Origins. Cell Rep 2021; 32:108106. [PMID: 32905765 PMCID: PMC7540730 DOI: 10.1016/j.celrep.2020.108106] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 06/26/2020] [Accepted: 08/12/2020] [Indexed: 02/07/2023] Open
Abstract
The proper coordination of transcription with DNA replication and repair is central for genomic stability. We investigate how the INO80C chromatin remodeling enzyme might coordinate these genomic processes. We find that INO80C co-localizes with the origin recognition complex (ORC) at yeast replication origins and is bound to replication initiation sites in mouse embryonic stem cells (mESCs). In yeast· INO80C recruitment requires origin sequences but does not require ORC· suggesting that recruitment is independent of pre-replication complex assembly. In both yeast and ESCs· INO80C co-localizes at origins with Mot1 and NC2 transcription factors· and genetic studies suggest that they function together to promote genome stability. Interestingly· nascent transcript sequencing demonstrates that INO80C and Mot1 prevent pervasive transcription through origin sequences· and absence of these factors leads to formation of new DNA double-strand breaks. We propose that INO80C and Mot1/NC2 function through distinct pathways to limit origin transcription· maintaining genomic stability. The INO80C chromatin remodeler is known to regulate transcription and genomic stability. Topal et al. find that INO80C functions with Mot1 repressor to prevent pervasive transcription at replication origins in yeast and mESCs. Increased ncRNAs lead to new DNA double-strand breaks at origins, linking transcriptional regulation to genomic stability.
Collapse
|
32
|
Overcoming off-targets: assessing Western blot signals for Bcnt/Cfdp1, a tentative component of the chromatin remodeling complex. Biosci Rep 2021; 40:224894. [PMID: 32432658 PMCID: PMC7284322 DOI: 10.1042/bsr20194012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 05/15/2020] [Accepted: 05/20/2020] [Indexed: 01/03/2023] Open
Abstract
The Bucentaur (BCNT) protein family is characterized by a conserved amino acid sequence at the C-terminus (BCNT-C domain) and plays an essential role in gene expression and chromosomal maintenance in yeast and Drosophila. The mammalian Bucentaur/Craniofacial developmental protein 1 (Bcnt/Cfdp1) is also a tentative component of the SNF2-related CBP activator protein (Srcap) chromatin remodeling complex, but little is known about its properties, partly because few antibodies are available to examine the endogenous protein. In this paper, we assigned the Western blot signal against the mouse Bcnt/Cfdp1 as a doublet of approximately 45 kDa using anti-Bcnt/Cfdp1 antibodies, which were generated against either of two unrelated immunogens, BCNT-C domain or mouse N-terminal peptide, and in addition, the Cfdp1 knockdown mouse ES cell line and bovine tissue were used as potential negative controls. Moreover, LC-MS/MS analysis of the corresponding doublet to the Flag-tagged mouse Bcnt/Cfdp1 that was constitutively expressed in a HEK293 cell exhibited that the upper band was much more phosphorylated than the lower band with preferential Ser phosphorylation in the WESF motif of BCNT-C domain. Western blot analysis with these evaluated antibodies indicated a preferential expression of Bcnt/Cfdp1 in the early stages of brain development of mouse and rat, which is consistent with a data file of the expression of Bcnt/Cfdp1 mRNA.
Collapse
|
33
|
Abstract
Eukaryotic nucleosomes organize chromatin by wrapping 147 bp of DNA around a histone core particle comprising two molecules each of histone H2A, H2B, H3 and H4. The DNA entering and exiting the particle may be bound by the linker histone H1. Whereas deposition of bulk histones is confined to S-phase, paralogs of the common histones, known as histone variants, are available to carry out functions throughout the cell cycle and accumulate in post-mitotic cells. Histone variants confer different structural properties on nucleosomes by wrapping more or less DNA or by altering nucleosome stability. They carry out specialized functions in DNA repair, chromosome segregation and regulation of transcription initiation, or perform tissue-specific roles. In this Cell Science at a Glance article and the accompanying poster, we briefly examine new insights into histone origins and discuss variants from each of the histone families, focusing on how structural differences may alter their functions. Summary: Histone variants change the structural properties of nucleosomes by wrapping more or less DNA, altering nucleosome stability or carrying out specialized functions.
Collapse
Affiliation(s)
- Paul B Talbert
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N, Seattle, WA 98109, USA
| | - Steven Henikoff
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N, Seattle, WA 98109, USA
| |
Collapse
|
34
|
Chu WT, Wang J. Thermodynamic and sequential characteristics of phase separation and droplet formation for an intrinsically disordered region/protein ensemble. PLoS Comput Biol 2021; 17:e1008672. [PMID: 33684117 PMCID: PMC7939360 DOI: 10.1371/journal.pcbi.1008672] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 01/04/2021] [Indexed: 11/21/2022] Open
Abstract
Liquid–liquid phase separation (LLPS) of some IDPs/IDRs can lead to the formation of the membraneless organelles in vitro and in vivo, which are essential for many biological processes in the cell. Here we select three different IDR segments of chaperon Swc5 and develop a polymeric slab model at the residue-level. By performing the molecular dynamics simulations, LLPS can be observed at low temperatures even without charge interactions and disappear at high temperatures. Both the sequence length and the charge pattern of the Swc5 segments can influence the critical temperature of LLPS. The results suggest that the effects of the electrostatic interactions on the LLPS behaviors can change significantly with the ratios and distributions of the charged residues, especially the sequence charge decoration (SCD) values. In addition, three different forms of swc conformation can be distinguished on the phase diagram, which is different from the conventional behavior of the free IDP/IDR. Both the packed form (the condensed-phase) and the dispersed form (the dilute-phase) of swc chains are found to be coexisted when LLPS occurs. They change to the fully-spread form at high temperatures. These findings will be helpful for the investigation of the IDP/IDR ensemble behaviors as well as the fundamental mechanism of the LLPS process in bio-systems. The membraneless organelles caused by liquid–liquid phase separation (LLPS) of IDPs/IDRs are involved in a wide range of biological functions such as RNA processing, ribosome biogenesis, and sequestration of mRNA, proteins, and compacted chromatin. In this study, we focus on the histone H2A-H2B binding partner, Swc5 and investigate the effects of the temperature, sequence length and number of charged residues on the LLPS behaviors. Moreover, we proposed three forms of swc conformation in ensemble according to the phase diagram. These characteristics of conformational changes (from LLPS to no LLPS, from condensed-phase to dilute-phase) are observed in the swc chains with different sequence length and charge pattern, which may be the general property for the IDP/IDR ensembles.
Collapse
Affiliation(s)
- Wen-Ting Chu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, People's Republic of China
| | - Jin Wang
- Department of Chemistry & Physics, State University of New York at Stony Brook, Stony Brook, New York, United States of America
| |
Collapse
|
35
|
Nucleosome Positioning and Spacing: From Mechanism to Function. J Mol Biol 2021; 433:166847. [PMID: 33539878 DOI: 10.1016/j.jmb.2021.166847] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 01/16/2021] [Accepted: 01/22/2021] [Indexed: 02/08/2023]
Abstract
Eukaryotes associate their genomes with histone proteins, forming nucleosome particles. Nucleosomes regulate and protect the genetic information. They often assemble into evenly spaced arrays of nucleosomes. These regular nucleosome arrays cover significant portions of the genome, in particular over genes. The presence of these evenly spaced nucleosome arrays is highly conserved throughout the entire eukaryotic domain. Here, we review the mechanisms behind the establishment of this primary structure of chromatin with special emphasis on the biogenesis of evenly spaced nucleosome arrays. We highlight the roles that transcription, nucleosome remodelers, DNA sequence, and histone density play towards the formation of evenly spaced nucleosome arrays and summarize our current understanding of their cellular functions. We end with key unanswered questions that remain to be explored to obtain an in-depth understanding of the biogenesis and function of the nucleosome landscape.
Collapse
|
36
|
Sun L, Pierrakeas L, Li T, Luk E. Thermosensitive Nucleosome Editing Reveals the Role of DNA Sequence in Targeted Histone Variant Deposition. Cell Rep 2021; 30:257-268.e5. [PMID: 31914392 DOI: 10.1016/j.celrep.2019.12.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 11/04/2019] [Accepted: 12/03/2019] [Indexed: 10/25/2022] Open
Abstract
In preparation for transcription, the chromatin remodeler SWR installs homotypic ZZ nucleosomes at promoters by replacing the two nucleosomal H2A with H2A.Z in a stepwise manner. Nucleosome-free regions (NFRs) help recruit SWR to promoters; this is thought to position SWR asymmetrically on one side of the +1 nucleosome. How SWR accesses the opposite side of +1 to generate a ZZ nucleosome remains unclear. Using biochemical assays that monitor the sub-nucleosomal position of nascent H2A.Z, we find that NFR-recruited SWR switches sides to insert H2A.Z into asymmetrically positioned nucleosomes; however, at decreasing temperatures, H2A.Z insertion becomes progressively biased for one side. We find that a 16-bp element containing G/C runs (>3 consecutive G or C nucleotides) is sufficient to promote H2A.Z insertion. Because H2A.Z-rich +1 nucleosomes in yeast have more G/C runs, we propose that nucleosome editing is a thermosensitive process that can be hard coded by the genome.
Collapse
Affiliation(s)
- Lu Sun
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Leonidas Pierrakeas
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Tailai Li
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Ed Luk
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA; Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
37
|
Chu WT, Wang J. Influence of sequence length and charged residues on Swc5 binding with histone H2A-H2B. Proteins 2020; 89:512-520. [PMID: 33320380 DOI: 10.1002/prot.26035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/25/2020] [Accepted: 12/12/2020] [Indexed: 01/23/2023]
Abstract
SWR is a member of chromatin remodeler family and participates the replacement of histone H2A with H2A.Z. One of the SWR subunits, Swc5, has an intrinsically disordered region and binds to H2A-H2B dimer. Though the binding structure of Swc5 and H2A-H2B has been resolved recently, it is still challenging to investigate the binding mechanism as well as the role of the charge interactions between Swc5 and H2A-H2B. Here we developed a coarse-grained structure-based model and performed molecular dynamics simulations to investigate the binding processes of two Swc5 regions with different lengths (swc5-a and swc5-b) to H2A-H2B. The simulation results suggest a different role of electrostatic interactions between swc5-a/swc5-b and H2A-H2B on binding. The electrostatic interactions between swc5-a/swc5-b and H2A-H2B can not only accelerate the initial capture step of binding, but can also trap the swc5-a/swc5-b at the wrong binding site on H2A. Besides, the conserved DEF/Y-2 motif of Swc5 is important for the binding affinity and the recognition with H2A-H2B at the initial step. Both swc5-a and swc5-b undergo a structural shift before reaching the final bound state. This theoretical study provides important details and the underlying physical mechanisms of the binding processes of swc5-a/swc5-b and H2A-H2B.
Collapse
Affiliation(s)
- Wen-Ting Chu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, China
| | - Jin Wang
- Department of Chemistry and Physics, State University of New York at Stony Brook, Stony Brook, New York, USA
| |
Collapse
|
38
|
Qiu H, Biernat E, Govind CK, Rawal Y, Chereji RV, Clark DJ, Hinnebusch AG. Chromatin remodeler Ino80C acts independently of H2A.Z to evict promoter nucleosomes and stimulate transcription of highly expressed genes in yeast. Nucleic Acids Res 2020; 48:8408-8430. [PMID: 32663283 DOI: 10.1093/nar/gkaa571] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 05/19/2020] [Accepted: 06/29/2020] [Indexed: 12/22/2022] Open
Abstract
The chromatin remodelers SWI/SNF and RSC function in evicting promoter nucleosomes at highly expressed yeast genes, particularly those activated by transcription factor Gcn4. Ino80 remodeling complex (Ino80C) can establish nucleosome-depleted regions (NDRs) in reconstituted chromatin, and was implicated in removing histone variant H2A.Z from the -1 and +1 nucleosomes flanking NDRs; however, Ino80C's function in transcriptional activation in vivo is not well understood. Analyzing the cohort of Gcn4-induced genes in ino80Δ mutants has uncovered a role for Ino80C on par with SWI/SNF in evicting promoter nucleosomes and transcriptional activation. Compared to SWI/SNF, Ino80C generally functions over a wider region, spanning the -1 and +1 nucleosomes, NDR and proximal genic nucleosomes, at genes highly dependent on its function. Defects in nucleosome eviction in ino80Δ cells are frequently accompanied by reduced promoter occupancies of TBP, and diminished transcription; and Ino80 is enriched at genes requiring its remodeler activity. Importantly, nuclear depletion of Ino80 impairs promoter nucleosome eviction even in a mutant lacking H2A.Z. Thus, Ino80C acts widely in the yeast genome together with RSC and SWI/SNF in evicting promoter nucleosomes and enhancing transcription, all in a manner at least partly independent of H2A.Z editing.
Collapse
Affiliation(s)
- Hongfang Qiu
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Emily Biernat
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA
| | - Chhabi K Govind
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA
| | - Yashpal Rawal
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Răzvan V Chereji
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - David J Clark
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alan G Hinnebusch
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
39
|
Cui G, Dong Q, Duan J, Zhang C, Liu X, He Q. NC2 complex is a key factor for the activation of catalase-3 transcription by regulating H2A.Z deposition. Nucleic Acids Res 2020; 48:8332-8348. [PMID: 32633757 PMCID: PMC7470962 DOI: 10.1093/nar/gkaa552] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 06/05/2020] [Accepted: 06/19/2020] [Indexed: 12/16/2022] Open
Abstract
Negative cofactor 2 (NC2), including two subunits NC2α and NC2β, is a conserved positive/negative regulator of class II gene transcription in eukaryotes. It is known that NC2 functions by regulating the assembly of the transcription preinitiation complex. However, the exact role of NC2 in transcriptional regulation is still unclear. Here, we reveal that, in Neurospora crassa, NC2 activates catalase-3 (cat-3) gene transcription in the form of heterodimer mediated by histone fold (HF) domains of two subunits. Deletion of HF domain in either of two subunits disrupts the NC2α–NC2β interaction and the binding of intact NC2 heterodimer to cat-3 locus. Loss of NC2 dramatically increases histone variant H2A.Z deposition at cat-3 locus. Further studies show that NC2 recruits chromatin remodeling complex INO80C to remove H2A.Z from the nucleosomes around cat-3 locus, resulting in transcriptional activation of cat-3. Besides HF domains of two subunits, interestingly, C-terminal repression domain of NC2β is required not only for NC2 binding to cat-3 locus, but also for the recruitment of INO80C to cat-3 locus and removal of H2A.Z from the nucleosomes. Collectively, our findings reveal a novel mechanism of NC2 in transcription activation through recruiting INO80C to remove H2A.Z from special H2A.Z-containing nucleosomes.
Collapse
Affiliation(s)
- Guofei Cui
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Qing Dong
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jiabin Duan
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Chengcheng Zhang
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xiao Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.,College of Life Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Qun He
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
40
|
Mechanistic and structural insights into histone H2A–H2B chaperone in chromatin regulation. Biochem J 2020; 477:3367-3386. [DOI: 10.1042/bcj20190852] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 08/15/2020] [Accepted: 08/21/2020] [Indexed: 11/17/2022]
Abstract
Histone chaperones include a wide variety of proteins which associate with histones and regulate chromatin structure. The classic H2A–H2B type of histone chaperones, and the chromatin remodeling complex components possessing H2A–H2B chaperone activity, show a broad range of structures and functions. Rapid progress in the structural and functional study of H2A–H2B chaperones extends our knowledge about the epigenetic regulation of chromatin. In this review, we summarize the most recent advances in the understanding of the structure and function of H2A–H2B chaperones that interact with either canonical or variant H2A–H2B dimers. We discuss the current knowledge of the H2A–H2B chaperones, which present no preference for canonical and variant H2A–H2B dimers, describing how they interact with H2A–H2B to fulfill their functions. We also review recent advances of H2A variant-specific chaperones, demarcating how they achieve specific recognition for histone variant H2A.Z and how these interactions regulate chromatin structure by nucleosome editing. We highlight the universal mechanism underlying H2A–H2B dimers recognition by a large variety of histone chaperones. These findings will shed insight into the biological impacts of histone chaperone, chromatin remodeling complex, and histone variants in chromatin regulation.
Collapse
|
41
|
Patty BJ, Hainer SJ. Non-Coding RNAs and Nucleosome Remodeling Complexes: An Intricate Regulatory Relationship. BIOLOGY 2020; 9:E213. [PMID: 32784701 PMCID: PMC7465399 DOI: 10.3390/biology9080213] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/30/2020] [Accepted: 08/06/2020] [Indexed: 12/17/2022]
Abstract
Eukaryotic genomes are pervasively transcribed, producing both coding and non-coding RNAs (ncRNAs). ncRNAs are diverse and a critical family of biological molecules, yet much remains unknown regarding their functions and mechanisms of regulation. ATP-dependent nucleosome remodeling complexes, in modifying chromatin structure, play an important role in transcriptional regulation. Recent findings show that ncRNAs regulate nucleosome remodeler activities at many levels and that ncRNAs are regulatory targets of nucleosome remodelers. Further, a series of recent screens indicate this network of regulatory interactions is more expansive than previously appreciated. Here, we discuss currently described regulatory interactions between ncRNAs and nucleosome remodelers and contextualize their biological functions.
Collapse
Affiliation(s)
| | - Sarah J. Hainer
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA;
| |
Collapse
|
42
|
The specificity of H2A.Z occupancy in the yeast genome and its relationship to transcription. Curr Genet 2020; 66:939-944. [DOI: 10.1007/s00294-020-01087-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 10/24/2022]
|
43
|
Qiu C, Jin H, Vvedenskaya I, Llenas JA, Zhao T, Malik I, Visbisky AM, Schwartz SL, Cui P, Čabart P, Han KH, Lai WKM, Metz RP, Johnson CD, Sze SH, Pugh BF, Nickels BE, Kaplan CD. Universal promoter scanning by Pol II during transcription initiation in Saccharomyces cerevisiae. Genome Biol 2020; 21:132. [PMID: 32487207 PMCID: PMC7265651 DOI: 10.1186/s13059-020-02040-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 05/08/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The majority of eukaryotic promoters utilize multiple transcription start sites (TSSs). How multiple TSSs are specified at individual promoters across eukaryotes is not understood for most species. In Saccharomyces cerevisiae, a pre-initiation complex (PIC) comprised of Pol II and conserved general transcription factors (GTFs) assembles and opens DNA upstream of TSSs. Evidence from model promoters indicates that the PIC scans from upstream to downstream to identify TSSs. Prior results suggest that TSS distributions at promoters where scanning occurs shift in a polar fashion upon alteration in Pol II catalytic activity or GTF function. RESULTS To determine the extent of promoter scanning across promoter classes in S. cerevisiae, we perturb Pol II catalytic activity and GTF function and analyze their effects on TSS usage genome-wide. We find that alterations to Pol II, TFIIB, or TFIIF function widely alter the initiation landscape consistent with promoter scanning operating at all yeast promoters, regardless of promoter class. Promoter architecture, however, can determine the extent of promoter sensitivity to altered Pol II activity in ways that are predicted by a scanning model. CONCLUSIONS Our observations coupled with previous data validate key predictions of the scanning model for Pol II initiation in yeast, which we term the shooting gallery. In this model, Pol II catalytic activity and the rate and processivity of Pol II scanning together with promoter sequence determine the distribution of TSSs and their usage.
Collapse
Affiliation(s)
- Chenxi Qiu
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843-2128, USA
- Present Address: Department of Medicine, Division of Translational Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Huiyan Jin
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843-2128, USA
| | - Irina Vvedenskaya
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, 08854, USA
- Department of Genetics, Rutgers University, Piscataway, NJ, 08854, USA
| | - Jordi Abante Llenas
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, 77843-3128, USA
- Present Address: Whitaker Biomedical Engineering Institute, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Tingting Zhao
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Indranil Malik
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843-2128, USA
- Present Address: Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Alex M Visbisky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Scott L Schwartz
- Genomics and Bioinformatics Service, Texas A&M AgriLife, College Station, TX, 77845, USA
| | - Ping Cui
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843-2128, USA
| | - Pavel Čabart
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843-2128, USA
- Present Address: First Faculty of Medicine, Charles University, BIOCEV, 252 42, Vestec, Czech Republic
| | - Kang Hoo Han
- Department of Biochemistry and Molecular Biology, Penn State University, University Park, PA, 16802, USA
| | - William K M Lai
- Department of Biochemistry and Molecular Biology, Penn State University, University Park, PA, 16802, USA
- Present Address: Department of Molecular Biology and Genetics, 458 Biotechnology, Cornell University, New York, 14853, USA
| | - Richard P Metz
- Genomics and Bioinformatics Service, Texas A&M AgriLife, College Station, TX, 77845, USA
| | - Charles D Johnson
- Genomics and Bioinformatics Service, Texas A&M AgriLife, College Station, TX, 77845, USA
| | - Sing-Hoi Sze
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843-2128, USA
- Department of Computer Science and Engineering, Texas A&M University, College Station, TX, 77843-3127, USA
| | - B Franklin Pugh
- Department of Biochemistry and Molecular Biology, Penn State University, University Park, PA, 16802, USA
- Present Address: Department of Molecular Biology and Genetics, 458 Biotechnology, Cornell University, New York, 14853, USA
| | - Bryce E Nickels
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, 08854, USA
- Department of Genetics, Rutgers University, Piscataway, NJ, 08854, USA
| | - Craig D Kaplan
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA.
| |
Collapse
|
44
|
Fine Chromatin-Driven Mechanism of Transcription Interference by Antisense Noncoding Transcription. Cell Rep 2020; 31:107612. [DOI: 10.1016/j.celrep.2020.107612] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 03/12/2020] [Accepted: 04/14/2020] [Indexed: 01/04/2023] Open
|
45
|
Ranjan A, Nguyen VQ, Liu S, Wisniewski J, Kim JM, Tang X, Mizuguchi G, Elalaoui E, Nickels TJ, Jou V, English BP, Zheng Q, Luk E, Lavis LD, Lionnet T, Wu C. Live-cell single particle imaging reveals the role of RNA polymerase II in histone H2A.Z eviction. eLife 2020; 9:e55667. [PMID: 32338606 PMCID: PMC7259955 DOI: 10.7554/elife.55667] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/24/2020] [Indexed: 12/24/2022] Open
Abstract
The H2A.Z histone variant, a genome-wide hallmark of permissive chromatin, is enriched near transcription start sites in all eukaryotes. H2A.Z is deposited by the SWR1 chromatin remodeler and evicted by unclear mechanisms. We tracked H2A.Z in living yeast at single-molecule resolution, and found that H2A.Z eviction is dependent on RNA Polymerase II (Pol II) and the Kin28/Cdk7 kinase, which phosphorylates Serine 5 of heptapeptide repeats on the carboxy-terminal domain of the largest Pol II subunit Rpb1. These findings link H2A.Z eviction to transcription initiation, promoter escape and early elongation activities of Pol II. Because passage of Pol II through +1 nucleosomes genome-wide would obligate H2A.Z turnover, we propose that global transcription at yeast promoters is responsible for eviction of H2A.Z. Such usage of yeast Pol II suggests a general mechanism coupling eukaryotic transcription to erasure of the H2A.Z epigenetic signal.
Collapse
Affiliation(s)
- Anand Ranjan
- Department of Biology, Johns Hopkins UniversityBaltimoreUnited States
| | - Vu Q Nguyen
- Department of Biology, Johns Hopkins UniversityBaltimoreUnited States
| | - Sheng Liu
- Department of Biology, Johns Hopkins UniversityBaltimoreUnited States
| | - Jan Wisniewski
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Jee Min Kim
- Department of Biology, Johns Hopkins UniversityBaltimoreUnited States
| | - Xiaona Tang
- Department of Biology, Johns Hopkins UniversityBaltimoreUnited States
| | - Gaku Mizuguchi
- Department of Biology, Johns Hopkins UniversityBaltimoreUnited States
| | - Ejlal Elalaoui
- Department of Biology, Johns Hopkins UniversityBaltimoreUnited States
| | - Timothy J Nickels
- Department of Biology, Johns Hopkins UniversityBaltimoreUnited States
| | - Vivian Jou
- Department of Biology, Johns Hopkins UniversityBaltimoreUnited States
| | - Brian P English
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Qinsi Zheng
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Ed Luk
- Department of Biochemistry and Cell Biology, Stony Brook UniversityStony BrookUnited States
| | - Luke D Lavis
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Timothee Lionnet
- Institute of Systems Genetics, Langone Medical Center, New York UniversityNew YorkUnited States
| | - Carl Wu
- Department of Biology, Johns Hopkins UniversityBaltimoreUnited States
- Department of Molecular Biology and Genetics, Johns Hopkins School of MedicineBaltimoreUnited States
| |
Collapse
|
46
|
Bagchi DN, Battenhouse AM, Park D, Iyer VR. The histone variant H2A.Z in yeast is almost exclusively incorporated into the +1 nucleosome in the direction of transcription. Nucleic Acids Res 2020; 48:157-170. [PMID: 31722407 PMCID: PMC7145542 DOI: 10.1093/nar/gkz1075] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 10/22/2019] [Accepted: 10/30/2019] [Indexed: 12/14/2022] Open
Abstract
Transcription start sites (TSS) in eukaryotes are characterized by a nucleosome-depleted region (NDR), which appears to be flanked upstream and downstream by strongly positioned nucleosomes incorporating the histone variant H2A.Z. H2A.Z associates with both active and repressed TSS and is important for priming genes for rapid transcriptional activation. However, the determinants of H2A.Z occupancy at specific nucleosomes and its relationship to transcription initiation remain unclear. To further elucidate the specificity of H2A.Z, we determined its genomic localization at single nucleosome resolution, as well as the localization of its chromatin remodelers Swr1 and Ino80. By analyzing H2A.Z occupancy in conjunction with RNA expression data that captures promoter-derived antisense initiation, we find that H2A.Z's bimodal incorporation on either side of the NDR is not a general feature of TSS, but is specifically a marker for bidirectional transcription, such that the upstream flanking -1 H2A.Z-containing nucleosome is more appropriately considered as a +1 H2A.Z nucleosome for antisense transcription. The localization of H2A.Z almost exclusively at the +1 nucleosome suggests that a transcription-initiation dependent process could contribute to its specific incorporation.
Collapse
Affiliation(s)
- Dia N Bagchi
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, Institute for Cellular and Molecular Biology, Livestrong Cancer Institutes, Dell Medical School, University of Texas at Austin, Austin, TX 78712, USA
| | - Anna M Battenhouse
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, Institute for Cellular and Molecular Biology, Livestrong Cancer Institutes, Dell Medical School, University of Texas at Austin, Austin, TX 78712, USA
| | - Daechan Park
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, Institute for Cellular and Molecular Biology, Livestrong Cancer Institutes, Dell Medical School, University of Texas at Austin, Austin, TX 78712, USA
| | - Vishwanath R Iyer
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, Institute for Cellular and Molecular Biology, Livestrong Cancer Institutes, Dell Medical School, University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
47
|
Singh PP, Shukla M, White SA, Lafos M, Tong P, Auchynnikava T, Spanos C, Rappsilber J, Pidoux AL, Allshire RC. Hap2-Ino80-facilitated transcription promotes de novo establishment of CENP-A chromatin. Genes Dev 2020; 34:226-238. [PMID: 31919190 PMCID: PMC7000912 DOI: 10.1101/gad.332536.119] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 12/11/2019] [Indexed: 12/13/2022]
Abstract
Centromeres are maintained epigenetically by the presence of CENP-A, an evolutionarily conserved histone H3 variant, which directs kinetochore assembly and hence centromere function. To identify factors that promote assembly of CENP-A chromatin, we affinity-selected solubilized fission yeast CENP-ACnp1 chromatin. All subunits of the Ino80 complex were enriched, including the auxiliary subunit Hap2. Chromatin association of Hap2 is Ies4-dependent. In addition to a role in maintenance of CENP-ACnp1 chromatin integrity at endogenous centromeres, Hap2 is required for de novo assembly of CENP-ACnp1 chromatin on naïve centromere DNA and promotes H3 turnover on centromere regions and other loci prone to CENP-ACnp1 deposition. Prior to CENP-ACnp1 chromatin assembly, Hap2 facilitates transcription from centromere DNA. These analyses suggest that Hap2-Ino80 destabilizes H3 nucleosomes on centromere DNA through transcription-coupled histone H3 turnover, driving the replacement of resident H3 nucleosomes with CENP-ACnp1 nucleosomes. These inherent properties define centromere DNA by directing a program that mediates CENP-ACnp1 assembly on appropriate sequences.
Collapse
Affiliation(s)
- Puneet P. Singh
- Wellcome Centre for Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| | - Manu Shukla
- Wellcome Centre for Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| | - Sharon A. White
- Wellcome Centre for Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| | - Marcel Lafos
- Wellcome Centre for Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| | - Pin Tong
- Wellcome Centre for Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| | - Tatsiana Auchynnikava
- Wellcome Centre for Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| | - Christos Spanos
- Wellcome Centre for Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| | - Juri Rappsilber
- Wellcome Centre for Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, United Kingdom;,Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, 13355 Berlin, Germany
| | - Alison L. Pidoux
- Wellcome Centre for Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| | - Robin C. Allshire
- Wellcome Centre for Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| |
Collapse
|
48
|
Role of a DEF/Y motif in histone H2A-H2B recognition and nucleosome editing. Proc Natl Acad Sci U S A 2020; 117:3543-3550. [PMID: 32001508 DOI: 10.1073/pnas.1914313117] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The SWR complex edits the histone composition of nucleosomes at promoters to facilitate transcription by replacing the two nucleosomal H2A-H2B (A-B) dimers with H2A.Z-H2B (Z-B) dimers. Swc5, a subunit of SWR, binds to A-B dimers, but its role in the histone replacement reaction was unclear. In this study, we showed that Swc5 uses a tandem DEF/Y motif within an intrinsically disordered region to engage the A-B dimer. A 2.37-Å X-ray crystal structure of the histone binding domain of Swc5 in complex with an A-B dimer showed that consecutive acidic residues and flanking hydrophobic residues of Swc5 form a cap over the histones, excluding histone-DNA interaction. Mutations in Swc5 DEF/Y inhibited the nucleosome editing function of SWR in vitro. Swc5 DEF/Y interacts with histones in vivo, and the extent of this interaction is dependent on the remodeling ATPase of SWR, supporting a model in which Swc5 acts as a wedge to promote A-B dimer eviction. Given that DEF/Y motifs are found in other evolutionary unrelated chromatin regulators, this work provides the molecular basis for a general strategy used repeatedly during eukaryotic evolution to mobilize histones in various genomic functions.
Collapse
|
49
|
Lei B, Berger F. H2A Variants in Arabidopsis: Versatile Regulators of Genome Activity. PLANT COMMUNICATIONS 2020; 1:100015. [PMID: 33404536 PMCID: PMC7747964 DOI: 10.1016/j.xplc.2019.100015] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/13/2019] [Accepted: 12/11/2019] [Indexed: 05/16/2023]
Abstract
The eukaryotic nucleosome prevents access to the genome. Convergently evolving histone isoforms, also called histone variants, form diverse families that are enriched over distinct features of plant genomes. Among the diverse families of plant histone variants, H2A.Z exclusively marks genes. Here we review recent research progress on the genome-wide distribution patterns and deposition of H2A.Z in plants as well as its association with histone modifications and roles in plant chromatin regulation. We also discuss some hypotheses that explain the different findings about the roles of H2A.Z in plants.
Collapse
|
50
|
Talbert PB, Meers MP, Henikoff S. Old cogs, new tricks: the evolution of gene expression in a chromatin context. Nat Rev Genet 2019; 20:283-297. [PMID: 30886348 DOI: 10.1038/s41576-019-0105-7] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Sophisticated gene-regulatory mechanisms probably evolved in prokaryotes billions of years before the emergence of modern eukaryotes, which inherited the same basic enzymatic machineries. However, the epigenomic landscapes of eukaryotes are dominated by nucleosomes, which have acquired roles in genome packaging, mitotic condensation and silencing parasitic genomic elements. Although the molecular mechanisms by which nucleosomes are displaced and modified have been described, just how transcription factors, histone variants and modifications and chromatin regulators act on nucleosomes to regulate transcription is the subject of considerable ongoing study. We explore the extent to which these transcriptional regulatory components function in the context of the evolutionarily ancient role of chromatin as a barrier to processes acting on DNA and how chromatin proteins have diversified to carry out evolutionarily recent functions that accompanied the emergence of differentiation and development in multicellular eukaryotes.
Collapse
Affiliation(s)
- Paul B Talbert
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Michael P Meers
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Steven Henikoff
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.
| |
Collapse
|