1
|
Bondok M, Nguyen AXL, Lando L, Wu AY. Adverse Ocular Impact and Emerging Therapeutic Potential of Cannabis and Cannabinoids: A Narrative Review. Clin Ophthalmol 2024; 18:3529-3556. [PMID: 39629058 PMCID: PMC11613704 DOI: 10.2147/opth.s501494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 11/20/2024] [Indexed: 12/06/2024] Open
Abstract
Cannabis is the most used drug worldwide with an estimated 219 million users. This narrative review aims to explore the adverse effects and therapeutic applications of cannabis and cannabinoids on the eye, given its growing clinical and non-clinical uses. The current literature reports several adverse ocular effects of cannabis and cannabinoids, including eyelid tremor, ptosis, reduced corneal endothelial cell density, dry eyes, red eyes, and neuro-retinal dysfunction. Cannabinoids may transiently impair night vision, depth perception, binocular and monocular contrast sensitivity, and dynamic visual acuity. Cannabinoids are not currently considered a first-line treatment option for any ocular conditions. Δ-9-tetrahydrocannabinol been shown to result in short-term intraocular pressure reduction, but insufficient evidence to support its use in treating glaucoma exists. Potential therapeutic applications of cannabinoids include their use as a second-line agent for treatment-refractory blepharospasm, for dry eye disease given corneal anti-inflammatory properties, and for suppression of pendular nystagmus in individuals with multiple sclerosis, which all necessitate further research for informed clinical practices.
Collapse
Affiliation(s)
- Mostafa Bondok
- Department of Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Anne Xuan-Lan Nguyen
- Department of Ophthalmology and Visual Sciences, University of Toronto, Toronto, ONT, Canada
| | - Leonardo Lando
- Ocular Oncology Service, Barretos Cancer Hospital, Barretos, Brazil
| | - Albert Y Wu
- Department of Ophthalmology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
2
|
Estay SF, Morales-Moraga C, Vielma AH, Palacios-Muñoz A, Chiu CQ, Chávez AE. Non-canonical type 1 cannabinoid receptor signaling regulates night visual processing in the inner rat retina. iScience 2024; 27:109920. [PMID: 38799553 PMCID: PMC11126983 DOI: 10.1016/j.isci.2024.109920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/18/2024] [Accepted: 05/03/2024] [Indexed: 05/29/2024] Open
Abstract
Type 1 cannabinoid receptors (CB1Rs) are expressed in major retinal neurons within the rod-pathway suggesting a role in regulating night visual processing, but the underlying mechanisms remain poorly understood. Using acute rat retinal slices, we show that CB1R activation reduces glutamate release from rod bipolar cell (RBC) axon terminals onto AII and A17 amacrine cells through a pathway that requires exchange proteins directly activated by cAMP (EPAC1/2) signaling. Consequently, CB1R activation abrogates reciprocal GABAergic feedback inhibition from A17 amacrine cells. Moreover, the activation of CB1Rs in vivo enhances and prolongs the time course of the dim-light rod-driven visual responses, an effect that was eliminated when both GABAA and GABAC receptors were blocked. Altogether, our findings underscore a non-canonical mechanism by which cannabinoid signaling regulates RBC dyad synapses in the inner retina to regulate dim-light visual responses to fine-tune night vision.
Collapse
Affiliation(s)
- Sebastián F. Estay
- Programa de Doctorado en Ciencias, Mención Neurociencia, Valparaíso 2340000, Chile
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Instituto de Neurociencias, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2340000, Chile
| | - Camila Morales-Moraga
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Instituto de Neurociencias, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2340000, Chile
| | - Alex H. Vielma
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Instituto de Neurociencias, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2340000, Chile
| | - Angelina Palacios-Muñoz
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Instituto de Neurociencias, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2340000, Chile
| | - Chiayu Q. Chiu
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Instituto de Neurociencias, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2340000, Chile
| | - Andrés E. Chávez
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Instituto de Neurociencias, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2340000, Chile
| |
Collapse
|
3
|
Del Rio R, Serrano RG, Gomez E, Martinez JC, Edward MA, Santos RA, Diaz KS, Cohen-Cory S. Cell-autonomous and differential endocannabinoid signaling impacts the development of presynaptic retinal ganglion cell axon connectivity in vivo. Front Synaptic Neurosci 2023; 15:1176864. [PMID: 37252636 PMCID: PMC10213524 DOI: 10.3389/fnsyn.2023.1176864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/25/2023] [Indexed: 05/31/2023] Open
Abstract
Cannabis exposure during gestation evokes significant molecular modifications to neurodevelopmental programs leading to neurophysiological and behavioral abnormalities in humans. The main neuronal receptor for Δ9-tetrahydrocannabinol (THC) is the type-1 cannabinoid receptor CB1R, one of the most abundant G-protein-coupled receptors in the nervous system. While THC is the major psychoactive phytocannabinoid, endocannabinoids (eCBs) are the endogenous ligands of CB1R and are known to act as retrograde messengers to modulate synaptic plasticity at different time scales in the adult brain. Accumulating evidence indicates that eCB signaling through activation of CB1R plays a central role in neural development. During development, most CB1R localized to axons of projection neurons, and in mice eCB signaling impacts axon fasciculation. Understanding of eCB-mediated structural plasticity during development, however, requires the identification of the precise spatial and temporal dynamics of CB1R-mediated modifications at the level of individual neurons in the intact brain. Here, the cell-autonomous role of CB1R and the effects of CB1R-mediated eCB signaling were investigated using targeted single-cell knockdown and pharmacologic treatments in Xenopus. We imaged axonal arbors of retinal ganglion cells (RGCs) in real time following downregulation of CB1R via morpholino (MO) knockdown. We also analyzed RGC axons with altered eCB signaling following treatment with URB597, a selective inhibitor of the enzyme that degrades Anandamide (AEA), or JZL184, an inhibitor of the enzyme that blocks 2-Arachidonoylglycerol (2-AG) hydrolysis, at two distinct stages of retinotectal development. Our results demonstrate that CB1R knockdown impacts RGC axon branching at their target and that differential 2-AG and AEA-mediated eCB signaling contributes to presynaptic structural connectivity at the time that axons terminate and when retinotectal synaptic connections are made. Altering CB1R levels through CB1R MO knockdown similarly impacted dendritic morphology of tectal neurons, thus supporting both pre- and postsynaptic cell-autonomous roles for CB1R-mediated eCB signaling.
Collapse
|
4
|
Križaj D, Cordeiro S, Strauß O. Retinal TRP channels: Cell-type-specific regulators of retinal homeostasis and multimodal integration. Prog Retin Eye Res 2023; 92:101114. [PMID: 36163161 PMCID: PMC9897210 DOI: 10.1016/j.preteyeres.2022.101114] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/03/2022] [Accepted: 08/08/2022] [Indexed: 02/05/2023]
Abstract
Transient receptor potential (TRP) channels are a widely expressed family of 28 evolutionarily conserved cationic ion channels that operate as primary detectors of chemical and physical stimuli and secondary effectors of metabotropic and ionotropic receptors. In vertebrates, the channels are grouped into six related families: TRPC, TRPV, TRPM, TRPA, TRPML, and TRPP. As sensory transducers, TRP channels are ubiquitously expressed across the body and the CNS, mediating critical functions in mechanosensation, nociception, chemosensing, thermosensing, and phototransduction. This article surveys current knowledge about the expression and function of the TRP family in vertebrate retinas, which, while dedicated to transduction and transmission of visual information, are highly susceptible to non-visual stimuli. Every retinal cell expresses multiple TRP subunits, with recent evidence establishing their critical roles in paradigmatic aspects of vertebrate vision that include TRPM1-dependent transduction of ON bipolar signaling, TRPC6/7-mediated ganglion cell phototransduction, TRP/TRPL phototransduction in Drosophila and TRPV4-dependent osmoregulation, mechanotransduction, and regulation of inner and outer blood-retina barriers. TRP channels tune light-dependent and independent functions of retinal circuits by modulating the intracellular concentration of the 2nd messenger calcium, with emerging evidence implicating specific subunits in the pathogenesis of debilitating diseases such as glaucoma, ocular trauma, diabetic retinopathy, and ischemia. Elucidation of TRP channel involvement in retinal biology will yield rewards in terms of fundamental understanding of vertebrate vision and therapeutic targeting to treat diseases caused by channel dysfunction or over-activation.
Collapse
Affiliation(s)
- David Križaj
- Departments of Ophthalmology, Neurobiology, and Bioengineering, University of Utah, Salt Lake City, USA
| | - Soenke Cordeiro
- Institute of Physiology, Faculty of Medicine, Christian-Albrechts-University Kiel, Germany
| | - Olaf Strauß
- Experimental Ophthalmology, Department of Ophthalmology, Charité - Universitätsmedizin Berlin, a Corporate Member of Freie Universität, Humboldt-University, The Berlin Institute of Health, Berlin, Germany.
| |
Collapse
|
5
|
Yates CF, Huang JY, Protti DA. Tonic Endocannabinoid Levels Modulate Retinal Signaling. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:12460. [PMID: 36231760 PMCID: PMC9566182 DOI: 10.3390/ijerph191912460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
The endocannabinoid (eCB) system is critically involved in the modulation of synaptic transmission in the central nervous system, playing an important role in the control of emotional responses, neurodevelopment and synaptic plasticity among other functions. The eCB system is also present in the retina, with studies indicating changes in function after application of cannabinoid receptor agonists, antagonists and in knockout models. Whether eCBs are tonically released in the retina and their physiological functions is, however, still unknown. We investigated the role of the eCB system in the modulation of response strength of retinal ganglion cells (RGCs) to light stimulation, their receptive field organization, contrast sensitivity and excitability properties by performing whole-cell patch-clamp recordings in mouse RGCs before and after bath application of URB597, an inhibitor of the enzyme that degrades the eCB anandamide. Our results show that URB597 application leads to a reduction in the strength of synaptic inputs onto RGCs but paradoxically increases RGC excitability. In addition, URB597 was shown to modulate receptive field organization and contrast sensitivity of RGCs. We conclude that tonically released eCBs modulate retinal signaling by acting on traditional cannabinoid receptors (CB1R/CB2R) as well as on non-cannabinoid receptor targets. Thus, a thorough understanding of the effects of drugs that alter the endogenous cannabinoid levels and of exogenous cannabinoids is necessary to fully comprehend the impact of their medical as well as recreational use on vision.
Collapse
Affiliation(s)
- Charles F. Yates
- School of Medical Sciences (Neuroscience), The University of Sydney, Sydney, NSW 2006, Australia
- Department of Neurosurgery, Royal Brisbane and Women’s Hospital, Brisbane, QLD 4029, Australia
| | - Jin Y. Huang
- School of Medical Sciences (Education Innovation), The University of Sydney, Sydney, NSW 2006, Australia
| | - Dario A. Protti
- School of Medical Sciences (Neuroscience), The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
6
|
Hui KK, Chater TE, Goda Y, Tanaka M. How Staying Negative Is Good for the (Adult) Brain: Maintaining Chloride Homeostasis and the GABA-Shift in Neurological Disorders. Front Mol Neurosci 2022; 15:893111. [PMID: 35875665 PMCID: PMC9305173 DOI: 10.3389/fnmol.2022.893111] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 06/10/2022] [Indexed: 01/27/2023] Open
Abstract
Excitatory-inhibitory (E-I) imbalance has been shown to contribute to the pathogenesis of a wide range of neurodevelopmental disorders including autism spectrum disorders, epilepsy, and schizophrenia. GABA neurotransmission, the principal inhibitory signal in the mature brain, is critically coupled to proper regulation of chloride homeostasis. During brain maturation, changes in the transport of chloride ions across neuronal cell membranes act to gradually change the majority of GABA signaling from excitatory to inhibitory for neuronal activation, and dysregulation of this GABA-shift likely contributes to multiple neurodevelopmental abnormalities that are associated with circuit dysfunction. Whilst traditionally viewed as a phenomenon which occurs during brain development, recent evidence suggests that this GABA-shift may also be involved in neuropsychiatric disorders due to the "dematuration" of affected neurons. In this review, we will discuss the cell signaling and regulatory mechanisms underlying the GABA-shift phenomenon in the context of the latest findings in the field, in particular the role of chloride cotransporters NKCC1 and KCC2, and furthermore how these regulatory processes are altered in neurodevelopmental and neuropsychiatric disorders. We will also explore the interactions between GABAergic interneurons and other cell types in the developing brain that may influence the GABA-shift. Finally, with a greater understanding of how the GABA-shift is altered in pathological conditions, we will briefly outline recent progress on targeting NKCC1 and KCC2 as a therapeutic strategy against neurodevelopmental and neuropsychiatric disorders associated with improper chloride homeostasis and GABA-shift abnormalities.
Collapse
Affiliation(s)
- Kelvin K. Hui
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, United States
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Thomas E. Chater
- Laboratory for Synaptic Plasticity and Connectivity, RIKEN Center for Brain Science, Wako, Japan
| | - Yukiko Goda
- Laboratory for Synaptic Plasticity and Connectivity, RIKEN Center for Brain Science, Wako, Japan
- Synapse Biology Unit, Okinawa Institute for Science and Technology Graduate University, Onna, Japan
| | - Motomasa Tanaka
- Laboratory for Protein Conformation Diseases, RIKEN Center for Brain Science, Wako, Japan
| |
Collapse
|
7
|
CB 1R, CB 2R and TRPV1 expression and modulation in in vivo, animal glaucoma models: A systematic review. Biomed Pharmacother 2022; 150:112981. [PMID: 35468582 DOI: 10.1016/j.biopha.2022.112981] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/06/2022] [Accepted: 04/14/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND The endocannabinoid system (ECS) is a complex biological regulatory system. Its expression and functionality have been widely investigated in ocular tissues. Recent data have reported its modulation to be valid in determining an ocular hypotensive and a neuroprotective effect in preclinical animal models of glaucoma. AIM This study aimed to explore the available literature on cannabinoid receptor 1 (CB1R), cannabinoid receptor 2 (CB2R), and transient receptor potential vanilloid 1 (TRPV1) expression in the trabecular meshwork (TM), ciliary body (CB), and retina as well as their ocular hypotensive and neuroprotective effects in preclinical, in vivo, animal glaucoma models. MATERIALS AND METHODS The study adhered to both PRISMA and SYRCLE guidelines. Sixty-nine full-length articles were included in the final analysis. RESULTS Preclinical studies indicated a widespread distribution of CB1R, CB2R, and TRPV1 in the TM, CB, and retina, although receptor-, age-, and species-dependent differences were observed. CB1R and CB2R modulation have been shown to exert ocular hypotensive effects in preclinical models via the regulation of inflow and outflow pathways. Retinal cell neuroprotection has been achieved in several experimental models, mediated by agonists and antagonists of CB1R, CB2R, and TRPV1. DISCUSSION Despite the growing body of preclinical data regarding the expression and modulation of ECS in ocular tissues, the mechanisms responsible for the hypotensive and neuroprotective efficacy exerted by this system remain largely elusive. Research on this topic is advocated to further substantiate the hypothesis that the ECS is a new potential therapeutic target in the context of glaucoma.
Collapse
|
8
|
Elul T, Lim J, Hanton K, Lui A, Jones K, Chen G, Chong C, Dao S, Rawat R. Cannabinoid 1 Receptor CBIR regulates growth cone filopodia and axon dispersion in the optic tract of
Xenopus laevis
tadpoles. Eur J Neurosci 2022; 55:989-1001. [DOI: 10.1111/ejn.15603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 12/10/2021] [Accepted: 01/05/2022] [Indexed: 11/27/2022]
Affiliation(s)
- Tamira Elul
- Touro University California Vallejo California US
| | - John Lim
- Touro University California Vallejo California US
| | | | - Austin Lui
- Touro University California Vallejo California US
| | - Kenton Jones
- Touro University California Vallejo California US
| | - George Chen
- Touro University California Vallejo California US
| | | | - Sophia Dao
- Touro University California Vallejo California US
| | | |
Collapse
|
9
|
Visvanathar R, Papanikolaou M, Nôga DA, Pádua-Reis M, Tort ABL, Blunder M. Hippocampal Cb 2 receptors: an untold story. Rev Neurosci 2021; 33:413-426. [PMID: 34717053 DOI: 10.1515/revneuro-2021-0109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/01/2021] [Indexed: 12/13/2022]
Abstract
The field of cannabinoid research has been receiving ever-growing interest. Ongoing debates worldwide about the legislation of medical cannabis further motivates research into cannabinoid function within the central nervous system (CNS). To date, two well-characterized cannabinoid receptors exist. While most research has investigated Cb1 receptors (Cb1Rs), Cb2 receptors (Cb2Rs) in the brain have started to attract considerable interest in recent years. With indisputable evidence showing the wide-distribution of Cb2Rs in the brain of different species, they are no longer considered just peripheral receptors. However, in contrast to Cb1Rs, the functionality of central Cb2Rs remains largely unexplored. Here we review recent studies on hippocampal Cb2Rs. While conflicting results about their function have been reported, we have made significant progress in understanding the involvement of Cb2Rs in modulating cellular properties and network excitability. Moreover, Cb2Rs have been shown to be expressed in different subregions of the hippocampus, challenging our prior understanding of the endocannabinoid system. Although more insight into their functional roles is necessary, we propose that targeting hippocampal Cb2Rs may offer novel therapies for diseases related to memory and adult neurogenesis deficits.
Collapse
Affiliation(s)
- Robin Visvanathar
- Behavioral Neurophysiology, Department of Neuroscience, Biomedical Center, Uppsala University, Husargatan 3, 751 23, Uppsala, Sweden
| | - Maria Papanikolaou
- Behavioral Neurophysiology, Department of Neuroscience, Biomedical Center, Uppsala University, Husargatan 3, 751 23, Uppsala, Sweden
| | - Diana Aline Nôga
- Behavioral Neurophysiology, Department of Neuroscience, Biomedical Center, Uppsala University, Husargatan 3, 751 23, Uppsala, Sweden
| | - Marina Pádua-Reis
- Behavioral Neurophysiology, Department of Neuroscience, Biomedical Center, Uppsala University, Husargatan 3, 751 23, Uppsala, Sweden
| | | | - Martina Blunder
- Behavioral Neurophysiology, Department of Neuroscience, Biomedical Center, Uppsala University, Husargatan 3, 751 23, Uppsala, Sweden
| |
Collapse
|
10
|
Vielma AH, Tapia F, Alcaino A, Fuenzalida M, Schmachtenberg O, Chávez AE. Cannabinoid Signaling Selectively Modulates GABAergic Inhibitory Input to OFF Bipolar Cells in Rat Retina. Invest Ophthalmol Vis Sci 2020; 61:3. [PMID: 32150246 PMCID: PMC7401570 DOI: 10.1167/iovs.61.3.3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose In the mammalian retina, cannabinoid type 1 receptors (CB1Rs) are well-positioned to alter inhibitory synaptic function from amacrine cells and, thus, might influence visual signal processing in the inner retina. However, it is not known if CB1R modulates amacrine cells feedback inhibition at retinal bipolar cell (BC) terminals. Methods Using whole-cell voltage-clamp recordings, we examined the pharmacological effect of CB1R activation and inhibition on spontaneous inhibitory postsynaptic currents (sIPSCs) and glutamate-evoked IPSCs (gIPSCs) from identified OFF BCs in light-adapted rat retinal slices. Results Activation of CB1R with WIN55212-2 selectively increased the frequency of GABAergic, but not glycinergic sIPSC in types 2, 3a, and 3b OFF BCs, and had no effect on inhibitory activity in type 4 OFF BCs. The increase in GABAergic activity was eliminated in axotomized BCs and can be suppressed by blocking CB1R with AM251 or GABAA and GABAρ receptors with SR-95531 and TPMPA, respectively. In all OFF BC types tested, a brief application of glutamate to the outer plexiform layer elicited gIPSCs comprising GABAergic and glycinergic components that were unaffected by CB1R activation. However, blocking CB1R selectively increased GABAergic gIPSCs, supporting a role for endocannabinoid signaling in the regulation of glutamate-evoked GABAergic inhibitory feedback to OFF BCs. Conclusions CB1R activation shape types 2, 3a, and 3b OFF BC responses by selectively regulate GABAergic feedback inhibition at their axon terminals, thus cannabinoid signaling might play an important role in the fine-tuning of visual signal processing in the mammalian inner retina.
Collapse
|
11
|
Middleton TP, Huang JY, Protti DA. Cannabinoids Modulate Light Signaling in ON-Sustained Retinal Ganglion Cells of the Mouse. Front Neural Circuits 2019; 13:37. [PMID: 31164809 PMCID: PMC6536650 DOI: 10.3389/fncir.2019.00037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 05/02/2019] [Indexed: 11/13/2022] Open
Abstract
The sole output of the retina to the brain is a signal that results from the integration of excitatory and inhibitory synaptic inputs at the level of retinal ganglion cells (RGCs). Endogenous cannabinoids (eCBs) are found throughout the central nervous system where they modulate synaptic excitability. Cannabinoid receptors and their ligands have been localized to most retinal neurons in mammals, yet their impact on retinal processing is not well known. Here, we set out to investigate the role of the cannabinoid system in retinal signaling using electrophysiological recordings from ON-sustained (ON-S) RGCs that displayed morphological and physiological signatures of ON alpha RGCs in dark adapted mouse retina. We studied the effect of the cannabinoid agonist WIN55212-2 and the inverse agonist AM251 on the spatial tuning of ON-S RGCs. WIN55212-2 significantly reduced their spontaneous spiking activity and responses to optimal spot size as well as altered their spatial tuning by reducing light driven excitatory and inhibitory inputs to RGCs. AM251 produced the opposite effect, increasing spontaneous spiking activity and peak response as well as increasing inhibitory and excitatory inputs. In addition, AM251 sharpened the spatial tuning of ON-S RGCs by increasing the inhibitory effect of the surround. These results demonstrate the presence of a functional cannabinergic system in the retina as well as sensitivity of ON-RGCs to cannabinoids. These results reveal a neuromodulatory system that can regulate the sensitivity and excitability of retinal synapses in a dynamic, activity dependent manner and that endocannabinoids may play a significant role in retinal processing.
Collapse
Affiliation(s)
- Terence Peter Middleton
- Discipline of Physiology, The University of Sydney, Sydney, NSW, Australia.,Bosch Institute, The University of Sydney, Sydney, NSW, Australia
| | - Jin Yu Huang
- Bosch Institute, The University of Sydney, Sydney, NSW, Australia.,Discipline of Biomedical Science, The University of Sydney, Sydney, NSW, Australia
| | - Dario Alejandro Protti
- Discipline of Physiology, The University of Sydney, Sydney, NSW, Australia.,Bosch Institute, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
12
|
Pietrucha-Dutczak M, Amadio M, Govoni S, Lewin-Kowalik J, Smedowski A. The Role of Endogenous Neuroprotective Mechanisms in the Prevention of Retinal Ganglion Cells Degeneration. Front Neurosci 2018; 12:834. [PMID: 30524222 PMCID: PMC6262299 DOI: 10.3389/fnins.2018.00834] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 10/25/2018] [Indexed: 12/14/2022] Open
Abstract
Retinal neurons are not able to undergo spontaneous regeneration in response to damage. A variety of stressors, i.e., UV radiation, high temperature, ischemia, allergens, and others, induce reactive oxygen species production, resulting in consecutive alteration of stress-response gene expression and finally can lead to cell apoptosis. Neurons have developed their own endogenous cellular protective systems. Some of them are preventing cell death and others are allowing functional recovery after injury. The high efficiency of these mechanisms is crucial for cell survival. In this review we focus on the contribution of the most recently studied endogenous neuroprotective factors involved in retinal ganglion cell (RGC) survival, among which, neurotrophic factors and their signaling pathways, processes regulating the redox status, and different pathways regulating cell death are the most important. Additionally, we summarize currently ongoing clinical trials for therapies for RGC degeneration and optic neuropathies, including glaucoma. Knowledge of the endogenous cellular protective mechanisms may help in the development of effective therapies and potential novel therapeutic targets in order to achieve progress in the treatment of retinal and optic nerve diseases.
Collapse
Affiliation(s)
- Marita Pietrucha-Dutczak
- Chair and Department of Physiology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Marialaura Amadio
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, Pavia, Italy
| | - Stefano Govoni
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, Pavia, Italy
| | - Joanna Lewin-Kowalik
- Chair and Department of Physiology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Adrian Smedowski
- Chair and Department of Physiology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
13
|
Busquets-Garcia A, Bains J, Marsicano G. CB 1 Receptor Signaling in the Brain: Extracting Specificity from Ubiquity. Neuropsychopharmacology 2018; 43:4-20. [PMID: 28862250 PMCID: PMC5719111 DOI: 10.1038/npp.2017.206] [Citation(s) in RCA: 193] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 07/22/2017] [Accepted: 08/14/2017] [Indexed: 02/07/2023]
Abstract
Endocannabinoids (eCBs) are amongst the most ubiquitous signaling molecules in the nervous system. Over the past few decades, observations based on a large volume of work, first examining the pharmacological effects of exogenous cannabinoids, and then the physiological functions of eCBs, have directly challenged long-held and dogmatic views about communication, plasticity and behavior in the central nervous system (CNS). The eCBs and their cognate cannabinoid receptors exhibit a number of unique properties that distinguish them from the widely studied classical amino-acid transmitters, neuropeptides, and catecholamines. Although we now have a loose set of mechanistic rules based on experimental findings, new studies continue to reveal that our understanding of the eCB system (ECS) is continuously evolving and challenging long-held conventions. Here we will briefly summarize findings on the current canonical view of the 'ECS' and will address novel aspects that reveal how a nearly ubiquitous system can determine highly specific functions in the brain. In particular, we will focus on findings that push for an expansion of our ideas around long-held beliefs about eCB signaling that, while clearly true, may be contributing to an oversimplified perspective on how cannabinoid signaling at the microscopic level impacts behavior at the macroscopic level.
Collapse
Affiliation(s)
- Arnau Busquets-Garcia
- INSERM U1215, NeuroCentre Magendie, Team ‘Endocannabinoids and Neuroadaptation’, Bordeaux, France
- Université de Bordeaux, Bordeaux, France
| | - Jaideep Bains
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Giovanni Marsicano
- INSERM U1215, NeuroCentre Magendie, Team ‘Endocannabinoids and Neuroadaptation’, Bordeaux, France
- Université de Bordeaux, Bordeaux, France
| |
Collapse
|
14
|
Rapino C, Tortolani D, Scipioni L, Maccarrone M. Neuroprotection by (endo)Cannabinoids in Glaucoma and Retinal Neurodegenerative Diseases. Curr Neuropharmacol 2018; 16:959-970. [PMID: 28738764 PMCID: PMC6120105 DOI: 10.2174/1570159x15666170724104305] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 07/14/2017] [Accepted: 07/21/2017] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Emerging neuroprotective strategies are being explored to preserve the retina from degeneration, that occurs in eye pathologies like glaucoma, diabetic retinopathy, age-related macular degeneration, and retinitis pigmentosa. Incidentally, neuroprotection of retina is a defending mechanism designed to prevent or delay neuronal cell death, and to maintain neural function following an initial insult, thus avoiding loss of vision. METHODS Numerous studies have investigated potential neuroprotective properties of plant-derived phytocannabinoids, as well as of their endogenous counterparts collectively termed endocannabinoids (eCBs), in several degenerative diseases of the retina. eCBs are a group of neuromodulators that, mainly by activating G protein-coupled type-1 and type-2 cannabinoid (CB1 and CB2) receptors, trigger multiple signal transduction cascades that modulate central and peripheral cell functions. A fine balance between biosynthetic and degrading enzymes that control the right concentration of eCBs has been shown to provide neuroprotection in traumatic, ischemic, inflammatory and neurotoxic damage of the brain. RESULTS Since the existence of eCBs and their binding receptors was documented in the retina of numerous species (from fishes to primates), their involvement in the visual processing has been demonstrated, more recently with a focus on retinal neurodegeneration and neuroprotection. CONCLUSION The aim of this review is to present a modern view of the endocannabinoid system, in order to discuss in a better perspective available data from preclinical studies on the use of eCBs as new neuroprotective agents, potentially useful to prevent glaucoma and retinal neurodegenerative diseases.
Collapse
Affiliation(s)
- Cinzia Rapino
- Address correspondence to these authors at the Faculty of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy; Tel: +39 0861 266842;, E-mail: and the Department of Medicine, Campus Bio-Medico University of Rome, 00128 Rome, Italy; Tel: +39 06 225419169;, E-mail:
| | | | | | - Mauro Maccarrone
- Address correspondence to these authors at the Faculty of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy; Tel: +39 0861 266842;, E-mail: and the Department of Medicine, Campus Bio-Medico University of Rome, 00128 Rome, Italy; Tel: +39 06 225419169;, E-mail:
| |
Collapse
|
15
|
Jo AO, Noel JM, Lakk M, Yarishkin O, Ryskamp DA, Shibasaki K, McCall MA, Križaj D. Mouse retinal ganglion cell signalling is dynamically modulated through parallel anterograde activation of cannabinoid and vanilloid pathways. J Physiol 2017; 595:6499-6516. [PMID: 28766743 PMCID: PMC5638913 DOI: 10.1113/jp274562] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 07/27/2017] [Indexed: 01/19/2023] Open
Abstract
KEY POINTS Retinal cells use vanilloid transient receptor potential (TRP) channels to integrate light-evoked signals with ambient mechanical, chemical and temperature information. Localization and function of the polymodal non-selective cation channel TRPV1 (transient receptor potential vanilloid isoform 1) remains elusive. TRPV1 is expressed in a subset of mouse retinal ganglion cells (RGCs) with peak expression in the mid-peripheral retina. Endocannabinoids directly activate TRPV1 and inhibit it through cannabinoid type 1 receptors (CB1Rs) and cAMP pathways. Activity-dependent endocannabinoid release may modulate signal gain in RGCs through simultaneous manipulation of calcium and cAMP signals mediated by TRPV1 and CB1R. ABSTRACT How retinal ganglion cells (RGCs) process and integrate synaptic, mechanical, swelling stimuli with light inputs is an area of intense debate. The nociceptive cation channel TRPV1 (transient receptor potential vanilloid type 1) modulates RGC Ca2+ signals and excitability yet the proportion of RGCs that express it remains unclear. Furthermore, TRPV1's response to endocannabinoids (eCBs), the putative endogenous retinal activators, is unknown, as is the potential modulation by cannabinoid receptors (CBRs). The density of TRPV1-expressing RGCs in the Ai9:Trpv1 reporter mouse peaked in the mid-peripheral retina. TRPV1 agonists including capsaicin (CAP) and the eCBs anandamide and N-arachidonoyl-dopamine elevated [Ca2+ ]i in 30-40% of wild-type RGCs, with effects suppressed by TRPV1 antagonists capsazepine (CPZ) and BCTC ((4-(3-chloro-2-pyridinyl)-N-[4-(1,1-dimethylethyl)phenyl]-1-piperazinecarboxamide), and lacking in Trpv1-/- cells. The cannabinoid receptor type 1 (CB1R) colocalized with TRPV1:tdTomato expression. Its agonists 2-arachidonoylglycerol (2-AG) and WIN55,122 inhibited CAP-induced [Ca2+ ]i signals in adult, but not early postnatal, RGCs. The suppressive effect of 2-AG on TRPV1 activation was emulated by positive modulators of the protein kinase A (PKA) pathway, inhibited by the CB1R antagonist rimonabant and Gi uncoupler pertussis toxin, and absent in Cnr1-/- RGCs. We conclude that TRPV1 is a modulator of Ca2+ homeostasis in a subset of RGCs that show non-uniform distribution across the mouse retina. Non-retrograde eCB-mediated modulation of RGC signalling involves a dynamic push-pull between direct TRPV1 activation and PKA-dependent regulation of channel inactivation, with potential functions in setting the bandwidth of postsynaptic responses, sensitivity to mechanical/excitotoxic stress and neuroprotection.
Collapse
Affiliation(s)
- Andrew O. Jo
- Department of Ophthalmology & Visual SciencesMoran Eye InstituteSalt Lake CityUTUSA
| | - Jennifer M. Noel
- Department of Anatomical Sciences and NeurobiologyUniversity of LouisvilleLouisvilleKYUSA
| | - Monika Lakk
- Department of Ophthalmology & Visual SciencesMoran Eye InstituteSalt Lake CityUTUSA
| | - Oleg Yarishkin
- Department of Ophthalmology & Visual SciencesMoran Eye InstituteSalt Lake CityUTUSA
| | - Daniel A. Ryskamp
- Department of Ophthalmology & Visual SciencesMoran Eye InstituteSalt Lake CityUTUSA
- Interdepartmental Program in NeuroscienceUniversity of Utah School of MedicineSalt Lake CityUTUSA
| | | | - Maureen A. McCall
- Department of Anatomical Sciences and NeurobiologyUniversity of LouisvilleLouisvilleKYUSA
- Department of Ophthalmology & Visual SciencesUniversity of LouisvilleLouisvilleKYUSA
| | - David Križaj
- Department of Ophthalmology & Visual SciencesMoran Eye InstituteSalt Lake CityUTUSA
- Interdepartmental Program in NeuroscienceUniversity of Utah School of MedicineSalt Lake CityUTUSA
- Department of Neurobiology & AnatomyUniversity of Utah School of MedicineSalt Lake CityUTUSA
- Department of BioengineeringUniversity of Utah School of MedicineSalt Lake CityUTUSA
| |
Collapse
|
16
|
Piazza PV, Cota D, Marsicano G. The CB1 Receptor as the Cornerstone of Exostasis. Neuron 2017; 93:1252-1274. [PMID: 28334603 DOI: 10.1016/j.neuron.2017.02.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 01/30/2017] [Accepted: 01/31/2017] [Indexed: 01/07/2023]
Abstract
The type-1 cannabinoid receptor (CB1) is the main effector of the endocannabinoid system (ECS), which is involved in most brain and body functions. In this Perspective, we provide evidence indicating that CB1 receptor functions are key determinants of bodily coordinated exostatic processes. First, we will introduce the concepts of endostasis and exostasis as compensation or accumulation for immediate or future energy needs and discuss how exostasis has been necessary for the survival of species during evolution. Then, we will argue how different specific biological functions of the CB1 receptor in the body converge to provide physiological exostatic processes. Finally, we will introduce the concept of proactive evolution-induced diseases (PEIDs), which helps explain the seeming paradox that an evolutionary-selected physiological function can become the cause of epidemic pathological conditions, such as obesity. We propose here a possible unifying theory of CB1 receptor functions that can be tested by future experimental studies.
Collapse
Affiliation(s)
- Pier Vincenzo Piazza
- INSERM, NeuroCentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33077 Bordeaux, France; University of Bordeaux, NeuroCentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33077 Bordeaux, France.
| | - Daniela Cota
- INSERM, NeuroCentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33077 Bordeaux, France; University of Bordeaux, NeuroCentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33077 Bordeaux, France
| | - Giovanni Marsicano
- INSERM, NeuroCentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33077 Bordeaux, France; University of Bordeaux, NeuroCentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33077 Bordeaux, France.
| |
Collapse
|
17
|
Jang EV, Ramirez-Vizcarrondo C, Aizenman CD, Khakhalin AS. Emergence of Selectivity to Looming Stimuli in a Spiking Network Model of the Optic Tectum. Front Neural Circuits 2016; 10:95. [PMID: 27932957 PMCID: PMC5121234 DOI: 10.3389/fncir.2016.00095] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 11/08/2016] [Indexed: 11/13/2022] Open
Abstract
The neural circuits in the optic tectum of Xenopus tadpoles are selectively responsive to looming visual stimuli that resemble objects approaching the animal at a collision trajectory. This selectivity is required for adaptive collision avoidance behavior in this species, but its underlying mechanisms are not known. In particular, it is still unclear how the balance between the recurrent spontaneous network activity and the newly arriving sensory flow is set in this structure, and to what degree this balance is important for collision detection. Also, despite the clear indication for the presence of strong recurrent excitation and spontaneous activity, the exact topology of recurrent feedback circuits in the tectum remains elusive. In this study we take advantage of recently published detailed cell-level data from tadpole tectum to build an informed computational model of it, and investigate whether dynamic activation in excitatory recurrent retinotopic networks may on its own underlie collision detection. We consider several possible recurrent connectivity configurations and compare their performance for collision detection under different levels of spontaneous neural activity. We show that even in the absence of inhibition, a retinotopic network of quickly inactivating spiking neurons is naturally selective for looming stimuli, but this selectivity is not robust to neuronal noise, and is sensitive to the balance between direct and recurrent inputs. We also describe how homeostatic modulation of intrinsic properties of individual tectal cells can change selectivity thresholds in this network, and qualitatively verify our predictions in a behavioral experiment in freely swimming tadpoles.
Collapse
Affiliation(s)
- Eric V Jang
- Department of Neuroscience, Brown University Providence, RI, USA
| | | | | | | |
Collapse
|