1
|
Ramananda Y, Naren AP, Arora K. Functional Consequences of CFTR Interactions in Cystic Fibrosis. Int J Mol Sci 2024; 25:3384. [PMID: 38542363 PMCID: PMC10970640 DOI: 10.3390/ijms25063384] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/09/2024] [Accepted: 03/12/2024] [Indexed: 09/01/2024] Open
Abstract
Cystic fibrosis (CF) is a fatal autosomal recessive disorder caused by the loss of function mutations within a single gene for the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR). CFTR is a chloride channel that regulates ion and fluid transport across various epithelia. The discovery of CFTR as the CF gene and its cloning in 1989, coupled with extensive research that went into the understanding of the underlying biological mechanisms of CF, have led to the development of revolutionary therapies in CF that we see today. The highly effective modulator therapies have increased the survival rates of CF patients and shifted the epidemiological landscape and disease prognosis. However, the differential effect of modulators among CF patients and the presence of non-responders and ineligible patients underscore the need to develop specialized and customized therapies for a significant number of patients. Recent advances in the understanding of the CFTR structure, its expression, and defined cellular compositions will aid in developing more precise therapies. As the lifespan of CF patients continues to increase, it is becoming critical to clinically address the extra-pulmonary manifestations of CF disease to improve the quality of life of the patients. In-depth analysis of the molecular signature of different CF organs at the transcriptional and post-transcriptional levels is rapidly advancing and will help address the etiological causes and variability of CF among patients and develop precision medicine in CF. In this review, we will provide an overview of CF disease, leading to the discovery and characterization of CFTR and the development of CFTR modulators. The later sections of the review will delve into the key findings derived from single-molecule and single-cell-level analyses of CFTR, followed by an exploration of disease-relevant protein complexes of CFTR that may ultimately define the etiological course of CF disease.
Collapse
Affiliation(s)
- Yashaswini Ramananda
- Department of Pediatrics, Division of Pulmonary Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA;
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Anjaparavanda P. Naren
- Department of Pediatrics, Division of Pulmonary Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA;
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Kavisha Arora
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
2
|
Simon MA, Iordanov I, Szollosi A, Csanády L. Estimating the true stability of the prehydrolytic outward-facing state in an ABC protein. eLife 2023; 12:e90736. [PMID: 37782012 PMCID: PMC10569789 DOI: 10.7554/elife.90736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/01/2023] [Indexed: 10/03/2023] Open
Abstract
CFTR, the anion channel mutated in cystic fibrosis patients, is a model ABC protein whose ATP-driven conformational cycle is observable at single-molecule level in patch-clamp recordings. Bursts of CFTR pore openings are coupled to tight dimerization of its two nucleotide-binding domains (NBDs) and in wild-type (WT) channels are mostly terminated by ATP hydrolysis. The slow rate of non-hydrolytic closure - which determines how tightly bursts and ATP hydrolysis are coupled - is unknown, as burst durations of catalytic site mutants span a range of ~200-fold. Here, we show that Walker A mutation K1250A, Walker B mutation D1370N, and catalytic glutamate mutations E1371S and E1371Q all completely disrupt ATP hydrolysis. True non-hydrolytic closing rate of WT CFTR approximates that of K1250A and E1371S. That rate is slowed ~15-fold in E1371Q by a non-native inter-NBD H-bond, and accelerated ~15-fold in D1370N. These findings uncover unique features of the NBD interface in human CFTR.
Collapse
Affiliation(s)
- Márton A Simon
- Department of Biochemistry, Semmelweis UniversityBudapestHungary
- HCEMM-SE Molecular Channelopathies Research GroupBudapestHungary
- HUN-REN-SE Ion Channel Research GroupBudapestHungary
| | - Iordan Iordanov
- Department of Biochemistry, Semmelweis UniversityBudapestHungary
- HCEMM-SE Molecular Channelopathies Research GroupBudapestHungary
- HUN-REN-SE Ion Channel Research GroupBudapestHungary
| | - Andras Szollosi
- Department of Biochemistry, Semmelweis UniversityBudapestHungary
- HCEMM-SE Molecular Channelopathies Research GroupBudapestHungary
- HUN-REN-SE Ion Channel Research GroupBudapestHungary
| | - László Csanády
- Department of Biochemistry, Semmelweis UniversityBudapestHungary
- HCEMM-SE Molecular Channelopathies Research GroupBudapestHungary
- HUN-REN-SE Ion Channel Research GroupBudapestHungary
| |
Collapse
|
3
|
Simon MA, Csanády L. Optimization of CFTR gating through the evolution of its extracellular loops. J Gen Physiol 2023; 155:e202213264. [PMID: 36723516 PMCID: PMC9929929 DOI: 10.1085/jgp.202213264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/02/2022] [Accepted: 01/17/2023] [Indexed: 02/02/2023] Open
Abstract
CFTR chloride channel mutations cause the lethal and incurable disease cystic fibrosis (CF). CFTR is activated by phosphorylation, and phosphorylated channels exhibit "bursting" behavior-"bursts" of openings separated by short "flickery" closures and flanked by long "interburst" closures-driven by ATP binding/hydrolysis at two nucleotide-binding domains. The human channel (hCFTR) and the distant zebrafish ortholog (zCFTR) display differences both in their gating properties and structures. In phosphorylated ATP-bound hCFTR, the hR117 side chain, conserved across evolution, forms an H-bond that stabilizes the open state. Lack of that bond in the hR117H mutant causes CF. In the phosphorylated ATP-bound zCFTR structure that H-bond is not observable. Here, we show that the zR118H mutation does not affect the function of zCFTR. Instead, we identify an H-bond between the zS109 and zS120 side chains of phosphorylated ATP-bound, but not of unphosphorylated apo-, zCFTR. We investigate the role of that interaction using thermodynamic mutant cycles built on gating parameters determined in inside-out patch clamp recordings. We find that zS109 indeed forms an H-bond with zN120 in the flickery closed state, but not in the open or interburst closed states. Although in hCFTR an isoleucine (hI119) replaces the asparagine, mutation hS108A produces a strong hR117H-like phenotype. Since the effects of the latter two mutations are not additive, we conclude that in hCFTR these two positions interact, and the hS108-hR117 and hR117-hE1124 H-bonds cooperate to stabilize the open state. These findings highlight an example of how the gating mechanism was optimized during CFTR molecular evolution.
Collapse
Affiliation(s)
- Márton A. Simon
- Department of Biochemistry, Semmelweis University, Budapest, Hungary
- HCEMM-SE Molecular Channelopathies Research Group, Budapest, Hungary
- ELKH-SE Ion Channel Research Group, Budapest, Hungary
| | - László Csanády
- Department of Biochemistry, Semmelweis University, Budapest, Hungary
- HCEMM-SE Molecular Channelopathies Research Group, Budapest, Hungary
- ELKH-SE Ion Channel Research Group, Budapest, Hungary
| |
Collapse
|
4
|
Levring J, Terry DS, Kilic Z, Fitzgerald G, Blanchard SC, Chen J. CFTR function, pathology and pharmacology at single-molecule resolution. Nature 2023; 616:606-614. [PMID: 36949202 PMCID: PMC10115640 DOI: 10.1038/s41586-023-05854-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 02/16/2023] [Indexed: 03/24/2023]
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) is an anion channel that regulates salt and fluid homeostasis across epithelial membranes1. Alterations in CFTR cause cystic fibrosis, a fatal disease without a cure2,3. Electrophysiological properties of CFTR have been analysed for decades4-6. The structure of CFTR, determined in two globally distinct conformations, underscores its evolutionary relationship with other ATP-binding cassette transporters. However, direct correlations between the essential functions of CFTR and extant structures are lacking at present. Here we combine ensemble functional measurements, single-molecule fluorescence resonance energy transfer, electrophysiology and kinetic simulations to show that the two nucleotide-binding domains (NBDs) of human CFTR dimerize before channel opening. CFTR exhibits an allosteric gating mechanism in which conformational changes within the NBD-dimerized channel, governed by ATP hydrolysis, regulate chloride conductance. The potentiators ivacaftor and GLPG1837 enhance channel activity by increasing pore opening while NBDs are dimerized. Disease-causing substitutions proximal (G551D) or distal (L927P) to the ATPase site both reduce the efficiency of NBD dimerization. These findings collectively enable the framing of a gating mechanism that informs on the search for more efficacious clinical therapies.
Collapse
Affiliation(s)
- Jesper Levring
- Laboratory of Membrane Biology and Biophysics, The Rockefeller University, New York, NY, USA
| | - Daniel S Terry
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Zeliha Kilic
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Gabriel Fitzgerald
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Scott C Blanchard
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| | - Jue Chen
- Laboratory of Membrane Biology and Biophysics, The Rockefeller University, New York, NY, USA.
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
5
|
Zeng ZW, Linsdell P, Pomès R. Molecular dynamics study of Cl - permeation through cystic fibrosis transmembrane conductance regulator (CFTR). Cell Mol Life Sci 2023; 80:51. [PMID: 36694009 PMCID: PMC9873711 DOI: 10.1007/s00018-022-04621-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 10/26/2022] [Accepted: 10/31/2022] [Indexed: 01/25/2023]
Abstract
The recent elucidation of atomistic structures of Cl- channel CFTR provides opportunities for understanding the molecular basis of cystic fibrosis. Despite having been activated through phosphorylation and provided with ATP ligands, several near-atomistic cryo-EM structures of CFTR are in a closed state, as inferred from the lack of a continuous passage through a hydrophobic bottleneck region located in the extracellular portion of the pore. Here, we present repeated, microsecond-long molecular dynamics simulations of human CFTR solvated in a lipid bilayer and aqueous NaCl. At equilibrium, Cl- ions enter the channel through a lateral intracellular portal and bind to two distinct cationic sites inside the channel pore but do not traverse the narrow, de-wetted bottleneck. Simulations conducted in the presence of a strong hyperpolarizing electric field led to spontaneous Cl- translocation events through the bottleneck region of the channel, suggesting that the protein relaxed to a functionally open state. Conformational changes of small magnitude involving transmembrane helices 1 and 6 preceded ion permeation through diverging exit routes at the extracellular end of the pore. The pore bottleneck undergoes wetting prior to Cl- translocation, suggesting that it acts as a hydrophobic gate. Although permeating Cl- ions remain mostly hydrated, partial dehydration occurs at the binding sites and in the bottleneck. The observed Cl- pathway is largely consistent with the loci of mutations that alter channel conductance, anion binding, and ion selectivity, supporting the model of the open state of CFTR obtained in the present study.
Collapse
Affiliation(s)
- Zhi Wei Zeng
- Molecular Medicine, Hospital for Sick Children, 686 Bay Street, Toronto, ON, M5G 0A4, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Paul Linsdell
- Department of Physiology and Biophysics, Dalhousie University, PO Box 15000, Halifax, NS, B3H 1X5, Canada
| | - Régis Pomès
- Molecular Medicine, Hospital for Sick Children, 686 Bay Street, Toronto, ON, M5G 0A4, Canada.
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
6
|
Simon MA, Csanády L. Molecular pathology of the R117H cystic fibrosis mutation is explained by loss of a hydrogen bond. eLife 2021; 10:74693. [PMID: 34870594 PMCID: PMC8673840 DOI: 10.7554/elife.74693] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/03/2021] [Indexed: 11/21/2022] Open
Abstract
The phosphorylation-activated anion channel cystic fibrosis transmembrane conductance regulator (CFTR) is gated by an ATP hydrolysis cycle at its two cytosolic nucleotide-binding domains, and is essential for epithelial salt-water transport. A large number of CFTR mutations cause cystic fibrosis. Since recent breakthrough in targeted pharmacotherapy, CFTR mutants with impaired gating are candidates for stimulation by potentiator drugs. Thus, understanding the molecular pathology of individual mutations has become important. The relatively common R117H mutation affects an extracellular loop, but nevertheless causes a strong gating defect. Here, we identify a hydrogen bond between the side chain of arginine 117 and the backbone carbonyl group of glutamate 1124 in the cryo-electronmicroscopic structure of phosphorylated, ATP-bound CFTR. We address the functional relevance of that interaction for CFTR gating using macroscopic and microscopic inside-out patch-clamp recordings. Employing thermodynamic double-mutant cycles, we systematically track gating-state-dependent changes in the strength of the R117-E1124 interaction. We find that the H-bond is formed only in the open state, but neither in the short-lived ‘flickery’ nor in the long-lived ‘interburst’ closed state. Loss of this H-bond explains the strong gating phenotype of the R117H mutant, including robustly shortened burst durations and strongly reduced intraburst open probability. The findings may help targeted potentiator design.
Collapse
Affiliation(s)
- Márton A Simon
- Department of Biochemistry, Semmelweis University, Budapest, Hungary.,HCEMM-SE Molecular Channelopathies Research Group, Budapest, Hungary
| | - László Csanády
- Department of Biochemistry, Semmelweis University, Budapest, Hungary.,HCEMM-SE Molecular Channelopathies Research Group, Budapest, Hungary.,MTA-SE Ion Channel Research Group, Semmelweis University, Budapest, Hungary
| |
Collapse
|
7
|
Yeh HI, Yu YC, Kuo PL, Tsai CK, Huang HT, Hwang TC. Functional stability of CFTR depends on tight binding of ATP at its degenerate ATP-binding site. J Physiol 2021; 599:4625-4642. [PMID: 34411298 DOI: 10.1113/jp281933] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 08/13/2021] [Indexed: 01/28/2023] Open
Abstract
Opening of the cystic fibrosis transmembrane conductance regulator (CFTR) channel is coupled to the motion of its two nucleotide-binding domains: they form a heterodimer sandwiching two functionally distinct ATP-binding sites (sites 1 and 2). While active ATP hydrolysis in site 2 triggers rapid channel closure, the functional role of stable ATP binding in the catalysis-incompetent (or degenerate) site 1, a feature conserved in many other ATP-binding cassette (ABC) transporter proteins, remains elusive. Here, we found that CFTR loses its prompt responsiveness to ATP after the channel is devoid of ATP for tens to hundreds of seconds. Mutants with weakened ATP binding in site 1 and the most prevalent disease-causing mutation, F508del, are more vulnerable to ATP depletion. In contrast, strengthening ligand binding in site 1 with N6 -(2-phenylethyl)-ATP, a high-affinity ATP analogue, or abolishing ATP hydrolysis in site 2 by the mutation D1370N, helps sustain a durable function of the otherwise unstable mutant channels. Thus, tight binding of ATP in the degenerate ATP-binding site is crucial to the functional stability of CFTR. Small molecules targeting site 1 may bear therapeutic potential to overcome the membrane instability of F508del-CFTR. KEY POINTS: During evolution, many ATP-binding cassette transporters - including the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel, whose dysfunction causes cystic fibrosis (CF) - lose the ability to hydrolyse ATP in one of the two ATP-binding sites. Here we show that tight ATP binding at this degenerate site in CFTR is central for maintaining the stable, robust function of normal CFTR. We also demonstrate that membrane instability of the most common CF-causing mutant, F508del-CFTR, can be rescued by strengthening ATP binding at CFTR's degenerate site. Our data thus explain an evolutionary puzzle and offer a potential therapeutic strategy for CF.
Collapse
Affiliation(s)
- Han-I Yeh
- Dalton Cardiovascular Research Center and Department of Medical Pharmacology and Physiology, University of Missouri-Columbia, Columbia, MO, 65211, USA.,Department of Pharmacology, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ying-Chun Yu
- Dalton Cardiovascular Research Center and Department of Medical Pharmacology and Physiology, University of Missouri-Columbia, Columbia, MO, 65211, USA
| | - Pei-Lun Kuo
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chun-Kuang Tsai
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hsin-Tuan Huang
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Tzyh-Chang Hwang
- Dalton Cardiovascular Research Center and Department of Medical Pharmacology and Physiology, University of Missouri-Columbia, Columbia, MO, 65211, USA.,Department of Pharmacology, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
8
|
Della Sala A, Prono G, Hirsch E, Ghigo A. Role of Protein Kinase A-Mediated Phosphorylation in CFTR Channel Activity Regulation. Front Physiol 2021; 12:690247. [PMID: 34211404 PMCID: PMC8240754 DOI: 10.3389/fphys.2021.690247] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 05/10/2021] [Indexed: 11/17/2022] Open
Abstract
Cystic fibrosis transmembrane conductance regulator (CFTR) is an anion channel expressed on the apical membrane of epithelial cells, where it plays a pivotal role in chloride transport and overall tissue homeostasis. CFTR constitutes a unique member of the ATP-binding cassette transporter superfamily, due to its distinctive cytosolic regulatory (R) domain carrying multiple phosphorylation sites that allow the tight regulation of channel activity and gating. Mutations in the CFTR gene cause cystic fibrosis, the most common lethal autosomal genetic disease in the Caucasian population. In recent years, major efforts have led to the development of CFTR modulators, small molecules targeting the underlying genetic defect of CF and ultimately rescuing the function of the mutant channel. Recent evidence has highlighted that this class of drugs could also impact on the phosphorylation of the R domain of the channel by protein kinase A (PKA), a key regulatory mechanism that is altered in various CFTR mutants. Therefore, the aim of this review is to summarize the current knowledge on the regulation of the CFTR by PKA-mediated phosphorylation and to provide insights into the different factors that modulate this essential CFTR modification. Finally, the discussion will focus on the impact of CF mutations on PKA-mediated CFTR regulation, as well as on how small molecule CFTR regulators and PKA interact to rescue dysfunctional channels.
Collapse
Affiliation(s)
- Angela Della Sala
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | | | - Emilio Hirsch
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy.,Kither Biotech S.r.l, Turin, Italy
| | - Alessandra Ghigo
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy.,Kither Biotech S.r.l, Turin, Italy
| |
Collapse
|
9
|
Stockner T, Gradisch R, Schmitt L. The role of the degenerate nucleotide binding site in type I ABC exporters. FEBS Lett 2020; 594:3815-3838. [PMID: 33179257 PMCID: PMC7756269 DOI: 10.1002/1873-3468.13997] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/26/2020] [Accepted: 10/15/2020] [Indexed: 12/18/2022]
Abstract
ATP‐binding cassette (ABC) transporters are fascinating molecular machines that are capable of transporting a large variety of chemically diverse compounds. The energy required for translocation is derived from binding and hydrolysis of ATP. All ABC transporters share a basic architecture and are composed of two transmembrane domains and two nucleotide binding domains (NBDs). The latter harbor all conserved sequence motifs that hallmark the ABC transporter superfamily. The NBDs form the nucleotide binding sites (NBSs) in their interface. Transporters with two active NBSs are called canonical transporters, while ABC exporters from eukaryotic organisms, including humans, frequently have a degenerate NBS1 containing noncanonical residues that strongly impair ATP hydrolysis. Here, we summarize current knowledge on degenerate ABC transporters. By integrating structural information with biophysical and biochemical evidence of asymmetric function, we develop a model for the transport cycle of degenerate ABC transporters. We will elaborate on the unclear functional advantages of a degenerate NBS.
Collapse
Affiliation(s)
- Thomas Stockner
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Ralph Gradisch
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Lutz Schmitt
- Institute of Biochemistry, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
10
|
Cholesterol Interaction Directly Enhances Intrinsic Activity of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR). Cells 2019; 8:cells8080804. [PMID: 31370288 PMCID: PMC6721619 DOI: 10.3390/cells8080804] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 07/23/2019] [Accepted: 07/29/2019] [Indexed: 12/15/2022] Open
Abstract
The recent cryo-electron microscopy structures of zebrafish and the human cystic fibrosis transmembrane conductance regulator (CFTR) provided unprecedented insights into putative mechanisms underlying gating of its anion channel activity. Interestingly, despite predictions based on channel activity measurements in biological membranes, the structure of the detergent purified, phosphorylated, and ATP-bound human CFTR protein did not reveal a stably open conduction pathway. This study tested the hypothesis that the functional properties of the detergent solubilized CFTR protein used for structural determinations are different from those exhibited by CFTR purified under conditions that retain associated lipids native to the membrane. It was found that CFTR purified together with phospholipids and cholesterol using amphipol: A8-35, exhibited higher rates of catalytic activity, phosphorylation dependent channel activation and potentiation by the therapeutic compound, ivacaftor, than did CFTR purified in detergent. The catalytic activity of phosphorylated CFTR detergent micelles was rescued by the addition of phospholipids plus cholesterol, but not by phospholipids alone, arguing for a specific role for cholesterol in modulating this function. In summary, these studies highlight the importance of lipid interactions in the intrinsic activities and pharmacological potentiation of CFTR.
Collapse
|
11
|
Csanády L, Vergani P, Gadsby DC. STRUCTURE, GATING, AND REGULATION OF THE CFTR ANION CHANNEL. Physiol Rev 2019; 99:707-738. [PMID: 30516439 DOI: 10.1152/physrev.00007.2018] [Citation(s) in RCA: 148] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) belongs to the ATP binding cassette (ABC) transporter superfamily but functions as an anion channel crucial for salt and water transport across epithelial cells. CFTR dysfunction, because of mutations, causes cystic fibrosis (CF). The anion-selective pore of the CFTR protein is formed by its two transmembrane domains (TMDs) and regulated by its cytosolic domains: two nucleotide binding domains (NBDs) and a regulatory (R) domain. Channel activation requires phosphorylation of the R domain by cAMP-dependent protein kinase (PKA), and pore opening and closing (gating) of phosphorylated channels is driven by ATP binding and hydrolysis at the NBDs. This review summarizes available information on structure and mechanism of the CFTR protein, with a particular focus on atomic-level insight gained from recent cryo-electron microscopic structures and on the molecular mechanisms of channel gating and its regulation. The pharmacological mechanisms of small molecules targeting CFTR's ion channel function, aimed at treating patients suffering from CF and other diseases, are briefly discussed.
Collapse
Affiliation(s)
- László Csanády
- Department of Medical Biochemistry, Semmelweis University , Budapest , Hungary ; MTA-SE Ion Channel Research Group, Budapest , Hungary ; Department of Neuroscience, Physiology and Pharmacology, University College London , London , United Kingdom ; and Laboratory of Cardiac/Membrane Physiology, The Rockefeller University , New York, New York
| | - Paola Vergani
- Department of Medical Biochemistry, Semmelweis University , Budapest , Hungary ; MTA-SE Ion Channel Research Group, Budapest , Hungary ; Department of Neuroscience, Physiology and Pharmacology, University College London , London , United Kingdom ; and Laboratory of Cardiac/Membrane Physiology, The Rockefeller University , New York, New York
| | - David C Gadsby
- Department of Medical Biochemistry, Semmelweis University , Budapest , Hungary ; MTA-SE Ion Channel Research Group, Budapest , Hungary ; Department of Neuroscience, Physiology and Pharmacology, University College London , London , United Kingdom ; and Laboratory of Cardiac/Membrane Physiology, The Rockefeller University , New York, New York
| |
Collapse
|
12
|
Abstract
Cystic fibrosis (CF) is the most common life-limiting genetic disease in Caucasian patients. Continued advances have led to improved survival, and adults with CF now outnumber children. As our understanding of the disease improves, new therapies have emerged that improve the basic defect, enabling patient-specific treatment and improved outcomes. However, recurrent exacerbations continue to lead to morbidity and mortality, and new pathogens have been identified that may lead to worse outcomes. In addition, new complications, such as CF-related diabetes and increased risk of gastrointestinal cancers, are creating new challenges in management. For patients with end-stage disease, lung transplantation has remained one of the few treatment options, but challenges in identifying the most appropriate patients remain.
Collapse
Affiliation(s)
- Michael M Rey
- Division of Pulmonary, Allergy and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA; , ,
| | - Michael P Bonk
- Division of Pulmonary, Allergy and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA; , ,
| | - Denis Hadjiliadis
- Division of Pulmonary, Allergy and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA; , ,
| |
Collapse
|
13
|
Trowitzsch S, Tampé R. ABC Transporters in Dynamic Macromolecular Assemblies. J Mol Biol 2018; 430:4481-4495. [DOI: 10.1016/j.jmb.2018.07.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 07/24/2018] [Accepted: 07/30/2018] [Indexed: 12/28/2022]
|
14
|
Ion channels as targets to treat cystic fibrosis lung disease. J Cyst Fibros 2017; 17:S22-S27. [PMID: 29102290 DOI: 10.1016/j.jcf.2017.10.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 10/09/2017] [Accepted: 10/09/2017] [Indexed: 11/21/2022]
Abstract
Lung health relies on effective mucociliary clearance and innate immune defence mechanisms. In cystic fibrosis (CF), an imbalance in ion transport due to an absence of chloride ion secretion, caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) and a concomitant sodium hyperabsorption, caused by dyregulation of the epithelial sodium channel (ENaC), results in mucus stasis which predisposes the lungs to cycles of chronic infection and inflammation leading to lung function decline. An increased understanding of CFTR structure and function has provided opportunity for the development of a number of novel modulators targeting mutant CFTR however, it is important to also consider other ion channels and transporters present in the airways as putative targets for drug development. In this review, we discuss recent advances in CFTR biology which will contribute to further drug discovery in the field. We also examine developments to inhibit the epithelial sodium channel (ENaC) and potentially activate alternative chloride channels and transporters as a multi-tracked strategy to hydrate CF airways and restore normal mucociliary clearance mechanisms in a manner independent of CFTR mutation.
Collapse
|
15
|
Kühn F, Kühn C, Lückhoff A. Different Principles of ADP-Ribose-Mediated Activation and Opposite Roles of the NUDT9 Homology Domain in the TRPM2 Orthologs of Man and Sea Anemone. Front Physiol 2017; 8:879. [PMID: 29163217 PMCID: PMC5671594 DOI: 10.3389/fphys.2017.00879] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 10/18/2017] [Indexed: 01/31/2023] Open
Abstract
A decisive element in the human cation channel TRPM2 is a region in its cytosolic C-terminus named NUDT9H because of its homology to the NUDT9 enzyme, a pyrophosphatase degrading ADP-ribose (ADPR). In hTRPM2, however, the NUDT9H domain has lost its enzymatic activity but serves as a binding domain for ADPR. As consequence of binding, gating of the channel is initiated. Since ADPR is produced after oxidative DNA damage, hTRPM2 mediates Ca2+ influx in response to oxidative stress which may lead to cell death. In the genome of the sea anemone Nematostella vectensis (nv), a preferred model organism for the evolution of key bilaterian features, a TRPM2 ortholog has been identified that contains a NUDT9H domain as well. Heterologous expression of nvTRPM2 in HEK-293 cells reveals a cation channel with many close similarities to the human counterpart. Most notably, nvTRPM2 is activated by ADPR, and Ca2+ is a co-agonist. However, the intramolecular mechanisms of ADPR gating as well as the role of NUDT9H are strikingly different in the two species. Whereas already subtle changes of NUDT9H abolish ADPR gating in hTRPM2, the region can be completely removed from nvTRPM2 without loss of responses to ADPR. An alternative ADPR binding site seems to be present but has not yet been characterized. The ADP-ribose pyrophosphatase (ADPRase) function of nvNUDT9H has been preserved but can be abolished by numerous genetic manipulations. All these manipulations create channels that are sensitive to hydrogen peroxide which fails to induce channel activity in wild-type nvTRPM2. Therefore, the function of NUDT9H in nvTRPM2 is the degradation of ADPR, thereby reducing agonist concentration in the presence of oxidative stress. Thus, the two TRPM2 orthologs have evolved divergently but nevertheless gained analogous functional properties, i.e., gating by ADPR with Ca2+ as co-factor. Opposite roles are played by the respective NUDT9H domains, either binding of ADPR and mediating channel activity, or controlling the availability of ADPR at the binding site located in a different domain.
Collapse
Affiliation(s)
- Frank Kühn
- Medical Faculty, Institute of Physiology, RWTH Aachen University, Aachen, Germany
| | - Cornelia Kühn
- Medical Faculty, Institute of Physiology, RWTH Aachen University, Aachen, Germany
| | - Andreas Lückhoff
- Medical Faculty, Institute of Physiology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
16
|
Substrate Specificity of the FurE Transporter Is Determined by Cytoplasmic Terminal Domain Interactions. Genetics 2017; 207:1387-1400. [PMID: 28978674 DOI: 10.1534/genetics.117.300327] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 10/03/2017] [Indexed: 12/17/2022] Open
Abstract
FurE, a member of the Nucleobase Cation Symporter 1 transporter family in Aspergillus nidulans, is specific for allantoin, uric acid (UA), uracil, and related analogs. Herein, we show that C- or N-terminally-truncated FurE transporters (FurE-ΔC or FurE-ΔΝ) present increased protein stability, but also an inability for UA transport. To better understand the role of cytoplasmic terminal regions, we characterized genetic suppressors that restore FurE-ΔC-mediated UA transport. Suppressors map in the periphery of the substrate-binding site [Thr133 in transmembrane segment (TMS)3 and Val343 in TMS8], an outward-facing gate (Ser296 in TMS7, Ile371 in TMS9, and Tyr392 and Leu394 in TMS10), or in flexible loops (Asp26 in LN, Gly222 in L5, and Asn308 in L7). Selected suppressors were also shown to restore the wild-type specificity of FurE-ΔΝ, suggesting that both C- and/or N-terminal domains are involved in intramolecular dynamics critical for substrate selection. A direct, substrate-sensitive interaction of C- and/or N-terminal domains was supported by bimolecular fluorescence complementation assays. To our knowledge, this is the first case where not only the function, but also the specificity, of a eukaryotic transporter is regulated by its terminal cytoplasmic regions.
Collapse
|
17
|
Sorum B, Töröcsik B, Csanády L. Asymmetry of movements in CFTR's two ATP sites during pore opening serves their distinct functions. eLife 2017; 6:29013. [PMID: 28944753 PMCID: PMC5626490 DOI: 10.7554/elife.29013] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 09/25/2017] [Indexed: 11/13/2022] Open
Abstract
CFTR, the chloride channel mutated in cystic fibrosis (CF) patients, is opened by ATP binding to two cytosolic nucleotide binding domains (NBDs), but pore-domain mutations may also impair gating. ATP-bound NBDs dimerize occluding two nucleotides at interfacial binding sites; one site hydrolyzes ATP, the other is inactive. The pore opens upon tightening, and closes upon disengagement, of the catalytic site following ATP hydrolysis. Extent, timing, and role of non-catalytic-site movements are unknown. Here we exploit equilibrium gating of a hydrolysis-deficient mutant and apply Φ value analysis to compare timing of opening-associated movements at multiple locations, from the cytoplasmic ATP sites to the extracellular surface. Marked asynchrony of motion in the two ATP sites reveals their distinct roles in channel gating. The results clarify the molecular mechanisms of functional cross-talk between canonical and degenerate ATP sites in asymmetric ABC proteins, and of the gating defects caused by two common CF mutations.
Collapse
Affiliation(s)
- Ben Sorum
- Department of Medical Biochemistry, Semmelweis University, Budapest, Hungary
| | - Beáta Töröcsik
- Department of Medical Biochemistry, Semmelweis University, Budapest, Hungary.,MTA-SE Ion Channel Research Group, Semmelweis University, Budapest, Hungary
| | - László Csanády
- Department of Medical Biochemistry, Semmelweis University, Budapest, Hungary.,MTA-SE Ion Channel Research Group, Semmelweis University, Budapest, Hungary
| |
Collapse
|
18
|
Molecular Structure of the Human CFTR Ion Channel. Cell 2017; 169:85-95.e8. [PMID: 28340353 DOI: 10.1016/j.cell.2017.02.024] [Citation(s) in RCA: 352] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 02/09/2017] [Accepted: 02/14/2017] [Indexed: 01/13/2023]
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) is an ATP-binding cassette (ABC) transporter that uniquely functions as an ion channel. Here, we present a 3.9 Å structure of dephosphorylated human CFTR without nucleotides, determined by electron cryomicroscopy (cryo-EM). Close resemblance of this human CFTR structure to zebrafish CFTR under identical conditions reinforces its relevance for understanding CFTR function. The human CFTR structure reveals a previously unresolved helix belonging to the R domain docked inside the intracellular vestibule, precluding channel opening. By analyzing the sigmoid time course of CFTR current activation, we propose that PKA phosphorylation of the R domain is enabled by its infrequent spontaneous disengagement, which also explains residual ATPase and gating activity of dephosphorylated CFTR. From comparison with MRP1, a feature distinguishing CFTR from all other ABC transporters is the helix-loop transition in transmembrane helix 8, which likely forms the structural basis for CFTR's channel function.
Collapse
|
19
|
Timachi MH, Hutter CA, Hohl M, Assafa T, Böhm S, Mittal A, Seeger MA, Bordignon E. Exploring conformational equilibria of a heterodimeric ABC transporter. eLife 2017; 6. [PMID: 28051765 PMCID: PMC5216877 DOI: 10.7554/elife.20236] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 12/01/2016] [Indexed: 01/04/2023] Open
Abstract
ABC exporters pump substrates across the membrane by coupling ATP-driven movements of nucleotide binding domains (NBDs) to the transmembrane domains (TMDs), which switch between inward- and outward-facing (IF, OF) orientations. DEER measurements on the heterodimeric ABC exporter TM287/288 from Thermotoga maritima, which contains a non-canonical ATP binding site, revealed that in the presence of nucleotides the transporter exists in an IF/OF equilibrium. While ATP binding was sufficient to partially populate the OF state, nucleotide trapping in the pre- or post-hydrolytic state was required for a pronounced conformational shift. At physiologically high temperatures and in the absence of nucleotides, the NBDs disengage asymmetrically while the conformation of the TMDs remains unchanged. Nucleotide binding at the degenerate ATP site prevents complete NBD separation, a molecular feature differentiating heterodimeric from homodimeric ABC exporters. Our data suggest hydrolysis-independent closure of the NBD dimer, which is further stabilized as the consensus site nucleotide is committed to hydrolysis. DOI:http://dx.doi.org/10.7554/eLife.20236.001
Collapse
Affiliation(s)
- M Hadi Timachi
- Faculty of Chemistry and Biochemistry, Ruhr-Universität Bochum, Bochum, Germany.,Department of Physics, Freie Universität Berlin, Berlin, Germany
| | - Cedric Aj Hutter
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Michael Hohl
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Tufa Assafa
- Faculty of Chemistry and Biochemistry, Ruhr-Universität Bochum, Bochum, Germany.,Department of Physics, Freie Universität Berlin, Berlin, Germany
| | - Simon Böhm
- Laboratory of Physical Chemistry, ETH Zurich, Zurich, Switzerland
| | - Anshumali Mittal
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Markus A Seeger
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Enrica Bordignon
- Faculty of Chemistry and Biochemistry, Ruhr-Universität Bochum, Bochum, Germany.,Department of Physics, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
20
|
Chin S, Hung M, Bear CE. Current insights into the role of PKA phosphorylation in CFTR channel activity and the pharmacological rescue of cystic fibrosis disease-causing mutants. Cell Mol Life Sci 2017; 74:57-66. [PMID: 27722768 PMCID: PMC11107731 DOI: 10.1007/s00018-016-2388-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 09/28/2016] [Indexed: 12/21/2022]
Abstract
Cystic fibrosis transmembrane conductance regulator (CFTR) channel gating is predominantly regulated by protein kinase A (PKA)-dependent phosphorylation. In addition to regulating CFTR channel activity, PKA phosphorylation is also involved in enhancing CFTR trafficking and mediating conformational changes at the interdomain interfaces of the protein. The major cystic fibrosis (CF)-causing mutation is the deletion of phenylalanine at position 508 (F508del); it causes many defects that affect CFTR trafficking, stability, and gating at the cell surface. Due to the multiple roles of PKA phosphorylation, there is growing interest in targeting PKA-dependent signaling for rescuing the trafficking and functional defects of F508del-CFTR. This review will discuss the effects of PKA phosphorylation on wild-type CFTR, the consequences of CF mutations on PKA phosphorylation, and the development of therapies that target PKA-mediated signaling.
Collapse
Affiliation(s)
- Stephanie Chin
- Programme of Molecular Structure and Function, Research Institute, Hospital for Sick Children, Toronto, Canada
- Department of Biochemistry, University of Toronto, Toronto, Canada
| | - Maurita Hung
- Programme of Molecular Structure and Function, Research Institute, Hospital for Sick Children, Toronto, Canada
| | - Christine E Bear
- Programme of Molecular Structure and Function, Research Institute, Hospital for Sick Children, Toronto, Canada.
- Department of Biochemistry, University of Toronto, Toronto, Canada.
- Department of Physiology, University of Toronto, Toronto, Canada.
| |
Collapse
|
21
|
Callebaut I, Hoffmann B, Lehn P, Mornon JP. Molecular modelling and molecular dynamics of CFTR. Cell Mol Life Sci 2017; 74:3-22. [PMID: 27717958 PMCID: PMC11107702 DOI: 10.1007/s00018-016-2385-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 09/28/2016] [Indexed: 12/11/2022]
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) protein is a member of the ATP-binding cassette (ABC) transporter superfamily that functions as an ATP-gated channel. Considerable progress has been made over the last years in the understanding of the molecular basis of the CFTR functions, as well as dysfunctions causing the common genetic disease cystic fibrosis (CF). This review provides a global overview of the theoretical studies that have been performed so far, especially molecular modelling and molecular dynamics (MD) simulations. A special emphasis is placed on the CFTR-specific evolution of an ABC transporter framework towards a channel function, as well as on the understanding of the effects of disease-causing mutations and their specific modulation. This in silico work should help structure-based drug discovery and design, with a view to develop CFTR-specific pharmacotherapeutic approaches for the treatment of CF in the context of precision medicine.
Collapse
Affiliation(s)
- Isabelle Callebaut
- UMR CNRS 7590, Museum National d'Histoire Naturelle, IRD UMR 206, IUC, Case 115, IMPMC, Sorbonne Universités, UPMC Univ Paris 06, 4 Place Jussieu, 75005, Paris Cedex 05, France.
| | - Brice Hoffmann
- UMR CNRS 7590, Museum National d'Histoire Naturelle, IRD UMR 206, IUC, Case 115, IMPMC, Sorbonne Universités, UPMC Univ Paris 06, 4 Place Jussieu, 75005, Paris Cedex 05, France
| | - Pierre Lehn
- INSERM U1078, SFR ScInBioS, Université de Bretagne Occidentale, Brest, France
| | - Jean-Paul Mornon
- UMR CNRS 7590, Museum National d'Histoire Naturelle, IRD UMR 206, IUC, Case 115, IMPMC, Sorbonne Universités, UPMC Univ Paris 06, 4 Place Jussieu, 75005, Paris Cedex 05, France
| |
Collapse
|
22
|
Chin S, Yang D, Miles AJ, Eckford PDW, Molinski S, Wallace BA, Bear CE. Attenuation of Phosphorylation-dependent Activation of Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) by Disease-causing Mutations at the Transmission Interface. J Biol Chem 2016; 292:1988-1999. [PMID: 28003367 PMCID: PMC5290968 DOI: 10.1074/jbc.m116.762633] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 12/07/2016] [Indexed: 12/21/2022] Open
Abstract
Cystic fibrosis transmembrane conductance regulator (CFTR) is a multidomain membrane protein that functions as a phosphorylation-regulated anion channel. The interface between its two cytosolic nucleotide binding domains and coupling helices conferred by intracellular loops extending from the channel pore domains has been referred to as a transmission interface and is thought to be critical for the regulated channel activity of CFTR. Phosphorylation of the regulatory domain of CFTR by protein kinase A (PKA) is required for its channel activity. However, it was unclear if phosphorylation modifies the transmission interface. Here, we studied purified full-length CFTR protein using spectroscopic techniques to determine the consequences of PKA-mediated phosphorylation. Synchrotron radiation circular dichroism spectroscopy confirmed that purified full-length wild-type CFTR is folded and structurally responsive to phosphorylation. Intrinsic tryptophan fluorescence studies of CFTR showed that phosphorylation reduced iodide-mediated quenching, consistent with an effect of phosphorylation in burying tryptophans at the transmission interface. Importantly, the rate of phosphorylation-dependent channel activation was compromised by the introduction of disease-causing mutations in either of the two coupling helices predicted to interact with nucleotide binding domain 1 at the interface. Together, these results suggest that phosphorylation modifies the interface between the catalytic and pore domains of CFTR and that this modification facilitates CFTR channel activation.
Collapse
Affiliation(s)
- Stephanie Chin
- From the Programme of Molecular Structure and Function, Hospital for Sick Children, Toronto M5G 0A4, Canada; the Department of Biochemistry, University of Toronto, Toronto, Canada
| | - Donghe Yang
- From the Programme of Molecular Structure and Function, Hospital for Sick Children, Toronto M5G 0A4, Canada
| | - Andrew J Miles
- the Institute of Structural and Molecular Biology, Birkbeck College, University of London, London WC1E 7HX, United Kingdom
| | - Paul D W Eckford
- From the Programme of Molecular Structure and Function, Hospital for Sick Children, Toronto M5G 0A4, Canada
| | - Steven Molinski
- From the Programme of Molecular Structure and Function, Hospital for Sick Children, Toronto M5G 0A4, Canada; the Department of Biochemistry, University of Toronto, Toronto, Canada
| | - B A Wallace
- the Institute of Structural and Molecular Biology, Birkbeck College, University of London, London WC1E 7HX, United Kingdom
| | - Christine E Bear
- From the Programme of Molecular Structure and Function, Hospital for Sick Children, Toronto M5G 0A4, Canada; the Department of Biochemistry, University of Toronto, Toronto, Canada; the Department of Physiology, University of Toronto, Toronto, Canada.
| |
Collapse
|