1
|
Wang HC, Chen R, Yang W, Li Y, Muthukumar R, Patel RM, Casey EB, Denby E, Magee JA. Kmt2c restricts G-CSF-driven HSC mobilization and granulocyte production in a methyltransferase-independent manner. Cell Rep 2024; 43:114542. [PMID: 39046877 PMCID: PMC11423277 DOI: 10.1016/j.celrep.2024.114542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 06/10/2024] [Accepted: 07/09/2024] [Indexed: 07/27/2024] Open
Abstract
Granulocyte colony-stimulating factor (G-CSF) is widely used to enhance myeloid recovery after chemotherapy and to mobilize hematopoietic stem cells (HSCs) for transplantation. Unfortunately, through the course of chemotherapy, cancer patients can acquire leukemogenic mutations that cause therapy-related myelodysplastic syndrome (MDS) or acute myeloid leukemia (AML). This raises the question of whether therapeutic G-CSF might potentiate therapy-related MDS/AML by disproportionately stimulating mutant HSCs and other myeloid progenitors. A common mutation in therapy-related MDS/AML involves chromosome 7 deletions that inactivate many tumor suppressor genes, including KMT2C. Here, we show that Kmt2c deletions hypersensitize murine HSCs and myeloid progenitors to G-CSF, as evidenced by increased HSC mobilization and enhanced granulocyte production from granulocyte-monocyte progenitors (GMPs). Furthermore, Kmt2c attenuates the G-CSF response independently from its SET methyltransferase function. Altogether, the data raise concerns that monosomy 7 can hypersensitize progenitors to G-CSF, such that clinical use of G-CSF may amplify the risk of therapy-related MDS/AML.
Collapse
Affiliation(s)
- Helen C Wang
- Department of Pediatrics, Division of Hematology and Oncology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Ran Chen
- Department of Pediatrics, Division of Hematology and Oncology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Wei Yang
- Department of Genetics, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Yanan Li
- Department of Pediatrics, Division of Hematology and Oncology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Rohini Muthukumar
- Department of Pediatrics, Division of Hematology and Oncology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Riddhi M Patel
- Department of Pediatrics, Division of Hematology and Oncology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Emily B Casey
- Department of Pediatrics, Division of Hematology and Oncology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Elisabeth Denby
- Department of Pediatrics, Division of Hematology and Oncology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Jeffrey A Magee
- Department of Pediatrics, Division of Hematology and Oncology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA; Department of Genetics, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA.
| |
Collapse
|
2
|
Zhu AZ, Ma Z, Wolff EV, Lin Z, Gao ZJ, Li X, Du W. HES1 is required for mouse fetal hematopoiesis. Stem Cell Res Ther 2024; 15:235. [PMID: 39075526 PMCID: PMC11287931 DOI: 10.1186/s13287-024-03836-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/06/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND Hematopoiesis in mammal is a complex and highly regulated process in which hematopoietic stem cells (HSCs) give rise to all types of differentiated blood cells. Previous studies have shown that hairy and enhancer of split (HES) repressors are essential regulators of adult HSC development downstream of Notch signaling. METHODS In this study, we investigated the role of HES1, a member of HES family, in fetal hematopoiesis using an embryonic hematopoietic specific Hes1 conditional knockout mouse model by using phenotypic flow cytometry, histopathology analysis, and functional in vitro colony forming unit (CFU) assay and in vivo bone marrow transplant (BMT) assay. RESULTS We found that loss of Hes1 in early embryonic stage leads to smaller embryos and fetal livers, decreases hematopoietic stem progenitor cell (HSPC) pool, results in defective multi-lineage differentiation. Functionally, fetal hematopoietic cells deficient for Hes1 exhibit reduced in vitro progenitor activity and compromised in vivo repopulation capacity in the transplanted recipients. Further analysis shows that fetal hematopoiesis defects in Hes1fl/flFlt3Cre embryos are resulted from decreased proliferation and elevated apoptosis, associated with de-repressed HES1 targets, p27 and PTEN in Hes1-KO fetal HSPCs. Finally, pharmacological inhibition of p27 or PTEN improves fetal HSPCs function both in vitro and in vivo. CONCLUSION Together, our findings reveal a previously unappreciated role for HES1 in regulating fetal hematopoiesis, and provide new insight into the differences between fetal and adult HSC maintenance.
Collapse
Affiliation(s)
- Anthony Z Zhu
- Division of Hematology and Oncology, University of Pittsburgh School of Medicine, 5117 Center Ave, Pittsburgh, PA, 15213, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA, 15213, USA
| | - Zhilin Ma
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Emily V Wolff
- Division of Hematology and Oncology, University of Pittsburgh School of Medicine, 5117 Center Ave, Pittsburgh, PA, 15213, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA, 15213, USA
| | - Zichen Lin
- Master of Science in Medical Science, Boston University School of Medicine Graduate Master Program, Boston, MA, USA
| | - Zhenxia J Gao
- Division of Hematology and Oncology, University of Pittsburgh School of Medicine, 5117 Center Ave, Pittsburgh, PA, 15213, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA, 15213, USA
| | - Xue Li
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Wei Du
- Division of Hematology and Oncology, University of Pittsburgh School of Medicine, 5117 Center Ave, Pittsburgh, PA, 15213, USA.
- UPMC Hillman Cancer Center, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
3
|
Li H, Han R, Meng L, Sun Y, Zhao M, Zhou W, Xie J, Yu D, Shen L, Zhou Y, Wang S, Yan J, Wang W, Ye L. Nodal Metastases Associated With Fusion Oncogenes Are Age Dependent in Young Adult Patients With Thyroid Cancer. J Clin Endocrinol Metab 2023; 109:143-150. [PMID: 37536280 DOI: 10.1210/clinem/dgad458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 07/20/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023]
Abstract
CONTEXT Fusion oncogenes, especially those involving RET or NTRK, are known drivers of papillary thyroid cancer (PTC). They are prevalent in pediatric patients and correlate with aggressive tumor behavior. OBJECTIVE We explored the age dependence of fusion oncogenes and aggressive tumor behavior in young adult PTC patients. EXPERIMENTAL DESIGN We examined 150 tumors from 142 PTC patients aged between 17∼35 years old with established tumor-node-metastasis stages. Oncogenic drivers and the thyroid differentiation score (TDS) were determined by DNA and RNA sequencing of a target panel. Transcriptome analysis was performed in PTCs with RET fusions. RESULTS Among 150 PTCs, we detected BRAF V600E (n = 105), RET fusions (n = 15), NTRK3 fusions (n = 8), and BRAF fusions (n = 4). We found that fusion oncogenes were associated with nodal metastasis when age was tiered into 3 groups: <25 years, 25∼29 years, and 30∼35 years. Patients under 25 years old showed a marginal increase in tumor stage compared to those over 25 years (75.00% vs 21.74%, P = .0646). Risk of lateral lymph node metastasis increased with younger age (75.00% vs 27.27% vs 8.33%, P = .0369). As with advanced tumor and node stage, patients harboring fusion oncogenes and aged under 25 years showed the lowest TDS; genes associated with immunoglobulin production and production of molecular mediators of the immune response were significantly upregulated. CONCLUSIONS Adult PTC patients under 25 years with fusion oncogenes showed a tendency toward advanced tumor stage and lower thyroid differentiation. Integrating onset age together with oncogenic alterations is worthwhile when managing adult PTC patients.
Collapse
Affiliation(s)
- Haorong Li
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Rulai Han
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Lingyang Meng
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yingkai Sun
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ming Zhao
- Shanghai Jiao Tong University, School of Life Sciences and Biotechnology; Shanghai Jiao Tong University Medical School Affiliated Ruijin Hospital, State Key Laboratory for Medical Genomics, Shanghai 200025, China
| | - Wei Zhou
- Department of Ultrasound, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jing Xie
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Danyan Yu
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Liyun Shen
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yulin Zhou
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shu Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jiqi Yan
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Weiqing Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Lei Ye
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
4
|
Jassim A, Rahrmann EP, Simons BD, Gilbertson RJ. Cancers make their own luck: theories of cancer origins. Nat Rev Cancer 2023; 23:710-724. [PMID: 37488363 DOI: 10.1038/s41568-023-00602-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/20/2023] [Indexed: 07/26/2023]
Abstract
Cancer has been a leading cause of death for decades. This dismal statistic has increased efforts to prevent the disease or to detect it early, when treatment is less invasive, relatively inexpensive and more likely to cure. But precisely how tissues are transformed continues to provoke controversy and debate, hindering cancer prevention and early intervention strategies. Various theories of cancer origins have emerged, including the suggestion that it is 'bad luck': the inevitable consequence of random mutations in proliferating stem cells. In this Review, we discuss the principal theories of cancer origins and the relative importance of the factors that underpin them. The body of available evidence suggests that developing and ageing tissues 'walk a tightrope', retaining adequate levels of cell plasticity to generate and maintain tissues while avoiding overstepping into transformation. Rather than viewing cancer as 'bad luck', understanding the complex choreography of cell intrinsic and extrinsic factors that characterize transformation holds promise to discover effective new ways to prevent, detect and stop cancer before it becomes incurable.
Collapse
Affiliation(s)
- Amir Jassim
- CRUK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Eric P Rahrmann
- CRUK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Ben D Simons
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Cambridge, UK
| | - Richard J Gilbertson
- CRUK Cambridge Institute, University of Cambridge, Cambridge, UK.
- Department of Oncology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
5
|
Jung MM, Shen S, Botten GA, Olender T, Katsumura KR, Johnson KD, Soukup AA, Liu P, Zhang Q, Jensvold ZD, Lewis PW, Beagrie RA, Low JK, Yang L, Mackay JP, Godley LA, Brand M, Xu J, Keles S, Bresnick EH. Pathogenic human variant that dislocates GATA2 zinc fingers disrupts hematopoietic gene expression and signaling networks. J Clin Invest 2023; 133:e162685. [PMID: 36809258 PMCID: PMC10065080 DOI: 10.1172/jci162685] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 02/16/2023] [Indexed: 02/23/2023] Open
Abstract
Although certain human genetic variants are conspicuously loss of function, decoding the impact of many variants is challenging. Previously, we described a patient with leukemia predisposition syndrome (GATA2 deficiency) with a germline GATA2 variant that inserts 9 amino acids between the 2 zinc fingers (9aa-Ins). Here, we conducted mechanistic analyses using genomic technologies and a genetic rescue system with Gata2 enhancer-mutant hematopoietic progenitor cells to compare how GATA2 and 9aa-Ins function genome-wide. Despite nuclear localization, 9aa-Ins was severely defective in occupying and remodeling chromatin and regulating transcription. Variation of the inter-zinc finger spacer length revealed that insertions were more deleterious to activation than repression. GATA2 deficiency generated a lineage-diverting gene expression program and a hematopoiesis-disrupting signaling network in progenitors with reduced granulocyte-macrophage colony-stimulating factor (GM-CSF) and elevated IL-6 signaling. As insufficient GM-CSF signaling caused pulmonary alveolar proteinosis and excessive IL-6 signaling promoted bone marrow failure and GATA2 deficiency patient phenotypes, these results provide insight into mechanisms underlying GATA2-linked pathologies.
Collapse
Affiliation(s)
- Mabel Minji Jung
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, and
| | - Siqi Shen
- Department of Biostatistics and Biomedical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Giovanni A. Botten
- Children’s Medical Center Research Institute, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Thomas Olender
- Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute–General Hospital, Ottawa, Ontario, Canada
| | - Koichi R. Katsumura
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, and
| | - Kirby D. Johnson
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, and
| | - Alexandra A. Soukup
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, and
| | - Peng Liu
- Department of Biostatistics and Biomedical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Qingzhou Zhang
- Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute–General Hospital, Ottawa, Ontario, Canada
| | - Zena D. Jensvold
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Peter W. Lewis
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Robert A. Beagrie
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Jason K.K. Low
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Lihua Yang
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Joel P. Mackay
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Lucy A. Godley
- Section of Hematology/Oncology, The University of Chicago, Chicago, Illinois, USA
| | - Marjorie Brand
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Jian Xu
- Children’s Medical Center Research Institute, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Sunduz Keles
- Department of Biostatistics and Biomedical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Emery H. Bresnick
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, and
| |
Collapse
|
6
|
Li Y, Yang W, Patel RM, Casey EB, Denby E, Mendoza-Castrejon J, Rodriguez-Lopez P, Magee JA. FLT3ITD drives context-specific changes in cell identity and variable interferon dependence during AML initiation. Blood 2023; 141:1442-1456. [PMID: 36395068 PMCID: PMC10082380 DOI: 10.1182/blood.2022016889] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022] Open
Abstract
Acute myeloid leukemia (AML) initiation requires multiple rate-limiting mutations to cooperatively reprogram progenitor cell identity. For example, FLT3 internal tandem duplication (FLT3ITD) mutations cooperate with a variety of different initiating mutations to reprogram myeloid progenitor fate. These initiating mutations often skew toward either pediatric or adult AML patient populations, though FLT3ITD itself occurs at similar frequencies in both age groups. This raises the question of whether FLT3ITD might induce distinct transcriptional programs and unmask distinct therapeutic vulnerabilities when paired with pediatric, as opposed to adult AML-initiating mutations. To explore this possibility, we compared AML evolution in mice that carried Flt3ITD/NUP98-HOXD13 (NHD13) or Flt3ITD/Runx1DEL mutation pairs, which are respectively most common in pediatric and adult AML. Single-cell analyses and epigenome profiling revealed distinct interactions between Flt3ITD and its cooperating mutations. Whereas Flt3ITD and Flt3ITD/Runx1DEL caused aberrant expansion of myeloid progenitors, Flt3ITD/NHD13 drove the emergence of a pre-AML population that did not resemble normal hematopoietic progenitors. Differences between Flt3ITD/Runx1DEL and Flt3ITD/NHD13 cooperative target gene expression extended to fully transformed AML as well. Flt3ITD/NHD13 cooperative target genes were enriched in human NUP98-translocated AML. Flt3ITD/NHD13 selectively hijacked type I interferon signaling to drive expansion of the pre-AML population. Blocking interferon signaling delayed AML initiation and extended survival. Thus, common AML driver mutations, such as FLT3ITD, can coopt different mechanisms of transformation in different genetic contexts. Furthermore, pediatric-biased NUP98 fusions convey actionable interferon dependence.
Collapse
Affiliation(s)
- Yanan Li
- Division of Hematology and Oncology, Washington University School of Medicine, St. Louis, MO
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO
| | - Wei Yang
- Department of Genetics, Washington University School of Medicine, St. Louis, MO
| | - Riddhi M. Patel
- Division of Hematology and Oncology, Washington University School of Medicine, St. Louis, MO
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO
| | - Emily B. Casey
- Division of Hematology and Oncology, Washington University School of Medicine, St. Louis, MO
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO
| | - Elisabeth Denby
- Division of Hematology and Oncology, Washington University School of Medicine, St. Louis, MO
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO
| | - Jonny Mendoza-Castrejon
- Division of Hematology and Oncology, Washington University School of Medicine, St. Louis, MO
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO
| | - Priscilla Rodriguez-Lopez
- Division of Hematology and Oncology, Washington University School of Medicine, St. Louis, MO
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO
| | - Jeffrey A. Magee
- Division of Hematology and Oncology, Washington University School of Medicine, St. Louis, MO
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO
- Department of Genetics, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
7
|
Developmental cues license megakaryocyte priming in murine hematopoietic stem cells. Blood Adv 2022; 6:6228-6241. [PMID: 35584393 PMCID: PMC9792704 DOI: 10.1182/bloodadvances.2021006861] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/22/2022] [Accepted: 05/13/2022] [Indexed: 12/30/2022] Open
Abstract
The fetal-to-adult switch in hematopoietic stem cell (HSC) behavior is characterized by alterations in lineage output and entry into deep quiescence. Here we identify the emergence of megakaryocyte (Mk)-biased HSCs as an event coinciding with this developmental switch. Single-cell chromatin accessibility analysis reveals a ubiquitous acquisition of Mk lineage priming signatures in HSCs during the fetal-to-adult transition. These molecular changes functionally coincide with increased amplitude of early Mk differentiation events after acute inflammatory insult. Importantly, we identify LIN28B, known for its role in promoting fetal-like self-renewal, as an insulator against the establishment of an Mk-biased HSC pool. LIN28B protein is developmentally silenced in the third week of life, and its prolonged expression delays emergency platelet output in young adult mice. We propose that developmental regulation of Mk priming may represent a switch for HSCs to toggle between prioritizing self-renewal in the fetus and increased host protection in postnatal life.
Collapse
|
8
|
Barone C, Orsenigo R, Meneveri R, Brunelli S, Azzoni E. One Size Does Not Fit All: Heterogeneity in Developmental Hematopoiesis. Cells 2022; 11:1061. [PMID: 35326511 PMCID: PMC8947200 DOI: 10.3390/cells11061061] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 02/06/2023] Open
Abstract
Our knowledge of the complexity of the developing hematopoietic system has dramatically expanded over the course of the last few decades. We now know that, while hematopoietic stem cells (HSCs) firmly reside at the top of the adult hematopoietic hierarchy, multiple HSC-independent progenitor populations play variegated and fundamental roles during fetal life, which reflect on adult physiology and can lead to disease if subject to perturbations. The importance of obtaining a high-resolution picture of the mechanisms by which the developing embryo establishes a functional hematopoietic system is demonstrated by many recent indications showing that ontogeny is a primary determinant of function of multiple critical cell types. This review will specifically focus on exploring the diversity of hematopoietic stem and progenitor cells unique to embryonic and fetal life. We will initially examine the evidence demonstrating heterogeneity within the hemogenic endothelium, precursor to all definitive hematopoietic cells. Next, we will summarize the dynamics and characteristics of the so-called "hematopoietic waves" taking place during vertebrate development. For each of these waves, we will define the cellular identities of their components, the extent and relevance of their respective contributions as well as potential drivers of heterogeneity.
Collapse
Affiliation(s)
| | | | | | | | - Emanuele Azzoni
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (C.B.); (R.O.); (R.M.); (S.B.)
| |
Collapse
|
9
|
Johnson KD, Soukup AA, Bresnick EH. GATA2 deficiency elevates interferon regulatory factor-8 to subvert a progenitor cell differentiation program. Blood Adv 2022; 6:1464-1473. [PMID: 35008108 PMCID: PMC8905696 DOI: 10.1182/bloodadvances.2021006182] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 12/17/2021] [Indexed: 11/20/2022] Open
Abstract
Cell type-specific transcription factors control stem and progenitor cell transitions by establishing networks containing hundreds of genes and proteins. Network complexity renders it challenging to discover essential versus modulatory or redundant components. This scenario is exemplified by GATA2 regulation of hematopoiesis during embryogenesis. Loss of a far upstream Gata2 enhancer (-77) disrupts the GATA2-dependent transcriptome governing hematopoietic progenitor cell differentiation. The aberrant transcriptome includes the transcription factor interferon regulatory factor 8 (IRF8) and a host of innate immune regulators. Mutant progenitors lose the capacity to balance production of diverse hematopoietic progeny. To elucidate mechanisms, we asked if IRF8 is essential, contributory, or not required. Reducing Irf8, in the context of the -77 mutant allele, reversed granulocytic deficiencies and the excessive accumulation of dendritic cell committed progenitors. Despite many dysregulated components that control vital transcriptional, signaling, and immune processes, the aberrant elevation of a single transcription factor deconstructed the differentiation program.
Collapse
Affiliation(s)
| | - Alexandra A. Soukup
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Emery H. Bresnick
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI
| |
Collapse
|
10
|
Fagin JA. Age of Onset of Receptor Tyrosine Kinase Fusions Drives Distinct Biologic Outcomes in Thyroid Cancer. J Clin Oncol 2022; 40:1124-1126. [DOI: 10.1200/jco.21.02864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- James A. Fagin
- Department of Medicine and Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, Weill Cornell Medical College, New York, NY
| |
Collapse
|
11
|
Li Y, Magee JA. Transcriptional reprogramming in neonatal hematopoietic stem and progenitor cells. Exp Hematol 2021; 101-102:25-33. [PMID: 34303776 PMCID: PMC8557639 DOI: 10.1016/j.exphem.2021.07.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/14/2021] [Accepted: 07/19/2021] [Indexed: 02/04/2023]
Abstract
Hematopoietic stem cells (HSCs) and lineage-committed hematopoietic progenitor cells (HPCs) undergo profound shifts in gene expression during the neonatal and juvenile stages of life. Temporal changes in HSC/HPC gene expression underlie concomitant changes in self-renewal capacity, lineage biases, and hematopoietic output. Moreover, they can modify disease phenotypes. For example, childhood leukemias have distinct driver mutation profiles relative to adult leukemias, and they may arise from distinct cells of origin. The putative relationship between neonatal HSC/HPC ontogeny and childhood blood disorders highlights the importance of understanding how, at a mechanistic level, HSCs transition from fetal to adult transcriptional states. In this perspective piece, we summarize recent work indicating that the transition is uncoordinated and imprecisely timed. We discuss implications of these findings, including mechanisms that might enable neonatal HSCs and HPCs to acquire adultlike properties over a drawn-out period, in lieu of precise gene regulatory networks. The transition from fetal to adult transcriptional programs coincides with a pulse of type I interferon signaling that activates many genes associated with the adultlike state. This pulse may sensitize HSCs/HPCs to mutations that drive leukemogenesis shortly after birth. If we can understand how developmental switches modulate HSC and HPC fate after birth-both under normal circumstances and in the setting of disease-causing mutations-we can potentially reprogram these switches to treat or prevent childhood leukemias.
Collapse
|
12
|
Mack R, Zhang L, Breslin Sj P, Zhang J. The Fetal-to-Adult Hematopoietic Stem Cell Transition and its Role in Childhood Hematopoietic Malignancies. Stem Cell Rev Rep 2021; 17:2059-2080. [PMID: 34424480 DOI: 10.1007/s12015-021-10230-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2021] [Indexed: 01/07/2023]
Abstract
As with most organ systems that undergo continuous generation and maturation during the transition from fetal to adult life, the hematopoietic and immune systems also experience dynamic changes. Such changes lead to many unique features in blood cell function and immune responses in early childhood. The blood cells and immune cells in neonates are a mixture of fetal and adult origin due to the co-existence of both fetal and adult types of hematopoietic stem cells (HSCs) and progenitor cells (HPCs). Fetal blood and immune cells gradually diminish during maturation of the infant and are almost completely replaced by adult types of cells by 3 to 4 weeks after birth in mice. Such features in early childhood are associated with unique features of hematopoietic and immune diseases, such as leukemia, at these developmental stages. Therefore, understanding the cellular and molecular mechanisms by which hematopoietic and immune changes occur throughout ontogeny will provide useful information for the study and treatment of pediatric blood and immune diseases. In this review, we summarize the most recent studies on hematopoietic initiation during early embryonic development, the expansion of both fetal and adult types of HSCs and HPCs in the fetal liver and fetal bone marrow stages, and the shift from fetal to adult hematopoiesis/immunity during neonatal/infant development. We also discuss the contributions of fetal types of HSCs/HPCs to childhood leukemias.
Collapse
Affiliation(s)
- Ryan Mack
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA
| | - Lei Zhang
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA
| | - Peter Breslin Sj
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA.,Departments of Molecular/Cellular Physiology and Biology, Loyola University Medical Center and Loyola University Chicago, Chicago, IL, 60660, USA
| | - Jiwang Zhang
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA.
| |
Collapse
|
13
|
Engen C, Hellesøy M, Grob T, Al Hinai A, Brendehaug A, Wergeland L, Bedringaas SL, Hovland R, Valk PJM, Gjertsen BT. FLT3-ITD mutations in acute myeloid leukaemia - molecular characteristics, distribution and numerical variation. Mol Oncol 2021; 15:2300-2317. [PMID: 33817952 PMCID: PMC8410560 DOI: 10.1002/1878-0261.12961] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/02/2021] [Accepted: 04/01/2021] [Indexed: 11/07/2022] Open
Abstract
Recurrent somatic internal tandem duplications (ITD) in the FMS-like tyrosine kinase 3 (FLT3) gene characterise approximately one third of patients with acute myeloid leukaemia (AML), and FLT3-ITD mutation status guides risk-adapted treatment strategies. The aim of this work was to characterise FLT3-ITD variant distribution in relation to molecular and clinical features, and overall survival in adult AML patients. We performed two parallel retrospective cohort studies investigating FLT3-ITD length and expression by cDNA fragment analysis, followed by Sanger sequencing in a subset of samples. In the two cohorts, a total of 139 and 172 mutant alleles were identified in 111 and 123 patients, respectively, with 22% and 28% of patients presenting with more than one mutated allele. Further, 15% and 32% of samples had a FLT3-ITD total variant allele frequency (VAF) < 0.3, while 24% and 16% had a total VAF ≥ 0.7. Most of the assessed clinical features did not significantly correlate to FLT3-ITD numerical variation nor VAF. Low VAF was, however, associated with lower white blood cell count, while increasing VAF correlated with inferior overall survival in one of the cohorts. In the other cohort, ITD length above 50 bp was identified to correlate with inferior overall survival. Our report corroborates the poor prognostic association with high FLT3-ITD disease burden, as well as extensive inter- and intrapatient heterogeneity in the molecular features of FLT3-ITD. We suggest that future use of FLT3-targeted therapy could be accompanied with thorough molecular diagnostics and follow-up to better predict optimal therapy responders.
Collapse
Affiliation(s)
- Caroline Engen
- Department of Clinical Science, Centre for Cancer Biomarkers CCBIO, University of Bergen, Norway
| | - Monica Hellesøy
- Haematology Section, Department of Medicine, Haukeland University Hospital, Helse Bergen HF, Norway
| | - Tim Grob
- Department of Haematology, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Adil Al Hinai
- Department of Haematology, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Atle Brendehaug
- Department of Medical Genetics, Haukeland University Hospital, Helse Bergen HF, Norway
| | - Line Wergeland
- Department of Clinical Science, Centre for Cancer Biomarkers CCBIO, University of Bergen, Norway
| | - Siv Lise Bedringaas
- Department of Clinical Science, Centre for Cancer Biomarkers CCBIO, University of Bergen, Norway
| | - Randi Hovland
- Department of Medical Genetics, Haukeland University Hospital, Helse Bergen HF, Norway.,Department of Biosciences, University of Bergen, Norway
| | - Peter J M Valk
- Department of Haematology, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Bjørn T Gjertsen
- Department of Clinical Science, Centre for Cancer Biomarkers CCBIO, University of Bergen, Norway.,Haematology Section, Department of Medicine, Haukeland University Hospital, Helse Bergen HF, Norway
| |
Collapse
|
14
|
Li Y, Kong W, Yang W, Patel RM, Casey EB, Okeyo-Owuor T, White JM, Porter SN, Morris SA, Magee JA. Single-Cell Analysis of Neonatal HSC Ontogeny Reveals Gradual and Uncoordinated Transcriptional Reprogramming that Begins before Birth. Cell Stem Cell 2020; 27:732-747.e7. [PMID: 32822583 PMCID: PMC7655695 DOI: 10.1016/j.stem.2020.08.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 06/21/2020] [Accepted: 07/31/2020] [Indexed: 12/14/2022]
Abstract
Fetal and adult hematopoietic stem cells (HSCs) have distinct proliferation rates, lineage biases, gene expression profiles, and gene dependencies. Although these differences are widely recognized, it is not clear how the transition from fetal to adult identity is coordinated. Here we show that murine HSCs and committed hematopoietic progenitor cells (HPCs) undergo a gradual, rather than precipitous, transition from fetal to adult transcriptional states. The transition begins prior to birth and is punctuated by a late prenatal spike in type I interferon signaling that promotes perinatal HPC expansion and sensitizes progenitors to the leukemogenic FLT3ITD mutation. Most other changes in gene expression and enhancer activation are imprecisely timed and poorly coordinated. Thus, heterochronic enhancer elements, and their associated transcripts, are activated independently of one another rather than as part of a robust network. This simplifies the regulatory programs that guide neonatal HSC/HPC ontogeny, but it creates heterogeneity within these populations.
Collapse
Affiliation(s)
- Yanan Li
- Department of Pediatrics, Division of Hematology and Oncology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Wenjun Kong
- Department of Genetics, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA; Department of Developmental Biology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA; Center of Regenerative Medicine, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Wei Yang
- Department of Genetics, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Riddhi M Patel
- Department of Pediatrics, Division of Hematology and Oncology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Emily B Casey
- Department of Pediatrics, Division of Hematology and Oncology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Theresa Okeyo-Owuor
- Department of Pediatrics, Division of Hematology and Oncology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - J Michael White
- Department of Pathology and Immunobiology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Shaina N Porter
- Department of Pediatrics, Division of Hematology and Oncology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Samantha A Morris
- Department of Genetics, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA; Department of Developmental Biology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA; Center of Regenerative Medicine, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA.
| | - Jeffrey A Magee
- Department of Pediatrics, Division of Hematology and Oncology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA; Department of Genetics, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA.
| |
Collapse
|
15
|
The efficiency of murine MLL-ENL-driven leukemia initiation changes with age and peaks during neonatal development. Blood Adv 2020; 3:2388-2399. [PMID: 31405949 DOI: 10.1182/bloodadvances.2019000554] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 07/16/2019] [Indexed: 12/22/2022] Open
Abstract
MLL rearrangements are translocation mutations that cause both acute lymphoblastic leukemia and acute myeloid leukemia (AML). These translocations can occur as sole clonal driver mutations in infant leukemias, suggesting that fetal or neonatal hematopoietic progenitors may be exquisitely sensitive to transformation by MLL fusion proteins. To test this possibility, we used transgenic mice to induce one translocation product, MLL-ENL, during fetal, neonatal, juvenile and adult stages of life. When MLL-ENL was induced in fetal or neonatal mice, almost all died of AML. In contrast, when MLL-ENL was induced in adult mice, most survived for >1 year despite sustained transgene expression. AML initiation was most efficient when MLL-ENL was induced in neonates, and even transient suppression of MLL-ENL in neonates could prevent AML in most mice. MLL-ENL target genes were induced more efficiently in neonatal progenitors than in adult progenitors, consistent with the distinct AML initiation efficiencies. Interestingly, transplantation stress mitigated the developmental barrier to leukemogenesis. Since fetal/neonatal progenitors were highly competent to initiate MLL-ENL-driven AML, we tested whether Lin28b, a fetal master regulator, could accelerate leukemogenesis. Surprisingly, Lin28b suppressed AML initiation rather than accelerating it. This may explain why MLL rearrangements often occur before birth in human infant leukemia patients, but transformation usually does not occur until after birth, when Lin28b levels decline. Our findings show that the efficiency of MLL-ENL-driven AML initiation changes through the course of pre- and postnatal development, and developmental programs can be manipulated to impede transformation.
Collapse
|
16
|
The Myc/Max/Mxd Network Is a Target of Mutated Flt3 Signaling in Hematopoietic Stem Cells in Flt3-ITD-Induced Myeloproliferative Disease. Stem Cells Int 2018; 2018:3286949. [PMID: 30420889 PMCID: PMC6215545 DOI: 10.1155/2018/3286949] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 08/13/2018] [Indexed: 01/21/2023] Open
Abstract
Acute myeloid leukemia (AML) has poor prognosis due to various mutations, e.g., in the FLT3 gene. Therefore, it is important to identify pathways regulated by the activated Flt3 receptor for the discovery of new therapeutic targets. The Myc network of oncogenes and tumor suppressor genes is involved in mechanisms regulating proliferation and survival of cells, including that of the hematopoietic system. In this study, we evaluated the expression of the Myc oncogenes and Mxd antagonists in hematopoietic stem cell and myeloid progenitor populations in the Flt3-ITD-knockin myeloproliferative mouse model. Our data shows that the expression of Myc network genes is changed in Flt3-ITD mice compared with the wild type. Mycn is increased in multipotent progenitors and in the pre-GM compartment of myeloid progenitors in the ITD mice while the expression of several genes in the tumor suppressor Mxd family, including Mxd1, Mxd2, and Mxd4, is concomitantly downregulated, as well as the expression of the Mxd-related gene Mnt and the transcriptional activator Miz-1. LSKCD150+CD48− hematopoietic long-term stem cells are decreased in the Flt3-ITD cells while multipotent progenitors are increased. Of note, PKC412-mediated inhibition of Flt3-ITD signaling results in downregulation of cMyc and upregulation of the Myc antagonists Mxd1, Mxd2, and Mxd4. Our data provides new mechanistic insights into downstream alterations upon aberrant Flt3 signaling and rationale for combination therapies for tyrosine kinase inhibitors with Myc antagonists in treating AML.
Collapse
|
17
|
Brown FC, Still E, Koche RP, Yim CY, Takao S, Cifani P, Reed C, Gunasekera S, Ficarro SB, Romanienko P, Mark W, McCarthy C, de Stanchina E, Gonen M, Seshan V, Bhola P, O'Donnell C, Spitzer B, Stutzke C, Lavallée VP, Hébert J, Krivtsov AV, Melnick A, Paietta EM, Tallman MS, Letai A, Sauvageau G, Pouliot G, Levine R, Marto JA, Armstrong SA, Kentsis A. MEF2C Phosphorylation Is Required for Chemotherapy Resistance in Acute Myeloid Leukemia. Cancer Discov 2018; 8:478-497. [PMID: 29431698 PMCID: PMC5882571 DOI: 10.1158/2159-8290.cd-17-1271] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 01/22/2018] [Accepted: 01/30/2018] [Indexed: 11/16/2022]
Abstract
In acute myeloid leukemia (AML), chemotherapy resistance remains prevalent and poorly understood. Using functional proteomics of patient AML specimens, we identified MEF2C S222 phosphorylation as a specific marker of primary chemoresistance. We found that Mef2cS222A/S222A knock-in mutant mice engineered to block MEF2C phosphorylation exhibited normal hematopoiesis, but were resistant to leukemogenesis induced by MLL-AF9 MEF2C phosphorylation was required for leukemia stem cell maintenance and induced by MARK kinases in cells. Treatment with the selective MARK/SIK inhibitor MRT199665 caused apoptosis and conferred chemosensitivity in MEF2C-activated human AML cell lines and primary patient specimens, but not those lacking MEF2C phosphorylation. These findings identify kinase-dependent dysregulation of transcription factor control as a determinant of therapy response in AML, with immediate potential for improved diagnosis and therapy for this disease.Significance: Functional proteomics identifies phosphorylation of MEF2C in the majority of primary chemotherapy-resistant AML. Kinase-dependent dysregulation of this transcription factor confers susceptibility to MARK/SIK kinase inhibition in preclinical models, substantiating its clinical investigation for improved diagnosis and therapy of AML. Cancer Discov; 8(4); 478-97. ©2018 AACR.This article is highlighted in the In This Issue feature, p. 371.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/therapeutic use
- Cell Line
- Drug Resistance, Neoplasm
- Gene Expression Regulation, Leukemic
- Humans
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- MEF2 Transcription Factors/chemistry
- MEF2 Transcription Factors/metabolism
- Mice
- Mice, Transgenic
- Phosphorylation
- Protein Processing, Post-Translational
- Proteomics
Collapse
Affiliation(s)
- Fiona C Brown
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Eric Still
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Richard P Koche
- Center for Epigenetics Research, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Christina Y Yim
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sumiko Takao
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Paolo Cifani
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Casie Reed
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Shehana Gunasekera
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Scott B Ficarro
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Peter Romanienko
- Mouse Genetics Core Facility, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Willie Mark
- Mouse Genetics Core Facility, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Craig McCarthy
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Elisa de Stanchina
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Mithat Gonen
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Venkatraman Seshan
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Patrick Bhola
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Conor O'Donnell
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Barbara Spitzer
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Vincent-Philippe Lavallée
- The Leucegene Project at Institute for Research in Immunology and Cancer, University of Montreal, Montreal, Quebec, Canada
- Division of Hematology-Oncology, Maisonneuve-Rosemont Hospital, Montreal, Quebec, Canada
| | - Josée Hébert
- The Leucegene Project at Institute for Research in Immunology and Cancer, University of Montreal, Montreal, Quebec, Canada
- Division of Hematology-Oncology, Maisonneuve-Rosemont Hospital, Montreal, Quebec, Canada
- Quebec Leukemia Cell Bank, Maisonneuve-Rosemont Hospital, Montreal, Quebec, Canada
- Department of Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Andrei V Krivtsov
- Center for Epigenetics Research, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Ari Melnick
- Departments of Pediatrics, Pharmacology, and Physiology and Biophysics, Weill Cornell Medical College, Cornell University, New York, New York
| | - Elisabeth M Paietta
- Montefiore Medical Center-North Division, Albert Einstein College of Medicine, Bronx, New York, New York
| | - Martin S Tallman
- Department of Medicine, Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Anthony Letai
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Guy Sauvageau
- The Leucegene Project at Institute for Research in Immunology and Cancer, University of Montreal, Montreal, Quebec, Canada
- Division of Hematology-Oncology, Maisonneuve-Rosemont Hospital, Montreal, Quebec, Canada
- Quebec Leukemia Cell Bank, Maisonneuve-Rosemont Hospital, Montreal, Quebec, Canada
- Department of Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Gayle Pouliot
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Ross Levine
- Center for Epigenetics Research, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, New York
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center and Weill Medical College of Cornell University, New York, New York
| | - Jarrod A Marto
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Scott A Armstrong
- Center for Epigenetics Research, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Alex Kentsis
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York.
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
- Departments of Pediatrics, Pharmacology, and Physiology and Biophysics, Weill Cornell Medical College, Cornell University, New York, New York
| |
Collapse
|
18
|
Wang Z, Bunting KD. Stat5 deficiency decreases transcriptional heterogeneity and supports emergence of hematopoietic sub-populations. Oncotarget 2018; 8:22477-22482. [PMID: 28390194 PMCID: PMC5410237 DOI: 10.18632/oncotarget.15236] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Accepted: 01/25/2017] [Indexed: 11/25/2022] Open
Abstract
Aging is associated with significant changes in hematopoiesis, including clonal dominance, anemia, myeloid malignancies, and reduced activation of signal transducer and activator of transcription 5 (Stat5). In previous studies, Stat5 deletion surprisingly amplified FLT3/ITD+ myeloid expansion or Myc-driven lymphoid expansion. Here we show that Stat5 deficiency has a strong impact upon transcriptional heterogeneity in single sorted c-Kit+Lin-Sca-1+ (KLS) cells or CD150+CD48- KLS long-term repopulating hematopoietic stem cells (LT-HSC). Single cell polymerase chain reaction (PCR) was performed on selected regulators of multi-lineage hematopoiesis. At least two dominant sub-populations were identified by increased expression of cell cycle regulatory and leukemia-associated genes. Furthermore, in the top expressing quartile of cells, the majority of genes were proportionally overrepresented. In wild-type KLS cells, Stat5 mRNA levels were also strongly correlated with several genes. Since heterogeneity decreases with age or inflammatory or oncogenic stress, these results provide a potential mechanistic linkage to Stat5 expression.
Collapse
Affiliation(s)
- Zhengqi Wang
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center of Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, GA, USA
| | - Kevin D Bunting
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center of Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
19
|
Böiers C, Richardson SE, Laycock E, Zriwil A, Turati VA, Brown J, Wray JP, Wang D, James C, Herrero J, Sitnicka E, Karlsson S, Smith AJH, Jacobsen SEW, Enver T. A Human IPS Model Implicates Embryonic B-Myeloid Fate Restriction as Developmental Susceptibility to B Acute Lymphoblastic Leukemia-Associated ETV6-RUNX1. Dev Cell 2017; 44:362-377.e7. [PMID: 29290585 PMCID: PMC5807056 DOI: 10.1016/j.devcel.2017.12.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 08/04/2017] [Accepted: 12/01/2017] [Indexed: 12/15/2022]
Abstract
ETV6-RUNX1 is associated with childhood acute B-lymphoblastic leukemia (cALL) functioning as a first-hit mutation that initiates a clinically silent pre-leukemia in utero. Because lineage commitment hierarchies differ between embryo and adult, and the impact of oncogenes is cell-context dependent, we hypothesized that the childhood affiliation of ETV6-RUNX1 cALL reflects its origins in a progenitor unique to embryonic life. We characterize the first emerging B cells in first-trimester human embryos, identifying a developmentally restricted CD19-IL-7R+ progenitor compartment, which transitions from a myeloid to lymphoid program during ontogeny. This developmental series is recapitulated in differentiating human pluripotent stem cells (hPSCs), thereby providing a model for the initiation of cALL. Genome-engineered hPSCs expressing ETV6-RUNX1 from the endogenous ETV6 locus show expansion of the CD19-IL-7R+ compartment, show a partial block in B lineage commitment, and produce proB cells with aberrant myeloid gene expression signatures and potential: features (collectively) consistent with a pre-leukemic state.
Collapse
Affiliation(s)
- Charlotta Böiers
- Department of Cancer Biology, UCL Cancer Institute, UCL, London, UK; Lund Stem Cell Center, Lund University, Lund, Sweden
| | | | - Emma Laycock
- Department of Cancer Biology, UCL Cancer Institute, UCL, London, UK
| | - Alya Zriwil
- Lund Stem Cell Center, Lund University, Lund, Sweden
| | | | - John Brown
- Department of Cancer Biology, UCL Cancer Institute, UCL, London, UK
| | - Jason P Wray
- Department of Cancer Biology, UCL Cancer Institute, UCL, London, UK
| | - Dapeng Wang
- Department of Cancer Biology, UCL Cancer Institute, UCL, London, UK
| | - Chela James
- Department of Cancer Biology, UCL Cancer Institute, UCL, London, UK
| | - Javier Herrero
- Department of Cancer Biology, UCL Cancer Institute, UCL, London, UK
| | - Ewa Sitnicka
- Lund Stem Cell Center, Lund University, Lund, Sweden
| | | | - Andrew J H Smith
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK; MRC Molecular Haematology Unit, University of Oxford, Oxford, UK
| | - Sten Erik W Jacobsen
- MRC Molecular Haematology Unit, University of Oxford, Oxford, UK; Departments of Cell and Molecular Biology and Medicine Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden; Haematopoietic Stem Cell Laboratory, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK; Karolinska University Hospital, Stockholm, Sweden
| | - Tariq Enver
- Department of Cancer Biology, UCL Cancer Institute, UCL, London, UK; Lund Stem Cell Center, Lund University, Lund, Sweden.
| |
Collapse
|
20
|
Tarnawsky SP, Kobayashi M, Chan RJ, Yoder MC. Mice expressing KrasG12D in hematopoietic multipotent progenitor cells develop neonatal myeloid leukemia. J Clin Invest 2017; 127:3652-3656. [PMID: 28846072 DOI: 10.1172/jci94031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 07/11/2017] [Indexed: 12/15/2022] Open
Abstract
Juvenile myelomonocytic leukemia (JMML) is a pediatric myeloproliferative neoplasm that bears distinct characteristics associated with abnormal fetal development. JMML has been extensively modeled in mice expressing the oncogenic KrasG12D mutation. However, these models have struggled to recapitulate the defining features of JMML due to in utero lethality, nonhematopoietic expression, and the pervasive emergence of T cell acute lymphoblastic leukemia. Here, we have developed a model of JMML using mice that express KrasG12D in multipotent progenitor cells (Flt3Cre+ KrasG12D mice). These mice express KrasG12D in utero, are born at normal Mendelian ratios, develop hepatosplenomegaly, anemia, and thrombocytopenia, and succumb to a rapidly progressing and fully penetrant neonatal myeloid disease. Mutant mice have altered hematopoietic stem and progenitor cell populations in the BM and spleen that are hypersensitive to granulocyte macrophage-CSF due to hyperactive RAS/ERK signaling. Biased differentiation in these progenitors results in an expansion of neutrophils and DCs and a concomitant decrease in T lymphocytes. Flt3Cre+ KrasG12D fetal liver hematopoietic progenitors give rise to a myeloid disease upon transplantation. In summary, we describe a KrasG12D mouse model that reproducibly develops JMML-like disease. This model will prove useful for preclinical drug studies and for elucidating the developmental origins of pediatric neoplasms.
Collapse
Affiliation(s)
| | | | - Rebecca J Chan
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, and.,Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Mervin C Yoder
- Department of Biochemistry and Molecular Biology.,Department of Pediatrics, Herman B Wells Center for Pediatric Research, and
| |
Collapse
|
21
|
Porter SN, Magee JA. PRKCH regulates hematopoietic stem cell function and predicts poor prognosis in acute myeloid leukemia. Exp Hematol 2017; 53:43-47. [PMID: 28596089 DOI: 10.1016/j.exphem.2017.05.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 05/23/2017] [Accepted: 05/30/2017] [Indexed: 01/29/2023]
Abstract
Acute myeloid leukemia (AML) cells often co-opt normal hematopoietic stem cell (HSC) programs to drive neoplastic proliferation, and HSC-related gene expression signatures have been identified as biomarkers for poor prognosis in AML patients. We sought to identify new regulators of HSCs and AML cells from previously published HSC and leukemia stem cell (LSC) gene expression signatures. We identified PRKCH (protein kinase C eta) as a gene that is highly expressed in both mouse and human HSCs, as well as in LSCs from independent cohorts of AML patients. Prkch deletion in mice resulted in impaired HSC function. PRKCH was most highly expressed in undifferentiated (FAB M0) subtype AML, and high expression correlated with TP53 and RUNX1 mutations, high-risk cytogenetic features, and poor overall survival. Prkch deletion in an Flt3-ITD/Runx1 mutant mouse AML model did not extend survival. Thus, PRKCH is necessary for normal HSC function; its expression predicts poor survival in AML patients, but it is not required for AML to develop.
Collapse
Affiliation(s)
- Shaina N Porter
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO
| | - Jeffrey A Magee
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO.
| |
Collapse
|
22
|
Lagunas-Rangel FA, Chávez-Valencia V. FLT3–ITD and its current role in acute myeloid leukaemia. Med Oncol 2017; 34:114. [DOI: 10.1007/s12032-017-0970-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Accepted: 04/25/2017] [Indexed: 01/20/2023]
|
23
|
Waas B, Maillard I. Fetal hematopoietic stem cells are making waves. Stem Cell Investig 2017; 4:25. [PMID: 28447040 DOI: 10.21037/sci.2017.03.06] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 03/07/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Bridget Waas
- Life Sciences Institute, Division of Hematology-Oncology, University of Michigan, Ann Arbor, USA.,Department of Cell and Developmental Biology, Division of Hematology-Oncology, University of Michigan, Ann Arbor, USA
| | - Ivan Maillard
- Life Sciences Institute, Division of Hematology-Oncology, University of Michigan, Ann Arbor, USA.,Department of Cell and Developmental Biology, Division of Hematology-Oncology, University of Michigan, Ann Arbor, USA.,Department of Internal Medicine, Division of Hematology-Oncology, University of Michigan, Ann Arbor, USA
| |
Collapse
|