1
|
Pandey A, Cousin H, Kumar S, Taylor L, Chander A, Coppenrath K, Shaidani NI, Horb M, Alfandari D. ADAM interact with large protein complexes to regulate Histone modification, gene expression and splicing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.18.608474. [PMID: 39229132 PMCID: PMC11370339 DOI: 10.1101/2024.08.18.608474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Cranial neural crest (CNC) cells are key stem cells that contribute to most of the facial structures in vertebrates. ADAM ( A D isintegrin A nd M etalloprotease) proteins are essential for the induction and migration of the CNC. We have shown that Adam13 associates with the transcription factor Arid3a to regulate gene expression. Here we show that Adam13 modulates Histone modifications in the CNC. We show that Arid3a binding to the tfap2α promoter depends on the presence of Adam13. This association promotes the expression of one tfap2α variant expressed in the CNC that uniquely activates the expression of gene critical for CNC migration. We show that both Adam13 and human ADAM9 associate with proteins involved in histone modification and RNA splicing, a function critically affected by the loss of Adam13. We propose that ADAMs may act as extracellular sensors to modulate chromatin availability, leading to changes in gene expression and splicing.
Collapse
|
2
|
Pandey A, Cousin H, Horr B, Alfandari D. ADAM11 a novel regulator of Wnt and BMP4 signaling in neural crest and cancer. Front Cell Dev Biol 2023; 11:1271178. [PMID: 37766964 PMCID: PMC10520719 DOI: 10.3389/fcell.2023.1271178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
Introduction: Cranial neural crest (CNC) cells are induced at the border of the neural plate by a combination of FGF, Wnt, and BMP4 signaling. CNC then migrate ventrally and invade ventral structures where they contribute to craniofacial development. Methods: We used loss and gain of function experiments to determine phenotypes associated with the perturbation of Adam11 expression in Xenopus Laevis. Mass spectrometry to identify partners of Adam11 and changes in protein expression in CNC lacking Adam11. We used mouse B16 melanoma to test the function of Adam11 in cancer cells, and published database analysis to study the expression of ADAM11 in human tumors. Results: Here we show that a non-proteolytic ADAM, Adam11, originally identified as a putative tumor suppressor binds to proteins of the Wnt and BMP4 signaling pathway. Mechanistic studies concerning these non-proteolytic ADAM lack almost entirely. We show that Adam11 positively regulates BMP4 signaling while negatively regulating β-catenin activity. In vivo, we show that Adam11 influences the timing of neural tube closure and the proliferation and migration of CNC. Using both human tumor data and mouse B16 melanoma cells, we further show that ADAM11 levels similarly correlate with Wnt or BMP4 activation levels. Discussion: We propose that ADAM11 preserves naïve cells by maintaining low Sox3 and Snail/Slug levels through stimulation of BMP4 and repression of Wnt signaling, while loss of ADAM11 results in increased Wnt signaling, increased proliferation and early epithelium to mesenchyme transition.
Collapse
Affiliation(s)
| | | | | | - Dominique Alfandari
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA, United States
| |
Collapse
|
3
|
Pandey A, Cousin H, Horr B, Alfandari D. ADAM11 a novel regulator of Wnt and BMP4 signaling in neural crest and cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.13.544797. [PMID: 37398217 PMCID: PMC10312656 DOI: 10.1101/2023.06.13.544797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Cranial neural crest (CNC) cells are induced at the border of the neural plate by a combination of FGF, Wnt, and BMP4 signaling. CNC then migrate ventrally and invade ventral structures where they contribute to craniofacial development. Here we show that a non-proteolytic ADAM, Adam11, originally identified as a putative tumor suppressor binds to proteins of the Wnt and BMP4 signaling pathway. Mechanistic studies concerning these non-proteolytic ADAM lack almost entirely. We show that Adam11 positively regulates BMP4 signaling while negatively regulating β-catenin activity. By modulating these pathways, Adam11 controls the timing of neural tube closure and the proliferation and migration of CNC. Using both human tumor data and mouse B16 melanoma cells, we further show that ADAM11 levels similarly correlate with Wnt or BMP4 activation levels. We propose that ADAM11 preserve naïve cells by maintaining low Sox3 and Snail/Slug levels through stimulation of BMP4 and repression of Wnt signaling, while loss of ADAM11 results in increased Wnt signaling, increased proliferation and early epithelium to mesenchyme transition.
Collapse
|
4
|
Weir E, McLinden G, Alfandari D, Cousin H. Trim-Away mediated knock down uncovers a new function for Lbh during gastrulation of Xenopus laevis. Dev Biol 2020; 470:74-83. [PMID: 33159936 DOI: 10.1016/j.ydbio.2020.10.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 08/28/2020] [Accepted: 10/29/2020] [Indexed: 10/23/2022]
Abstract
We previously identified the protein Lbh as necessary for cranial neural crest (CNC) cell migration in Xenopus through the use of morpholinos. However, Lbh is a maternally deposited protein and morpholinos achieve knockdowns through prevention of translation. In order to investigate the role of Lbh in earlier embryonic events, we employed the new technique "Trim-Away" to degrade this maternally deposited protein. Trim-Away utilizes the E3 ubiquitin ligase trim21 to degrade proteins targeted with an antibody and was developed in mammalian systems. Our results show that Xenopus is amenable to the Trim-Away technique. We also show that early knockdown of Lbh in Xenopus results in defects in gastrulation that present with a decrease in fibronectin matrix assembly, an increased in mesodermal cell migration and decrease in endodermal cell cohesion. We further show that the technique is also effective on a second abundant maternal protein PACSIN2. We discuss potential advantages and limit of the technique in Xenopus embryos as well as the mechanism of gastrulation inhibition.
Collapse
Affiliation(s)
- Emma Weir
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, USA
| | - Gretchen McLinden
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, USA
| | - Dominique Alfandari
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, USA
| | - Hélène Cousin
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, USA.
| |
Collapse
|
5
|
Neilson KM, Keer S, Bousquet N, Macrorie O, Majumdar HD, Kenyon KL, Alfandari D, Moody SA. Mcrs1 interacts with Six1 to influence early craniofacial and otic development. Dev Biol 2020; 467:39-50. [PMID: 32891623 DOI: 10.1016/j.ydbio.2020.08.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 12/29/2022]
Abstract
The Six1 transcription factor plays a major role in craniofacial development. Mutations in SIX1 and its co-factor, EYA1, are causative for about 50% of Branchio-otic/Branchio-oto-renal syndrome (BOR) patients, who are characterized by variable craniofacial, otic and renal malformations. We previously screened for other proteins that might interact with Six1 to identify additional genes that may play a role in BOR, and herein characterize the developmental role of one of them, Microspherule protein 1 (Mcrs1). We found that in cultured cells, Mcrs1 bound to Six1 and in both cultured cells and embryonic ectoderm reduced Six1-Eya1 transcriptional activation. Knock-down of Mcrs1 in embryos caused an expansion of the domains of neural plate genes and two genes expressed in both the neural plate and neural crest (zic1, zic2). In contrast, two other genes expressed in pre-migratory neural crest (foxd3, sox9) were primarily reduced. Cranial placode genes showed a mixture of expanded and diminished expression domains. At larval stages, loss of Mcrs1 resulted in a significant reduction of otic vesicle gene expression concomitant with a smaller otic vesicle volume. Experimentally increasing Mcrs1 above endogenous levels favored the expansion of neural border and neural crest gene domains over cranial placode genes; it also reduced otic vesicle gene expression but not otic vesicle volume. Co-expression of Mcrs1 and Six1 as well as double knock-down and rescue experiments establish a functional interaction between Mcrs1 and Six1 in the embryo, and demonstrate that this interaction has an important role in the development of craniofacial tissues including the otic vesicle.
Collapse
Affiliation(s)
- Karen M Neilson
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Stephanie Keer
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Nicole Bousquet
- Department of Animal Science, University of Massachusetts, Amherst, MA, USA
| | - Olivia Macrorie
- Department of Animal Science, University of Massachusetts, Amherst, MA, USA
| | - Himani D Majumdar
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Kristy L Kenyon
- Department of Biology, Hobart and William Smith Colleges, Geneva, NY, USA
| | | | - Sally A Moody
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC, USA.
| |
Collapse
|
6
|
Taheri M, Noroozi R, Aghaei K, Omrani MD, Ghafouri-Fard S. The rs594445 in MOCOS gene is associated with risk of autism spectrum disorder. Metab Brain Dis 2020; 35:497-501. [PMID: 31900757 DOI: 10.1007/s11011-019-00524-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 11/21/2019] [Indexed: 01/22/2023]
Abstract
Molybdenum cofactor sulfurase (MOCOS) gene encodes an enzyme which is involved in purine metabolism. Recent experiments have shown down-regulation of MOCOS in adult nasal olfactory stem cells of individuals with autism spectrum disorder (ASD). In the current study, we genotyped two single nucleotide polymorphisms (SNPs) within coding regions of MOCOS gene (rs594445 and rs1057251) in 406 ASD patients and 411 age and sex-matched controls. The A allele of the rs594445 SNP was more prevalent among ASD cases compared with controls (OR (95% CI) = 1.33 (1.07-1.64), adjusted P value = 0.02). This SNP was associated with risk of ASD in co-dominant (AA vs. CC: OR (95% CI) = 2.00 (1.22-3.23), adjusted P value = 0.04) and recessive (AA vs. CC + AC: OR (95% CI) = 1.86 (1.16-2.98), adjusted P value = 0.02) models. The other SNP was not associated with risk of ASD in any inheritance model. There was no LD between rs594445 and rs1057251 SNPs (D' = 0.03, r2 = 0.14). The C T haplotype (rs594445 and rs1057251, respectively) had a protective role against ASD (OR (95% CI) = 0.76 (0.62-0.92), adjusted P value = 0.02). Other estimated haplotypes distributed equally between cases and controls. Based on the results of current study, the rs594445 SNP might be regarded as a risk locus for ASD in Iranian population.
Collapse
Affiliation(s)
- Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rezvan Noroozi
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kamyar Aghaei
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mir Davood Omrani
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Suzuki N, Hirano K, Ogino H, Ochi H. Arid3a regulates nephric tubule regeneration via evolutionarily conserved regeneration signal-response enhancers. eLife 2019; 8:43186. [PMID: 30616715 PMCID: PMC6324879 DOI: 10.7554/elife.43186] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 12/18/2018] [Indexed: 12/15/2022] Open
Abstract
Amphibians and fish have the ability to regenerate numerous tissues, whereas mammals have a limited regenerative capacity. Despite numerous developmental genes becoming reactivated during regeneration, an extensive analysis is yet to be performed on whether highly regenerative animals utilize unique cis-regulatory elements for the reactivation of genes during regeneration and how such cis-regulatory elements become activated. Here, we screened regeneration signal-response enhancers at the lhx1 locus using Xenopus and found that the noncoding elements conserved from fish to human function as enhancers in the regenerating nephric tubules. A DNA-binding motif of Arid3a, a component of H3K9me3 demethylases, was commonly found in RSREs. Arid3a binds to RSREs and reduces the H3K9me3 levels. It promotes cell cycle progression and causes the outgrowth of nephric tubules, whereas the conditional knockdown of arid3a using photo-morpholino inhibits regeneration. These results suggest that Arid3a contributes to the regeneration of nephric tubules by decreasing H3K9me3 on RSREs.
Collapse
Affiliation(s)
- Nanoka Suzuki
- Institute for Promotion of Medical Science Research, Yamagata University, Faculty of Medicine, Yamagata, Japan
| | - Kodai Hirano
- Institute for Promotion of Medical Science Research, Yamagata University, Faculty of Medicine, Yamagata, Japan
| | - Hajime Ogino
- Amphibian Research Center, Hiroshima University, Higashi-hiroshima, Japan
| | - Haruki Ochi
- Institute for Promotion of Medical Science Research, Yamagata University, Faculty of Medicine, Yamagata, Japan
| |
Collapse
|
8
|
Alfandari D, Taneyhill LA. Cut loose and run: The complex role of ADAM proteases during neural crest cell development. Genesis 2018; 56:e23095. [PMID: 29476604 PMCID: PMC6105527 DOI: 10.1002/dvg.23095] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 02/01/2018] [Accepted: 02/09/2018] [Indexed: 12/15/2022]
Abstract
ADAM metalloproteases have been shown to play critical roles during development. In this review, we will describe functional evidence that implicates ADAM proteins during the genesis, migration and differentiation of neural crest cells. We will restrict our analysis to the transmembrane ADAMs as other reviews have addressed the role of extracellular metalloproteases (Christian et al. [2013] Critical Reviews in Biochemistry and Molecular Biology 48:544-560). This review will describe advances that have been obtained mainly through the use of two vertebrate model systems, the frog, and avian embryos. The role of the principal substrates of ADAMs, the cadherins, has been extensively described in other reviews, most recently in (Cousin [1997] Mechanisms of Development 148:79-88; Taneyhill and Schiffmacher [2017] Genesis, 55). The function of ADAMs in the migration of other cell types, including the immune system, wound healing and cancer has been described previously in (Dreymueller et al. [2017] Mediators of Inflammation 2017: 9621724). Our goal is to illustrate both the importance of ADAMs in controlling neural crest behavior and how neural crest cells have helped us understand the molecular interactions, substrates, and functions of ADAM proteins in vivo.
Collapse
Affiliation(s)
- Dominique Alfandari
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, Massachusetts, 01003
| | - Lisa A Taneyhill
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland, 20742
| |
Collapse
|
9
|
Li J, Perfetto M, Neuner R, Bahudhanapati H, Christian L, Mathavan K, Bridges LC, Alfandari D, Wei S. Xenopus ADAM19 regulates Wnt signaling and neural crest specification by stabilizing ADAM13. Development 2018. [PMID: 29540504 DOI: 10.1242/dev.158154] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
During vertebrate gastrulation, canonical Wnt signaling induces the formation of neural plate border (NPB). Wnt is also thought to be required for the subsequent specification of neural crest (NC) lineage at the NPB, but the direct evidence is lacking. We found previously that the disintegrin metalloproteinase ADAM13 is required for Wnt activation and NC induction in Xenopus Here, we report that knockdown of ADAM13 or its close paralog ADAM19 severely downregulates Wnt activity at the NPB, inhibiting NC specification without affecting earlier NPB formation. Surprisingly, ADAM19 functions nonproteolytically in NC specification by interacting with ADAM13 and inhibiting its proteasomal degradation. Ectopic expression of stabilized ADAM13 mutants that function independently of ADAM19 can induce the NC marker/specifier snail2 in the future epidermis via Wnt signaling. These results unveil the essential roles of a novel protease-protease interaction in regulating a distinct wave of Wnt signaling, which directly specifies the NC lineage.
Collapse
Affiliation(s)
- Jiejing Li
- Department of Biology, West Virginia University, Morgantown, WV 26506, USA.,Department of Clinical Laboratory, The Affiliated Hospital of KMUST, Medical School, Kunming University of Science and Technology, Kunming 650032, China
| | - Mark Perfetto
- Department of Biology, West Virginia University, Morgantown, WV 26506, USA.,Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Russell Neuner
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | | | - Laura Christian
- Department of Biology, West Virginia University, Morgantown, WV 26506, USA
| | - Ketan Mathavan
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - Lance C Bridges
- Biochemistry, Molecular and Cell Sciences, Arkansas College of Osteopathic Medicine, Arkansas Colleges of Health Education, Fort Smith, AR 72916, USA
| | - Dominique Alfandari
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - Shuo Wei
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
10
|
Li C, Hu R, Hou N, Wang Y, Wang Z, Yang T, Gu Y, He M, Shi Y, Chen J, Song W, Li T. Alteration of the Retinoid Acid-CBP Signaling Pathway in Neural Crest Induction Contributes to Enteric Nervous System Disorder. Front Pediatr 2018; 6:382. [PMID: 30560112 PMCID: PMC6287626 DOI: 10.3389/fped.2018.00382] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 11/16/2018] [Indexed: 12/21/2022] Open
Abstract
Hirschsprung Disease (HSCR) and/or hypoganglionosis are common pediatric disorders that arise from developmental deficiencies of enteric neural crest cells (ENCCs). Retinoid acid (RA) signaling has been shown to affect neural crest (NC) development. However, the mechanisms underlying RA deficiency-induced HSCR or hypoganglionosis are not well-defined. In this report, we found that in HSCR patient bowels, the RA nuclear receptor RARα and its interacting coregulator CREB-binding protein (CBP) were expressed in enteric neural plexuses in the normal ganglionic segment. However, the expression of these two genes was significantly inhibited in the pathological aganglionic segment. In a Xenopus laevis animal model, endogenous RARα interacted with CBP and was expressed in NC territory. Morpholino-mediated knockdown of RARα blocked expression of the NC marker genes Sox10 and FoxD3 and inhibited NC induction. The morphant embryos exhibited reduced nervous cells in the gastrointestinal anlage, a typical enteric nervous deficiency-associated phenotype. Injection of CBP mRNA rescued NC induction and reduced enteric nervous deficiency-associated phenotypes. Our work demonstrates that RARα regulates Sox10 expression via CBP during NC induction, and alteration of the RA-CBP signaling pathway may contribute to the development of enteric nervous system disorders.
Collapse
Affiliation(s)
- Cheng Li
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders and Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Rong Hu
- Ministry of Education Key Laboratory of Child Development and Disorders and Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Nali Hou
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yi Wang
- Department of Gastrointestinal Surgery and Neonatal Surgery, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Zhili Wang
- Department of Gastrointestinal Surgery and Neonatal Surgery, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Ting Yang
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yan Gu
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Mulan He
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yu Shi
- Ministry of Education Key Laboratory of Child Development and Disorders and Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Clinical Laboratory, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Jie Chen
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Weihong Song
- Ministry of Education Key Laboratory of Child Development and Disorders and Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Townsend Family Laboratories, Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Tingyu Li
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders and Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
11
|
The ectodomain of cadherin-11 binds to erbB2 and stimulates Akt phosphorylation to promote cranial neural crest cell migration. PLoS One 2017; 12:e0188963. [PMID: 29190819 PMCID: PMC5708760 DOI: 10.1371/journal.pone.0188963] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 11/16/2017] [Indexed: 02/01/2023] Open
Abstract
During development, a multi-potent group of cells known as the cranial neural crest (CNC) migrate to form craniofacial structures. Proper migration of these cells requires proteolysis of cell adhesion molecules, such as cadherins. In Xenopus laevis, preventing extracellular cleavage of cadherin-11 impairs CNC migration. However, overexpression of the soluble cleavage product (EC1-3) is capable of rescuing this phenotype. The mechanism by which EC1-3 promotes CNC migration has not been investigated until now. Here we show that EC1-3 stimulates phosphorylation of Akt, a target of PI3K, in X.laevis CNC. Through immunoprecipitation experiments, we determined that EC1-3 interacts with all ErbB receptors, PDGFRα, and FGFR1. Of these receptors, only ErbB2 was able to produce an increase in Akt phosphorylation upon treatment with a recombinant EC1-3. This increase was abrogated by mubritinib, an inhibitor of ErbB2. We were able to recapitulate this decrease in Akt phosphorylation in vivo by knocking down ErbB2 in CNC cells. Knockdown of the receptor also significantly reduced CNC migration in vivo. We confirmed the importance of ErbB2 and ErbB receptor signaling in CNC migration using mubritinib and canertinib, respectively. Mubritinib and the PI3K inhibitor LY294002 significantly decreased cell migration while canertinib nearly prevented it altogether. These data show that ErbB2 and Akt are important for CNC migration and implicate other ErbB receptors and Akt-independent signaling pathways. Our findings provide the first example of a functional interaction between the extracellular domain of a type II classical cadherin and growth factor receptors.
Collapse
|