1
|
Baker JC. Placental Evolution: Innovating How to Feed Babies. Annu Rev Genet 2024; 58:391-408. [PMID: 39227137 DOI: 10.1146/annurev-genet-111523-102135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
The evolution of the placenta was transformative. It changed how offspring are fed during gestation from depositing all the resources into an egg to continually supplying resources throughout gestation. Placental evolution is infinitely complex, with many moving parts, but at the core it is driven by a conflict over resources between the mother and the baby, which sets up a Red Queen race, fueling rapid diversification of morphological, cellular, and genetic forms. Placentas from even closely related species are highly divergent in form and function, and many cellular processes are distinct. If we could extract the entirety of genomic information for placentas across all species, including the many hundreds that have evolved in fish and reptiles, we could find their shared commonality, and that would tell us which of the many pieces really matter. We do not have this information, but we do have clues. Convergent evolution mechanisms were repeatedly used in the placenta, including the intense selective pressure to co-opt an envelope protein to build a multinucleated syncytium, the use of the same hormones and structural proteins in placentas derived from separate embryonic origins that arose hundreds of millions of years apart, and the co-option of endogenous retroviruses to form capsids as a way of transport and as mutagens to form new enhancers. As a result, the placental genome is the Wild West of biology, set up to rapidly change, adapt, and innovate. This ability to adapt facilitated the evolution of big babies with big brains and will continue to support offspring and their mothers in our ever-changing global environment.
Collapse
Affiliation(s)
- Julie C Baker
- Department of Genetics, Stanford University, Stanford, California, USA;
| |
Collapse
|
2
|
Giangrazi F, Buffa D, Lloyd AT, Redmond AK, Glover LE, O'Farrelly C. Evolutionary Analysis of the Mammalian IL-17 Cytokine Family Suggests Conserved Roles in Female Fertility. Am J Reprod Immunol 2024; 92:e13907. [PMID: 39177066 DOI: 10.1111/aji.13907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/26/2024] [Accepted: 07/01/2024] [Indexed: 08/24/2024] Open
Abstract
PROBLEM The interleukin-17 (IL-17) family includes pro-inflammatory cytokines IL-17A-F with important roles in mucosal defence, barrier integrity and tissue regeneration. IL-17A can be dysregulated in fertility complications, including pre-eclampsia, endometriosis and miscarriage. Because mammalian subclasses (eutherian, metatherian, and prototherian) have different related reproductive strategies, IL-17 genes and proteins were investigated in the three mammalian classes to explore their involvement in female fertility. METHOD OF STUDY Gene and protein sequences for IL-17s are found in eutherian, metatherian and prototherian mammals. Through synteny and multiple sequence protein alignment, the relationships among mammalian IL-17s were inferred. Publicly available datasets of early pregnancy stages and female fertility in therian mammals were collected and analysed to retrieve information on IL-17 expression. RESULTS Synteny mapping and phylogenetic analyses allowed the classification of mammalian IL-17 family orthologs of human IL-17. Despite differences in their primary amino acid sequence, metatherian and prototherian IL-17s share the same tertiary structure as human IL-17s, suggesting similar functions. The analysis of available datasets for female fertility in therian mammals shows up-regulation of IL-17A and IL-17D during placentation. IL-17B and IL-17D are also found to be over-expressed in human fertility complication datasets, such as endometriosis or recurrent implantation failure. CONCLUSIONS The conservation of the IL-17 gene and protein across mammals suggests similar functions in all the analysed species. Despite significant differences, the upregulation of IL-17 expression is associated with the establishment of pregnancy in eutherian and metatherian mammals. The dysregulation of IL-17s in human reproductive disorders suggests them as a potential therapeutic target.
Collapse
Affiliation(s)
- Federica Giangrazi
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Dafne Buffa
- Department of Biology, Maynooth University, Maynooth, Ireland
| | - Andrew T Lloyd
- Department of Science and Health, Institute of Technology, Carlow, Ireland
| | | | - Louise E Glover
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Department of Reproductive Medicine, Merrion Fertility Clinic, Dublin 2, Ireland
| | - Cliona O'Farrelly
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- School of Medicine, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
3
|
Newman T, Ishihara T, Shaw G, Renfree MB. The structure of the TH/INS locus and the parental allele expressed are not conserved between mammals. Heredity (Edinb) 2024; 133:21-32. [PMID: 38834866 PMCID: PMC11222543 DOI: 10.1038/s41437-024-00689-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 05/01/2024] [Accepted: 05/07/2024] [Indexed: 06/06/2024] Open
Abstract
Parent-of-origin-specific expression of imprinted genes is critical for successful mammalian growth and development. Insulin, coded by the INS gene, is an important growth factor expressed from the paternal allele in the yolk sac placenta of therian mammals. The tyrosine hydroxylase gene TH encodes an enzyme involved in dopamine synthesis. TH and INS are closely associated in most vertebrates, but the mouse orthologues, Th and Ins2, are separated by repeated DNA. In mice, Th is expressed from the maternal allele, but the parental origin of expression is not known for any other mammal so it is unclear whether the maternal expression observed in the mouse represents an evolutionary divergence or an ancestral condition. We compared the length of the DNA segment between TH and INS across species and show that separation of these genes occurred in the rodent lineage with an accumulation of repeated DNA. We found that the region containing TH and INS in the tammar wallaby produces at least five distinct RNA transcripts: TH, TH-INS1, TH-INS2, lncINS and INS. Using allele-specific expression analysis, we show that the TH/INS locus is expressed from the paternal allele in pre- and postnatal tammar wallaby tissues. Determining the imprinting pattern of TH/INS in other mammals might clarify if paternal expression is the ancestral condition which has been flipped to maternal expression in rodents by the accumulation of repeat sequences.
Collapse
Affiliation(s)
- Trent Newman
- School of BioSciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Teruhito Ishihara
- School of BioSciences, The University of Melbourne, Melbourne, VIC, Australia
- Epigenetics Programme, Babraham Institute, Cambridge, CB22 3AT, UK
| | - Geoff Shaw
- School of BioSciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Marilyn B Renfree
- School of BioSciences, The University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
4
|
Khorami-Sarvestani S, Vanaki N, Shojaeian S, Zarnani K, Stensballe A, Jeddi-Tehrani M, Zarnani AH. Placenta: an old organ with new functions. Front Immunol 2024; 15:1385762. [PMID: 38707901 PMCID: PMC11066266 DOI: 10.3389/fimmu.2024.1385762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/08/2024] [Indexed: 05/07/2024] Open
Abstract
The transition from oviparity to viviparity and the establishment of feto-maternal communications introduced the placenta as the major anatomical site to provide nutrients, gases, and hormones to the developing fetus. The placenta has endocrine functions, orchestrates maternal adaptations to pregnancy at different periods of pregnancy, and acts as a selective barrier to minimize exposure of developing fetus to xenobiotics, pathogens, and parasites. Despite the fact that this ancient organ is central for establishment of a normal pregnancy in eutherians, the placenta remains one of the least studied organs. The first step of pregnancy, embryo implantation, is finely regulated by the trophoectoderm, the precursor of all trophoblast cells. There is a bidirectional communication between placenta and endometrium leading to decidualization, a critical step for maintenance of pregnancy. There are three-direction interactions between the placenta, maternal immune cells, and the endometrium for adaptation of endometrial immune system to the allogeneic fetus. While 65% of all systemically expressed human proteins have been found in the placenta tissues, it expresses numerous placenta-specific proteins, whose expression are dramatically changed in gestational diseases and could serve as biomarkers for early detection of gestational diseases. Surprisingly, placentation and carcinogenesis exhibit numerous shared features in metabolism and cell behavior, proteins and molecular signatures, signaling pathways, and tissue microenvironment, which proposes the concept of "cancer as ectopic trophoblastic cells". By extensive researches in this novel field, a handful of cancer biomarkers has been discovered. This review paper, which has been inspired in part by our extensive experiences during the past couple of years, highlights new aspects of placental functions with emphasis on its immunomodulatory role in establishment of a successful pregnancy and on a potential link between placentation and carcinogenesis.
Collapse
Affiliation(s)
- Sara Khorami-Sarvestani
- Reproductive Immunology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Negar Vanaki
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Sorour Shojaeian
- Department of Biochemistry, School of Medical Sciences, Alborz University of Medical Sciences, Karaj, Iran
| | - Kayhan Zarnani
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Allan Stensballe
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
- Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark
| | - Mahmood Jeddi-Tehrani
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Amir-Hassan Zarnani
- Reproductive Immunology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Huijsmans TERG, Courtiol A, Van Soom A, Smits K, Rousset F, Wauters J, Hildebrandt TB. Quantifying maternal investment in mammals using allometry. Commun Biol 2024; 7:475. [PMID: 38637653 PMCID: PMC11026411 DOI: 10.1038/s42003-024-06165-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 04/09/2024] [Indexed: 04/20/2024] Open
Abstract
Maternal investment influences the survival and reproduction of both mothers and their progeny and plays a crucial role in understanding individuals' life-history and population ecology. To reveal the complex mechanisms associated with reproduction and investment, it is necessary to examine variations in maternal investment across species. Comparisons across species call for a standardised method to quantify maternal investment, which remained to be developed. This paper addresses this limitation by introducing the maternal investment metric - MI - for mammalian species, established through the allometric scaling of the litter mass at weaning age by the adult mass and investment duration (i.e. gestation + lactation duration) of a species. Using a database encompassing hundreds of mammalian species, we show that the metric is not highly sensitive to the regression method used to fit the allometric relationship or to the proxy used for adult body mass. The comparison of the maternal investment metric between mammalian subclasses and orders reveals strong differences across taxa. For example, our metric confirms that Eutheria have a higher maternal investment than Metatheria. We discuss how further research could use the maternal investment metric as a valuable tool to understand variation in reproductive strategies.
Collapse
Affiliation(s)
- Tim E R G Huijsmans
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium.
| | - Alexandre Courtiol
- Department of Evolutionary Genetics, Leibniz Institute for Zoo & Wildlife Research, Alfred-Kowalke-Str. 17, 10315, Berlin, Germany
| | - Ann Van Soom
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Katrien Smits
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - François Rousset
- Institute of Evolutionary Science of Montpellier, University of Montpellier, CNRS, IRD, campus Triolet, 34095, Montpellier cedex 05, France
| | - Jella Wauters
- Department of Reproduction Biology, Leibniz Institute for Zoo & Wildlife Research, Alfred-Kowalke-Str. 17, 10315, Berlin, Germany
- Laboratory of Integrative Metabolomics, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Thomas B Hildebrandt
- Department of Reproduction Management, Leibniz Institute for Zoo & Wildlife Research, Alfred-Kowalke-Str. 17, 10315, Berlin, Germany
- Freie Universität Berlin, Kaiserswerther Str. 16-18, 14195, Berlin, Germany
| |
Collapse
|
6
|
Chiduza GN, Garza-Garcia A, Almacellas E, De Tito S, Pye VE, van Vliet AR, Cherepanov P, Tooze SA. ATG9B is a tissue-specific homotrimeric lipid scramblase that can compensate for ATG9A. Autophagy 2024; 20:557-576. [PMID: 37938170 PMCID: PMC10936676 DOI: 10.1080/15548627.2023.2275905] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 10/05/2023] [Accepted: 10/20/2023] [Indexed: 11/09/2023] Open
Abstract
Macroautophagy/autophagy is a fundamental aspect of eukaryotic biology, and the autophagy-related protein ATG9A is part of the core machinery facilitating this process. In addition to ATG9A vertebrates encode ATG9B, a poorly characterized paralog expressed in a subset of tissues. Herein, we characterize the structure of human ATG9B revealing the conserved homotrimeric quaternary structure and explore the conformational dynamics of the protein. Consistent with the experimental structure and computational chemistry, we establish that ATG9B is a functional lipid scramblase. We show that ATG9B can compensate for the absence of ATG9A in starvation-induced autophagy displaying similar subcellular trafficking and steady-state localization. Finally, we demonstrate that ATG9B can form a heteromeric complex with ATG2A. By establishing the molecular structure and function of ATG9B, our results inform the exploration of niche roles for autophagy machinery in more complex eukaryotes and reveal insights relevant across species.Abbreviation: ATG: autophagy related; CHS: cholesteryl hemisuccinate; cryo-EM: single-particle cryogenic electron microscopy; CTF: contrast transfer function: CTH: C- terminal α helix; FSC: fourier shell correlation; HDIR: HORMA domain interacting region; LMNG: lauryl maltose neopentyl glycol; MD: molecular dynamics simulations; MSA: multiple sequence alignment; NBD-PE: 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-(7-nitro-2-1,3-benzoxadiazol-4-yl ammonium salt); POPC: palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine; RBG: repeating beta groove domain; RMSD: root mean square deviation; SEC: size-exclusion chromatography; TMH: transmembrane helix.
Collapse
Affiliation(s)
- George N. Chiduza
- Molecular Cell Biology of Autophagy, The Francis Crick Institute, London, UK
| | - Acely Garza-Garcia
- Mycobacterial Metabolism and Antibiotic Research Laboratory, The Francis Crick Institute, London, UK
| | - Eugenia Almacellas
- Molecular Cell Biology of Autophagy, The Francis Crick Institute, London, UK
| | - Stefano De Tito
- Molecular Cell Biology of Autophagy, The Francis Crick Institute, London, UK
| | - Valerie E Pye
- Chromatin Structure and Mobile DNA Laboratory, The Francis Crick Institute, London, UK
| | | | - Peter Cherepanov
- Chromatin Structure and Mobile DNA Laboratory, The Francis Crick Institute, London, UK
- Department of Infectious Disease, Imperial College London, London, UK
| | - Sharon A. Tooze
- Molecular Cell Biology of Autophagy, The Francis Crick Institute, London, UK
| |
Collapse
|
7
|
Hu Y, Yuan S, Du X, Liu J, Zhou W, Wei F. Comparative analysis reveals epigenomic evolution related to species traits and genomic imprinting in mammals. Innovation (N Y) 2023; 4:100434. [PMID: 37215528 PMCID: PMC10196708 DOI: 10.1016/j.xinn.2023.100434] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 04/25/2023] [Indexed: 05/24/2023] Open
Abstract
DNA methylation is an epigenetic modification that plays a crucial role in various regulatory processes, including gene expression regulation, transposable element repression, and genomic imprinting. However, most studies on DNA methylation have been conducted in humans and other model species, whereas the dynamics of DNA methylation across mammals remain poorly explored, limiting our understanding of epigenomic evolution in mammals and the evolutionary impacts of conserved and lineage-specific DNA methylation. Here, we generated and gathered comparative epigenomic data from 13 mammalian species, including two marsupial species, to demonstrate that DNA methylation plays critical roles in several aspects of gene evolution and species trait evolution. We found that the species-specific DNA methylation of promoters and noncoding elements correlates with species-specific traits such as body patterning, indicating that DNA methylation might help establish or maintain interspecies differences in gene regulation that shape phenotypes. For a broader view, we investigated the evolutionary histories of 88 known imprinting control regions across mammals to identify their evolutionary origins. By analyzing the features of known and newly identified potential imprints in all studied mammals, we found that genomic imprinting may function in embryonic development through the binding of specific transcription factors. Our findings show that DNA methylation and the complex interaction between the genome and epigenome have a significant impact on mammalian evolution, suggesting that evolutionary epigenomics should be incorporated to develop a unified evolutionary theory.
Collapse
Affiliation(s)
- Yisi Hu
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Shenli Yuan
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xin Du
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiang Liu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Wenliang Zhou
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Fuwen Wei
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| |
Collapse
|
8
|
Whittington CM, Buddle AL, Griffith OW, Carter AM. Embryonic specializations for vertebrate placentation. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210261. [PMID: 36252220 PMCID: PMC9574634 DOI: 10.1098/rstb.2021.0261] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 02/28/2022] [Indexed: 12/20/2022] Open
Abstract
The vertebrate placenta, a close association of fetal and parental tissue for physiological exchange, has evolved independently in sharks, teleost fishes, coelacanths, amphibians, squamate reptiles and mammals. This transient organ forms during pregnancy and is an important contributor to embryonic development in both viviparous and oviparous, brooding species. Placentae may be involved in transport of respiratory gases, wastes, immune molecules, hormones and nutrients. Depending on the taxon, the embryonic portion of the placenta is comprised of either extraembryonic membranes (yolk sac or chorioallantois) or temporary embryonic tissues derived via hypertrophy of pericardium, gill epithelium, gut, tails or fins. These membranes and tissues have been recruited convergently into placentae in several lineages. Here, we highlight the diversity and common features of embryonic tissues involved in vertebrate placentation and suggest future studies that will provide new knowledge about the evolution of pregnancy. This article is part of the theme issue 'Extraembryonic tissues: exploring concepts, definitions and functions across the animal kingdom'.
Collapse
Affiliation(s)
- Camilla M. Whittington
- School of Life and Environmental Sciences, The University of Sydney, Heydon-Laurence A08, New South Wales 2006, Australia
| | - Alice L. Buddle
- School of Life and Environmental Sciences, The University of Sydney, Heydon-Laurence A08, New South Wales 2006, Australia
| | - Oliver W. Griffith
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Anthony M. Carter
- Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, J. B. Winsloews Vej 21, 5000 Odense, Denmark
| |
Collapse
|
9
|
Hakala SM, Fujioka H, Gapp K, De Gasperin O, Genzoni E, Kilner RM, Koene JM, König B, Linksvayer TA, Meurville MP, Negroni MA, Palejowski H, Wigby S, LeBoeuf AC. Socially transferred materials: why and how to study them. Trends Ecol Evol 2022; 38:446-458. [PMID: 36543692 DOI: 10.1016/j.tree.2022.11.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 11/21/2022] [Accepted: 11/25/2022] [Indexed: 12/23/2022]
Abstract
When biological material is transferred from one individual's body to another, as in ejaculate, eggs, and milk, secondary donor-produced molecules are often transferred along with the main cargo, and influence the physiology and fitness of the receiver. Both social and solitary animals exhibit such social transfers at certain life stages. The secondary, bioactive, and transfer-supporting components in socially transferred materials have evolved convergently to the point where they are used in applications across taxa and type of transfer. The composition of these materials is typically highly dynamic and context dependent, and their components drive the physiological and behavioral evolution of many taxa. Our establishment of the concept of socially transferred materials unifies this multidisciplinary topic and will benefit both theory and applications.
Collapse
|
10
|
Plianchaisuk A, Kusama K, Kato K, Sriswasdi S, Tamura K, Iwasaki W. Origination of LTR Retroelement-Derived NYNRIN Coincides with Therian Placental Emergence. Mol Biol Evol 2022; 39:msac176. [PMID: 35959649 PMCID: PMC9447858 DOI: 10.1093/molbev/msac176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The emergence of the placenta is a revolutionary event in the evolution of therian mammals, to which some LTR retroelement-derived genes, such as PEG10, RTL1, and syncytin, are known to contribute. However, therian genomes contain many more LTR retroelement-derived genes that may also have contributed to placental evolution. We conducted large-scale evolutionary genomic and transcriptomic analyses to comprehensively search for LTR retroelement-derived genes whose origination coincided with therian placental emergence and that became consistently expressed in therian placentae. We identified NYNRIN as another Ty3/Gypsy LTR retroelement-derived gene likely to contribute to placental emergence in the therian stem lineage. NYNRIN knockdown inhibited the invasion of HTR8/SVneo invasive-type trophoblasts, whereas the knockdown of its nonretroelement-derived homolog KHNYN did not. Functional enrichment analyses suggested that NYNRIN modulates trophoblast invasion by regulating epithelial-mesenchymal transition and extracellular matrix remodeling and that the ubiquitin-proteasome system is responsible for the functional differences between NYNRIN and KHNYN. These findings extend our knowledge of the roles of LTR retroelement-derived genes in the evolution of therian mammals.
Collapse
Affiliation(s)
- Arnon Plianchaisuk
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-0882, Japan
| | - Kazuya Kusama
- Department of Endocrine Pharmacology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Kiyoko Kato
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Fukuoka, Japan
| | - Sira Sriswasdi
- Center of Excellence in Computational Molecular Biology, Research Affairs, Faculty of Medicine, Chulalongkorn University, Pathum Wan, Bangkok 10330, Thailand
| | - Kazuhiro Tamura
- Department of Endocrine Pharmacology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Wataru Iwasaki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-0882, Japan
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-0882, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba 277-0882, Japan
- Institute for Quantitative Biosciences, The University of Tokyo. Bunkyo-ku, Tokyo 113-0032, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
| |
Collapse
|
11
|
Ishihara T, Griffith OW, Suzuki S, Renfree MB. Placental imprinting of SLC22A3 in the IGF2R imprinted domain is conserved in therian mammals. Epigenetics Chromatin 2022; 15:32. [PMID: 36030241 PMCID: PMC9419357 DOI: 10.1186/s13072-022-00465-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/25/2022] [Indexed: 11/10/2022] Open
Abstract
Background The eutherian IGF2R imprinted domain is regulated by an antisense long non-coding RNA, Airn, which is expressed from a differentially methylated region (DMR) in mice. Airn silences two neighbouring genes, Solute carrier family 22 member 2 (Slc22a2) and Slc22a3, to establish the Igf2r imprinted domain in the mouse placenta. Marsupials also have an antisense non-coding RNA, ALID, expressed from a DMR, although the exact function of ALID is currently unknown. The eutherian IGF2R DMR is located in intron 2, while the marsupial IGF2R DMR is located in intron 12, but it is not yet known whether the adjacent genes SLC22A2 and/or SLC22A3 are also imprinted in the marsupial lineage. In this study, the imprinting status of marsupial SLC22A2 and SLC22A3 in the IGF2R imprinted domain in the chorio-vitelline placenta was examined in a marsupial, the tammar wallaby. Results In the tammar placenta, SLC22A3 but not SLC22A2 was imprinted. Tammar SLC22A3 imprinting was evident in placental tissues but not in the other tissues examined in this study. A putative promoter of SLC22A3 lacked DNA methylation, suggesting that this gene is not directly silenced by a DMR on its promoter as seen in the mouse. Based on immunofluorescence, we confirmed that the tammar SLC22A3 is localised in the endodermal cell layer of the tammar placenta where nutrient trafficking occurs. Conclusions Since SLC22A3 is imprinted in the tammar placenta, we conclude that this placental imprinting of SLC22A3 has been positively selected after the marsupial and eutherian split because of the differences in the DMR location. Since SLC22A3 is known to act as a transporter molecule for nutrient transfer in the eutherian placenta, we suggest it was strongly selected to control the balance between supply and demand of nutrients in marsupial as it does in eutherian placentas. Supplementary Information The online version contains supplementary material available at 10.1186/s13072-022-00465-4.
Collapse
Affiliation(s)
- Teruhito Ishihara
- School of BioSciences, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Oliver W Griffith
- School of BioSciences, The University of Melbourne, Melbourne, VIC, 3010, Australia.,Department of Biological Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Shunsuke Suzuki
- Department of Agricultural and Life Sciences, Faculty of Agriculture, Shinshu University, Nagano, 399-4598, Japan
| | - Marilyn B Renfree
- School of BioSciences, The University of Melbourne, Melbourne, VIC, 3010, Australia.
| |
Collapse
|
12
|
Progesterone Receptor Signaling in the Uterus Is Essential for Pregnancy Success. Cells 2022; 11:cells11091474. [PMID: 35563781 PMCID: PMC9104461 DOI: 10.3390/cells11091474] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 12/25/2022] Open
Abstract
The uterus plays an essential role in the reproductive health of women and controls critical processes such as embryo implantation, placental development, parturition, and menstruation. Progesterone receptor (PR) regulates key aspects of the reproductive function of several mammalian species by directing the transcriptional program in response to progesterone (P4). P4/PR signaling controls endometrial receptivity and decidualization during early pregnancy and is critical for the establishment and outcome of a successful pregnancy. PR is also essential throughout gestation and during labor, and it exerts critical roles in the myometrium, mainly by the specialized function of its two isoforms, progesterone receptor A (PR-A) and progesterone receptor B (PR-B), which display distinct and separate roles as regulators of transcription. This review summarizes recent studies related to the roles of PR function in the decidua and myometrial tissues. We discuss how PR acquired key features in placental mammals that resulted in a highly specialized and dynamic role in the decidua. We also summarize recent literature that evaluates the myometrial PR-A/PR-B ratio at parturition and discuss the efficacy of current treatment options for preterm birth.
Collapse
|
13
|
The Evolution of Viviparity in Vertebrates. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2022; 234:7-19. [PMID: 34694475 DOI: 10.1007/978-3-030-77360-1_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
In the vertebrate tree of life, viviparity or live birth has independently evolved many times, resulting in a rich diversity of reproductive strategies. Viviparity is believed to be a mode of reproduction that evolved from the ancestral condition of oviparity or egg laying, where most of the fetal development occurs outside the body. Today, there is not a simple model of parity transition to explain this species-specific divergence in modes of reproduction. Most evidence points to a gradual series of evolutionary adaptations that account for this phenomenon of reproduction, elegantly displayed by various viviparous squamates that exhibit placentae formed by the appositions of maternal and embryonic tissues, which share significant homology with the tissues that form the placenta in therian mammals. In an era where the genomes of many vertebrate species are becoming available, studies are now exploring the molecular basis of this transition from oviparity to viviparity, and in some rare instances its possible reversibility, such as the Australian three-toed skink (Saiphos equalis). In contrast to the parity diversity in squamates, mammals are viviparous with the notable exception of the egg-laying monotremes. Advancing computational tools coupled with increasing genome availability across species that utilize different reproductive strategies promise to reveal the molecular underpinnings of the ancestral transition of oviparity to viviparity. As a result, the dramatic changes in reproductive physiology and anatomy that accompany these parity changes can be reinterpreted. This chapter will briefly explore the vertebrate modes of reproduction using a phylogenetic framework and where possible highlight the role of potential candidate genes that may help explain the polygenic origins of live birth.
Collapse
|
14
|
Renfree MB, Shaw G. Placentation in Marsupials. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2022; 234:41-60. [PMID: 34694477 DOI: 10.1007/978-3-030-77360-1_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
It is sometimes implied that marsupials are "aplacental," on the presumption that the only mammals that have a placenta are the eponymous "placental" mammals. This misconception has persisted despite the interest in and descriptions of the marsupial placenta, even in Amoroso's definitive chapter. It was also said that marsupials had no maternal recognition of pregnancy and no placental hormone production. In addition, it was thought that genomic imprinting could not exist in marsupials because pregnancy was so short. We now know that none of these ideas have held true with extensive studies over the last four decades definitively showing that they are indeed mammals with a fully functional placenta, and with their own specializations.
Collapse
Affiliation(s)
- Marilyn B Renfree
- School of BioSciences, The University of Melbourne, Melbourne, VIC, Australia.
| | - Geoff Shaw
- School of BioSciences, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
15
|
Kozlov AP. Mammalian tumor-like organs. 1. The role of tumor-like normal organs and atypical tumor organs in the evolution of development (carcino-evo-devo). Infect Agent Cancer 2022; 17:2. [PMID: 35012580 PMCID: PMC8751115 DOI: 10.1186/s13027-021-00412-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 12/23/2021] [Indexed: 12/24/2022] Open
Abstract
Background Earlier I hypothesized that hereditary tumors might participate in the evolution of multicellular organisms. I formulated the hypothesis of evolution by tumor neofunctionalization, which suggested that the evolutionary role of hereditary tumors might consist in supplying evolving multicellular organisms with extra cell masses for the expression of evolutionarily novel genes and the origin of new cell types, tissues, and organs. A new theory—the carcino-evo-devo theory—has been developed based on this hypothesis. Main text My lab has confirmed several non-trivial predictions of this theory. Another non-trivial prediction is that evolutionarily new organs if they originated from hereditary tumors or tumor-like structures, should recapitulate some tumor features in their development. This paper reviews the tumor-like features of evolutionarily novel organs. It turns out that evolutionarily new organs such as the eutherian placenta, mammary gland, prostate, the infantile human brain, and hoods of goldfishes indeed have many features of tumors. I suggested calling normal organs, which have many tumor features, the tumor-like organs. Conclusion Tumor-like organs might originate from hereditary atypical tumor organs and represent the part of carcino-evo-devo relationships, i.e., coevolution of normal and neoplastic development. During subsequent evolution, tumor-like organs may lose the features of tumors and the high incidence of cancer and become normal organs without (or with almost no) tumor features.
Collapse
Affiliation(s)
- A P Kozlov
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 3, Gubkina Street, Moscow, Russia, 117971. .,Peter the Great St. Petersburg Polytechnic University, 29, Polytekhnicheskaya Street, St. Petersburg, Russia, 195251.
| |
Collapse
|
16
|
Benton ML, Abraham A, LaBella AL, Abbot P, Rokas A, Capra JA. The influence of evolutionary history on human health and disease. Nat Rev Genet 2021; 22:269-283. [PMID: 33408383 PMCID: PMC7787134 DOI: 10.1038/s41576-020-00305-9] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2020] [Indexed: 01/29/2023]
Abstract
Nearly all genetic variants that influence disease risk have human-specific origins; however, the systems they influence have ancient roots that often trace back to evolutionary events long before the origin of humans. Here, we review how advances in our understanding of the genetic architectures of diseases, recent human evolution and deep evolutionary history can help explain how and why humans in modern environments become ill. Human populations exhibit differences in the prevalence of many common and rare genetic diseases. These differences are largely the result of the diverse environmental, cultural, demographic and genetic histories of modern human populations. Synthesizing our growing knowledge of evolutionary history with genetic medicine, while accounting for environmental and social factors, will help to achieve the promise of personalized genomics and realize the potential hidden in an individual's DNA sequence to guide clinical decisions. In short, precision medicine is fundamentally evolutionary medicine, and integration of evolutionary perspectives into the clinic will support the realization of its full potential.
Collapse
Affiliation(s)
- Mary Lauren Benton
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Computer Science, Baylor University, Waco, TX, USA
| | - Abin Abraham
- Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN, USA
- Vanderbilt University Medical Center, Vanderbilt University, Nashville, TN, USA
| | - Abigail L LaBella
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Patrick Abbot
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Antonis Rokas
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN, USA
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - John A Capra
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA.
- Bakar Computational Health Sciences Institute and Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA.
| |
Collapse
|
17
|
Guernsey MW, van Kruistum H, Reznick DN, Pollux BJA, Baker JC. Molecular Signatures of Placentation and Secretion Uncovered in Poeciliopsis Maternal Follicles. Mol Biol Evol 2021; 37:2679-2690. [PMID: 32421768 PMCID: PMC7475030 DOI: 10.1093/molbev/msaa121] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Placentation evolved many times independently in vertebrates. Although the core functions of all placentas are similar, we know less about how this similarity extends to the molecular level. Here, we study Poeciliopsis, a unique genus of live-bearing fish that have independently evolved complex placental structures at least three times. The maternal follicle is a key component of these structures. It envelops yolk-rich eggs and is morphologically simple in lecithotrophic species but has elaborate villous structures in matrotrophic species. Through sequencing, the follicle transcriptome of a matrotrophic, Poeciliopsis retropinna, and lecithotrophic, P. turrubarensis, species we found genes known to be critical for placenta function expressed in both species despite their difference in complexity. Additionally, when we compare the transcriptome of different river populations of P. retropinna, known to vary in maternal provisioning, we find differential expression of secretory genes expressed specifically in the top layer of villi cells in the maternal follicle. This provides some of the first evidence that the placental structures of Poeciliopsis function using a secretory mechanism rather than direct contact with maternal circulation. Finally, when we look at the expression of placenta proteins at the maternal–fetal interface of a larger sampling of Poeciliopsis species, we find expression of key maternal and fetal placenta proteins in their cognate tissue types of all species, but follicle expression of prolactin is restricted to only matrotrophic species. Taken together, we suggest that all Poeciliopsis follicles are poised for placenta function but require expression of key genes to form secretory villi.
Collapse
Affiliation(s)
- Michael W Guernsey
- Department of Genetics, Stanford University School of Medicine, Stanford, CA
| | - Henri van Kruistum
- Department of Animal Sciences, Wageningen University, Wageningen, The Netherlands
| | - David N Reznick
- Department of Biology, University of California Riverside, Riverside, CA
| | - Bart J A Pollux
- Department of Animal Sciences, Wageningen University, Wageningen, The Netherlands
| | - Julie C Baker
- Department of Genetics, Stanford University School of Medicine, Stanford, CA
| |
Collapse
|
18
|
Todorov OS, Blomberg SP, Goswami A, Sears K, Drhlík P, Peters J, Weisbecker V. Testing hypotheses of marsupial brain size variation using phylogenetic multiple imputations and a Bayesian comparative framework. Proc Biol Sci 2021; 288:20210394. [PMID: 33784860 PMCID: PMC8059968 DOI: 10.1098/rspb.2021.0394] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 03/01/2021] [Indexed: 12/20/2022] Open
Abstract
Considerable controversy exists about which hypotheses and variables best explain mammalian brain size variation. We use a new, high-coverage dataset of marsupial brain and body sizes, and the first phylogenetically imputed full datasets of 16 predictor variables, to model the prevalent hypotheses explaining brain size evolution using phylogenetically corrected Bayesian generalized linear mixed-effects modelling. Despite this comprehensive analysis, litter size emerges as the only significant predictor. Marsupials differ from the more frequently studied placentals in displaying a much lower diversity of reproductive traits, which are known to interact extensively with many behavioural and ecological predictors of brain size. Our results therefore suggest that studies of relative brain size evolution in placental mammals may require targeted co-analysis or adjustment of reproductive parameters like litter size, weaning age or gestation length. This supports suggestions that significant associations between behavioural or ecological variables with relative brain size may be due to a confounding influence of the extensive reproductive diversity of placental mammals.
Collapse
Affiliation(s)
- Orlin S. Todorov
- School of Biological Sciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Simone P. Blomberg
- School of Biological Sciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Anjali Goswami
- Genetics, Evolution, and Environment Department, University College London, UK
- Department of Life Sciences, Natural History Museum, London, UK
| | - Karen Sears
- Department of Ecology and Evolutionary Biology, College of Life Sciences, University of California Los Angeles, CA, USA
| | - Patrik Drhlík
- Faculty of Mechatronics, Informatics and Interdisciplinary Studies, Technical University of Liberec, Czechia
| | - James Peters
- Department of Animal Biology, University of Illinois at Urbana Champaign, USA
| | - Vera Weisbecker
- School of Biological Sciences, The University of Queensland, St Lucia, Queensland, Australia
- College of Science and Engineering, Flinders University, Australia
| |
Collapse
|
19
|
Hao Y, Lee HJ, Baraboo M, Burch K, Maurer T, Somarelli JA, Conant GC. Baby Genomics: Tracing the Evolutionary Changes That Gave Rise to Placentation. Genome Biol Evol 2021; 12:35-47. [PMID: 32053193 PMCID: PMC7144826 DOI: 10.1093/gbe/evaa026] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2020] [Indexed: 12/12/2022] Open
Abstract
It has long been challenging to uncover the molecular mechanisms behind striking morphological innovations such as mammalian pregnancy. We studied the power of a robust comparative orthology pipeline based on gene synteny to address such problems. We inferred orthology relations between human genes and genes from each of 43 other vertebrate genomes, resulting in ∼18,000 orthologous pairs for each genome comparison. By identifying genes that first appear coincident with origin of the placental mammals, we hypothesized that we would define a subset of the genome enriched for genes that played a role in placental evolution. We thus pinpointed orthologs that appeared before and after the divergence of eutherian mammals from marsupials. Reinforcing previous work, we found instead that much of the genetic toolkit of mammalian pregnancy evolved through the repurposing of preexisting genes to new roles. These genes acquired regulatory controls for their novel roles from a group of regulatory genes, many of which did in fact originate at the appearance of the eutherians. Thus, orthologs appearing at the origin of the eutherians are enriched in functions such as transcriptional regulation by Krüppel-associated box-zinc-finger proteins, innate immune responses, keratinization, and the melanoma-associated antigen protein class. Because the cellular mechanisms of invasive placentae are similar to those of metastatic cancers, we then used our orthology inferences to explore the association between placenta invasion and cancer metastasis. Again echoing previous work, we find that genes that are phylogenetically older are more likely to be implicated in cancer development.
Collapse
Affiliation(s)
- Yue Hao
- Bioinformatics Research Center, North Carolina State University
| | - Hyuk Jin Lee
- Division of Biological Sciences, University of Missouri-Columbia
| | | | | | | | - Jason A Somarelli
- Duke Cancer Institute, Duke University Medical Center.,Department of Medicine, Duke University School of Medicine
| | - Gavin C Conant
- Bioinformatics Research Center, North Carolina State University.,Division of Animal Sciences, University of Missouri-Columbia.,Program in Genetics, North Carolina State University.,Department of Biological Sciences, North Carolina State University
| |
Collapse
|
20
|
Pettersson ME, Jern P. ZBED6 binding motifs correlate with endogenous retroviruses and Syncytin genes. Virus Evol 2020; 7:veaa083. [PMID: 33859827 PMCID: PMC8035546 DOI: 10.1093/ve/veaa083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Retroviruses have infiltrated vertebrate germlines for millions of years as inherited endogenous retroviruses (ERVs). Mammalian genomes host large numbers of ERVs and transposable elements (TEs), including retrotransposons and DNA transposons, that contribute to genomic innovation and evolution as coopted genes and regulators of diverse functions. To explore features distinguishing coopted ERVs and TEs from other integrations, we focus on the potential role of ZBED6 and repeated ERV domestication as repurposed Syncytin genes. The placental mammal-specific ZBED6 is a DNA transposon-derived transcription regulator and we demonstrate that its binding motifs are associated with distinct Syncytins and that ZBED6 binding motifs are 2- to 3-fold more frequent in ERVs than in flanking DNA. Our observations suggest that ZBED6 could contribute an extended regulatory role of genomic expression, utilizing ERVs as platforms for genomic innovation and evolution.
Collapse
Affiliation(s)
- Mats E Pettersson
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Patric Jern
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
21
|
Bowman CE, Arany Z, Wolfgang MJ. Regulation of maternal-fetal metabolic communication. Cell Mol Life Sci 2020; 78:1455-1486. [PMID: 33084944 DOI: 10.1007/s00018-020-03674-w] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/23/2020] [Accepted: 10/05/2020] [Indexed: 02/08/2023]
Abstract
Pregnancy may be the most nutritionally sensitive stage in the life cycle, and improved metabolic health during gestation and early postnatal life can reduce the risk of chronic disease in adulthood. Successful pregnancy requires coordinated metabolic, hormonal, and immunological communication. In this review, maternal-fetal metabolic communication is defined as the bidirectional communication of nutritional status and metabolic demand by various modes including circulating metabolites, endocrine molecules, and other secreted factors. Emphasis is placed on metabolites as a means of maternal-fetal communication by synthesizing findings from studies in humans, non-human primates, domestic animals, rabbits, and rodents. In this review, fetal, placental, and maternal metabolic adaptations are discussed in turn. (1) Fetal macronutrient needs are summarized in terms of the physiological adaptations in place to ensure their proper allocation. (2) Placental metabolite transport and maternal physiological adaptations during gestation, including changes in energy budget, are also discussed. (3) Maternal nutrient limitation and metabolic disorders of pregnancy serve as case studies of the dynamic nature of maternal-fetal metabolic communication. The review concludes with a summary of recent research efforts to identify metabolites, endocrine molecules, and other secreted factors that mediate this communication, with particular emphasis on serum/plasma metabolomics in humans, non-human primates, and rodents. A better understanding of maternal-fetal metabolic communication in health and disease may reveal novel biomarkers and therapeutic targets for metabolic disorders of pregnancy.
Collapse
Affiliation(s)
- Caitlyn E Bowman
- Department of Medicine, Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Zoltan Arany
- Department of Medicine, Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael J Wolfgang
- Department of Biological Chemistry, Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
22
|
Edwards CA, Takahashi N, Corish JA, Ferguson-Smith AC. The origins of genomic imprinting in mammals. Reprod Fertil Dev 2020; 31:1203-1218. [PMID: 30615843 DOI: 10.1071/rd18176] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 10/01/2018] [Indexed: 12/13/2022] Open
Abstract
Genomic imprinting is a process that causes genes to be expressed according to their parental origin. Imprinting appears to have evolved gradually in two of the three mammalian subclasses, with no imprinted genes yet identified in prototheria and only six found to be imprinted in marsupials to date. By interrogating the genomes of eutherian suborders, we determine that imprinting evolved at the majority of eutherian specific genes before the eutherian radiation. Theories considering the evolution of imprinting often relate to resource allocation and recently consider maternal-offspring interactions more generally, which, in marsupials, places a greater emphasis on lactation. In eutherians, the imprint memory is retained at least in part by zinc finger protein 57 (ZFP57), a Kruppel associated box (KRAB) zinc finger protein that binds specifically to methylated imprinting control regions. Some imprints are less dependent on ZFP57invivo and it may be no coincidence that these are the imprints that are found in marsupials. Because marsupials lack ZFP57, this suggests another more ancestral protein evolved to regulate imprints in non-eutherian subclasses, and contributes to imprinting control in eutherians. Hence, understanding the mechanisms acting at imprinting control regions across mammals has the potential to provide valuable insights into our understanding of the origins and evolution of genomic imprinting.
Collapse
Affiliation(s)
- Carol A Edwards
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| | - Nozomi Takahashi
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| | - Jennifer A Corish
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| | - Anne C Ferguson-Smith
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| |
Collapse
|
23
|
Carter AM. The role of mammalian foetal membranes in early embryogenesis: Lessons from marsupials. J Morphol 2020; 282:940-952. [PMID: 32374455 DOI: 10.1002/jmor.21140] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/20/2020] [Accepted: 04/25/2020] [Indexed: 12/16/2022]
Abstract
Across mammals, early embryonic development is supported by uterine secretions taken up through the yolk sac and other foetal membranes (histotrophic nutrition). The marsupial conceptus is enclosed in a shell coat for the first two-thirds of gestation and nutrients pass to the embryo through the shell and the avascular bilaminar yolk sac. At around the time of shell rupture, part of the yolk sac is trilaminar and supplied with blood vessels. It attaches to the uterus and forms a choriovitelline placenta. Rapid growth of the embryo ensues, still supported by histotrophe as well as exchange of oxygen and nutrients between maternal and foetal blood vessels (haemotrophic nutrition). Few marsupials have a chorioallantoic placenta and the highly altricial newborn is delivered after a short gestation. Eutherian embryos pass through a similar sequence before there is a fully functional chorioallantoic placenta. In most orders, there is transient yolk sac placentation, but even before this, nutrients are transferred through an avascular yolk sac. Yolk sac placentation does not occur in rodents or catarrhine primates. Early embryonic development in the mouse is nonetheless dependent on histotrophic nutrition. In the first trimester of human pregnancy, uterine glands open to the intervillous space and secretion products are taken up by the trophoblast. Transfer of nutrients to the early human embryo also involves the yolk sac, which floats free in the exocoelom. Marsupials can therefore inform us about the role of foetal membranes and histotrophic nutrition in early embryogenesis, knowledge that can translate to eutherians.
Collapse
Affiliation(s)
- Anthony M Carter
- Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
24
|
dos Santos ÍGD, de Oliveira Mendes TA, Silva GAB, Reis AMS, Monteiro-Vitorello CB, Schaker PDC, Herai RH, Fabotti ABC, Coutinho LL, Jorge EC. Didelphis albiventris: an overview of unprecedented transcriptome sequencing of the white-eared opossum. BMC Genomics 2019; 20:866. [PMID: 31730444 PMCID: PMC6858782 DOI: 10.1186/s12864-019-6240-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 10/29/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The white-eared opossum (Didelphis albiventris) is widely distributed throughout Brazil and South America. It has been used as an animal model for studying different scientific questions ranging from the restoration of degraded green areas to medical aspects of Chagas disease, leishmaniasis and resistance against snake venom. As a marsupial, D. albiventris can also contribute to the understanding of the molecular mechanisms that govern the different stages of organogenesis. Opossum joeys are born after only 13 days, and the final stages of organogenesis occur when the neonates are inside the pouch, depending on lactation. As neither the genome of this opossum species nor its transcriptome has been completely sequenced, the use of D. albiventris as an animal model is limited. In this work, we sequenced the D. albiventris transcriptome by RNA-seq to obtain the first catalogue of differentially expressed (DE) genes and gene ontology (GO) annotations during the neonatal stages of marsupial development. RESULTS The D. albiventris transcriptome was obtained from whole neonates harvested at birth (P0), at 5 days of age (P5) and at 10 days of age (P10). The de novo assembly of these transcripts generated 85,338 transcripts. Approximately 30% of these transcripts could be mapped against the amino acid sequences of M. domestica, the evolutionarily closest relative of D. albiventris to be sequenced thus far. Among the expressed transcripts, 2077 were found to be DE between P0 and P5, 13,780 between P0 and P10, and 1453 between P5 and P10. The enriched GO terms were mainly related to the immune system, blood tissue development and differentiation, vision, hearing, digestion, the CNS and limb development. CONCLUSIONS The elucidation of opossum transcriptomes provides an out-group for better understanding the distinct characteristics associated with the evolution of mammalian species. This study provides the first transcriptome sequences and catalogue of genes for a marsupial species at different neonatal stages, allowing the study of the mechanisms involved in organogenesis.
Collapse
Affiliation(s)
- Íria Gabriela Dias dos Santos
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais Brazil
| | | | - Gerluza Aparecida Borges Silva
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais Brazil
| | - Amanda Maria Sena Reis
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais Brazil
| | | | - Patricia Dayane Carvalho Schaker
- Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, São Paulo Brazil
| | - Roberto Hirochi Herai
- Graduate Program in Health Sciences, School of Medicine, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, Paraná, Brazil
| | | | - Luiz Lehmann Coutinho
- Departamento de Zootecnia, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, São Paulo Brazil
| | - Erika Cristina Jorge
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais Brazil
| |
Collapse
|
25
|
Jensen B, Wang T, Moorman AFM. Evolution and Development of the Atrial Septum. Anat Rec (Hoboken) 2018; 302:32-48. [PMID: 30338646 PMCID: PMC6588001 DOI: 10.1002/ar.23914] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 12/27/2017] [Accepted: 01/09/2018] [Indexed: 02/05/2023]
Abstract
The complete division of the atrial cavity by a septum, resulting in a left and right atrium, is found in many amphibians and all amniotes (reptiles, birds, and mammals). Surprisingly, it is only in eutherian, or placental, mammals that full atrial septation necessitates addition from a second septum. The high incidence of incomplete closure of the atrial septum in human, so-called probe patency, suggests this manner of closure is inefficient. We review the evolution and development of the atrial septum to understand the peculiar means of forming the atrial septum in eutherian mammals. The most primitive atrial septum is found in lungfishes and comprises a myocardial component with a mesenchymal cap on its leading edge, reminiscent to the primary atrial septum of embryonic mammals before closure of the primary foramen. In reptiles, birds, and mammals, the primary foramen is closed by the mesenchymal tissues of the atrioventricular cushions, the dorsal mesenchymal protrusion, and the mesenchymal cap. These tissues are also found in lungfishes. The closure of the primary foramen is preceded by the development of secondary perforations in the septal myocardium. In all amniotes, with the exception of eutherian mammals, the secondary perforations do not coalesce to a secondary foramen. Instead, the secondary perforations persist and are sealed by myocardial and endocardial growth after birth or hatching. We suggest that the error-prone secondary foramen allows large volumes of oxygen-rich blood to reach the cardiac left side, needed to sustain the growth of the extraordinary large offspring that characterizes eutherian mammals. Anat Rec, 302:32-48, 2019. © 2018 The Authors. The Anatomical Record published by Wiley Periodicals, Inc. on behalf of American Association of Anatomists.
Collapse
Affiliation(s)
- Bjarke Jensen
- Department of Medical Biology, Academic Medical Center, University of Amsterdam, The Netherlands
| | - Tobias Wang
- Department of Bioscience, Zoophysiology, Aarhus University, Aarhus, Denmark
| | - Antoon F M Moorman
- Department of Medical Biology, Academic Medical Center, University of Amsterdam, The Netherlands
| |
Collapse
|
26
|
Bellofiore N, Cousins F, Temple-Smith P, Dickinson H, Evans J. A missing piece: the spiny mouse and the puzzle of menstruating species. J Mol Endocrinol 2018; 61:R25-R41. [PMID: 29789322 DOI: 10.1530/jme-17-0278] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 04/11/2018] [Indexed: 12/12/2022]
Abstract
We recently discovered the first known menstruating rodent. With the exception of four bats and the elephant shrew, the common spiny mouse (Acomys cahirinus) is the only species outside the primate order to exhibit menses. There are few widely accepted theories on why menstruation developed as the preferred reproductive strategy of these select mammals, all of which reference the evolution of spontaneous decidualisation prior to menstrual shedding. Though menstruating species share several reproductive traits, there has been no identifiable feature unique to menstruating species. Such a feature might suggest why spontaneous decidualisation, and thus menstruation, evolved in these species. We propose that a ≥3-fold increase in progesterone during the luteal phase of the reproductive cycle is a unique characteristic linking menstruating species. We discuss spontaneous decidualisation as a consequence of high progesterone, and the potential role of prolactin in screening for defective embryos in these species to aid in minimising implantation of abnormal embryos. We further explore the possible impact of nutrition in selecting species to undergo spontaneous decidualisation and subsequent menstruation. We summarise the current knowledge of menstruation, discuss current pre-clinical models of menstruation and how the spiny mouse may benefit advancing our understanding of this rare biological phenomenon.
Collapse
Affiliation(s)
- Nadia Bellofiore
- The Ritchie CentreHudson Institute of Medical Research, Clayton, Australia
- Obstetrics and GynaecologyMonash University, Clayton, Australia
| | - Fiona Cousins
- The Ritchie CentreHudson Institute of Medical Research, Clayton, Australia
- Obstetrics and GynaecologyMonash University, Clayton, Australia
| | | | - Hayley Dickinson
- The Ritchie CentreHudson Institute of Medical Research, Clayton, Australia
- Obstetrics and GynaecologyMonash University, Clayton, Australia
| | - Jemma Evans
- Centre for Reproductive HealthHudson Institute of Medical Research, Clayton, Australia
| |
Collapse
|
27
|
Transcriptomic changes in the pre-implantation uterus highlight histotrophic nutrition of the developing marsupial embryo. Sci Rep 2018; 8:2412. [PMID: 29402916 PMCID: PMC5799185 DOI: 10.1038/s41598-018-20744-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 01/23/2018] [Indexed: 12/12/2022] Open
Abstract
Early pregnancy is a critical time for successful reproduction; up to half of human pregnancies fail before the development of the definitive chorioallantoic placenta. Unlike the situation in eutherian mammals, marsupial pregnancy is characterised by a long pre-implantation period prior to the development of the short-lived placenta, making them ideal models for study of the uterine environment promoting embryonic survival pre-implantation. Here we present a transcriptomic study of pre-implantation marsupial pregnancy, and identify differentially expressed genes in the Sminthopsis crassicaudata uterus involved in metabolism and biosynthesis, transport, immunity, tissue remodelling, and uterine receptivity. Interestingly, almost one quarter of the top 50 genes that are differentially upregulated in early pregnancy are putatively involved in histotrophy, highlighting the importance of nutrient transport to the conceptus prior to the development of the placenta. This work furthers our understanding of the mechanisms underlying survival of pre-implantation embryos in the earliest live bearing ancestors of mammals.
Collapse
|
28
|
Abstract
The mammalian placenta shows an extraordinary degree of variation in gross and fine structure, but this has been difficult to interpret in physiological terms. Transcriptomics offers a path to understanding how structure relates to function. This essay examines how studies of gene transcription can inform us about placental evolution in eutherian and marsupial mammals and more broadly about convergent evolution of viviparity and placentation in vertebrates. Thus far, the focus has been on the chorioallantoic placenta of eutherians at term, the reproductive strategies of eutherians and marsupials, and the decidual response of the uterus at implantation. Future work should address gene expression during early stages of placental development and endeavor to cover all major groups of mammals. Comparative studies across oviparous and viviparous vertebrates have centered on the chorioallantoic membrane and yolk sac. They point to the possibility of defining a set of genes that can be recruited to support commonalities in reproductive strategies. Further advances can be anticipated from single-cell transcriptomics if those techniques are applied to a range of placental structures and in species other than humans and mice.
Collapse
Affiliation(s)
- Anthony M Carter
- Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, J. B. Winsloews Vej 21, DK-5000 Odense, Denmark
| |
Collapse
|
29
|
Reardon S. Wallaby mothers have unconventional placentas. Nature 2017. [DOI: 10.1038/nature.2017.22587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
30
|
Abstract
Many developmental functions in marsupials and eutherian mammals are accomplished by different tissues, but similar genes.
Collapse
Affiliation(s)
- Patrick Abbot
- Department of Biological Sciences, Vanderbilt University, Nashville, United States
| | - John A Capra
- Department of Biological Sciences, Vanderbilt University, Nashville, United States
| |
Collapse
|