1
|
Uzhytchak M, Smolková B, Frtús A, Stupakov A, Lunova M, Scollo F, Hof M, Jurkiewicz P, Sullivan GJ, Dejneka A, Lunov O. Sensitivity of endogenous autofluorescence in HeLa cells to the application of external magnetic fields. Sci Rep 2023; 13:10818. [PMID: 37402779 DOI: 10.1038/s41598-023-38015-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 06/30/2023] [Indexed: 07/06/2023] Open
Abstract
Dramatically increased levels of electromagnetic radiation in the environment have raised concerns over the potential health hazards of electromagnetic fields. Various biological effects of magnetic fields have been proposed. Despite decades of intensive research, the molecular mechanisms procuring cellular responses remain largely unknown. The current literature is conflicting with regards to evidence that magnetic fields affect functionality directly at the cellular level. Therefore, a search for potential direct cellular effects of magnetic fields represents a cornerstone that may propose an explanation for potential health hazards associated with magnetic fields. It has been proposed that autofluorescence of HeLa cells is magnetic field sensitive, relying on single-cell imaging kinetic measurements. Here, we investigate the magnetic field sensitivity of an endogenous autofluorescence in HeLa cells. Under the experimental conditions used, magnetic field sensitivity of an endogenous autofluorescence was not observed in HeLa cells. We present a number of arguments indicating why this is the case in the analysis of magnetic field effects based on the imaging of cellular autofluorescence decay. Our work indicates that new methods are required to elucidate the effects of magnetic fields at the cellular level.
Collapse
Affiliation(s)
- Mariia Uzhytchak
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, Prague, 18221, Czech Republic
| | - Barbora Smolková
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, Prague, 18221, Czech Republic
| | - Adam Frtús
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, Prague, 18221, Czech Republic
| | - Alexandr Stupakov
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, Prague, 18221, Czech Republic
| | - Mariia Lunova
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, Prague, 18221, Czech Republic
- Institute for Clinical and Experimental Medicine (IKEM), Prague, 14021, Czech Republic
| | - Federica Scollo
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Prague, 18223, Czech Republic
| | - Martin Hof
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Prague, 18223, Czech Republic
| | - Piotr Jurkiewicz
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Prague, 18223, Czech Republic
| | - Gareth John Sullivan
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- Department of Pediatric Research, Oslo University Hospital, Oslo, Norway
- Department of Immunology, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Alexandr Dejneka
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, Prague, 18221, Czech Republic
| | - Oleg Lunov
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, Prague, 18221, Czech Republic.
| |
Collapse
|
2
|
Malkemper EP, Pikulik P, Krause TL, Liu J, Zhang L, Hamauei B, Scholz M. C. elegans is not a robust model organism for the magnetic sense. Commun Biol 2023; 6:242. [PMID: 36871106 PMCID: PMC9985618 DOI: 10.1038/s42003-023-04586-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 02/13/2023] [Indexed: 03/06/2023] Open
Abstract
Magnetoreception is defined as the ability to sense and use the Earth's magnetic field, for example to orient and direct movements. The receptors and sensory mechanisms underlying behavioral responses to magnetic fields remain unclear. A previous study described magnetoreception in the nematode Caenorhabditis elegans, which requires the activity of a single pair of sensory neurons. These results suggest C. elegans as a tractable model organism for facilitating the search for magnetoreceptors and signaling pathways. The finding is controversial, however, as an attempt to replicate the experiment in a different laboratory was unsuccessful. We here independently test the magnetic sense of C. elegans, closely replicating the assays developed in the original publication. We find that C. elegans show no directional preference in magnetic fields of both natural and higher intensity, suggesting that magnetotactic behavior in the worm is not robustly evoked in a laboratory setting. Given the lack of a robust magnetic response under controlled conditions, we conclude that C. elegans is not a suitable model organism to study the mechanism of the magnetic sense.
Collapse
Affiliation(s)
- Erich Pascal Malkemper
- Max Planck Research Group Neurobiology of Magnetoreception, Max Planck Institute for Neurobiology of Behavior - caesar, Bonn, Germany.
| | - Patrycja Pikulik
- Max Planck Research Group Neurobiology of Magnetoreception, Max Planck Institute for Neurobiology of Behavior - caesar, Bonn, Germany
- Department of Game Management and Wildlife Biology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, 16521, Prague 6, Czech Republic
| | - Tim Luca Krause
- Max Planck Research Group Neurobiology of Magnetoreception, Max Planck Institute for Neurobiology of Behavior - caesar, Bonn, Germany
| | - Jun Liu
- Max Planck Research Group Neural Information Flow, Max Planck Institute for Neurobiology of Behavior - caesar, Bonn, Germany
| | - Li Zhang
- Max Planck Research Group Neurobiology of Magnetoreception, Max Planck Institute for Neurobiology of Behavior - caesar, Bonn, Germany
| | - Brittany Hamauei
- Max Planck Research Group Neurobiology of Magnetoreception, Max Planck Institute for Neurobiology of Behavior - caesar, Bonn, Germany
| | - Monika Scholz
- Max Planck Research Group Neural Information Flow, Max Planck Institute for Neurobiology of Behavior - caesar, Bonn, Germany.
| |
Collapse
|
3
|
Park JE, Yoon S, Jeon J, Kim CR, Jhang S, Jeon T, Lee SG, Kim SM, Wie JJ. Multi-Modal Locomotion of Caenorhabditis elegans by Magnetic Reconfiguration of 3D Microtopography. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203396. [PMID: 36316238 PMCID: PMC9798981 DOI: 10.1002/advs.202203396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/24/2022] [Indexed: 06/16/2023]
Abstract
Miniaturized untethered soft robots are recently exploited to imitate multi-modal curvilinear locomotion of living creatures that perceive change of surrounding environments. Herein, the use of Caenorhabditis elegans (C. elegans) is proposed as a microscale model capable of curvilinear locomotion with mechanosensing, controlled by magnetically reconfigured 3D microtopography. Static entropic microbarriers prevent C. elegans from randomly swimming with the omega turns and provide linear translational locomotion with velocity of ≈0.14 BL s-1 . This velocity varies from ≈0.09 (for circumventing movement) to ≈0.46 (for climbing) BL s-1 , depending on magnetic bending and twisting actuation coupled with assembly of microbarriers. Furthermore, different types of neuronal mutants prevent C. elegans from implementing certain locomotion modes, indicating the potential for investigating the correlation between neurons and mechanosensing functions. This strategy promotes a platform for the contactless manipulation of miniaturized biobots and initiates interdisciplinary research for investigating sensory neurons and human diseases.
Collapse
Affiliation(s)
- Jeong Eun Park
- The Research Institute of Industrial ScienceHanyang UniversitySeoul04763Republic of Korea
- Program in Environmental and Polymer EngineeringInha UniversityIncheon22212Republic of Korea
| | - Sunhee Yoon
- Department of Biological Sciences and BioengineeringInha UniversityIncheon22212Republic of Korea
| | - Jisoo Jeon
- Program in Environmental and Polymer EngineeringInha UniversityIncheon22212Republic of Korea
| | - Chae Ryean Kim
- Department of ChemistryUniversity of UlsanUlsan44610Republic of Korea
| | - Saebohm Jhang
- Program in Environmental and Polymer EngineeringInha UniversityIncheon22212Republic of Korea
| | - Tae‐Joon Jeon
- Department of Biological Sciences and BioengineeringInha UniversityIncheon22212Republic of Korea
| | - Seung Goo Lee
- Department of ChemistryUniversity of UlsanUlsan44610Republic of Korea
| | - Sun Min Kim
- Department of Biological Sciences and BioengineeringInha UniversityIncheon22212Republic of Korea
- Department of Mechanical EngineeringInha UniversityIncheon22212Republic of Korea
| | - Jeong Jae Wie
- Department of Organic and Nano EngineeringHanyang UniversitySeoul04763Republic of Korea
- Human‐Tech Convergence ProgramHanyang UniversitySeoul04763Republic of Korea
| |
Collapse
|
4
|
Nimpf S, Nordmann GC, Kagerbauer D, Malkemper EP, Landler L, Papadaki-Anastasopoulou A, Ushakova L, Wenninger-Weinzierl A, Novatchkova M, Vincent P, Lendl T, Colombini M, Mason MJ, Keays DA. A Putative Mechanism for Magnetoreception by Electromagnetic Induction in the Pigeon Inner Ear. Curr Biol 2019; 29:4052-4059.e4. [DOI: 10.1016/j.cub.2019.09.048] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/28/2019] [Accepted: 09/19/2019] [Indexed: 11/16/2022]
|
5
|
How Caenorhabditis elegans Senses Mechanical Stress, Temperature, and Other Physical Stimuli. Genetics 2019; 212:25-51. [PMID: 31053616 PMCID: PMC6499529 DOI: 10.1534/genetics.118.300241] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 03/04/2019] [Indexed: 12/30/2022] Open
Abstract
Caenorhabditis elegans lives in a complex habitat in which they routinely experience large fluctuations in temperature, and encounter physical obstacles that vary in size and composition. Their habitat is shared by other nematodes, by beneficial and harmful bacteria, and nematode-trapping fungi. Not surprisingly, these nematodes can detect and discriminate among diverse environmental cues, and exhibit sensory-evoked behaviors that are readily quantifiable in the laboratory at high resolution. Their ability to perform these behaviors depends on <100 sensory neurons, and this compact sensory nervous system together with powerful molecular genetic tools has allowed individual neuron types to be linked to specific sensory responses. Here, we describe the sensory neurons and molecules that enable C. elegans to sense and respond to physical stimuli. We focus primarily on the pathways that allow sensation of mechanical and thermal stimuli, and briefly consider this animal’s ability to sense magnetic and electrical fields, light, and relative humidity. As the study of sensory transduction is critically dependent upon the techniques for stimulus delivery, we also include a section on appropriate laboratory methods for such studies. This chapter summarizes current knowledge about the sensitivity and response dynamics of individual classes of C. elegans mechano- and thermosensory neurons from in vivo calcium imaging and whole-cell patch-clamp electrophysiology studies. We also describe the roles of conserved molecules and signaling pathways in mediating the remarkably sensitive responses of these nematodes to mechanical and thermal cues. These studies have shown that the protein partners that form mechanotransduction channels are drawn from multiple superfamilies of ion channel proteins, and that signal transduction pathways responsible for temperature sensing in C. elegans share many features with those responsible for phototransduction in vertebrates.
Collapse
|
6
|
Factors that influence magnetic orientation in Caenorhabditis elegans. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2019; 206:343-352. [PMID: 31463530 DOI: 10.1007/s00359-019-01364-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 07/18/2019] [Accepted: 08/13/2019] [Indexed: 10/26/2022]
Abstract
Magnetoreceptive animals orient to the earth's magnetic field at angles that change depending on temporal, spatial, and environmental factors such as season, climate, and position within the geomagnetic field. How magnetic migratory preference changes in response to internal or external stimuli is not understood. We previously found that Caenorhabditis elegans orients to magnetic fields favoring migrations in one of two opposite directions. Here we present new data from our labs together with replication by an independent lab to test how temporal, spatial, and environmental factors influence the unique spatiotemporal trajectory that worms make during magnetotaxis. We found that worms gradually change their average preferred angle of orientation by ~ 180° to the magnetic field during the course of a 90-min assay. Moreover, we found that the wild-type N2 strain prefers to orient towards the left side of a north-facing up, disc-shaped magnet. Lastly, similar to some other behaviors in C. elegans, we found that magnetic orientation may be more robust in dry conditions (< 50% RH). Our findings help explain why C. elegans accumulates with distinct patterns during different periods and in differently shaped magnetic fields. These results provide a tractable system to investigate the behavioral genetic basis of state-dependent magnetic orientation.
Collapse
|
7
|
Baltzley MJ, Nabity MW. Reanalysis of an oft-cited paper on honeybee magnetoreception reveals random behavior. ACTA ACUST UNITED AC 2018; 221:jeb.185454. [PMID: 30266785 DOI: 10.1242/jeb.185454] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 09/24/2018] [Indexed: 11/20/2022]
Abstract
While mounting evidence indicates that a phylogenetically diverse group of animals detect Earth-strength magnetic fields, a magnetoreceptor has not been identified in any animal. One possible reason that identifying a magnetoreceptor has proven challenging is that, like many research fields, magnetoreception research lacks extensive independent replication. Independent replication is important because a subset of studies undoubtedly contain false positive results and without replication it is difficult to determine whether the outcome of an experiment is a false positive. However, we report here a reanalysis of a well-cited paper on honeybee magnetoreception demonstrating that the original paper represented a false positive finding caused by incorrect estimates of probability. We also point out how good experimental design practices could have revealed the error prior to publication. Hopefully, this reanalysis will serve as a reminder of the importance of good experimental design in order to reduce the likelihood of publishing false positive results.
Collapse
Affiliation(s)
- Michael J Baltzley
- Department of Biology, Western Oregon University, 345 Monmouth Avenue N., Monmouth, OR 97361, USA
| | - Matthew W Nabity
- Department of Mathematics, Western Oregon University, 345 Monmouth Avenue N., Monmouth, OR 97361, USA
| |
Collapse
|
8
|
Vidal-Gadea A, Bainbridge C, Clites B, Palacios BE, Bakhtiari L, Gordon V, Pierce-Shimomura J. Response to comment on "Magnetosensitive neurons mediate geomagnetic orientation in Caenorhabditis elegans". eLife 2018; 7:31414. [PMID: 29651982 PMCID: PMC5898907 DOI: 10.7554/elife.31414] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 03/19/2018] [Indexed: 01/26/2023] Open
Abstract
Many animals can orient using the earth’s magnetic field. In a recent study, we performed three distinct behavioral assays providing evidence that the nematode Caenorhabditis elegans orients to earth-strength magnetic fields (Vidal-Gadea et al., 2015). A new study by Landler et al. suggests that C. elegans does not orient to magnetic fields (Landler et al., 2018). They also raise conceptual issues that cast doubt on our study. Here, we explain how they appear to have missed positive results in part by omitting controls and running assays longer than prescribed, so that worms switched their preferred migratory direction within single tests. We also highlight differences in experimental methods and interpretations that may explain our different results and conclusions. Together, these findings provide guidance on how to achieve robust magnetotaxis and reinforce our original finding that C. elegans is a suitable model system to study magnetoreception.
Collapse
Affiliation(s)
- Andres Vidal-Gadea
- School of Biological Sciences, Illinois State University, Normal, United States
| | - Chance Bainbridge
- School of Biological Sciences, Illinois State University, Normal, United States
| | - Ben Clites
- Department of Physics, University of Texas at Austin, Austin, United States
| | - Bridgitte E Palacios
- Department of Physics, University of Texas at Austin, Austin, United States.,Department of Neuroscience, University of Texas at Austin, Austin, United States
| | - Layla Bakhtiari
- Department of Neuroscience, University of Texas at Austin, Austin, United States
| | - Vernita Gordon
- Department of Neuroscience, University of Texas at Austin, Austin, United States
| | | |
Collapse
|