1
|
Da Ros F, Persano L, Bizzotto D, Michieli M, Braghetta P, Mazzucato M, Bonaldo P. Emilin-2 is a component of bone marrow extracellular matrix regulating mesenchymal stem cell differentiation and hematopoietic progenitors. Stem Cell Res Ther 2022; 13:2. [PMID: 35012633 PMCID: PMC8744352 DOI: 10.1186/s13287-021-02674-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 10/09/2021] [Indexed: 02/08/2023] Open
Abstract
Background Dissection of mechanisms involved in the regulation of bone marrow microenvironment through cell–cell and cell–matrix contacts is essential for the detailed understanding of processes underlying bone marrow activities both under physiological conditions and in hematologic malignancies. Here we describe Emilin-2 as an abundant extracellular matrix component of bone marrow stroma. Methods Immunodetection of Emilin-2 was performed in bone marrow sections of mice from 30 days to 6 months of age. Emilin-2 expression was monitored in vitro in primary and mesenchymal stem cell lines under undifferentiated and adipogenic conditions. Hematopoietic stem cells and progenitors in bone marrow of 3- to 10-month-old wild-type and Emilin-2 null mice were analyzed by flow cytometry. Results Emilin-2 is deposited in bone marrow extracellular matrix in an age-dependent manner, forming a meshwork that extends from compact bone boundaries to the central trabecular regions. Emilin-2 is expressed and secreted by both primary and immortalized bone marrow mesenchymal stem cells, exerting an inhibitory action in adipogenic differentiation. In vivo Emilin-2 deficiency impairs the frequency of hematopoietic stem/progenitor cells in bone marrow during aging. Conclusion Our data provide new insights in the contribution of bone marrow extracellular matrix microenvironment in the regulation of stem cell niches and hematopoietic progenitor differentiation. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02674-2.
Collapse
Affiliation(s)
- Francesco Da Ros
- SOSd Cell Stem Unit, Department of Translational Research, National Cancer Center CRO-IRCSS, 33081, Aviano, Italy.,Department of Molecular Medicine, University of Padova, Via Ugo Bassi 58/B, 35131, Padova, Italy
| | - Luca Persano
- Department of Women's and Children's Health, University of Padova, 35131, Padova, Italy.,IRP - Pediatric Research Institute, 35131, Padova, Italy
| | - Dario Bizzotto
- Department of Molecular Medicine, University of Padova, Via Ugo Bassi 58/B, 35131, Padova, Italy
| | - Mariagrazia Michieli
- SOSd Cell Therapy and High Dose Chemotherapy, National Cancer Center CRO- IRCCS, 33081, Aviano, Italy
| | - Paola Braghetta
- Department of Molecular Medicine, University of Padova, Via Ugo Bassi 58/B, 35131, Padova, Italy
| | - Mario Mazzucato
- SOSd Cell Stem Unit, Department of Translational Research, National Cancer Center CRO-IRCSS, 33081, Aviano, Italy
| | - Paolo Bonaldo
- Department of Molecular Medicine, University of Padova, Via Ugo Bassi 58/B, 35131, Padova, Italy. .,CRIBI Biotechnology Center, University of Padova, 35131, Padova, Italy.
| |
Collapse
|
2
|
Malik N, Sansom OJ, Michie AM. The role of mTOR-mediated signals during haemopoiesis and lineage commitment. Biochem Soc Trans 2018; 46:1313-1324. [PMID: 30154096 PMCID: PMC6195642 DOI: 10.1042/bst20180141] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 07/09/2018] [Accepted: 07/10/2018] [Indexed: 12/11/2022]
Abstract
The serine/threonine protein kinase mechanistic target of rapamycin (mTOR) has been implicated in the regulation of an array of cellular functions including protein and lipid synthesis, proliferation, cell size and survival. Here, we describe the role of mTOR during haemopoiesis within the context of mTORC1 and mTORC2, the distinct complexes in which it functions. The use of conditional transgenic mouse models specifically targeting individual mTOR signalling components, together with selective inhibitors, have generated a significant body of research emphasising the critical roles played by mTOR, and individual mTOR complexes, in haemopoietic lineage commitment and development. This review will describe the profound role of mTOR in embryogenesis and haemopoiesis, underscoring the importance of mTORC1 at the early stages of haemopoietic cell development, through modulation of stem cell potentiation and self-renewal, and erythroid and B cell lineage commitment. Furthermore, the relatively discrete role of mTORC2 in haemopoiesis will be explored during T cell development and B cell maturation. Collectively, this review aims to highlight the functional diversity of mTOR signalling and underline the importance of this pathway in haemopoiesis.
Collapse
Affiliation(s)
- Natasha Malik
- Institute of Cancer Sciences, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow, U.K
| | - Owen J Sansom
- Institute of Cancer Sciences, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow, U.K
- Cancer Research UK Beatson Institute, Garscube Estate, Glasgow, U.K
| | - Alison M Michie
- Institute of Cancer Sciences, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow, U.K.
| |
Collapse
|
3
|
Tang F, Zheng P. Tumor cells versus host immune cells: whose PD-L1 contributes to PD-1/PD-L1 blockade mediated cancer immunotherapy? Cell Biosci 2018; 8:34. [PMID: 29744030 PMCID: PMC5930423 DOI: 10.1186/s13578-018-0232-4] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 04/25/2018] [Indexed: 05/01/2023] Open
Abstract
Antibody blockade of the PD-1/PD-L1 pathway has elicited durable antitumor responses in the therapy of a broad spectrum of cancers. PD-L1 is constitutively expressed in certain tumors and host immune cells, and its expression can be induced or maintained by many factors. The expression of PD-L1 on tumor tissues has been reported to be positively correlated with the efficacy of anti-PD-1/PD-L1 therapy in patients. However, multiple clinical trials indicate that patients with PD-L1-negative tumors also respond to this blockade therapy, which suggests the potential contribution of PD-L1 from host immune cells. Recently, six articles independently evaluated and verified the contributions of PD-L1 from tumor versus non-tumor cells in various mouse tumor models. These studies confirmed that PD-L1 on either tumor cells or host immune cells contributes to tumor escape, and the relative contributions of PD-L1 on these cells seem to be context-dependent. While both tumor- and host-derived PD-L1 can play critical roles in immune suppression, differences in tumor immunogenicity appear to underlie their relative importance. Notably, these reports highlight the essential roles of PD-L1 from host myeloid cells in negatively regulating T cell activation and limiting T cell trafficking. Therefore, comprehensive evaluating the global PD-L1 expression, rather than monitoring PD-L1 expression on tumor cells alone, should be a more accurate way for predicting responses in PD-1/PD-L1 blockade therapy in cancer patients.
Collapse
Affiliation(s)
- Fei Tang
- Division of Immunotherapy, Institute of Human Virology and Department of Surgery, University of Maryland School of Medicine, 725 W Lombard Street, Baltimore, MD 21201 USA
| | - Pan Zheng
- Division of Immunotherapy, Institute of Human Virology and Department of Surgery, University of Maryland School of Medicine, 725 W Lombard Street, Baltimore, MD 21201 USA
| |
Collapse
|
4
|
Kraig E, Linehan LA, Liang H, Romo TQ, Liu Q, Wu Y, Benavides AD, Curiel TJ, Javors MA, Musi N, Chiodo L, Koek W, Gelfond JAL, Kellogg DL. A randomized control trial to establish the feasibility and safety of rapamycin treatment in an older human cohort: Immunological, physical performance, and cognitive effects. Exp Gerontol 2018; 105:53-69. [PMID: 29408453 DOI: 10.1016/j.exger.2017.12.026] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 12/31/2017] [Indexed: 12/21/2022]
Abstract
Inhibition of the mechanistic target of rapamycin (mTOR) pathway by rapamycin (RAPA), an FDA-approved immunosuppressive drug used as a clinical therapy to prevent solid organ allograft rejection, enhances longevity in mice. Importantly, RAPA was efficacious even when initiated in relatively old animals, suggesting that mTOR inhibition could potentially slow the progression of aging-associated pathologies in older humans (Harrison et al., 2009; Miller et al., 2011). However, the safety and tolerability of RAPA in older human subjects have not yet been demonstrated. Towards this end, we undertook a placebo-controlled pilot study in 25 generally healthy older adults (aged 70-95 years); subjects were randomized to receive either 1 mg RAPA or placebo daily. Although three subjects withdrew, 11 RAPA and 14 controls completed at least 8 weeks of treatment and were included in the analysis. We monitored for changes that would indicate detrimental effects of RAPA treatment on metabolism, including both standard clinical laboratory assays (CBC, CMP, HbA1c) and oral glucose tolerance tests (OGTTs). We also monitored parameters typically associated with aging that could potentially be modified by RAPA; these included cognitive function which was assessed by three different tools: Executive Interview-25 (EXIT25); Saint Louis University Mental Status Exam (SLUMS); and Texas Assessment of Processing Speed (TAPS). In addition, physical performance was measured by handgrip strength and 40-foot timed walks. Lastly, changes in general parameters of healthy immune aging, including serum pro-inflammatory cytokine levels and blood cell subsets, were assessed. Five subjects reported potential adverse side effects; in the RAPA group, these were limited to facial rash (1 subject), stomatitis (1 subject) and gastrointestinal issues (2 subjects) whereas placebo treated subjects only reported stomatitis (1 subject). Although no other adverse events were reported, statistically significant decrements in several erythrocyte parameters including hemoglobin (HgB) and hematocrit (Hct) as well as in red blood cell count (RBC), red blood cell distribution width (RDW), mean corpuscular volume (MCV), and mean corpuscular hemoglobin (MCH) were observed in the RAPA-treatment group. None of these changes manifested clinically significant effects during the short duration of this study. Similarly, no changes were noted in any other clinical laboratory, cognitive, physical performance, or self-perceived health status measure over the study period. Immune parameters were largely unchanged as well, possibly due to the advanced ages of the cohort (70-93 years; mean age 80.5). RAPA-associated increases in a myeloid cell subset and in TREGS were detected, but changes in most other PBMC cell subsets were not statistically significant. Importantly, the OGTTs revealed no RAPA-induced change in blood glucose concentration, insulin secretion, and insulin sensitivity. Thus, based on the results of our pilot study, it appears that short-term RAPA treatment can be used safely in older persons who are otherwise healthy; a trial with a larger sample size and longer treatment duration is warranted.
Collapse
Affiliation(s)
- Ellen Kraig
- Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center, San Antonio, USA; Department of Cell Systems and Anatomy, The University of Texas Health Science Center, San Antonio, USA.
| | - Leslie A Linehan
- Department of Cell Systems and Anatomy, The University of Texas Health Science Center, San Antonio, USA
| | - Hanyu Liang
- Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center, San Antonio, USA
| | - Terry Q Romo
- Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center, San Antonio, USA; GRECC, South Texas Veterans Health Care System, The University of Texas Health Science Center, San Antonio, USA
| | - Qianqian Liu
- Department of Epidemiology and Biostatistics, The University of Texas Health Science Center, San Antonio, USA
| | - Yubo Wu
- Department of Medicine, The University of Texas Health Science Center, San Antonio, USA
| | - Adriana D Benavides
- Department of Microbiology, Immunology, and Molecular Genetics, The University of Texas Health Science Center, San Antonio, USA
| | - Tyler J Curiel
- Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center, San Antonio, USA; Department of Medicine, The University of Texas Health Science Center, San Antonio, USA
| | - Martin A Javors
- Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center, San Antonio, USA; Department of Psychiatry, The University of Texas Health Science Center, San Antonio, USA
| | - Nicolas Musi
- Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center, San Antonio, USA; Department of Medicine, The University of Texas Health Science Center, San Antonio, USA; GRECC, South Texas Veterans Health Care System, The University of Texas Health Science Center, San Antonio, USA
| | - Laura Chiodo
- GRECC, South Texas Veterans Health Care System, The University of Texas Health Science Center, San Antonio, USA
| | - Wouter Koek
- Department of Cell Systems and Anatomy, The University of Texas Health Science Center, San Antonio, USA; Department of Psychiatry, The University of Texas Health Science Center, San Antonio, USA
| | - Jonathan A L Gelfond
- Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center, San Antonio, USA; Department of Epidemiology and Biostatistics, The University of Texas Health Science Center, San Antonio, USA
| | - Dean L Kellogg
- Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center, San Antonio, USA; Department of Medicine, The University of Texas Health Science Center, San Antonio, USA; GRECC, South Texas Veterans Health Care System, The University of Texas Health Science Center, San Antonio, USA
| |
Collapse
|