1
|
Schieweck R, Götz M. Pan-cellular organelles and suborganelles-from common functions to cellular diversity? Genes Dev 2024; 38:98-114. [PMID: 38485267 PMCID: PMC10982711 DOI: 10.1101/gad.351337.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Cell diversification is at the base of increasing multicellular organism complexity in phylogeny achieved during ontogeny. However, there are also functions common to all cells, such as cell division, cell migration, translation, endocytosis, exocytosis, etc. Here we revisit the organelles involved in such common functions, reviewing recent evidence of unexpected differences of proteins at these organelles. For instance, centrosomes or mitochondria differ significantly in their protein composition in different, sometimes closely related, cell types. This has relevance for development and disease. Particularly striking is the high amount and diversity of RNA-binding proteins at these and other organelles, which brings us to review the evidence for RNA at different organelles and suborganelles. We include a discussion about (sub)organelles involved in translation, such as the nucleolus and ribosomes, for which unexpected cell type-specific diversity has also been reported. We propose here that the heterogeneity of these organelles and compartments represents a novel mechanism for regulating cell diversity. One reason is that protein functions can be multiplied by their different contributions in distinct organelles, as also exemplified by proteins with moonlighting function. The specialized organelles still perform pan-cellular functions but in a cell type-specific mode, as discussed here for centrosomes, mitochondria, vesicles, and other organelles. These can serve as regulatory hubs for the storage and transport of specific and functionally important regulators. In this way, they can control cell differentiation, plasticity, and survival. We further include examples highlighting the relevance for disease and propose to examine organelles in many more cell types for their possible differences with functional relevance.
Collapse
Affiliation(s)
- Rico Schieweck
- Institute of Biophysics, National Research Council (CNR) Unit at Trento, 38123 Povo, Italy;
- Biomedical Center (BMC), Department of Physiological Genomics, Ludwig-Maximilians-University, 82152 Planegg-Martinsried, Germany
| | - Magdalena Götz
- Biomedical Center (BMC), Department of Physiological Genomics, Ludwig-Maximilians-University, 82152 Planegg-Martinsried, Germany;
- Institute of Stem Cell Research, Helmholtz Center Munich, German Research Center for Environmental Health, 82152 Planegg-Martinsried, Germany
- SYNERGY, Excellence Cluster of Systems Neurology, Biomedical Center, Ludwig-Maximilians-University, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
2
|
Yang Y, Guo L, Chen L, Gong B, Jia D, Sun Q. Nuclear transport proteins: structure, function, and disease relevance. Signal Transduct Target Ther 2023; 8:425. [PMID: 37945593 PMCID: PMC10636164 DOI: 10.1038/s41392-023-01649-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 11/12/2023] Open
Abstract
Proper subcellular localization is crucial for the functioning of biomacromolecules, including proteins and RNAs. Nuclear transport is a fundamental cellular process that regulates the localization of many macromolecules within the nuclear or cytoplasmic compartments. In humans, approximately 60 proteins are involved in nuclear transport, including nucleoporins that form membrane-embedded nuclear pore complexes, karyopherins that transport cargoes through these complexes, and Ran system proteins that ensure directed and rapid transport. Many of these nuclear transport proteins play additional and essential roles in mitosis, biomolecular condensation, and gene transcription. Dysregulation of nuclear transport is linked to major human diseases such as cancer, neurodegenerative diseases, and viral infections. Selinexor (KPT-330), an inhibitor targeting the nuclear export factor XPO1 (also known as CRM1), was approved in 2019 to treat two types of blood cancers, and dozens of clinical trials of are ongoing. This review summarizes approximately three decades of research data in this field but focuses on the structure and function of individual nuclear transport proteins from recent studies, providing a cutting-edge and holistic view on the role of nuclear transport proteins in health and disease. In-depth knowledge of this rapidly evolving field has the potential to bring new insights into fundamental biology, pathogenic mechanisms, and therapeutic approaches.
Collapse
Affiliation(s)
- Yang Yang
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Lu Guo
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Lin Chen
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Bo Gong
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and Department of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
| | - Da Jia
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China.
| | - Qingxiang Sun
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
- Department of Pathology, State Key Laboratory of Biotherapy and Cancer Centre, West China Hospital, Sichuan University, and Collaborative Innovation Centre of Biotherapy, Chengdu, China.
| |
Collapse
|
3
|
Wong CH, Wingett SW, Qian C, Taliaferro JM, Ross-Thriepland D, Bullock SL. Genome-scale requirements for dynein-based trafficking revealed by a high-content arrayed CRISPR screen. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.01.530592. [PMID: 36909483 PMCID: PMC10002790 DOI: 10.1101/2023.03.01.530592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
The cytoplasmic dynein-1 (dynein) motor plays a key role in cellular organisation by transporting a wide variety of cellular constituents towards the minus ends of microtubules. However, relatively little is known about how the biosynthesis, assembly and functional diversity of the motor is orchestrated. To address this issue, we have conducted an arrayed CRISPR loss-of-function screen in human cells using the distribution of dynein-tethered peroxisomes and early endosomes as readouts. From a guide RNA library targeting 18,253 genes, 195 validated hits were recovered and parsed into those impacting multiple dynein cargoes and those whose effects are restricted to a subset of cargoes. Clustering of high-dimensional phenotypic fingerprints generated from multiplexed images revealed co-functional genes involved in many cellular processes, including several candidate novel regulators of core dynein functions. Mechanistic analysis of one of these proteins, the RNA-binding protein SUGP1, provides evidence that it promotes cargo trafficking by sustaining functional expression of the dynein activator LIS1. Our dataset represents a rich source of new hypotheses for investigating microtubule-based transport, as well as several other aspects of cellular organisation that were captured by our high-content imaging.
Collapse
Affiliation(s)
- Chun Hao Wong
- Cell Biology Division, MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
- Discovery Biology, Discovery Sciences, AstraZeneca, R&D, Cambridge, CB4 0WG, UK
- Current address: Wellcome Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | - Steven W. Wingett
- Cell Biology Division, MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| | - Chen Qian
- Quantitative Biology, Discovery Sciences, AstraZeneca, R&D, Cambridge, CB4 0WG, UK
| | - J. Matthew Taliaferro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | | | - Simon L. Bullock
- Cell Biology Division, MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| |
Collapse
|
4
|
Su PY, Yen SCB, Yang CC, Chang CH, Lin WC, Shih C. Hepatitis B virus virion secretion is a CRM1-spike-mediated late event. J Biomed Sci 2022; 29:44. [PMID: 35729569 PMCID: PMC9210616 DOI: 10.1186/s12929-022-00827-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 06/16/2022] [Indexed: 11/10/2022] Open
Abstract
Background Hepatitis B virus (HBV) is a major human pathogen worldwide. To date, there is no curative treatment for chronic hepatitis B. The mechanism of virion secretion remains to be investigated. Previously, we found that nuclear export of HBc particles can be facilitated via two CRM1-specific nuclear export signals (NES) at the spike tip. Methods In this study, we used site-directed mutagenesis at the CRM1 NES, as well as treatment with CRM1 inhibitors at a low concentration, or CRM1-specific shRNA knockdown, in HBV-producing cell culture, and measured the secretion of various HBV viral and subviral particles via a native agarose gel electrophoresis assay. Separated HBV particles were characterized by Western blot analysis, and their genomic DNA contents were measured by Southern blot analysis. Secreted extracellular particles were compared with intracellular HBc capsids for DNA synthesis and capsid formation. Virion secretion and the in vivo interactions among HBc capsids, CRM1 and microtubules, were examined by proximity ligation assay, immunofluorescence microscopy, and nocodazole treatment. Results We report here that the tip of spike of HBV core (HBc) particles (capsids) contains a complex sensor for secretion of both HBV virions and naked capsids. HBV virion secretion is closely associated with HBc nuclear export in a CRM1-dependent manner. At the conformationally flexible spike tips of HBc particles, NES motifs overlap extensively with motifs important for secretion of HBV virions and naked capsids. Conclusions We provided experimental evidence that virions and naked capsids can egress via two distinct, yet overlapping, pathways. Unlike the secretion of naked capsids, HBV virion secretion is highly CRM1- and microtubule-dependent. CRM1 is well known for its involvement in nuclear transport in literature. To our knowledge, this is the first report that CRM1 is required for virion secretion. CRM1 inhibitors could be a promising therapeutic candidate for chronic HBV patients in clinical medicine. Supplementary Information The online version contains supplementary material available at 10.1186/s12929-022-00827-w.
Collapse
Affiliation(s)
- Pei-Yi Su
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, No.100, Shih-Chuan 1st Road, Sanmin, 80708, Kaohsiung, Taiwan.,Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Shin-Chwen Bruce Yen
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, No.100, Shih-Chuan 1st Road, Sanmin, 80708, Kaohsiung, Taiwan.,Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Ching-Chun Yang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Chih-Hsu Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wen-Chang Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Chiaho Shih
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, No.100, Shih-Chuan 1st Road, Sanmin, 80708, Kaohsiung, Taiwan. .,Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
5
|
Lagadec F, Carlon-Andres I, Ragues J, Port S, Wodrich H, Kehlenbach RH. CRM1 Promotes Capsid Disassembly and Nuclear Envelope Translocation of Adenovirus Independently of Its Export Function. J Virol 2022; 96:e0127321. [PMID: 34757845 PMCID: PMC8826800 DOI: 10.1128/jvi.01273-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 11/01/2021] [Indexed: 11/20/2022] Open
Abstract
After receptor-mediated endocytosis and endosomal escape, adenoviral capsids can travel via microtubule organizing centers to the nuclear envelope. Upon capsid disassembly, viral genome import into nuclei of interphase cells then occurs through nuclear pore complexes, involving the nucleoporins Nup214 and Nup358. Import also requires the activity of the classic nuclear export receptor CRM1, as it is blocked by the selective inhibitor leptomycin B. We have now used artificially enucleated as well as mitotic cells to analyze the role of an intact nucleus in different steps of the viral life cycle. In enucleated U2OS cells, viral capsids traveled to the microtubule organizing center, whereas their removal from this complex was blocked, suggesting that this step required nuclear factors. In mitotic cells, on the other hand, CRM1 promoted capsid disassembly and genome release, suggesting a role of this protein that does not require intact nuclear envelopes or nuclear pore complexes and is distinct from its function as a nuclear export receptor. Similar to enucleation, inhibition of CRM1 by leptomycin B also leads to an arrest of adenoviral capsids at the microtubule organizing center. In a small-scale screen using leptomycin B-resistant versions of CRM1, we identified a mutant, CRM1 W142A P143A, that is compromised with respect to adenoviral capsid disassembly in both interphase and mitotic cells. Strikingly, this mutant is capable of exporting cargo proteins out of the nucleus of living cells or digitonin-permeabilized cells, pointing to a role of the mutated region that is not directly linked to nuclear export. IMPORTANCE A role of nucleoporins and of soluble transport factors in adenoviral genome import into the nucleus of infected cells in interphase has previously been established. The nuclear export receptor CRM1 promotes genome import, but its precise function is not known. Using enucleated and mitotic cells, we showed that CRM1 does not simply function by exporting a crucial factor out of the nucleus that would then trigger capsid disassembly and genome import. Instead, CRM1 has an export-independent role, a notion that is also supported by a mutant, CRM1 W142A P143A, which is export competent but deficient in viral capsid disassembly, in both interphase and mitotic cells.
Collapse
Affiliation(s)
- Floriane Lagadec
- Department of Molecular Biology, Faculty of Medicine, Göttingen Center of Biosciences (GZMB), Georg-August-University Göttingen, Göttingen, Germany
- CNRS UMR 5234, Fundamental Microbiology and Pathogenicity, Université de Bordeaux, Bordeaux, France
| | - Irene Carlon-Andres
- CNRS UMR 5234, Fundamental Microbiology and Pathogenicity, Université de Bordeaux, Bordeaux, France
| | - Jessica Ragues
- CNRS UMR 5234, Fundamental Microbiology and Pathogenicity, Université de Bordeaux, Bordeaux, France
| | - Sarah Port
- Department of Molecular Biology, Faculty of Medicine, Göttingen Center of Biosciences (GZMB), Georg-August-University Göttingen, Göttingen, Germany
| | - Harald Wodrich
- CNRS UMR 5234, Fundamental Microbiology and Pathogenicity, Université de Bordeaux, Bordeaux, France
| | - Ralph H. Kehlenbach
- Department of Molecular Biology, Faculty of Medicine, Göttingen Center of Biosciences (GZMB), Georg-August-University Göttingen, Göttingen, Germany
| |
Collapse
|
6
|
Jühlen R, Martinelli V, Vinci C, Breckpot J, Fahrenkrog B. Centrosome and ciliary abnormalities in fetal akinesia deformation sequence human fibroblasts. Sci Rep 2020; 10:19301. [PMID: 33168876 PMCID: PMC7652866 DOI: 10.1038/s41598-020-76192-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 10/23/2020] [Indexed: 02/06/2023] Open
Abstract
Ciliopathies are clinical disorders of the primary cilium with widely recognised phenotypic and genetic heterogeneity. Here, we found impaired ciliogenesis in fibroblasts derived from individuals with fetal akinesia deformation sequence (FADS), a broad spectrum of neuromuscular disorders arising from compromised foetal movement. We show that cells derived from FADS individuals have shorter and less primary cilia (PC), in association with alterations in post-translational modifications in α-tubulin. Similarly, siRNA-mediated depletion of two known FADS proteins, the scaffold protein rapsyn and the nucleoporin NUP88, resulted in defective PC formation. Consistent with a role in ciliogenesis, rapsyn and NUP88 localised to centrosomes and PC. Furthermore, proximity-ligation assays confirm the respective vicinity of rapsyn and NUP88 to γ-tubulin. Proximity-ligation assays moreover show that rapsyn and NUP88 are adjacent to each other and that the rapsyn-NUP88 interface is perturbed in the examined FADS cells. We suggest that the perturbed rapsyn-NUP88 interface leads to defects in PC formation and that defective ciliogenesis contributes to the pleiotropic defects seen in FADS.
Collapse
Affiliation(s)
- Ramona Jühlen
- Institute of Molecular Biology and Medicine, Université Libre de Bruxelles, 6041, Gosselies, Belgium.,Institute of Biochemistry and Molecular Cell Biology, Medical School, RWTH Aachen University, 52074, Aachen, Germany
| | - Valérie Martinelli
- Institute of Molecular Biology and Medicine, Université Libre de Bruxelles, 6041, Gosselies, Belgium
| | - Chiara Vinci
- Institute of Molecular Biology and Medicine, Université Libre de Bruxelles, 6041, Gosselies, Belgium
| | - Jeroen Breckpot
- Center for Human Genetics, University Hospitals Leuven, Catholic University Leuven, Leuven, Belgium
| | - Birthe Fahrenkrog
- Institute of Molecular Biology and Medicine, Université Libre de Bruxelles, 6041, Gosselies, Belgium. .,Biozentrum, University of Basel, 4056, Basel, Switzerland.
| |
Collapse
|
7
|
Liu W, Zheng F, Wang Y, Fu C. Alp7-Mto1 and Alp14 synergize to promote interphase microtubule regrowth from the nuclear envelope. J Mol Cell Biol 2020; 11:944-955. [PMID: 31087092 PMCID: PMC6927237 DOI: 10.1093/jmcb/mjz038] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/15/2019] [Accepted: 04/26/2019] [Indexed: 01/02/2023] Open
Abstract
Microtubules grow not only from the centrosome but also from various noncentrosomal microtubule-organizing centers (MTOCs), including the nuclear envelope (NE) and pre-existing microtubules. The evolutionarily conserved proteins Mto1/CDK5RAP2 and Alp14/TOG/XMAP215 have been shown to be involved in promoting microtubule nucleation. However, it has remained elusive as to how the microtubule nucleation promoting factors are specified to various noncentrosomal MTOCs, particularly the NE, and how these proteins coordinate to organize microtubule assembly. Here, we demonstrate that in the fission yeast Schizosaccharomyces pombe, efficient interphase microtubule growth from the NE requires Alp7/TACC, Alp14/TOG/XMAP215, and Mto1/CDK5RAP2. The absence of Alp7, Alp14, or Mto1 compromises microtubule regrowth on the NE in cells undergoing microtubule repolymerization. We further demonstrate that Alp7 and Mto1 interdependently localize to the NE in cells without microtubules and that Alp14 localizes to the NE in an Alp7 and Mto1-dependent manner. Tethering Mto1 to the NE in cells lacking Alp7 partially restores microtubule number and the efficiency of microtubule generation from the NE. Hence, our study delineates that Alp7, Alp14, and Mto1 work in concert to regulate interphase microtubule regrowth on the NE.
Collapse
Affiliation(s)
- Wenyue Liu
- Division of Molecular and Cell Biophysics, Hefei National Science Center for Physical Sciences, University of Science and Technology of China, Hefei, China.,Chinese Academy of Sciences Center for Excellence in Molecular Cell Sciences, School of Life Sciences, University of Science and Technology of China, Hefei, China.,Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, University of Science and Technology of China, Hefei, China
| | - Fan Zheng
- Division of Molecular and Cell Biophysics, Hefei National Science Center for Physical Sciences, University of Science and Technology of China, Hefei, China.,Chinese Academy of Sciences Center for Excellence in Molecular Cell Sciences, School of Life Sciences, University of Science and Technology of China, Hefei, China.,Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, University of Science and Technology of China, Hefei, China
| | - Yucai Wang
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Chuanhai Fu
- Division of Molecular and Cell Biophysics, Hefei National Science Center for Physical Sciences, University of Science and Technology of China, Hefei, China.,Chinese Academy of Sciences Center for Excellence in Molecular Cell Sciences, School of Life Sciences, University of Science and Technology of China, Hefei, China.,Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, University of Science and Technology of China, Hefei, China
| |
Collapse
|
8
|
Mendes A, Jühlen R, Bousbata S, Fahrenkrog B. Disclosing the Interactome of Leukemogenic NUP98-HOXA9 and SET-NUP214 Fusion Proteins Using a Proteomic Approach. Cells 2020; 9:E1666. [PMID: 32664447 PMCID: PMC7407662 DOI: 10.3390/cells9071666] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/07/2020] [Accepted: 07/07/2020] [Indexed: 02/07/2023] Open
Abstract
The interaction of oncogenes with cellular proteins is a major determinant of cellular transformation. The NUP98-HOXA9 and SET-NUP214 chimeras result from recurrent chromosomal translocations in acute leukemia. Functionally, the two fusion proteins inhibit nuclear export and interact with epigenetic regulators. The full interactome of NUP98-HOXA9 and SET-NUP214 is currently unknown. We used proximity-dependent biotin identification (BioID) to study the landscape of the NUP98-HOXA9 and SET-NUP214 environments. Our results suggest that both fusion proteins interact with major regulators of RNA processing, with translation-associated proteins, and that both chimeras perturb the transcriptional program of the tumor suppressor p53. Other cellular processes appear to be distinctively affected by the particular fusion protein. NUP98-HOXA9 likely perturbs Wnt, MAPK, and estrogen receptor (ER) signaling pathways, as well as the cytoskeleton, the latter likely due to its interaction with the nuclear export receptor CRM1. Conversely, mitochondrial proteins and metabolic regulators are significantly overrepresented in the SET-NUP214 proximal interactome. Our study provides new clues on the mechanistic actions of nucleoporin fusion proteins and might be of particular relevance in the search for new druggable targets for the treatment of nucleoporin-related leukemia.
Collapse
Affiliation(s)
- Adélia Mendes
- Institute of Molecular Biology and Medicine, Université Libre de Bruxelles, 6041 Charleroi, Belgium; (R.J.); (S.B.)
| | - Ramona Jühlen
- Institute of Molecular Biology and Medicine, Université Libre de Bruxelles, 6041 Charleroi, Belgium; (R.J.); (S.B.)
- Present address: Institute of Biochemistry and Molecular Cell Biology, RWTH Aachen University, 52074 Aachen, Germany
| | - Sabrina Bousbata
- Institute of Molecular Biology and Medicine, Université Libre de Bruxelles, 6041 Charleroi, Belgium; (R.J.); (S.B.)
| | - Birthe Fahrenkrog
- Institute of Molecular Biology and Medicine, Université Libre de Bruxelles, 6041 Charleroi, Belgium; (R.J.); (S.B.)
| |
Collapse
|
9
|
How Essential Kinesin-5 Becomes Non-Essential in Fission Yeast: Force Balance and Microtubule Dynamics Matter. Cells 2020; 9:cells9051154. [PMID: 32392819 PMCID: PMC7290485 DOI: 10.3390/cells9051154] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/01/2020] [Accepted: 05/04/2020] [Indexed: 12/13/2022] Open
Abstract
The bipolar mitotic spindle drives accurate chromosome segregation by capturing the kinetochore and pulling each set of sister chromatids to the opposite poles. In this review, we describe recent findings on the multiple pathways leading to bipolar spindle formation in fission yeast and discuss these results from a broader perspective. The roles of three mitotic kinesins (Kinesin-5, Kinesin-6 and Kinesin-14) in spindle assembly are depicted, and how a group of microtubule-associated proteins, sister chromatid cohesion and the kinetochore collaborate with these motors is shown. We have paid special attention to the molecular pathways that render otherwise essential Kinesin-5 to become non-essential: how cells build bipolar mitotic spindles without the need for Kinesin-5 and where the alternate forces come from are considered. We highlight the force balance for bipolar spindle assembly and explain how outward and inward forces are generated by various ways, in which the proper fine-tuning of microtubule dynamics plays a crucial role. Overall, these new pathways have illuminated the remarkable plasticity and adaptability of spindle mechanics. Kinesin molecules are regarded as prospective targets for cancer chemotherapy and many specific inhibitors have been developed. However, several hurdles have arisen against their clinical implementation. This review provides insight into possible strategies to overcome these challenges.
Collapse
|
10
|
Gallardo P, Barrales RR, Daga RR, Salas-Pino S. Nuclear Mechanics in the Fission Yeast. Cells 2019; 8:cells8101285. [PMID: 31635174 PMCID: PMC6829894 DOI: 10.3390/cells8101285] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/14/2019] [Accepted: 10/17/2019] [Indexed: 12/13/2022] Open
Abstract
In eukaryotic cells, the organization of the genome within the nucleus requires the nuclear envelope (NE) and its associated proteins. The nucleus is subjected to mechanical forces produced by the cytoskeleton. The physical properties of the NE and the linkage of chromatin in compacted conformation at sites of cytoskeleton contacts seem to be key for withstanding nuclear mechanical stress. Mechanical perturbations of the nucleus normally occur during nuclear positioning and migration. In addition, cell contraction or expansion occurring for instance during cell migration or upon changes in osmotic conditions also result innuclear mechanical stress. Recent studies in Schizosaccharomyces pombe (fission yeast) have revealed unexpected functions of cytoplasmic microtubules in nuclear architecture and chromosome behavior, and have pointed to NE-chromatin tethers as protective elements during nuclear mechanics. Here, we review and discuss how fission yeast cells can be used to understand principles underlying the dynamic interplay between genome organization and function and the effect of forces applied to the nucleus by the microtubule cytoskeleton.
Collapse
Affiliation(s)
- Paola Gallardo
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-Consejo Superior de Investigaciones Científicas, Junta de Andalucia, 41010 Seville, Spain.
| | - Ramón R Barrales
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-Consejo Superior de Investigaciones Científicas, Junta de Andalucia, 41010 Seville, Spain.
| | - Rafael R Daga
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-Consejo Superior de Investigaciones Científicas, Junta de Andalucia, 41010 Seville, Spain.
| | - Silvia Salas-Pino
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-Consejo Superior de Investigaciones Científicas, Junta de Andalucia, 41010 Seville, Spain.
| |
Collapse
|
11
|
Zhurinsky J, Salas-Pino S, Iglesias-Romero AB, Torres-Mendez A, Knapp B, Flor-Parra I, Wang J, Bao K, Jia S, Chang F, Daga RR. Effects of the microtubule nucleator Mto1 on chromosomal movement, DNA repair, and sister chromatid cohesion in fission yeast. Mol Biol Cell 2019; 30:2695-2708. [PMID: 31483748 PMCID: PMC6761766 DOI: 10.1091/mbc.e19-05-0301] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 08/27/2019] [Accepted: 08/30/2019] [Indexed: 11/11/2022] Open
Abstract
Although the function of microtubules (MTs) in chromosomal segregation during mitosis is well characterized, much less is known about the role of MTs in chromosomal functions during interphase. In the fission yeast Schizosaccharomyces pombe, dynamic cytoplasmic MT bundles move chromosomes in an oscillatory manner during interphase via linkages through the nuclear envelope (NE) at the spindle pole body (SPB) and other sites. Mto1 is a cytoplasmic factor that mediates the nucleation and attachment of cytoplasmic MTs to the nucleus. Here, we test the function of these cytoplasmic MTs and Mto1 on DNA repair and recombination during interphase. We find that mto1Δ cells exhibit defects in DNA repair and homologous recombination (HR) and abnormal DNA repair factory dynamics. In these cells, sister chromatids are not properly paired, and binding of Rad21 cohesin subunit along chromosomal arms is reduced. Our findings suggest a model in which cytoplasmic MTs and Mto1 facilitate efficient DNA repair and HR by promoting dynamic chromosomal organization and cohesion in the nucleus.
Collapse
Affiliation(s)
- Jacob Zhurinsky
- Centro Andaluz de Biologia del Desarrollo, Universidad Pablo de Olavide, Seville 41013, Spain
| | - Silvia Salas-Pino
- Centro Andaluz de Biologia del Desarrollo, Universidad Pablo de Olavide, Seville 41013, Spain
| | - Ana B. Iglesias-Romero
- Centro Andaluz de Biologia del Desarrollo, Universidad Pablo de Olavide, Seville 41013, Spain
| | - Antonio Torres-Mendez
- Centro Andaluz de Biologia del Desarrollo, Universidad Pablo de Olavide, Seville 41013, Spain
| | - Benjamin Knapp
- Centro Andaluz de Biologia del Desarrollo, Universidad Pablo de Olavide, Seville 41013, Spain
- Department of Microbiology and Immunology, Columbia University College of Physicians and Surgeons, New York, NY 10032
| | - Ignacio Flor-Parra
- Centro Andaluz de Biologia del Desarrollo, Universidad Pablo de Olavide, Seville 41013, Spain
| | - Jiyong Wang
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143
| | - Kehan Bao
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143
| | - Songtao Jia
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143
| | - Fred Chang
- Centro Andaluz de Biologia del Desarrollo, Universidad Pablo de Olavide, Seville 41013, Spain
- Department of Microbiology and Immunology, Columbia University College of Physicians and Surgeons, New York, NY 10032
| | - Rafael R. Daga
- Centro Andaluz de Biologia del Desarrollo, Universidad Pablo de Olavide, Seville 41013, Spain
| |
Collapse
|
12
|
Leong SL, Lynch EM, Zou J, Tay YD, Borek WE, Tuijtel MW, Rappsilber J, Sawin KE. Reconstitution of Microtubule Nucleation In Vitro Reveals Novel Roles for Mzt1. Curr Biol 2019; 29:2199-2207.e10. [PMID: 31287970 PMCID: PMC6616311 DOI: 10.1016/j.cub.2019.05.058] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 04/29/2019] [Accepted: 05/23/2019] [Indexed: 12/25/2022]
Abstract
Microtubule (MT) nucleation depends on the γ-tubulin complex (γ-TuC), in which multiple copies of the heterotetrameric γ-tubulin small complex (γ-TuSC) associate to form a ring-like structure (in metazoans, γ-tubulin ring complex; γ-TuRC) [1-7]. Additional conserved regulators of the γ-TuC include the small protein Mzt1 (MOZART1 in human; GIP1/1B and GIP2/1A in plants) [8-13] and proteins containing a Centrosomin Motif 1 (CM1) domain [10, 14-19]. Many insights into γ-TuC regulators have come from in vivo analysis in fission yeast Schizosaccharomyces pombe. The S. pombe CM1 protein Mto1 recruits the γ-TuC to microtubule-organizing centers (MTOCs) [14, 20-22], and analysis of Mto1[bonsai], a truncated version of Mto1 that cannot localize to MTOCs, has shown that Mto1 also has a role in γ-TuC activation [23]. S. pombe Mzt1 interacts with γ-TuSC and is essential for γ-TuC function and localization to MTOCs [11, 12]. However, the mechanisms by which Mzt1 functions remain unclear. Here we describe reconstitution of MT nucleation using purified recombinant Mto1[bonsai], the Mto1 partner protein Mto2, γ-TuSC, and Mzt1. Multiple copies of the six proteins involved coassemble to form a 34-40S ring-like "MGM" holocomplex that is a potent MT nucleator in vitro. Using purified MGM and subcomplexes, we investigate the role of Mzt1 in MT nucleation. Our results suggest that Mzt1 is critical to stabilize Alp6, the S. pombe homolog of human γ-TuSC protein GCP3, in an "interaction-competent" form within the γ-TuSC. This is essential for MGM to become a functional nucleator.
Collapse
Affiliation(s)
- Su Ling Leong
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Eric M Lynch
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Juan Zou
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Ye Dee Tay
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Weronika E Borek
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Maarten W Tuijtel
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Juri Rappsilber
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK; Chair of Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, Berlin 13355, Germany
| | - Kenneth E Sawin
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK.
| |
Collapse
|
13
|
Chumová J, Kourová H, Trögelová L, Halada P, Binarová P. Microtubular and Nuclear Functions of γ-Tubulin: Are They LINCed? Cells 2019; 8:cells8030259. [PMID: 30893853 PMCID: PMC6468392 DOI: 10.3390/cells8030259] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/07/2019] [Accepted: 03/14/2019] [Indexed: 01/02/2023] Open
Abstract
γ-Tubulin is a conserved member of the tubulin superfamily with a function in microtubule nucleation. Proteins of γ-tubulin complexes serve as nucleation templates as well as a majority of other proteins contributing to centrosomal and non-centrosomal nucleation, conserved across eukaryotes. There is a growing amount of evidence of γ-tubulin functions besides microtubule nucleation in transcription, DNA damage response, chromatin remodeling, and on its interactions with tumor suppressors. However, the molecular mechanisms are not well understood. Furthermore, interactions with lamin and SUN proteins of the LINC complex suggest the role of γ-tubulin in the coupling of nuclear organization with cytoskeletons. γ-Tubulin that belongs to the clade of eukaryotic tubulins shows characteristics of both prokaryotic and eukaryotic tubulins. Both human and plant γ-tubulins preserve the ability of prokaryotic tubulins to assemble filaments and higher-order fibrillar networks. γ-Tubulin filaments, with bundling and aggregating capacity, are suggested to perform complex scaffolding and sequestration functions. In this review, we discuss a plethora of γ-tubulin molecular interactions and cellular functions, as well as recent advances in understanding the molecular mechanisms behind them.
Collapse
Affiliation(s)
- Jana Chumová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic.
| | - Hana Kourová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic.
| | - Lucie Trögelová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic.
| | - Petr Halada
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic.
| | - Pavla Binarová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic.
| |
Collapse
|