1
|
Naidu G, Tripathi DK, Nagar N, Mishra A, Poluri KM. Targeting chemokine-receptor mediated molecular signaling by ethnopharmacological approaches. JOURNAL OF ETHNOPHARMACOLOGY 2024; 325:117837. [PMID: 38310985 DOI: 10.1016/j.jep.2024.117837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/07/2023] [Accepted: 01/26/2024] [Indexed: 02/06/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Infection and inflammation are critical to global human health status and the goal of current pharmacological interventions intends formulating medications/preventives as a measure to deal with this situation. Chemokines and their cognate receptors are major regulatory molecules in many of these ailments. Natural products have been a keen source to the drug development industry, every year contributing significantly to the growing list of FDA approved drugs. A multiverse of natural resource is employed as a part of curative regimen in folk/traditional/ethnomedicine which can be employed to discover, repurpose, and design potent medications for the diseases of clinical concern. AIM OF THE STUDY This review aims to systematically document the ethnopharmacologically active agents targeting the infectious-inflammatory diseases through the chemokine-receptor nexus. MATERIALS AND METHODS Articles related to chemokine/receptor modulating ethnopharmacological anti-inflammatory, anti-infectious natural sources, bioactive compounds, and formulations have been examined with special emphasis on women related diseases. The available literature has been thoroughly scrutinized for the application of traditional medicines in chemokine associated experimental methods, their regulatory outcomes, and pertinence to women's health wherever applicable. Moreover, the potential traditional regimens under clinical trials have been critically assessed. RESULTS A systematic and comprehensive review on the chemokine-receptor targeting ethnopharmaceutics from the available literature has been provided. The article discusses the implication of traditional medicine in the chemokine system dynamics in diverse infectious-inflammatory disorders such as cardiovascular diseases, allergic diseases, inflammatory diseases, neuroinflammation, and cancer. On this note, critical evaluation of the available data surfaced multiple diseases prevalent in women such as osteoporosis, rheumatoid arthritis, breast cancer, cervical cancer and urinary tract infection. Currently there is no available literature highlighting chemokine-receptor targeting using traditional medicinal approach from women's health perspective. Moreover, despite being potent in vitro and in vivo setups there remains a gap in clinical translation of these formulations, which needs to be strategically and scientifically addressed to pave the way for their successful industrial translation. CONCLUSIONS The review provides an optimistic global perspective towards the applicability of ethnopharmacology in chemokine-receptor regulated infectious and inflammatory diseases with special emphasis on ailments prevalent in women, consecutively addressing their current status of clinical translation and future directions.
Collapse
Affiliation(s)
- Goutami Naidu
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India.
| | - Deepak Kumar Tripathi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Nupur Nagar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, 342011, Rajasthan, India
| | - Krishna Mohan Poluri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India; Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India.
| |
Collapse
|
2
|
Feng X, Molteni H, Gregory M, Lanza J, Polsani N, Gupta I, Wyetzner R, Hawkins MB, Holmes G, Hopyan S, Harris MP, Atit RP. Apical expansion of calvarial osteoblasts and suture patency is dependent on fibronectin cues. Development 2024; 151:dev202371. [PMID: 38602508 PMCID: PMC11165720 DOI: 10.1242/dev.202371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 03/06/2024] [Indexed: 04/12/2024]
Abstract
The skull roof, or calvaria, is comprised of interlocking plates of bones that encase the brain. Separating these bones are fibrous sutures that permit growth. Currently, we do not understand the instructions for directional growth of the calvaria, a process which is error-prone and can lead to skeletal deficiencies or premature suture fusion (craniosynostosis, CS). Here, we identify graded expression of fibronectin (FN1) in the mouse embryonic cranial mesenchyme (CM) that precedes the apical expansion of calvaria. Conditional deletion of Fn1 or Wasl leads to diminished frontal bone expansion by altering cell shape and focal actin enrichment, respectively, suggesting defective migration of calvarial progenitors. Interestingly, Fn1 mutants have premature fusion of coronal sutures. Consistently, syndromic forms of CS in humans exhibit dysregulated FN1 expression, and we also find FN1 expression altered in a mouse CS model of Apert syndrome. These data support a model of FN1 as a directional substrate for calvarial osteoblast migration that may be a common mechanism underlying many cranial disorders of disparate genetic etiologies.
Collapse
Affiliation(s)
- Xiaotian Feng
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Helen Molteni
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Megan Gregory
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Jennifer Lanza
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Nikaya Polsani
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Isha Gupta
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Rachel Wyetzner
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - M. Brent Hawkins
- Department of Genetics, Harvard Medical School, Department of Orthopedics, Boston Children's Hospital, Boston, MA 02115, USA
| | - Greg Holmes
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sevan Hopyan
- Department of Developmental Biology, Hospital for Sick Kids, Toronto ON, M5G 0A4, Canada
| | - Matthew P. Harris
- Department of Genetics, Harvard Medical School, Department of Orthopedics, Boston Children's Hospital, Boston, MA 02115, USA
| | - Radhika P. Atit
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Genome Sciences and Genetics, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Dermatology, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
3
|
Ibanez J, Hebbar N, Thanekar U, Yi Z, Houke H, Ward M, Nevitt C, Tian L, Mack SC, Sheppard H, Chiang J, Velasquez MP, Krenciute G. GRP78-CAR T cell effector function against solid and brain tumors is controlled by GRP78 expression on T cells. Cell Rep Med 2023; 4:101297. [PMID: 37992682 PMCID: PMC10694756 DOI: 10.1016/j.xcrm.2023.101297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 08/25/2023] [Accepted: 10/26/2023] [Indexed: 11/24/2023]
Abstract
Lack of targetable antigens is a key limitation for developing successful T cell-based immunotherapies. Members of the unfolded protein response (UPR) represent ideal immunotherapy targets because the UPR regulates the ability of cancer cells to resist cell death, sustain proliferation, and metastasize. Glucose-regulated protein 78 (GRP78) is a key UPR regulator that is overexpressed and translocated to the cell surface of a wide variety of cancers in response to elevated endoplasmic reticulum (ER) stress. We show that GRP78 is highly expressed on the cell surface of multiple solid and brain tumors, making cell surface GRP78 a promising chimeric antigen receptor (CAR) T cell target. We demonstrate that GRP78-CAR T cells can recognize and kill GRP78+ brain and solid tumors in vitro and in vivo. Additionally, our findings demonstrate that GRP78 is upregulated on CAR T cells upon T cell activation; however, this expression is tumor-cell-line specific and results in heterogeneous GRP78-CAR T cell therapeutic response.
Collapse
Affiliation(s)
- Jorge Ibanez
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Nikhil Hebbar
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Unmesha Thanekar
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Zhongzhen Yi
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Haley Houke
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Meghan Ward
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Chris Nevitt
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Liqing Tian
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Stephen C Mack
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Heather Sheppard
- Department of Pathology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Jason Chiang
- Department of Pathology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - M Paulina Velasquez
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA.
| | - Giedre Krenciute
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA.
| |
Collapse
|
4
|
A multi-dimensional view of context-dependent G protein-coupled receptor function. Biochem Soc Trans 2023; 51:13-20. [PMID: 36688421 PMCID: PMC9987931 DOI: 10.1042/bst20210650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/24/2023]
Abstract
G protein-coupled receptor (GPCR) family members can sense an extraordinary variety of biomolecules to activate intracellular signalling cascades that modulate key aspects of cell physiology. Apart from their crucial role in maintaining cell homeostasis, these critical sensory and modulatory properties have made GPCRs the most successful drug target class to date. However, establishing direct links between receptor activation of specific intracellular partners and individual physiological outcomes is still an ongoing challenge. By studying this receptor signalling complexity at increasing resolution through the development of novel biosensors and high-throughput techniques, a growing number of studies are revealing how receptor function can be diversified in a spatial, temporal or cell-specific manner. This mini-review will introduce recent examples of this context-dependent receptor signalling and discuss how it can impact our understanding of receptor function in health and disease, and contribute to the search of more selective, efficacious and safer GPCR drug candidates.
Collapse
|
5
|
Feng X, Molteni H, Gregory M, Lanza J, Polsani N, Wyetzner R, Hawkins MB, Holmes G, Hopyan S, Harris MP, Atit RP. Apical expansion of calvarial osteoblasts and suture patency is dependent on graded fibronectin cues. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.16.524278. [PMID: 36711975 PMCID: PMC9882209 DOI: 10.1101/2023.01.16.524278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The skull roof, or calvaria, is comprised of interlocking plates of bone. Premature suture fusion (craniosynostosis, CS) or persistent fontanelles are common defects in calvarial development. Although some of the genetic causes of these disorders are known, we lack an understanding of the instructions directing the growth and migration of progenitors of these bones, which may affect the suture patency. Here, we identify graded expression of Fibronectin (FN1) protein in the mouse embryonic cranial mesenchyme (CM) that precedes the apical expansion of calvarial osteoblasts. Syndromic forms of CS exhibit dysregulated FN1 expression, and we find FN1 expression is altered in a mouse CS model as well. Conditional deletion of Fn1 in CM causes diminished frontal bone expansion by altering cell polarity and shape. To address how osteoprogenitors interact with the observed FN1 prepattern, we conditionally ablate Wasl/N-Wasp to disrupt F-actin junctions in migrating cells, impacting lamellipodia and cell-matrix interaction. Neural crest-targeted deletion of Wasl results in a diminished actin network and reduced expansion of frontal bone primordia similar to conditional Fn1 mutants. Interestingly, defective calvaria formation in both the Fn1 and Wasl mutants occurs without a significant change in proliferation, survival, or osteogenesis. Finally, we find that CM-restricted Fn1 deletion leads to premature fusion of coronal sutures. These data support a model of FN1 as a directional substrate for calvarial osteoblast migration that may be a common mechanism underlying many cranial disorders of disparate genetic etiologies.
Collapse
Affiliation(s)
- Xiaotian Feng
- Department of Biology, Case Western Reserve Univ., Cleveland Ohio, USA
| | - Helen Molteni
- Department of Biology, Case Western Reserve Univ., Cleveland Ohio, USA
| | - Megan Gregory
- Department of Biology, Case Western Reserve Univ., Cleveland Ohio, USA
| | - Jennifer Lanza
- Department of Biology, Case Western Reserve Univ., Cleveland Ohio, USA
| | - Nikaya Polsani
- Department of Biology, Case Western Reserve Univ., Cleveland Ohio, USA
| | - Rachel Wyetzner
- Department of Biology, Case Western Reserve Univ., Cleveland Ohio, USA
| | - M Brent Hawkins
- Dept of Genetics, Harvard Medical School, Dept. of Orthopedics, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Greg Holmes
- Dept. of _Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Sevan Hopyan
- Dept. of Developmental Biology, Hospital for Sick Kids, Toronto, Canada
| | - Matthew P Harris
- Dept of Genetics, Harvard Medical School, Dept. of Orthopedics, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Radhika P Atit
- Department of Biology, Case Western Reserve Univ., Cleveland Ohio, USA
| |
Collapse
|
6
|
Jones WD, Mullins MC. Cell signaling pathways controlling an axis organizing center in the zebrafish. Curr Top Dev Biol 2022; 150:149-209. [DOI: 10.1016/bs.ctdb.2022.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
7
|
Colak-Champollion T, Lan L, Jadhav AR, Yamaguchi N, Venkiteswaran G, Patel H, Cammer M, Meier-Schellersheim M, Knaut H. Cadherin-Mediated Cell Coupling Coordinates Chemokine Sensing across Collectively Migrating Cells. Curr Biol 2020; 29:2570-2579.e7. [PMID: 31386838 DOI: 10.1016/j.cub.2019.06.061] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 05/08/2019] [Accepted: 06/21/2019] [Indexed: 10/26/2022]
Abstract
The directed migration of cells sculpts the embryo, contributes to homeostasis in the adult, and, when dysregulated, underlies many diseases [1, 2]. During these processes, cells move singly or as a collective. In both cases, they follow guidance cues, which direct them to their destination [3-6]. In contrast to single cells, collectively migrating cells need to coordinate with their neighbors to move together in the same direction. Recent studies suggest that leader cells in the front sense the guidance cue, relay the directional information to the follower cells in the back, and can pull the follower cells along [7-19]. In this manner, leader cells steer the collective and set the collective's overall speed. However, whether follower cells also participate in steering and speed setting of the collective is largely unclear. Using chimeras, we analyzed the role of leader and follower cells in the collectively migrating zebrafish posterior lateral line primordium. This tissue expresses the chemokine receptor Cxcr4 and is guided by the chemokine Cxcl12a [20-23]. We find that leader and follower cells need to sense the attractant Cxcl12a for efficient migration, are coupled to each other through cadherins, and require coupling to pull Cxcl12a-insensitive cells along. Analysis of cell dynamics in chimeric and protein-depleted primordia shows that Cxcl12a-sensing and cadherin-mediated adhesion contribute jointly to direct migration at both single-cell and tissue levels. These results suggest that all cells in the primordium need to sense the attractant and adhere to each other to coordinate their movements and migrate with robust directionality.
Collapse
Affiliation(s)
- Tugba Colak-Champollion
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | - Ling Lan
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | - Alisha R Jadhav
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | - Naoya Yamaguchi
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | - Gayatri Venkiteswaran
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | - Heta Patel
- Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20814, USA
| | - Michael Cammer
- NYU Langone's Microscopy Laboratory, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | - Martin Meier-Schellersheim
- Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20814, USA
| | - Holger Knaut
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA.
| |
Collapse
|
8
|
Abstract
As the crucial non-cellular component of tissues, the extracellular matrix (ECM) provides both physical support and signaling regulation to cells. Some ECM molecules provide a fibrillar environment around cells, while others provide a sheet-like basement membrane scaffold beneath epithelial cells. In this Review, we focus on recent studies investigating the mechanical, biophysical and signaling cues provided to developing tissues by different types of ECM in a variety of developing organisms. In addition, we discuss how the ECM helps to regulate tissue morphology during embryonic development by governing key elements of cell shape, adhesion, migration and differentiation. Summary: This Review discusses our current understanding of how the extracellular matrix helps guide developing tissues by influencing cell adhesion, migration, shape and differentiation, emphasizing the biophysical cues it provides.
Collapse
Affiliation(s)
- David A Cruz Walma
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892-4370, USA
| | - Kenneth M Yamada
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892-4370, USA
| |
Collapse
|
9
|
Gröper J, König GM, Kostenis E, Gerke V, Raabe CA, Rescher U. Exploring Biased Agonism at FPR1 as a Means to Encode Danger Sensing. Cells 2020; 9:cells9041054. [PMID: 32340221 PMCID: PMC7226602 DOI: 10.3390/cells9041054] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/15/2020] [Accepted: 04/21/2020] [Indexed: 12/28/2022] Open
Abstract
Ligand-based selectivity in signal transduction (biased signaling) is an emerging field of G protein-coupled receptor (GPCR) research and might allow the development of drugs with targeted activation profiles. Human formyl peptide receptor 1 (FPR1) is a GPCR that detects potentially hazardous states characterized by the appearance of N-formylated peptides that originate from either bacteria or mitochondria during tissue destruction; however, the receptor also responds to several non-formylated agonists from various sources. We hypothesized that an additional layer of FPR signaling is encoded by biased agonism, thus allowing the discrimination of the source of threat. We resorted to the comparative analysis of FPR1 agonist-evoked responses across three prototypical GPCR signaling pathways, i.e., the inhibition of cAMP formation, receptor internalization, and ERK activation, and analyzed cellular responses elicited by several bacteria- and mitochondria-derived ligands. We also included the anti-inflammatory annexinA1 peptide Ac2-26 and two synthetic ligands, the W-peptide and the small molecule FPRA14. Compared to the endogenous agonists, the bacterial agonists displayed significantly higher potencies and efficacies. Selective pathway activation was not observed, as both groups were similarly biased towards the inhibition of cAMP formation. The general agonist bias in FPR1 signaling suggests a source-independent pathway selectivity for transmission of pro-inflammatory danger signaling.
Collapse
Affiliation(s)
- Jieny Gröper
- Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, University of Muenster, Von-Esmarch-Str. 56, D-48149 Muenster, Germany; (J.G.); (V.G.)
- Cells in Motion” Interfaculty Centre, University of Muenster, 48149 Muenster, Germany
| | - Gabriele M. König
- Institute for Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115 Bonn, Germany; (G.M.K.); (E.K.)
| | - Evi Kostenis
- Institute for Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115 Bonn, Germany; (G.M.K.); (E.K.)
| | - Volker Gerke
- Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, University of Muenster, Von-Esmarch-Str. 56, D-48149 Muenster, Germany; (J.G.); (V.G.)
- Cells in Motion” Interfaculty Centre, University of Muenster, 48149 Muenster, Germany
| | - Carsten A. Raabe
- Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, University of Muenster, Von-Esmarch-Str. 56, D-48149 Muenster, Germany; (J.G.); (V.G.)
- Institute of Experimental Pathology, Center for Molecular Biology of Inflammation, University of Muenster, Von-Esmarch-Str. 56, D-48149 Muenster, Germany
- Correspondence: (C.A.R.); (U.R.); Tel.: +49-(0)251-835-2132 (C.A.R.); +49-(0)251-835-2121(U.R.)
| | - Ursula Rescher
- Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, University of Muenster, Von-Esmarch-Str. 56, D-48149 Muenster, Germany; (J.G.); (V.G.)
- Cells in Motion” Interfaculty Centre, University of Muenster, 48149 Muenster, Germany
- Correspondence: (C.A.R.); (U.R.); Tel.: +49-(0)251-835-2132 (C.A.R.); +49-(0)251-835-2121(U.R.)
| |
Collapse
|
10
|
Sommer F, Torraca V, Meijer AH. Chemokine Receptors and Phagocyte Biology in Zebrafish. Front Immunol 2020; 11:325. [PMID: 32161595 PMCID: PMC7053378 DOI: 10.3389/fimmu.2020.00325] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 02/10/2020] [Indexed: 12/11/2022] Open
Abstract
Phagocytes are highly motile immune cells that ingest and clear microbial invaders, harmful substances, and dying cells. Their function is critically dependent on the expression of chemokine receptors, a class of G-protein-coupled receptors (GPCRs). Chemokine receptors coordinate the recruitment of phagocytes and other immune cells to sites of infection and damage, modulate inflammatory and wound healing responses, and direct cell differentiation, proliferation, and polarization. Besides, a structurally diverse group of atypical chemokine receptors (ACKRs) are unable to signal in G-protein-dependent fashion themselves but can shape chemokine gradients by fine-tuning the activity of conventional chemokine receptors. The optically transparent zebrafish embryos and larvae provide a powerful in vivo system to visualize phagocytes during development and study them as key elements of the immune response in real-time. In this review, we discuss how the zebrafish model has furthered our understanding of the role of two main classes of chemokine receptors, the CC and CXC subtypes, in phagocyte biology. We address the roles of the receptors in the migratory properties of phagocytes in zebrafish models for cancer, infectious disease, and inflammation. We illustrate how studies in zebrafish enable visualizing the contribution of chemokine receptors and ACKRs in shaping self-generated chemokine gradients of migrating cells. Taking the functional antagonism between two paralogs of the CXCR3 family as an example, we discuss how the duplication of chemokine receptor genes in zebrafish poses challenges, but also provides opportunities to study sub-functionalization or loss-of-function events. We emphasize how the zebrafish model has been instrumental to prove that the major determinant for the functional outcome of a chemokine receptor-ligand interaction is the cell-type expressing the receptor. Finally, we highlight relevant homologies and analogies between mammalian and zebrafish phagocyte function and discuss the potential of zebrafish models to further advance our understanding of chemokine receptors in innate immunity and disease.
Collapse
Affiliation(s)
- Frida Sommer
- Institute of Biology Leiden, Leiden University, Leiden, Netherlands
| | - Vincenzo Torraca
- Institute of Biology Leiden, Leiden University, Leiden, Netherlands
| | | |
Collapse
|
11
|
Abstract
The RNAscope methodology is a powerful tool to detect RNA expression patterns with high subcellular resolution and possibility for RNA-protein colocalization studies. Presented here is a two-day protocol for robust multiplex detection of up to three different RNAs in zebrafish whole-mount embryos using the RNAscope procedure. Application of the protocol offers the simultaneous detection of multiple RNAs with a high signal-to-noise ratio in an intact embryo.
Collapse
Affiliation(s)
- Theresa Gross-Thebing
- Institute of Anatomy and Vascular Biology, University of Muenster, Muenster, Germany.
| |
Collapse
|
12
|
Grimaldi C, Raz E. Germ cell migration-Evolutionary issues and current understanding. Semin Cell Dev Biol 2019; 100:152-159. [PMID: 31864795 DOI: 10.1016/j.semcdb.2019.11.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 11/25/2019] [Accepted: 11/27/2019] [Indexed: 11/19/2022]
Abstract
In many organisms, primordial germ cells (PGCs) are specified at a different location than where the gonad forms, meaning that PGCs must migrate toward the gonad within the early developing embryo. Following species-specific paths, PGCs can be passively carried by surrounding tissues and also perform active migration. When PGCs actively migrate through and along a variety of embryonic structures in different organisms, they adopt an ancestral robust migration mode termed "amoeboid motility", which allows cells to migrate within diverse environments. In this review, we discuss the possible significance of the PGC migration process in facilitating the evolution of animal body shape. In addition, we summarize the latest findings relevant for the molecular and cellular mechanisms controlling the movement and the directed migration of PGCs in different species.
Collapse
Affiliation(s)
- Cecilia Grimaldi
- Institute of Cell Biology, Center for Molecular Biology of Inflammation, University of Münster, Münster, 48149, Germany
| | - Erez Raz
- Institute of Cell Biology, Center for Molecular Biology of Inflammation, University of Münster, Münster, 48149, Germany.
| |
Collapse
|
13
|
Sommer F, Torraca V, Kamel SM, Lombardi A, Meijer AH. Frontline Science: Antagonism between regular and atypical Cxcr3 receptors regulates macrophage migration during infection and injury in zebrafish. J Leukoc Biol 2019; 107:185-203. [PMID: 31529512 PMCID: PMC7028096 DOI: 10.1002/jlb.2hi0119-006r] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 07/11/2019] [Accepted: 09/04/2019] [Indexed: 12/17/2022] Open
Abstract
The CXCR3‐CXCL11 chemokine‐signaling axis plays an essential role in infection and inflammation by orchestrating leukocyte trafficking in human and animal models, including zebrafish. Atypical chemokine receptors (ACKRs) play a fundamental regulatory function in signaling networks by shaping chemokine gradients through their ligand scavenging function, while being unable to signal in the classic G‐protein‐dependent manner. Two copies of the CXCR3 gene in zebrafish, cxcr3.2 and cxcr3.3, are expressed on macrophages and share a highly conserved ligand‐binding site. However, Cxcr3.3 has structural characteristics of ACKRs indicative of a ligand‐scavenging role. In contrast, we previously showed that Cxcr3.2 is an active CXCR3 receptor because it is required for macrophage motility and recruitment to sites of mycobacterial infection. In this study, we generated a cxcr3.3 CRISPR‐mutant to functionally dissect the antagonistic interplay among the cxcr3 paralogs in the immune response. We observed that cxcr3.3 mutants are more susceptible to mycobacterial infection, whereas cxcr3.2 mutants are more resistant. Furthermore, macrophages in the cxcr3.3 mutant are more motile, show higher activation status, and are recruited more efficiently to sites of infection or injury. Our results suggest that Cxcr3.3 is an ACKR that regulates the activity of Cxcr3.2 by scavenging common ligands and that silencing the scavenging function of Cxcr3.3 results in an exacerbated Cxcr3.2 signaling. In human, splice variants of CXCR3 have antagonistic functions and CXCR3 ligands also interact with ACKRs. Therefore, in zebrafish, an analogous regulatory mechanism appears to have evolved after the cxcr3 gene duplication event, through diversification of conventional and atypical receptor variants.
Collapse
Affiliation(s)
- Frida Sommer
- Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
| | - Vincenzo Torraca
- Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
| | - Sarah M Kamel
- Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
| | - Amber Lombardi
- Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
| | | |
Collapse
|
14
|
Abstract
In zebrafish larvae, it is the cell type that determines how the cell responds to a chemokine signal.
Collapse
Affiliation(s)
- Jonna Alanko
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Michael Sixt
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| |
Collapse
|