1
|
Bagdadi N, Wu J, Delaroche J, Serre L, Delphin C, De Andrade M, Carcel M, Nawabi H, Pinson B, Vérin C, Couté Y, Gory-Fauré S, Andrieux A, Stoppin-Mellet V, Arnal I. Stable GDP-tubulin islands rescue dynamic microtubules. J Cell Biol 2024; 223:e202307074. [PMID: 38758215 PMCID: PMC11101955 DOI: 10.1083/jcb.202307074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 02/26/2024] [Accepted: 05/04/2024] [Indexed: 05/18/2024] Open
Abstract
Microtubules are dynamic polymers that interconvert between phases of growth and shrinkage, yet they provide structural stability to cells. Growth involves hydrolysis of GTP-tubulin to GDP-tubulin, which releases energy that is stored within the microtubule lattice and destabilizes it; a GTP cap at microtubule ends is thought to prevent GDP subunits from rapidly dissociating and causing catastrophe. Here, using in vitro reconstitution assays, we show that GDP-tubulin, usually considered inactive, can itself assemble into microtubules, preferentially at the minus end, and promote persistent growth. GDP-tubulin-assembled microtubules are highly stable, displaying no detectable spontaneous shrinkage. Strikingly, islands of GDP-tubulin within dynamic microtubules stop shrinkage events and promote rescues. Microtubules thus possess an intrinsic capacity for stability, independent of accessory proteins. This finding provides novel mechanisms to explain microtubule dynamics.
Collapse
Affiliation(s)
- Nassiba Bagdadi
- Université Grenoble Alpes, INSERM, U1216, CNRS, CEA, Grenoble Institut Neurosciences (GIN), Grenoble, France
| | - Juliette Wu
- Université Grenoble Alpes, INSERM, U1216, CNRS, CEA, Grenoble Institut Neurosciences (GIN), Grenoble, France
| | - Julie Delaroche
- Université Grenoble Alpes, INSERM, U1216, CNRS, CEA, Grenoble Institut Neurosciences (GIN), Grenoble, France
| | - Laurence Serre
- Université Grenoble Alpes, INSERM, U1216, CNRS, CEA, Grenoble Institut Neurosciences (GIN), Grenoble, France
| | - Christian Delphin
- Université Grenoble Alpes, INSERM, U1216, CNRS, CEA, Grenoble Institut Neurosciences (GIN), Grenoble, France
| | - Manon De Andrade
- Université Grenoble Alpes, INSERM, U1216, CNRS, CEA, Grenoble Institut Neurosciences (GIN), Grenoble, France
| | - Marion Carcel
- Université Grenoble Alpes, INSERM, U1216, CNRS, CEA, Grenoble Institut Neurosciences (GIN), Grenoble, France
| | - Homaira Nawabi
- Université Grenoble Alpes, INSERM, U1216, CNRS, CEA, Grenoble Institut Neurosciences (GIN), Grenoble, France
| | - Benoît Pinson
- Metabolic Analyses Service, TBMCore—Université de Bordeaux—CNRS UAR 3427—INSERM US005, Bordeaux, France
| | - Claire Vérin
- Université Grenoble Alpes, INSERM, CEA, UA13 BGE, CNRS, FR2048, Grenoble, France
| | - Yohann Couté
- Université Grenoble Alpes, INSERM, CEA, UA13 BGE, CNRS, FR2048, Grenoble, France
| | - Sylvie Gory-Fauré
- Université Grenoble Alpes, INSERM, U1216, CNRS, CEA, Grenoble Institut Neurosciences (GIN), Grenoble, France
| | - Annie Andrieux
- Université Grenoble Alpes, INSERM, U1216, CNRS, CEA, Grenoble Institut Neurosciences (GIN), Grenoble, France
| | - Virginie Stoppin-Mellet
- Université Grenoble Alpes, INSERM, U1216, CNRS, CEA, Grenoble Institut Neurosciences (GIN), Grenoble, France
| | - Isabelle Arnal
- Université Grenoble Alpes, INSERM, U1216, CNRS, CEA, Grenoble Institut Neurosciences (GIN), Grenoble, France
| |
Collapse
|
2
|
Cannariato M, Zizzi EA, Pallante L, Miceli M, Deriu MA. Mechanical communication within the microtubule through network-based analysis of tubulin dynamics. Biomech Model Mechanobiol 2024; 23:569-579. [PMID: 38060156 PMCID: PMC10963519 DOI: 10.1007/s10237-023-01792-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/11/2023] [Indexed: 12/08/2023]
Abstract
The identification of the mechanisms underlying the transfer of mechanical vibrations in protein complexes is crucial to understand how these super-assemblies are stabilized to perform specific functions within the cell. In this context, the study of the structural communication and the propagation of mechanical stimuli within the microtubule (MT) is important given the pivotal role of the latter in cell viability. In this study, we employed molecular modelling and the dynamical network analysis approaches to analyse the MT. The results highlight that β -tubulin drives the transfer of mechanical information between protofilaments (PFs), which is altered at the seam due to a different interaction pattern. Moreover, while the key residues involved in the structural communication along the PF are generally conserved, a higher diversity was observed for amino acids mediating the lateral communication. Taken together, these results might explain why MTs with different PF numbers are formed in different organisms or with different β -tubulin isotypes.
Collapse
Affiliation(s)
- Marco Cannariato
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Eric A Zizzi
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Lorenzo Pallante
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Marcello Miceli
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Marco A Deriu
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy.
| |
Collapse
|
3
|
Zhou J, Wang A, Song Y, Liu N, Wang J, Li Y, Liang X, Li G, Chu H, Wang HW. Structural insights into the mechanism of GTP initiation of microtubule assembly. Nat Commun 2023; 14:5980. [PMID: 37749104 PMCID: PMC10519996 DOI: 10.1038/s41467-023-41615-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 09/08/2023] [Indexed: 09/27/2023] Open
Abstract
In eukaryotes, the dynamic assembly of microtubules (MT) plays an important role in numerous cellular processes. The underlying mechanism of GTP triggering MT assembly is still unknown. Here, we present cryo-EM structures of tubulin heterodimer at their GTP- and GDP-bound states, intermediate assembly states of GTP-tubulin, and final assembly stages of MT. Both GTP- and GDP-tubulin heterodimers adopt similar curved conformations with subtle flexibility differences. In head-to-tail oligomers of tubulin heterodimers, the inter-dimer interface of GDP-tubulin exhibits greater flexibility, particularly in tangential bending. Cryo-EM of the intermediate assembly states reveals two types of tubulin lateral contacts, "Tube-bond" and "MT-bond". Further, molecular dynamics (MD) simulations show that GTP triggers lateral contact formation in MT assembly in multiple sequential steps, gradually straightening the curved tubulin heterodimers. Therefore, we propose a flexible model of GTP-initiated MT assembly, including the formation of longitudinal and lateral contacts, to explain the nucleation and assembly of MT.
Collapse
Affiliation(s)
- Ju Zhou
- State Key Laboratory of Membrane Biology, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Beijing Frontier Research Center for Biological Structures, Tsinghua University, Beijing, 100084, China
- University of California Berkeley, Berkeley, CA, USA
| | - Anhui Wang
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, 457 Zhongshan Road, Dalian, 116023, China
| | - Yinlong Song
- Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Nan Liu
- State Key Laboratory of Membrane Biology, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Beijing Frontier Research Center for Biological Structures, Tsinghua University, Beijing, 100084, China
| | - Jia Wang
- State Key Laboratory of Membrane Biology, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Beijing Frontier Research Center for Biological Structures, Tsinghua University, Beijing, 100084, China
| | - Yan Li
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, 457 Zhongshan Road, Dalian, 116023, China
| | - Xin Liang
- Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Guohui Li
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, 457 Zhongshan Road, Dalian, 116023, China
| | - Huiying Chu
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, 457 Zhongshan Road, Dalian, 116023, China.
| | - Hong-Wei Wang
- State Key Laboratory of Membrane Biology, Tsinghua University, Beijing, 100084, China.
- Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- Beijing Frontier Research Center for Biological Structures, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
4
|
Sargsyan A, Sahakyan H, Nazaryan K. Effect of Colchicine Binding Site Inhibitors on the Tubulin Intersubunit Interaction. ACS OMEGA 2023; 8:29448-29454. [PMID: 37599936 PMCID: PMC10433359 DOI: 10.1021/acsomega.3c02979] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 06/30/2023] [Indexed: 08/22/2023]
Abstract
Microtubules are dynamic, non-covalent polymers consisting of α- and β-tubulin subunits that are involved in a wide range of intracellular processes. The polymerization and dynamics of microtubules are regulated by many factors, including small molecules that interact with different sites on the tubulin dimer. Colchicine binding site inhibitors (CBSIs) destabilize microtubules and inhibit tubulin polymerization, leading to cell cycle arrest. Because of their therapeutic potential, the molecular mechanism of CBSI function is an area of active research. Nevertheless, important details of this mechanism have yet to be resolved. In this study, we use atomistic molecular dynamics simulations to show that the binding of CBSIs to the tubulin heterodimer leads to the weakening of tubulin intersubunit interaction. Using atomistic molecular dynamics simulations and binding free energy calculations, we show that CBSIs act as protein-protein interaction inhibitors and destabilize interlinkage between α and β subunits, which is crucial for longitudinal contacts in the microtubule lattice. Our results offer new insight into the mechanisms of microtubule polymerization inhibition by colchicine and its analogs.
Collapse
Affiliation(s)
| | | | - Karen Nazaryan
- Institute of Molecular Biology, National Academy of Sciences of the Republic of Armenia, Yerevan 0014, Armenia
| |
Collapse
|
5
|
Wagstaff JM, Planelles-Herrero VJ, Sharov G, Alnami A, Kozielski F, Derivery E, Löwe J. Diverse cytomotive actins and tubulins share a polymerization switch mechanism conferring robust dynamics. SCIENCE ADVANCES 2023; 9:eadf3021. [PMID: 36989372 PMCID: PMC10058229 DOI: 10.1126/sciadv.adf3021] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 03/01/2023] [Indexed: 06/19/2023]
Abstract
Protein filaments are used in myriads of ways to organize other molecules within cells. Some filament-forming proteins couple the hydrolysis of nucleotides to their polymerization cycle, thus powering the movement of other molecules. These filaments are termed cytomotive. Only members of the actin and tubulin protein superfamilies are known to form cytomotive filaments. We examined the basis of cytomotivity via structural studies of the polymerization cycles of actin and tubulin homologs from across the tree of life. We analyzed published data and performed structural experiments designed to disentangle functional components of these complex filament systems. Our analysis demonstrates the existence of shared subunit polymerization switches among both cytomotive actins and tubulins, i.e., the conformation of subunits switches upon assembly into filaments. These cytomotive switches can explain filament robustness, by enabling the coupling of kinetic and structural polarities required for cytomotive behaviors and by ensuring that single cytomotive filaments do not fall apart.
Collapse
Affiliation(s)
- James Mark Wagstaff
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | | | - Grigory Sharov
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Aisha Alnami
- Department of Pharmaceutical and Biological Chemistry, School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Frank Kozielski
- Department of Pharmaceutical and Biological Chemistry, School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Emmanuel Derivery
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Jan Löwe
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| |
Collapse
|
6
|
Shemesh A, Ghareeb H, Dharan R, Levi-Kalisman Y, Metanis N, Ringel I, Raviv U. Effect of tubulin self-association on GTP hydrolysis and nucleotide exchange reactions. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2023; 1871:140869. [PMID: 36400388 DOI: 10.1016/j.bbapap.2022.140869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 10/13/2022] [Accepted: 11/08/2022] [Indexed: 11/17/2022]
Abstract
We investigated how the self-association of isolated tubulin dimers affects the rate of GTP hydrolysis and the equilibrium of nucleotide exchange. Both reactions are relevant for microtubule (MT) dynamics. We used HPLC to determine the concentrations of GDP and GTP and thereby the GTPase activity of SEC-eluted tubulin dimers in assembly buffer solution, free of glycerol and tubulin aggregates. When GTP hydrolysis was negligible, the nucleotide exchange mechanism was studied by determining the concentrations of tubulin-free and tubulin-bound GTP and GDP. We observed no GTP hydrolysis below the critical conditions for MT assembly (either below the critical tubulin concentration and/or at low temperature), despite the assembly of tubulin 1D curved oligomers and single-rings, showing that their assembly did not involve GTP hydrolysis. Under conditions enabling spontaneous slow MT assembly, a slow pseudo-first-order GTP hydrolysis kinetics was detected, limited by the rate of MT assembly. Cryo-TEM images showed that GTP-tubulin 1D oligomers were curved also at 36 °C. Nucleotide exchange depended on the total tubulin concentration and the molar ratio between tubulin-free GDP and GTP. We used a thermodynamic model of isodesmic tubulin self-association, terminated by the formation of tubulin single-rings to determine the molar fractions of dimers with exposed and buried nucleotide exchangeable sites (E-sites). Our analysis shows that the GDP to GTP exchange reaction equilibrium constant was an order-of-magnitude larger for tubulin dimers with exposed E-sites than for assembled dimers with buried E-sites. This conclusion may have implications on the dynamics at the tip of the MT plus end.
Collapse
Affiliation(s)
- Asaf Shemesh
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel; The Harvey M. Krueger Family Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel
| | - Hiba Ghareeb
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel
| | - Raviv Dharan
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel
| | - Yael Levi-Kalisman
- The Harvey M. Krueger Family Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel; Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel
| | - Norman Metanis
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel
| | - Israel Ringel
- Institute for Drug Research, School of Pharmacy, The Hebrew University of Jerusalem, 9112102 Jerusalem, Israel
| | - Uri Raviv
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel; The Harvey M. Krueger Family Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel.
| |
Collapse
|
7
|
Oliva M, Gago F, Kamimura S, Díaz JF. Alternative Approaches to Understand Microtubule Cap Morphology and Function. ACS OMEGA 2023; 8:3540-3550. [PMID: 36743020 PMCID: PMC9893253 DOI: 10.1021/acsomega.2c06926] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/26/2022] [Indexed: 06/18/2023]
Abstract
Microtubules (MTs) are essential cellular machines built from concatenated αβ-tubulin heterodimers. They are responsible for two central and opposite functions from the dynamic point of view: scaffolding (static filaments) and force generation (dynamic MTs). These roles engage multiple physiological processes, including cell shape, polarization, division and movement, and intracellular long-distance transport. At the most basic level, the MT regulation is chemical because GTP binding and hydrolysis have the ability to promote assembly and disassembly in the absence of any other constraint. Due to the stochastic GTP hydrolysis, a chemical gradient from GTP-bound to GDP-bound tubulin is created at the MT growing end (GTP cap), which is translated into a cascade of structural regulatory changes known as MT maturation. This is an area of intense research, and several models have been proposed based on information mostly gathered from macromolecular crystallography and cryo-electron microscopy studies. However, these classical structural biology methods lack temporal resolution and can be complemented, as shown in this mini-review, by other approaches such as time-resolved fiber diffraction and computational modeling. Together with studies on structurally similar tubulins from the prokaryotic world, these inputs can provide novel insights on MT assembly, dynamics, and the GTP cap.
Collapse
Affiliation(s)
- María
Ángela Oliva
- Unidad
de Desarrollo de Fármacos Biológicos, Inmunológicos
y Químicos, Centro de Investigaciones
Biológicas Margarita Salas - Consejo Superior de Investigaciones
Científicas, E-28040 Madrid, Spain
| | - Federico Gago
- Department
of Biomedical Sciences and IQM-UAH Associate Unit, University of Alcalá, E-28805 Alcalá de Henares, Spain
| | - Shinji Kamimura
- Department
of Biological Sciences, Faculty of Science and Engineering, Chuo University, 112-8551 Tokyo, Japan
| | - J. Fernando Díaz
- Unidad
de Desarrollo de Fármacos Biológicos, Inmunológicos
y Químicos, Centro de Investigaciones
Biológicas Margarita Salas - Consejo Superior de Investigaciones
Científicas, E-28040 Madrid, Spain
| |
Collapse
|
8
|
Shemesh A, Ginsburg A, Dharan R, Levi-Kalisman Y, Ringel I, Raviv U. Mechanism of Tubulin Oligomers and Single-Ring Disassembly Catastrophe. J Phys Chem Lett 2022; 13:5246-5252. [PMID: 35671351 PMCID: PMC9208022 DOI: 10.1021/acs.jpclett.2c00947] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
Cold tubulin dimers coexist with tubulin oligomers and single rings. These structures are involved in microtubule assembly; however, their dynamics are poorly understood. Using state-of-the-art solution synchrotron time-resolved small-angle X-ray scattering, we discovered a disassembly catastrophe (half-life of ∼0.1 s) of tubulin rings and oligomers upon dilution or addition of guanosine triphosphate. A slower disassembly (half-life of ∼38 s) was observed following an increase in temperature. Our analysis showed that the assembly and disassembly processes were consistent with an isodesmic mechanism, involving a sequence of reversible reactions in which dimers were rapidly added or removed one at a time, terminated by a 2 order-of-magnitude slower ring-closing/opening step. We revealed how assembly conditions varied the mass fraction of tubulin in each of the coexisting structures, the rate constants, and the standard Helmholtz free energies for closing a ring and for longitudinal dimer-dimer associations.
Collapse
Affiliation(s)
- Asaf Shemesh
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
- Center
for Nanoscience and Nanotechnology, The
Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Avi Ginsburg
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Raviv Dharan
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Yael Levi-Kalisman
- Center
for Nanoscience and Nanotechnology, The
Hebrew University of Jerusalem, Jerusalem 9190401, Israel
- Institute
of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Israel Ringel
- Institute
for Drug Research, School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Uri Raviv
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
- Center
for Nanoscience and Nanotechnology, The
Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| |
Collapse
|
9
|
Wilson L, Krasny R, Luchko T. Accelerating the 3D reference interaction site model theory of molecular solvation with treecode summation and cut-offs. J Comput Chem 2022; 43:1251-1270. [PMID: 35567580 DOI: 10.1002/jcc.26889] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 02/25/2022] [Accepted: 04/15/2022] [Indexed: 11/07/2022]
Abstract
The 3D reference interaction site model (3D-RISM) of molecular solvation is a powerful tool for computing the equilibrium thermodynamics and density distributions of solvents, such as water and co-ions, around solute molecules. However, 3D-RISM solutions can be expensive to calculate, especially for proteins and other large molecules where calculating the potential energy between solute and solvent requires more than half the computation time. To address this problem, we have developed and implemented treecode summation for long-range interactions and analytically corrected cut-offs for short-range interactions to accelerate the potential energy and long-range asymptotics calculations in non-periodic 3D-RISM in the AmberTools molecular modeling suite. For the largest single protein considered in this work, tubulin, the total computation time was reduced by a factor of 4. In addition, parallel calculations with these new methods scale almost linearly and the iterative solver remains the largest impediment to parallel scaling. To demonstrate the utility of our approach for large systems, we used 3D-RISM to calculate the solvation thermodynamics and density distribution of 7-ring microtubule, consisting of 910 tubulin dimers, over 1.2 million atoms.
Collapse
Affiliation(s)
- Leighton Wilson
- Department of Mathematics, University of Michigan, Ann Arbor, Michigan, USA
| | - Robert Krasny
- Department of Mathematics, University of Michigan, Ann Arbor, Michigan, USA
| | - Tyler Luchko
- Department of Physics and Astronomy, California State University, Los Angeles, California, USA
| |
Collapse
|
10
|
Igaev M, Grubmüller H. Bending-torsional elasticity and energetics of the plus-end microtubule tip. Proc Natl Acad Sci U S A 2022; 119:e2115516119. [PMID: 35302883 PMCID: PMC8944587 DOI: 10.1073/pnas.2115516119] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 02/10/2022] [Indexed: 11/18/2022] Open
Abstract
SignificanceThe mechanochemical basis of microtubule growth, which is essential for the normal function and division of eukaryotic cells, has remained elusive and controversial, despite extensive work. In particular, recent findings have created the paradox that the microtubule plus-end tips look very similar during both growing and shrinking phases, thereby challenging the traditional textbook picture. Our large-scale atomistic simulations resolve this paradox and explain microtubule growth and shrinkage dynamics as a process governed by energy barriers between protofilament conformations, the heights of which are in turn fine-tuned by different nucleotide states, thus implementing an information-driven Brownian ratchet.
Collapse
Affiliation(s)
- Maxim Igaev
- Theoretical and Computational Biophysics, Max Planck Institute for Multidisciplinary Sciences, D-37077 Göttingen, Germany
| | - Helmut Grubmüller
- Theoretical and Computational Biophysics, Max Planck Institute for Multidisciplinary Sciences, D-37077 Göttingen, Germany
| |
Collapse
|
11
|
Shemesh A, Ginsburg A, Dharan R, Levi-Kalisman Y, Ringel I, Raviv U. Structure and Energetics of GTP- and GDP-Tubulin Isodesmic Self-Association. ACS Chem Biol 2021; 16:2212-2227. [PMID: 34643366 DOI: 10.1021/acschembio.1c00369] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tubulin self-association is a critical process in microtubule dynamics. The early intermediate structures, energetics, and their regulation by fluxes of chemical energy, associated with guanosine triphosphate (GTP) hydrolysis, are poorly understood. We reconstituted an in vitro minimal model system, mimicking the key elements of the nontemplated tubulin assembly. To resolve the distribution of GTP- and guanosine diphosphate (GDP)-tubulin structures, at low temperatures (∼10 °C) and below the critical concentration for the microtubule assembly, we analyzed in-line size-exclusion chromatography-small-angle X-ray scattering (SEC-SAXS) chromatograms of GTP- and GDP-tubulin solutions. Both solutions rapidly attained steady state. The SEC-SAXS data were consistent with an isodesmic thermodynamic model of longitudinal tubulin self-association into 1D oligomers, terminated by the formation of tubulin single rings. The analysis showed that free dimers coexisted with tetramers and hexamers. Tubulin monomers and lateral association between dimers were not detected. The dimer-dimer longitudinal self-association standard Helmholtz free energies were -14.2 ± 0.4 kBT (-8.0 ± 0.2 kcal mol-1) and -13.1 ± 0.5 kBT (-7.4 ± 0.3 kcal mol-1) for GDP- and GTP-tubulin, respectively. We then determined the mass fractions of dimers, tetramers, and hexamers as a function of the total tubulin concentration. A small fraction of stable tubulin single rings, with a radius of 19.2 ± 0.2 nm, was detected in the GDP-tubulin solution. In the GTP-tubulin solution, this fraction was significantly lower. Cryo-TEM images and SEC-multiangle light-scattering analysis corroborated these findings. Our analyses provide an accurate structure-stability description of cold tubulin solutions.
Collapse
Affiliation(s)
- Asaf Shemesh
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel
- The Harvey M. Krueger Family Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat
Ram, Jerusalem 9190401, Israel
| | - Avi Ginsburg
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel
| | - Raviv Dharan
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel
| | - Yael Levi-Kalisman
- The Harvey M. Krueger Family Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat
Ram, Jerusalem 9190401, Israel
- Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel
| | - Israel Ringel
- Institute for Drug Research, The School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Ein Karem, Jerusalem 9112102, Israel
| | - Uri Raviv
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel
- The Harvey M. Krueger Family Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat
Ram, Jerusalem 9190401, Israel
| |
Collapse
|
12
|
Nasedkin A, Ermilova I, Swenson J. Atomistic molecular dynamics simulations of tubulin heterodimers explain the motion of a microtubule. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2021; 50:927-940. [PMID: 34215900 PMCID: PMC8448678 DOI: 10.1007/s00249-021-01553-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/24/2021] [Accepted: 06/07/2021] [Indexed: 06/13/2023]
Abstract
Microtubules are essential parts of the cytoskeleton that are built by polymerization of tubulin heterodimers into a hollow tube. Regardless that their structures and functions have been comprehensively investigated in a modern soft matter, it is unclear how properties of tubulin heterodimer influence and promote the self-assembly. A detailed knowledge of such structural mechanisms would be helpful in drug design against neurodegenerative diseases, cancer, diabetes etc. In this work atomistic molecular dynamics simulations were used to investigate the fundamental dynamics of tubulin heterodimers in a sheet and a short microtubule utilizing well-equilibrated structures. The breathing motions of the tubulin heterodimers during assembly show that the movement at the lateral interface between heterodimers (wobbling) dominates in the lattice. The simulations of the protofilament curvature agrees well with recently published experimental data, showing curved protofilaments at polymerization of the microtubule plus end. The tubulin heterodimers exposed at the microtubule minus end were less curved and displayed altered interactions at the site of sheet closure around the outmost heterodimers, which may slow heterodimer binding and polymerization, providing a potential explanation for the limited dynamics observed at the minus end.
Collapse
Affiliation(s)
- Alexandr Nasedkin
- Department of Physics, Chalmers University of Technology, SE 41296 Göteborg, Sweden
| | - Inna Ermilova
- Department of Physics, Chalmers University of Technology, SE 41296 Göteborg, Sweden
| | - Jan Swenson
- Department of Physics, Chalmers University of Technology, SE 41296 Göteborg, Sweden
| |
Collapse
|
13
|
Regulation of microtubule dynamics, mechanics and function through the growing tip. Nat Rev Mol Cell Biol 2021; 22:777-795. [PMID: 34408299 DOI: 10.1038/s41580-021-00399-x] [Citation(s) in RCA: 115] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2021] [Indexed: 02/07/2023]
Abstract
Microtubule dynamics and their control are essential for the normal function and division of all eukaryotic cells. This plethora of functions is, in large part, supported by dynamic microtubule tips, which can bind to various intracellular targets, generate mechanical forces and couple with actin microfilaments. Here, we review progress in the understanding of microtubule assembly and dynamics, focusing on new information about the structure of microtubule tips. First, we discuss evidence for the widely accepted GTP cap model of microtubule dynamics. Next, we address microtubule dynamic instability in the context of structural information about assembly intermediates at microtubule tips. Three currently discussed models of microtubule assembly and dynamics are reviewed. These are considered in the context of established facts and recent data, which suggest that some long-held views must be re-evaluated. Finally, we review structural observations about the tips of microtubules in cells and describe their implications for understanding the mechanisms of microtubule regulation by associated proteins, by mechanical forces and by microtubule-targeting drugs, prominently including cancer chemotherapeutics.
Collapse
|
14
|
Farmer V, Arpağ G, Hall SL, Zanic M. XMAP215 promotes microtubule catastrophe by disrupting the growing microtubule end. J Cell Biol 2021; 220:212518. [PMID: 34324632 PMCID: PMC8327381 DOI: 10.1083/jcb.202012144] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 05/11/2021] [Accepted: 07/08/2021] [Indexed: 01/13/2023] Open
Abstract
The GTP-tubulin cap is widely accepted to protect microtubules against catastrophe. The GTP-cap size is thought to increase with the microtubule growth rate, presumably endowing fast-growing microtubules with enhanced stability. It is unknown what GTP-cap properties permit frequent microtubule catastrophe despite fast growth. Here, we investigate microtubules growing in the presence and absence of the polymerase XMAP215. Using EB1 as a GTP-cap marker, we find that GTP-cap size increases regardless of whether growth acceleration is achieved by increasing tubulin concentration or by XMAP215. Despite increased mean GTP-cap size, microtubules grown with XMAP215 display increased catastrophe frequency, in contrast to microtubules grown with more tubulin, for which catastrophe is abolished. However, microtubules polymerized with XMAP215 have large fluctuations in growth rate; display tapered and curled ends; and undergo catastrophe at faster growth rates and with higher EB1 end-localization. Our results suggest that structural perturbations induced by XMAP215 override the protective effects of the GTP-cap, ultimately driving microtubule catastrophe.
Collapse
Affiliation(s)
- Veronica Farmer
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN
| | - Göker Arpağ
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN
| | - Sarah L Hall
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN
| | - Marija Zanic
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN.,Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN.,Department of Biochemistry, Vanderbilt University, Nashville, TN
| |
Collapse
|
15
|
Dharan R, Shemesh A, Millgram A, Zalk R, Frank GA, Levi-Kalisman Y, Ringel I, Raviv U. Hierarchical Assembly Pathways of Spermine-Induced Tubulin Conical-Spiral Architectures. ACS NANO 2021; 15:8836-8847. [PMID: 33900736 DOI: 10.1021/acsnano.1c01374] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Tubulin, an essential cytoskeletal protein, assembles into various morphologies by interacting with an array of cellular factors. One of these factors is the endogenous polyamine spermine, which may promote and stabilize tubulin assemblies. Nevertheless, the assembled structures and their formation pathways are poorly known. Here we show that spermine induced the in vitro assembly of tubulin into several hierarchical architectures based on a tubulin conical-spiral subunit. Using solution X-ray scattering and cryo-TEM, we found that with progressive increase of spermine concentration tubulin dimers assembled into conical-frustum-spirals of increasing length, containing up to three helical turns. The subunits with three helical turns were then assembled into tubules through base-to-top packing and formed antiparallel bundles of tubulin conical-spiral tubules in a distorted hexagonal symmetry. Further increase of the spermine concentration led to inverted tubulin tubules assembled in hexagonal bundles. Time-resolved experiments revealed that tubulin assemblies formed at higher spermine concentrations assembled from intermediates, similar to those formed at low spermine concentrations. These results are distinct from the classical transition between twisted ribbons, helical, and tubular assemblies, and provide insight into the versatile morphologies that tubulin can form. Furthermore, they may contribute to our understanding of the interactions that control the composition and construction of protein-based biomaterials.
Collapse
Affiliation(s)
- Raviv Dharan
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel
- Institute for Drug Research, The School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Ein Karem, Jerusalem 9112102, Israel
| | - Asaf Shemesh
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel
- The Harvey M. Krueger Family Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel
| | - Abigail Millgram
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel
- The Harvey M. Krueger Family Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel
| | - Ran Zalk
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Gabriel A Frank
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Yael Levi-Kalisman
- The Harvey M. Krueger Family Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel
- Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel
| | - Israel Ringel
- Institute for Drug Research, The School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Ein Karem, Jerusalem 9112102, Israel
| | - Uri Raviv
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel
- The Harvey M. Krueger Family Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel
| |
Collapse
|
16
|
Ca 2+ homeostasis in brain microvascular endothelial cells. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 362:55-110. [PMID: 34253298 DOI: 10.1016/bs.ircmb.2021.01.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Blood brain barrier (BBB) is formed by the brain microvascular endothelial cells (BMVECs) lining the wall of brain capillaries. Its integrity is regulated by multiple mechanisms, including up/downregulation of tight junction proteins or adhesion molecules, altered Ca2+ homeostasis, remodeling of cytoskeleton, that are confined at the level of BMVECs. Beside the contribution of BMVECs to BBB permeability changes, other cells, such as pericytes, astrocytes, microglia, leukocytes or neurons, etc. are also exerting direct or indirect modulatory effects on BBB. Alterations in BBB integrity play a key role in multiple brain pathologies, including neurological (e.g. epilepsy) and neurodegenerative disorders (e.g. Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis etc.). In this review, the principal Ca2+ signaling pathways in brain microvascular endothelial cells are discussed and their contribution to BBB integrity is emphasized. Improving the knowledge of Ca2+ homeostasis alterations in BMVECa is fundamental to identify new possible drug targets that diminish/prevent BBB permeabilization in neurological and neurodegenerative disorders.
Collapse
|
17
|
Atomistic Basis of Microtubule Dynamic Instability Assessed Via Multiscale Modeling. Ann Biomed Eng 2021; 49:1716-1734. [PMID: 33537926 PMCID: PMC8302526 DOI: 10.1007/s10439-020-02715-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 12/24/2020] [Indexed: 02/07/2023]
Abstract
Microtubule “dynamic instability,” the abrupt switching from assembly to disassembly caused by the hydrolysis of GTP to GDP within the β subunit of the αβ-tubulin heterodimer, is necessary for vital cellular processes such as mitosis and migration. Despite existing high-resolution structural data, the key mechanochemical differences between the GTP and GDP states that mediate dynamic instability behavior remain unclear. Starting with a published atomic-level structure as an input, we used multiscale modeling to find that GTP hydrolysis results in both longitudinal bond weakening (~ 4 kBT) and an outward bending preference (~ 1.5 kBT) to both drive dynamic instability and give rise to the microtubule tip structures previously observed by light and electron microscopy. More generally, our study provides an example where atomic level structural information is used as the sole input to predict cellular level dynamics without parameter adjustment.
Collapse
|
18
|
Liu Y, Vashisth H. Allosteric Pathways Originating at Cysteine Residues in Regulators of G-Protein Signaling Proteins. Biophys J 2020; 120:517-526. [PMID: 33347886 PMCID: PMC7895990 DOI: 10.1016/j.bpj.2020.12.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 12/07/2020] [Accepted: 12/14/2020] [Indexed: 12/23/2022] Open
Abstract
Regulators of G-protein signaling (RGS) proteins play a central role in modulating signaling via G-protein coupled receptors (GPCRs). Specifically, RGS proteins bind to activated Gα subunits in G-proteins, accelerate the GTP hydrolysis, and thereby rapidly dampen GPCR signaling. Therefore, covalent molecules targeting conserved cysteine residues among RGS proteins have emerged as potential candidates to inhibit the RGS/Gα protein-protein interaction and enhance GPCR signaling. Although these inhibitors bind to conserved cysteine residues among RGS proteins, we have previously suggested [J. Am. Chem. Soc. 2018;140:3454–3460] that their potencies and specificities are related to differential protein dynamics among RGS proteins. Using data from all-atom molecular dynamics simulations, we reveal these differences in dynamics of RGS proteins by partitioning the protein structural space into a network of communities that allow allosteric signals to propagate along unique pathways originating at inhibitor binding sites and terminating at the RGS/Gα protein-protein interface.
Collapse
Affiliation(s)
- Yong Liu
- Department of Chemical Engineering, University of New Hampshire, Durham, New Hampshire
| | - Harish Vashisth
- Department of Chemical Engineering, University of New Hampshire, Durham, New Hampshire.
| |
Collapse
|
19
|
Igaev M, Grubmüller H. Microtubule instability driven by longitudinal and lateral strain propagation. PLoS Comput Biol 2020; 16:e1008132. [PMID: 32877399 PMCID: PMC7467311 DOI: 10.1371/journal.pcbi.1008132] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 07/09/2020] [Indexed: 12/21/2022] Open
Abstract
Tubulin dimers associate longitudinally and laterally to form metastable microtubules (MTs). MT disassembly is preceded by subtle structural changes in tubulin fueled by GTP hydrolysis. These changes render the MT lattice unstable, but it is unclear exactly how they affect lattice energetics and strain. We performed long-time atomistic simulations to interrogate the impacts of GTP hydrolysis on tubulin lattice conformation, lateral inter-dimer interactions, and (non-)local lateral coordination of dimer motions. The simulations suggest that most of the hydrolysis energy is stored in the lattice in the form of longitudinal strain. While not significantly affecting lateral bond stability, the stored elastic energy results in more strongly confined and correlated dynamics of GDP-tubulins, thereby entropically destabilizing the MT lattice.
Collapse
Affiliation(s)
- Maxim Igaev
- Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, D-37077 Göttingen, Germany
| | - Helmut Grubmüller
- Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, D-37077 Göttingen, Germany
| |
Collapse
|
20
|
Tong D, Voth GA. Microtubule Simulations Provide Insight into the Molecular Mechanism Underlying Dynamic Instability. Biophys J 2020; 118:2938-2951. [PMID: 32413312 DOI: 10.1016/j.bpj.2020.04.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 04/20/2020] [Accepted: 04/24/2020] [Indexed: 12/14/2022] Open
Abstract
The dynamic instability of microtubules (MTs), which refers to their ability to switch between polymerization and depolymerization states, is crucial for their function. It has been proposed that the growing MT ends are protected by a "GTP cap" that consists of GTP-bound tubulin dimers. When the speed of GTP hydrolysis is faster than dimer recruitment, the loss of this GTP cap will lead the MT to undergo rapid disassembly. However, the underlying atomistic mechanistic details of the dynamic instability remains unclear. In this study, we have performed long-time atomistic molecular dynamics simulations (1 μs for each system) for MT patches as well as a short segment of a closed MT in both GTP- and GDP-bound states. Our results confirmed that MTs in the GDP state generally have weaker lateral interactions between neighboring protofilaments (PFs) and less cooperative outward bending conformational change, where the difference between bending angles of neighboring PFs tends to be larger compared with GTP ones. As a result, when the GDP state tubulin dimer is exposed at the growing MT end, these factors will be more likely to cause the MT to undergo rapid disassembly. We also compared simulation results between the special MT seam region and the remaining material and found that the lateral interactions between MT PFs at the seam region were comparatively much weaker. This finding is consistent with the experimental suggestion that the seam region tends to separate during the disassembly process of an MT.
Collapse
Affiliation(s)
- Dudu Tong
- Department of Chemistry, Chicago Center for Theoretical Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois
| | - Gregory A Voth
- Department of Chemistry, Chicago Center for Theoretical Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois.
| |
Collapse
|
21
|
Cuveillier C, Delaroche J, Seggio M, Gory-Fauré S, Bosc C, Denarier E, Bacia M, Schoehn G, Mohrbach H, Kulić I, Andrieux A, Arnal I, Delphin C. MAP6 is an intraluminal protein that induces neuronal microtubules to coil. SCIENCE ADVANCES 2020; 6:eaaz4344. [PMID: 32270043 PMCID: PMC7112752 DOI: 10.1126/sciadv.aaz4344] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 01/09/2020] [Indexed: 06/01/2023]
Abstract
Neuronal activities depend heavily on microtubules, which shape neuronal processes and transport myriad molecules within them. Although constantly remodeled through growth and shrinkage events, neuronal microtubules must be sufficiently stable to maintain nervous system wiring. This stability is somehow maintained by various microtubule-associated proteins (MAPs), but little is known about how these proteins work. Here, we show that MAP6, previously known to confer cold stability to microtubules, promotes growth. More unexpectedly, MAP6 localizes in the lumen of microtubules, induces the microtubules to coil into a left-handed helix, and forms apertures in the lattice, likely to relieve mechanical stress. These features have not been seen in microtubules before and could play roles in maintaining axonal width or providing flexibility in the face of compressive forces during development.
Collapse
Affiliation(s)
- Camille Cuveillier
- Univ. Grenoble Alpes, Inserm U1216, CEA, CNRS, Grenoble Institut Neurosciences, GIN, 38000 Grenoble, France
| | - Julie Delaroche
- Univ. Grenoble Alpes, Inserm U1216, CEA, CNRS, Grenoble Institut Neurosciences, GIN, 38000 Grenoble, France
| | - Maxime Seggio
- Univ. Grenoble Alpes, Inserm U1216, CEA, CNRS, Grenoble Institut Neurosciences, GIN, 38000 Grenoble, France
| | - Sylvie Gory-Fauré
- Univ. Grenoble Alpes, Inserm U1216, CEA, CNRS, Grenoble Institut Neurosciences, GIN, 38000 Grenoble, France
| | - Christophe Bosc
- Univ. Grenoble Alpes, Inserm U1216, CEA, CNRS, Grenoble Institut Neurosciences, GIN, 38000 Grenoble, France
| | - Eric Denarier
- Univ. Grenoble Alpes, Inserm U1216, CEA, CNRS, Grenoble Institut Neurosciences, GIN, 38000 Grenoble, France
| | - Maria Bacia
- Univ. Grenoble Alpes, CNRS, CEA, Institut for Structural Biology (IBS), 38000 Grenoble, France
| | - Guy Schoehn
- Univ. Grenoble Alpes, CNRS, CEA, Institut for Structural Biology (IBS), 38000 Grenoble, France
| | - Hervé Mohrbach
- Laboratoire de Chimie et Physique Théorique, UMR 7019, Université de Lorraine
| | - Igor Kulić
- Institut Charles Sandron, CNRS-UdS, 67034 Strasbourg, France
| | - Annie Andrieux
- Univ. Grenoble Alpes, Inserm U1216, CEA, CNRS, Grenoble Institut Neurosciences, GIN, 38000 Grenoble, France
| | - Isabelle Arnal
- Univ. Grenoble Alpes, Inserm U1216, CEA, CNRS, Grenoble Institut Neurosciences, GIN, 38000 Grenoble, France
| | - Christian Delphin
- Univ. Grenoble Alpes, Inserm U1216, CEA, CNRS, Grenoble Institut Neurosciences, GIN, 38000 Grenoble, France
| |
Collapse
|
22
|
Ye X, Kim T, Geyer EA, Rice LM. Insights into allosteric control of microtubule dynamics from a buried β-tubulin mutation that causes faster growth and slower shrinkage. Protein Sci 2020; 29:1429-1439. [PMID: 32077153 DOI: 10.1002/pro.3842] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/14/2020] [Accepted: 02/17/2020] [Indexed: 01/27/2023]
Abstract
αβ-tubulin subunits cycle through a series of different conformations in the polymer lattice during microtubule growing and shrinking. How these allosteric responses to different tubulin:tubulin contacts contribute to microtubule dynamics, and whether the contributions are evolutionarily conserved, remains poorly understood. Here, we sought to determine whether the microtubule-stabilizing effects (slower shrinking) of the β:T238A mutation we previously observed using yeast αβ-tubulin would generalize to mammalian microtubules. Using recombinant human microtubules as a model, we found that the mutation caused slow microtubule shrinking, indicating that this effect of the mutation is indeed conserved. However, unlike in yeast, β:T238A human microtubules grew faster than wild-type and the mutation did not appear to attenuate the conformational change associated with guanosine 5'-triphosphate (GTP) hydrolysis in the lattice. We conclude that the assembly-dependent conformational change in αβ-tubulin can contribute to determine the rates of microtubule growing as well as shrinking. Our results also suggest that an allosteric perturbation like the β:T238A mutation can alter the behavior of terminal subunits without accompanying changes in the conformation of fully surrounded subunits in the body of the microtubule.
Collapse
Affiliation(s)
- Xuecheng Ye
- UT Southwestern Medical Center, Departments of Biophysics and Biochemistry, Dallas, Texas, USA
| | - Tae Kim
- UT Southwestern Medical Center, Departments of Biophysics and Biochemistry, Dallas, Texas, USA
| | - Elisabeth A Geyer
- UT Southwestern Medical Center, Departments of Biophysics and Biochemistry, Dallas, Texas, USA
| | - Luke M Rice
- UT Southwestern Medical Center, Departments of Biophysics and Biochemistry, Dallas, Texas, USA
| |
Collapse
|
23
|
Roostalu J, Thomas C, Cade NI, Kunzelmann S, Taylor IA, Surrey T. The speed of GTP hydrolysis determines GTP cap size and controls microtubule stability. eLife 2020; 9:e51992. [PMID: 32053491 PMCID: PMC7018511 DOI: 10.7554/elife.51992] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 01/25/2020] [Indexed: 11/30/2022] Open
Abstract
Microtubules are cytoskeletal polymers whose function depends on their property to switch between states of growth and shrinkage. Growing microtubules are thought to be stabilized by a GTP cap at their ends. The nature of this cap, however, is still poorly understood. End Binding proteins (EBs) recruit a diverse range of regulators of microtubule function to growing microtubule ends. Whether the EB binding region is identical to the GTP cap is unclear. Using mutated human tubulin with blocked GTP hydrolysis, we demonstrate that EBs bind with high affinity to the GTP conformation of microtubules. Slowing-down GTP hydrolysis leads to extended GTP caps. We find that cap length determines microtubule stability and that the microtubule conformation changes gradually in the cap as GTP is hydrolyzed. These results demonstrate the critical importance of the kinetics of GTP hydrolysis for microtubule stability and establish that the GTP cap coincides with the EB-binding region.
Collapse
Affiliation(s)
| | | | | | | | | | - Thomas Surrey
- The Francis Crick InstituteLondonUnited Kingdom
- Centre for Genomic RegulationBarcelona Institute of Science and TechnologyBarcelonaSpain
- ICREABarcelonaSpain
| |
Collapse
|
24
|
Chen H, Deng S, Wang Y, Albadari N, Kumar G, Ma D, Li W, White SW, Miller DD, Li W. Structure-Activity Relationship Study of Novel 6-Aryl-2-benzoyl-pyridines as Tubulin Polymerization Inhibitors with Potent Antiproliferative Properties. J Med Chem 2020; 63:827-846. [PMID: 31860298 DOI: 10.1021/acs.jmedchem.9b01815] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We recently reported the crystal structure of tubulin in complex with a colchicine binding site inhibitor (CBSI), ABI-231, having 2-aryl-4-benzoyl-imidazole (ABI). Based on this and additional crystal structures, here we report the structure-activity relationship study of a novel series of pyridine analogues of ABI-231, with compound 4v being the most potent one (average IC50 ∼ 1.8 nM) against a panel of cancer cell lines. We determined the crystal structures of another potent CBSI ABI-274 and 4v in complex with tubulin and confirmed their direct binding at the colchicine site. 4v inhibited tubulin polymerization, strongly suppressed A375 melanoma tumor growth, induced tumor necrosis, disrupted tumor angiogenesis, and led to tumor cell apoptosis in vivo. Collectively, these studies suggest that 4v represents a promising new generation of tubulin inhibitors.
Collapse
Affiliation(s)
- Hao Chen
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Tennessee Health Science Center , Memphis , Tennessee 38163 , United States
| | - Shanshan Deng
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Tennessee Health Science Center , Memphis , Tennessee 38163 , United States
| | - Yuxi Wang
- Department of Respiratory and Critical Care Medicine, West China Hospital , Sichuan University , Chengdu , Sichuan 610041 , China
| | - Najah Albadari
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Tennessee Health Science Center , Memphis , Tennessee 38163 , United States
| | - Gyanendra Kumar
- Department of Structural Biology , St. Jude Children's Research Hospital , Memphis , Tennessee 38105 , United States
| | - Dejian Ma
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Tennessee Health Science Center , Memphis , Tennessee 38163 , United States
| | - Weimin Li
- Department of Respiratory and Critical Care Medicine, West China Hospital , Sichuan University , Chengdu , Sichuan 610041 , China
| | - Stephen W White
- Department of Structural Biology , St. Jude Children's Research Hospital , Memphis , Tennessee 38105 , United States
| | - Duane D Miller
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Tennessee Health Science Center , Memphis , Tennessee 38163 , United States
| | - Wei Li
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Tennessee Health Science Center , Memphis , Tennessee 38163 , United States
| |
Collapse
|
25
|
Hemmat M, Castle BT, Sachs JN, Odde DJ. Multiscale Computational Modeling of Tubulin-Tubulin Lateral Interaction. Biophys J 2019; 117:1234-1249. [PMID: 31493861 DOI: 10.1016/j.bpj.2019.08.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 07/26/2019] [Accepted: 08/13/2019] [Indexed: 10/26/2022] Open
Abstract
Microtubules are multistranded polymers in eukaryotic cells that support key cellular functions such as chromosome segregation, motor-based cargo transport, and maintenance of cell polarity. Microtubules self-assemble via "dynamic instability," in which the dynamic plus ends switch stochastically between alternating phases of polymerization and depolymerization. A key question in the field is what are the atomistic origins of this switching, i.e., what is different between the GTP- and GDP-tubulin states that enables microtubule growth and shortening, respectively? More generally, a major challenge in biology is how to connect theoretical frameworks across length- and timescales, from atoms to cellular behavior. In this study, we describe a multiscale model by linking atomistic molecular dynamics (MD), molecular Brownian dynamics (BD), and cellular-level thermokinetic modeling of microtubules. Here, we investigated the underlying interaction energy when tubulin dimers associate laterally by performing all-atom MD simulations. We found that the lateral potential energy is not significantly different among three nucleotide states of tubulin, GTP, GDP, and GMPCPP and is estimated to be ≅ -11 kBT. Furthermore, using MD potential energy in our BD simulations of tubulin dimers confirms that the lateral bond is weak on its own, with a mean lifetime of ∼0.1 μs, implying that the longitudinal bond is required for microtubule assembly. We conclude that nucleotide-dependent lateral-bond strength is not the key mediator microtubule dynamic instability, implying that GTP acts elsewhere to exert its stabilizing influence on microtubule polymer. Furthermore, the estimated lateral-bond strength (ΔGlat0≅ -5 kBT) is well-aligned with earlier estimates based on thermokinetic modeling and light microscopy measurements. Thus, we have computationally connected atomistic-level structural information, obtained by cryo-electron microscopy, to cellular-scale microtubule assembly dynamics using a combination of MD, BD, and thermokinetic models to bridge from Ångstroms to micrometers and from femtoseconds to minutes.
Collapse
Affiliation(s)
- Mahya Hemmat
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota
| | - Brian T Castle
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota
| | - Jonathan N Sachs
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota
| | - David J Odde
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota.
| |
Collapse
|
26
|
Fedorov VA, Orekhov PS, Kholina EG, Zhmurov AA, Ataullakhanov FI, Kovalenko IB, Gudimchuk NB. Mechanical properties of tubulin intra- and inter-dimer interfaces and their implications for microtubule dynamic instability. PLoS Comput Biol 2019; 15:e1007327. [PMID: 31469822 PMCID: PMC6742422 DOI: 10.1371/journal.pcbi.1007327] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 09/12/2019] [Accepted: 08/08/2019] [Indexed: 11/18/2022] Open
Abstract
Thirteen tubulin protofilaments, made of αβ-tubulin heterodimers, interact laterally to produce cytoskeletal microtubules. Microtubules exhibit the striking property of dynamic instability, manifested in their intermittent growth and shrinkage at both ends. This behavior is key to many cellular processes, such as cell division, migration, maintenance of cell shape, etc. Although assembly and disassembly of microtubules is known to be linked to hydrolysis of a guanosine triphosphate molecule in the pocket of β-tubulin, detailed mechanistic understanding of corresponding conformational changes is still lacking. Here we take advantage of the recent generation of in-microtubule structures of tubulin to examine the properties of protofilaments, which serve as important microtubule assembly and disassembly intermediates. We find that initially straight tubulin protofilaments, relax to similar non-radially curved and slightly twisted conformations. Our analysis further suggests that guanosine triphosphate hydrolysis primarily affects the flexibility and conformation of the inter-dimer interface, without a strong impact on the shape or flexibility of αβ-heterodimer. Inter-dimer interfaces are significantly more flexible compared to intra-dimer interfaces. We argue that such a difference in flexibility could be key for distinct stability of the plus and minus microtubule ends. The higher flexibility of the inter-dimer interface may have implications for development of pulling force by curving tubulin protofilaments during microtubule disassembly, a process of major importance for chromosome motions in mitosis.
Collapse
Affiliation(s)
| | - Philipp S. Orekhov
- Department of Biology, Lomonosov Moscow State University, Moscow, Russia
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Sechenov University, Moscow, Russia
| | | | - Artem A. Zhmurov
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Sechenov University, Moscow, Russia
| | - Fazoil I. Ataullakhanov
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Department of Physics, Lomonosov Moscow State University, Moscow, Russia
- Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, Moscow, Russia
| | - Ilya B. Kovalenko
- Department of Biology, Lomonosov Moscow State University, Moscow, Russia
- Sechenov University, Moscow, Russia
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies, Federal Medical and Biological Agency of Russia, Moscow, Russia
- Astrakhan State University, Astrakhan, Russia
- Peoples’ Friendship University of Russia (RUDN University), Moscow, Russia
| | - Nikita B. Gudimchuk
- Department of Physics, Lomonosov Moscow State University, Moscow, Russia
- Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
27
|
Namekawa T, Ikeda K, Horie-Inoue K, Suzuki T, Okamoto K, Ichikawa T, Yano A, Kawakami S, Inoue S. ALDH1A1 in patient-derived bladder cancer spheroids activates retinoic acid signaling leading to TUBB3 overexpression and tumor progression. Int J Cancer 2019; 146:1099-1113. [PMID: 31187490 DOI: 10.1002/ijc.32505] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 05/15/2019] [Accepted: 05/23/2019] [Indexed: 12/20/2022]
Abstract
Acquired chemoresistance is a critical issue for advanced bladder cancer patients during long-term treatment. Recent studies reveal that a fraction of tumor cells with enhanced tumor-initiating potential, or cancer stem-like cells (CSCs), may particularly contribute to acquired chemoresistance and recurrence. Thus, CSC characterization will be the first step towards understanding the mechanisms underlying advanced disease. Here we generated long-term patient-derived cancer cells (PDCs) from bladder cancer patient specimens in spheroid culture, which is favorable for CSC enrichment. Pathological features of bladder cancer PDCs and PDC-dependent patient-derived xenografts (PDXs) were basically similar to those of their corresponding patients' specimens. Notably, CSC marker aldehyde dehydrogenase 1A1 (ALDH1A1), a critical enzyme that synthesizes retinoic acid (RA), was abundantly expressed in PDCs. ALDH1A1 inhibitors and shRNAs repressed both PDC proliferation and spheroid formation, whereas all-trans RA could rescue ALDH1A1 shRNA-suppressed spheroid formation. ALDH inhibitor also reduced the in vivo growth of PDC-derived xenografts. ALDH1A1 knockdown study showed that tubulin beta III (TUBB3) was one of the downregulated genes in PDCs. We identified functional RA response elements in TUBB3 promoter, whose transcriptional activities were substantially activated by RA. Clinical survival database reveals that TUBB3 expression may associate with poor prognosis in bladder cancer patients. Moreover, TUBB3 knockdown was sufficient to suppress PDC proliferation and spheroid formation. Taken together, our results indicate that ALDH1A1 and its putative downstream target TUBB3 are overexpressed in bladder cancer, and those molecules could be applied to alternative diagnostic and therapeutic options for advanced disease.
Collapse
Affiliation(s)
- Takeshi Namekawa
- Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Hidaka, Japan.,Department of Urology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kazuhiro Ikeda
- Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Hidaka, Japan
| | - Kuniko Horie-Inoue
- Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Hidaka, Japan
| | - Takashi Suzuki
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Koji Okamoto
- Division of Cancer Differentiation, National Cancer Center Hospital, Tokyo, Japan
| | - Tomohiko Ichikawa
- Department of Urology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Akihiro Yano
- Department of Urology, Saitama Medical Center, Saitama Medical University, Kawagoe, Japan
| | - Satoru Kawakami
- Department of Urology, Saitama Medical Center, Saitama Medical University, Kawagoe, Japan
| | - Satoshi Inoue
- Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Hidaka, Japan.,Department of Functional Biogerontology, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| |
Collapse
|
28
|
Igaev M, Kutzner C, Bock LV, Vaiana AC, Grubmüller H. Automated cryo-EM structure refinement using correlation-driven molecular dynamics. eLife 2019; 8:e43542. [PMID: 30829573 PMCID: PMC6424565 DOI: 10.7554/elife.43542] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 03/03/2019] [Indexed: 12/22/2022] Open
Abstract
We present a correlation-driven molecular dynamics (CDMD) method for automated refinement of atomistic models into cryo-electron microscopy (cryo-EM) maps at resolutions ranging from near-atomic to subnanometer. It utilizes a chemically accurate force field and thermodynamic sampling to improve the real-space correlation between the modeled structure and the cryo-EM map. Our framework employs a gradual increase in resolution and map-model agreement as well as simulated annealing, and allows fully automated refinement without manual intervention or any additional rotamer- and backbone-specific restraints. Using multiple challenging systems covering a wide range of map resolutions, system sizes, starting model geometries and distances from the target state, we assess the quality of generated models in terms of both model accuracy and potential of overfitting. To provide an objective comparison, we apply several well-established methods across all examples and demonstrate that CDMD performs best in most cases.
Collapse
Affiliation(s)
- Maxim Igaev
- Department of Theoretical and Computational BiophysicsMax Planck Institute for Biophysical ChemistryGöttingenGermany
| | - Carsten Kutzner
- Department of Theoretical and Computational BiophysicsMax Planck Institute for Biophysical ChemistryGöttingenGermany
| | - Lars V Bock
- Department of Theoretical and Computational BiophysicsMax Planck Institute for Biophysical ChemistryGöttingenGermany
| | - Andrea C Vaiana
- Department of Theoretical and Computational BiophysicsMax Planck Institute for Biophysical ChemistryGöttingenGermany
| | - Helmut Grubmüller
- Department of Theoretical and Computational BiophysicsMax Planck Institute for Biophysical ChemistryGöttingenGermany
| |
Collapse
|
29
|
Manka SW, Moores CA. Microtubule structure by cryo-EM: snapshots of dynamic instability. Essays Biochem 2018; 62:737-751. [PMID: 30315096 PMCID: PMC6281474 DOI: 10.1042/ebc20180031] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 09/14/2018] [Accepted: 09/19/2018] [Indexed: 01/24/2023]
Abstract
The development of cryo-electron microscopy (cryo-EM) allowed microtubules to be captured in their solution-like state, enabling decades of insight into their dynamic mechanisms and interactions with binding partners. Cryo-EM micrographs provide 2D visualization of microtubules, and these 2D images can also be used to reconstruct the 3D structure of the polymer and any associated binding partners. In this way, the binding sites for numerous components of the microtubule cytoskeleton-including motor domains from many kinesin motors, and the microtubule-binding domains of dynein motors and an expanding collection of microtubule associated proteins-have been determined. The effects of various microtubule-binding drugs have also been studied. High-resolution cryo-EM structures have also been used to probe the molecular basis of microtubule dynamic instability, driven by the GTPase activity of β-tubulin. These studies have shown the conformational changes in lattice-confined tubulin dimers in response to steps in the tubulin GTPase cycle, most notably lattice compaction at the longitudinal inter-dimer interface. Although work is ongoing to define a complete structural model of dynamic instability, attention has focused on the role of gradual destabilization of lateral contacts between tubulin protofilaments, particularly at the microtubule seam. Furthermore, lower resolution cryo-electron tomography 3D structures are shedding light on the heterogeneity of microtubule ends and how their 3D organization contributes to dynamic instability. The snapshots of these polymers captured using cryo-EM will continue to provide critical insights into their dynamics, interactions with cellular components, and the way microtubules contribute to cellular functions in diverse physiological contexts.
Collapse
Affiliation(s)
- Szymon W Manka
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, London, U.K.
| | - Carolyn A Moores
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, London, U.K
| |
Collapse
|
30
|
Microtubule lattice plasticity. Curr Opin Cell Biol 2018; 56:88-93. [PMID: 30415187 DOI: 10.1016/j.ceb.2018.10.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 10/21/2018] [Indexed: 01/06/2023]
Abstract
In classical microtubule dynamic instability, the dynamics of the built polymer depend only on the nucleotide state of its individual tubulin molecules. Recent work is overturning this view, pointing instead towards lattice plasticity, in which the fine-structure and mechanics of the microtubule lattice are emergent properties that depend not only on the nucleotide state of each tubulin, but also on the nucleotide states of its neighbours, on its and their isotypes, and on interacting proteins, drugs, local mechanical strain, post translational modifications, packing defects and solvent conditions. In lattice plasticity models, the microtubule is an allosteric molecular collective that integrates multiple mechanochemical inputs and responds adaptively by adjusting its conformation, stiffness and dynamics.
Collapse
|
31
|
Vicente-Blázquez A, González M, Álvarez R, Del Mazo S, Medarde M, Peláez R. Antitubulin sulfonamides: The successful combination of an established drug class and a multifaceted target. Med Res Rev 2018; 39:775-830. [PMID: 30362234 DOI: 10.1002/med.21541] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 09/02/2018] [Accepted: 09/06/2018] [Indexed: 12/13/2022]
Abstract
Tubulin, the microtubules and their dynamic behavior are amongst the most successful antitumor, antifungal, antiparasitic, and herbicidal drug targets. Sulfonamides are exemplary drugs with applications in the clinic, in veterinary and in the agrochemical industry. This review summarizes the actual state and recent progress of both fields looking from the double point of view of the target and its drugs, with special focus onto the structural aspects. The article starts with a brief description of tubulin structure and its dynamic assembly and disassembly into microtubules and other polymers. Posttranslational modifications and the many cellular means of regulating and modulating tubulin's biology are briefly presented in the tubulin code. Next, the structurally characterized drug binding sites, their occupying drugs and the effects they induce are described, emphasizing on the structural requirements for high potency, selectivity, and low toxicity. The second part starts with a summary of the favorable and highly tunable combination of physical-chemical and biological properties that render sulfonamides a prototypical example of privileged scaffolds with representatives in many therapeutic areas. A complete description of tubulin-binding sulfonamides is provided, covering the different species and drug sites. Some of the antimitotic sulfonamides have met with very successful applications and others less so, thus illustrating the advances, limitations, and future perspectives of the field. All of them combine in a mechanism of action and a clinical outcome that conform efficient drugs.
Collapse
Affiliation(s)
- Alba Vicente-Blázquez
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain.,Facultad de Farmacia, Instituto de Investigación Biomédica de Salamanca (IBSAL), Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain.,Facultad de Farmacia, Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain.,Laboratory of Cell Death and Cancer Therapy, Department of Molecular Biomedicine, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Myriam González
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain.,Facultad de Farmacia, Instituto de Investigación Biomédica de Salamanca (IBSAL), Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain.,Facultad de Farmacia, Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| | - Raquel Álvarez
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain.,Facultad de Farmacia, Instituto de Investigación Biomédica de Salamanca (IBSAL), Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain.,Facultad de Farmacia, Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| | - Sara Del Mazo
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain.,Facultad de Farmacia, Instituto de Investigación Biomédica de Salamanca (IBSAL), Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain.,Facultad de Farmacia, Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| | - Manuel Medarde
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain.,Facultad de Farmacia, Instituto de Investigación Biomédica de Salamanca (IBSAL), Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain.,Facultad de Farmacia, Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| | - Rafael Peláez
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain.,Facultad de Farmacia, Instituto de Investigación Biomédica de Salamanca (IBSAL), Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain.,Facultad de Farmacia, Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| |
Collapse
|
32
|
Shemesh A, Ginsburg A, Levi-Kalisman Y, Ringel I, Raviv U. Structure, Assembly, and Disassembly of Tubulin Single Rings. Biochemistry 2018; 57:6153-6165. [PMID: 30247898 DOI: 10.1021/acs.biochem.8b00560] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Single and double tubulin rings were studied under a range of conditions and during microtubule (MT) assembly and disassembly. Here, tubulin was purified from porcine brain and used without any further modifications or additives that promote ring assembly. The structure of single GDP-rich tubulin rings was determined by cryo-transmission electron microscopy and synchrotron solution X-ray scattering. The scattering curves were fitted to atomic models, using our state-of-the-art analysis software, D+ . We found that there is a critical concentration for ring formation, which increased with GTP concentration with temperature. MT assembly or disassembly, induced by changes in temperature, was analyzed by time-resolved small-angle X-ray scattering. During MT assembly, the fraction of rings and unassembled dimers simultaneously decreased. During MT disassembly, the mass fraction of dimers increased. The increase in the concentration of rings was delayed until the fraction of dimers was sufficiently high. We verified that pure dimers, eluted via size-exclusion chromatography, could also form rings. Interestingly, X-ray radiation triggered tubulin ring disassembly. The concentration of disassembled rings versus exposure time followed a first-order kinetics. The disassembly rate constant and initial concentration were determined. X-ray radiation-triggered disassembly was used to determine the concentration of rings. We confirmed that following a temperature jump, the mass fraction of rings decreased and then stabilized at a constant value during the first stage of the MT assembly kinetics. This study sheds light on the most basic assembly and disassembly conditions for in vitro single GDP-rich tubulin rings and their relation to MT kinetics.
Collapse
Affiliation(s)
- Asaf Shemesh
- Institute of Chemistry , The Hebrew University of Jerusalem , Jerusalem 9190401 , Israel.,Center for Nanoscience and Nanotechnology , The Hebrew University of Jerusalem , Jerusalem 9190401 , Israel
| | - Avi Ginsburg
- Institute of Chemistry , The Hebrew University of Jerusalem , Jerusalem 9190401 , Israel.,Institute for Drug Research, School of Pharmacy , The Hebrew University of Jerusalem , Jerusalem 9112102 , Israel
| | - Yael Levi-Kalisman
- Center for Nanoscience and Nanotechnology , The Hebrew University of Jerusalem , Jerusalem 9190401 , Israel.,Institute of Life Sciences , The Hebrew University of Jerusalem , Jerusalem 9190401 , Israel
| | - Israel Ringel
- Institute for Drug Research, School of Pharmacy , The Hebrew University of Jerusalem , Jerusalem 9112102 , Israel
| | - Uri Raviv
- Institute of Chemistry , The Hebrew University of Jerusalem , Jerusalem 9190401 , Israel.,Center for Nanoscience and Nanotechnology , The Hebrew University of Jerusalem , Jerusalem 9190401 , Israel
| |
Collapse
|