1
|
Basalla JL, Ghalmi M, Hoang Y, Dow RE, Vecchiarelli AG. An invariant C-terminal tryptophan in McdB mediates its interaction and positioning function with carboxysomes. Mol Biol Cell 2024; 35:ar107. [PMID: 38922842 PMCID: PMC11321042 DOI: 10.1091/mbc.e23-11-0443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 06/10/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Bacterial microcompartments (BMCs) are widespread, protein-based organelles that regulate metabolism. The model for studying BMCs is the carboxysome, which facilitates carbon fixation in several autotrophic bacteria. Carboxysomes can be distinguished as type α or β, which are structurally and phyletically distinct. We recently characterized the maintenance of carboxysome distribution (Mcd) systems responsible for spatially regulating α- and β-carboxysomes, consisting of the proteins McdA and McdB. McdA is an ATPase that drives carboxysome positioning, and McdB is the adaptor protein that directly interacts with carboxysomes to provide cargo specificity. The molecular features of McdB proteins that specify their interactions with carboxysomes, and whether these are similar between α- and β-carboxysomes, remain unknown. Here, we identify C-terminal motifs containing an invariant tryptophan necessary for α- and β-McdBs to associate with α- and β-carboxysomes, respectively. Substituting this tryptophan with other aromatic residues reveals corresponding gradients in the efficiency of carboxysome colocalization and positioning by McdB in vivo. Intriguingly, these gradients also correlate with the ability of McdB to form condensates in vitro. The results reveal a shared mechanism underlying McdB adaptor protein binding to carboxysomes, and potentially other BMCs. Our findings also implicate condensate formation as playing a key role in this association.
Collapse
Affiliation(s)
- Joseph L. Basalla
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - Maria Ghalmi
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - Y. Hoang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - Rachel E. Dow
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - Anthony G. Vecchiarelli
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
2
|
Trettel DS, Kerfeld CA, Gonzalez-Esquer CR. Dynamic structural determinants in bacterial microcompartment shells. Curr Opin Microbiol 2024; 80:102497. [PMID: 38909546 DOI: 10.1016/j.mib.2024.102497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/07/2024] [Accepted: 06/03/2024] [Indexed: 06/25/2024]
Abstract
Bacterial microcompartments (BMCs) are polyhedral structures that segregate enzymatic cargo from the cytosol via encapsulation within a protein shell. Unlike other biological polyhedra, such as viral capsids and encapsulins, BMC shells can exhibit a highly advantageous structural and functional plasticity, conforming to a variety of anabolic (CO2 fixation in carboxysomes) and catabolic (nutrient assimilation in metabolosomes) roles. Consequently, understanding the subunit properties and associated protein-protein interaction processes that guide shell assembly and function is a necessary step to fully harness BMCs as modular, biotechnological nanomachines. Here, we describe the recent insights into the dynamics of structural features of the key BMC domain (Pfam00936)-containing proteins, which serve as a structural template for BMC-H and BMC-T shell building blocks.
Collapse
Affiliation(s)
- Daniel S Trettel
- Los Alamos National Laboratory, Bioscience Division, Microbial and Biome Sciences group, Los Alamos, NM, USA
| | - Cheryl A Kerfeld
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Cesar R Gonzalez-Esquer
- Los Alamos National Laboratory, Bioscience Division, Microbial and Biome Sciences group, Los Alamos, NM, USA.
| |
Collapse
|
3
|
Pulianmackal LT, Vecchiarelli AG. Positioning of cellular components by the ParA/MinD family of ATPases. Curr Opin Microbiol 2024; 79:102485. [PMID: 38723344 PMCID: PMC11407121 DOI: 10.1016/j.mib.2024.102485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 06/11/2024]
Abstract
The ParA/MinD (A/D) family of ATPases spatially organize an array of genetic- and protein-based cellular cargos across the bacterial and archaeal domains of life. By far, the two best-studied members, and family namesake, are ParA and MinD, involved in bacterial DNA segregation and divisome positioning, respectively. ParA and MinD make protein waves on the nucleoid or membrane to segregate chromosomes and position the divisome. Less studied is the growing list of A/D ATPases widespread across bacteria and implicated in the subcellular organization of diverse protein-based complexes and organelles involved in myriad biological processes, from metabolism to pathogenesis. Here we describe mechanistic commonality, variation, and coordination among the most widespread family of positioning ATPases used in the subcellular organization of disparate cargos across bacteria and archaea.
Collapse
Affiliation(s)
- Lisa T Pulianmackal
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Anthony G Vecchiarelli
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
4
|
Hoang Y, Azaldegui CA, Dow RE, Ghalmi M, Biteen JS, Vecchiarelli AG. An experimental framework to assess biomolecular condensates in bacteria. Nat Commun 2024; 15:3222. [PMID: 38622124 PMCID: PMC11018776 DOI: 10.1038/s41467-024-47330-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 03/28/2024] [Indexed: 04/17/2024] Open
Abstract
High-resolution imaging of biomolecular condensates in living cells is essential for correlating their properties to those observed through in vitro assays. However, such experiments are limited in bacteria due to resolution limitations. Here we present an experimental framework that probes the formation, reversibility, and dynamics of condensate-forming proteins in Escherichia coli as a means to determine the nature of biomolecular condensates in bacteria. We demonstrate that condensates form after passing a threshold concentration, maintain a soluble fraction, dissolve upon shifts in temperature and concentration, and exhibit dynamics consistent with internal rearrangement and exchange between condensed and soluble fractions. We also discover that an established marker for insoluble protein aggregates, IbpA, has different colocalization patterns with bacterial condensates and aggregates, demonstrating its potential applicability as a reporter to differentiate the two in vivo. Overall, this framework provides a generalizable, accessible, and rigorous set of experiments to probe the nature of biomolecular condensates on the sub-micron scale in bacterial cells.
Collapse
Affiliation(s)
- Y Hoang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | | | - Rachel E Dow
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Maria Ghalmi
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Julie S Biteen
- Doctoral Program in Chemical Biology, University of Michigan, Ann Arbor, MI, 48109, USA.
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Anthony G Vecchiarelli
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
5
|
Kuzminov A. Bacterial nucleoid is a riddle wrapped in a mystery inside an enigma. J Bacteriol 2024; 206:e0021123. [PMID: 38358278 PMCID: PMC10994824 DOI: 10.1128/jb.00211-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024] Open
Abstract
Bacterial chromosome, the nucleoid, is traditionally modeled as a rosette of DNA mega-loops, organized around proteinaceous central scaffold by nucleoid-associated proteins (NAPs), and mixed with the cytoplasm by transcription and translation. Electron microscopy of fixed cells confirms dispersal of the cloud-like nucleoid within the ribosome-filled cytoplasm. Here, I discuss evidence that the nucleoid in live cells forms DNA phase separate from riboprotein phase, the "riboid." I argue that the nucleoid-riboid interphase, where DNA interacts with NAPs, transcribing RNA polymerases, nascent transcripts, and ssRNA chaperones, forms the transcription zone. An active part of phase separation, transcription zone enforces segregation of the centrally positioned information phase (the nucleoid) from the surrounding action phase (the riboid), where translation happens, protein accumulates, and metabolism occurs. I speculate that HU NAP mostly tiles up the nucleoid periphery-facilitating DNA mobility but also supporting transcription in the interphase. Besides extruding plectonemically supercoiled DNA mega-loops, condensins could compact them into solenoids of uniform rings, while HU could support rigidity and rotation of these DNA rings. The two-phase cytoplasm arrangement allows the bacterial cell to organize the central dogma activities, where (from the cell center to its periphery) DNA replicates and segregates, DNA is transcribed, nascent mRNA is handed over to ribosomes, mRNA is translated into proteins, and finally, the used mRNA is recycled into nucleotides at the inner membrane. The resulting information-action conveyor, with one activity naturally leading to the next one, explains the efficiency of prokaryotic cell design-even though its main intracellular transportation mode is free diffusion.
Collapse
Affiliation(s)
- Andrei Kuzminov
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
6
|
Zedler JAZ, Schirmacher AM, Russo DA, Hodgson L, Gundersen E, Matthes A, Frank S, Verkade P, Jensen PE. Self-Assembly of Nanofilaments in Cyanobacteria for Protein Co-localization. ACS NANO 2023; 17:25279-25290. [PMID: 38065569 PMCID: PMC10754207 DOI: 10.1021/acsnano.3c08600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/12/2023] [Accepted: 11/15/2023] [Indexed: 12/27/2023]
Abstract
Cyanobacteria offer great potential as alternative biotechnological hosts due to their photoautotrophic capacities. However, in comparison to established heterotrophic hosts, several key aspects, such as product titers, are still lagging behind. Nanobiotechnology is an emerging field with great potential to improve existing hosts, but so far, it has barely been explored in microbial photosynthetic systems. Here, we report the establishment of large proteinaceous nanofilaments in the unicellular model cyanobacterium Synechocystis sp. PCC 6803 and the fast-growing cyanobacterial strain Synechococcus elongatus UTEX 2973. Transmission electron microscopy and electron tomography demonstrated that expression of pduA*, encoding a modified bacterial microcompartment shell protein, led to the generation of bundles of longitudinally aligned nanofilaments in S. elongatus UTEX 2973 and shorter filamentous structures in Synechocystis sp. PCC 6803. Comparative proteomics showed that PduA* was at least 50 times more abundant than the second most abundant protein in the cell and that nanofilament assembly had only a minor impact on cellular metabolism. Finally, as a proof-of-concept for co-localization with the filaments, we targeted a fluorescent reporter protein, mCitrine, to PduA* by fusion with an encapsulation peptide that natively interacts with PduA. The establishment of nanofilaments in cyanobacterial cells is an important step toward cellular organization of heterologous pathways and the establishment of cyanobacteria as next-generation hosts.
Collapse
Affiliation(s)
- Julie A. Z. Zedler
- Synthetic
Biology of Photosynthetic Organisms, Matthias Schleiden Institute
for Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Alexandra M. Schirmacher
- Synthetic
Biology of Photosynthetic Organisms, Matthias Schleiden Institute
for Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - David A. Russo
- Bioorganic
Analytics, Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Lorna Hodgson
- School
of Biochemistry, University of Bristol, Bristol, BS8 1TD, United Kingdom
| | - Emil Gundersen
- Department
of Plant and Environmental Sciences, University
of Copenhagen, 1871 Frederiksberg, Denmark
| | - Annemarie Matthes
- Department
of Plant and Environmental Sciences, University
of Copenhagen, 1871 Frederiksberg, Denmark
| | - Stefanie Frank
- Department
of Biochemical Engineering, University College
London, London, WC1E 6BT, United
Kingdom
| | - Paul Verkade
- School
of Biochemistry, University of Bristol, Bristol, BS8 1TD, United Kingdom
| | - Poul Erik Jensen
- Department
of Food Science, University of Copenhagen, 1958 Frederiksberg, Denmark
| |
Collapse
|
7
|
Cornet F, Blanchais C, Dusfour-Castan R, Meunier A, Quebre V, Sekkouri Alaoui H, Boudsoq F, Campos M, Crozat E, Guynet C, Pasta F, Rousseau P, Ton Hoang B, Bouet JY. DNA Segregation in Enterobacteria. EcoSal Plus 2023; 11:eesp00382020. [PMID: 37220081 PMCID: PMC10729935 DOI: 10.1128/ecosalplus.esp-0038-2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 04/13/2023] [Indexed: 01/28/2024]
Abstract
DNA segregation ensures that cell offspring receive at least one copy of each DNA molecule, or replicon, after their replication. This important cellular process includes different phases leading to the physical separation of the replicons and their movement toward the future daughter cells. Here, we review these phases and processes in enterobacteria with emphasis on the molecular mechanisms at play and their controls.
Collapse
Affiliation(s)
- François Cornet
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - Corentin Blanchais
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - Romane Dusfour-Castan
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - Alix Meunier
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - Valentin Quebre
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - Hicham Sekkouri Alaoui
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - François Boudsoq
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - Manuel Campos
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - Estelle Crozat
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - Catherine Guynet
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - Franck Pasta
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - Philippe Rousseau
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - Bao Ton Hoang
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - Jean-Yves Bouet
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| |
Collapse
|
8
|
Puentes-Rodriguez SG, Norcross J, Mera PE. To let go or not to let go: how ParA can impact the release of the chromosomal anchoring in Caulobacter crescentus. Nucleic Acids Res 2023; 51:12275-12287. [PMID: 37933842 PMCID: PMC10711552 DOI: 10.1093/nar/gkad982] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 10/06/2023] [Accepted: 10/17/2023] [Indexed: 11/08/2023] Open
Abstract
Chromosomal maintenance is vital for the survival of bacteria. In Caulobacter crescentus, chromosome replication initiates at ori and segregation is delayed until the nearby centromere-like region parS is replicated. Our understanding of how this sequence of events is regulated remains limited. The segregation of parS has been shown to involve multiple steps including polar release from anchoring protein PopZ, slow movement and fast ParA-dependent movement to the opposite cell pole. In this study, we demonstrate that ParA's competing attractions from PopZ and from DNA are critical for segregation of parS. Interfering with this balance of attractions-by expressing a variant ParA-R195E unable to bind DNA and thus favoring interactions exclusively between ParA-PopZ-results in cell death. Our data revealed that ParA-R195E's sole interactions with PopZ obstruct PopZ's ability to release the polar anchoring of parS, resulting in cells with multiple parS loci fixed at one cell pole. We show that the inability to separate and segregate multiple parS loci from the pole is specifically dependent on the interaction between ParA and PopZ. Collectively, our results reveal that the initial steps in chromosome segregation are highly regulated.
Collapse
Affiliation(s)
| | - John D Norcross
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Paola E Mera
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
9
|
Basalla JL, Mak CA, Byrne JA, Ghalmi M, Hoang Y, Vecchiarelli AG. Dissecting the phase separation and oligomerization activities of the carboxysome positioning protein McdB. eLife 2023; 12:e81362. [PMID: 37668016 PMCID: PMC10554743 DOI: 10.7554/elife.81362] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/01/2023] [Indexed: 09/06/2023] Open
Abstract
Across bacteria, protein-based organelles called bacterial microcompartments (BMCs) encapsulate key enzymes to regulate their activities. The model BMC is the carboxysome that encapsulates enzymes for CO2 fixation to increase efficiency and is found in many autotrophic bacteria, such as cyanobacteria. Despite their importance in the global carbon cycle, little is known about how carboxysomes are spatially regulated. We recently identified the two-factor system required for the maintenance of carboxysome distribution (McdAB). McdA drives the equal spacing of carboxysomes via interactions with McdB, which associates with carboxysomes. McdA is a ParA/MinD ATPase, a protein family well studied in positioning diverse cellular structures in bacteria. However, the adaptor proteins like McdB that connect these ATPases to their cargos are extremely diverse. In fact, McdB represents a completely unstudied class of proteins. Despite the diversity, many adaptor proteins undergo phase separation, but functional roles remain unclear. Here, we define the domain architecture of McdB from the model cyanobacterium Synechococcus elongatus PCC 7942, and dissect its mode of biomolecular condensate formation. We identify an N-terminal intrinsically disordered region (IDR) that modulates condensate solubility, a central coiled-coil dimerizing domain that drives condensate formation, and a C-terminal domain that trimerizes McdB dimers and provides increased valency for condensate formation. We then identify critical basic residues in the IDR, which we mutate to glutamines to solubilize condensates. Finally, we find that a condensate-defective mutant of McdB has altered association with carboxysomes and influences carboxysome enzyme content. The results have broad implications for understanding spatial organization of BMCs and the molecular grammar of protein condensates.
Collapse
Affiliation(s)
- Joseph L Basalla
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan-Ann ArborAnn ArborUnited States
| | - Claudia A Mak
- Department of Biological Chemistry, University of Michigan-Ann ArborAnn ArborUnited States
| | - Jordan A Byrne
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan-Ann ArborAnn ArborUnited States
| | - Maria Ghalmi
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan-Ann ArborAnn ArborUnited States
| | - Y Hoang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan-Ann ArborAnn ArborUnited States
| | - Anthony G Vecchiarelli
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan-Ann ArborAnn ArborUnited States
| |
Collapse
|
10
|
Chodha SS, Brooks AC, Davis PJ, Ramachandran R, Chattoraj D, Hwang L. Kinetic principles of ParA2-ATP cycling guide dynamic subcellular localizations in Vibrio cholerae. Nucleic Acids Res 2023; 51:5603-5620. [PMID: 37140034 PMCID: PMC10287910 DOI: 10.1093/nar/gkad321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 04/07/2023] [Accepted: 04/27/2023] [Indexed: 05/05/2023] Open
Abstract
Dynamic protein gradients are exploited for the spatial organization and segregation of replicated chromosomes. However, mechanisms of protein gradient formation and how that spatially organizes chromosomes remain poorly understood. Here, we have determined the kinetic principles of subcellular localizations of ParA2 ATPase, an essential spatial regulator of chromosome 2 segregation in the multichromosome bacterium, Vibrio cholerae. We found that ParA2 gradients self-organize in V. cholerae cells into dynamic pole-to-pole oscillations. We examined the ParA2 ATPase cycle and ParA2 interactions with ParB2 and DNA. In vitro, ParA2-ATP dimers undergo a rate-limiting conformational switch, catalysed by DNA to achieve DNA-binding competence. This active ParA2 state loads onto DNA cooperatively as higher order oligomers. Our results indicate that the midcell localization of ParB2-parS2 complexes stimulate ATP hydrolysis and ParA2 release from the nucleoid, generating an asymmetric ParA2 gradient with maximal concentration toward the poles. This rapid dissociation coupled with slow nucleotide exchange and conformational switch provides for a temporal lag that allows the redistribution of ParA2 to the opposite pole for nucleoid reattachment. Based on our data, we propose a 'Tug-of-war' model that uses dynamic oscillations of ParA2 to spatially regulate symmetric segregation and positioning of bacterial chromosomes.
Collapse
Affiliation(s)
- Satpal S Chodha
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - Adam C Brooks
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - Peter J Davis
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - Revathy Ramachandran
- Basic Research Laboratory, Centre for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4260, USA
| | - Dhruba K Chattoraj
- Basic Research Laboratory, Centre for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4260, USA
| | - Ling Chin Hwang
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
- Medical Technology Research Centre, School of Medicine, Faculty of Health, Education, Medicine & Social Care, Anglia Ruskin University, Chelmsford, UK
| |
Collapse
|
11
|
Pulianmackal LT, Limcaoco JMI, Ravi K, Yang S, Zhang J, Tran MK, Ghalmi M, O'Meara MJ, Vecchiarelli AG. Multiple ParA/MinD ATPases coordinate the positioning of disparate cargos in a bacterial cell. Nat Commun 2023; 14:3255. [PMID: 37277398 DOI: 10.1038/s41467-023-39019-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 05/22/2023] [Indexed: 06/07/2023] Open
Abstract
In eukaryotes, linear motor proteins govern intracellular transport and organization. In bacteria, where linear motors involved in spatial regulation are absent, the ParA/MinD family of ATPases organize an array of genetic- and protein-based cellular cargos. The positioning of these cargos has been independently investigated to varying degrees in several bacterial species. However, it remains unclear how multiple ParA/MinD ATPases can coordinate the positioning of diverse cargos in the same cell. Here, we find that over a third of sequenced bacterial genomes encode multiple ParA/MinD ATPases. We identify an organism (Halothiobacillus neapolitanus) with seven ParA/MinD ATPases, demonstrate that five of these are each dedicated to the spatial regulation of a single cellular cargo, and define potential specificity determinants for each system. Furthermore, we show how these positioning reactions can influence each other, stressing the importance of understanding how organelle trafficking, chromosome segregation, and cell division are coordinated in bacterial cells. Together, our data show how multiple ParA/MinD ATPases coexist and function to position a diverse set of fundamental cargos in the same bacterial cell.
Collapse
Affiliation(s)
- Lisa T Pulianmackal
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jose Miguel I Limcaoco
- Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Keerthikka Ravi
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Sinyu Yang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jeffrey Zhang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Mimi K Tran
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Maria Ghalmi
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Matthew J O'Meara
- Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Anthony G Vecchiarelli
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
12
|
Vecchiarelli A, Hoang Y, Azaldegui C, Ghalmi M, Biteen J. An experimental framework to assess biomolecular condensates in bacteria. RESEARCH SQUARE 2023:rs.3.rs-2725220. [PMID: 37066349 PMCID: PMC10104261 DOI: 10.21203/rs.3.rs-2725220/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
High-resolution imaging of biomolecular condensates in living cells is essential for correlating their properties to those observed through in vitro assays. However, such experiments are limited in bacteria due to resolution limitations. Here we present an experimental framework that probes the formation, reversibility, and dynamics of condensate-forming proteins in Escherichia coli as a means to determine the nature of biomolecular condensates in bacteria. We demonstrate that condensates form after passing a threshold concentration, maintain a soluble fraction, dissolve upon shifts in temperature and concentration, and exhibit dynamics consistent with internal rearrangement and exchange between condensed and soluble fractions. We also discovered that an established marker for insoluble protein aggregates, IbpA, has different colocalization patterns with bacterial condensates and aggregates, demonstrating its applicability as a reporter to differentiate the two in vivo. Overall, this framework provides a generalizable, accessible, and rigorous set of experiments to probe the nature of biomolecular condensates on the sub-micron scale in bacterial cells.
Collapse
|
13
|
Kupriyanova EV, Pronina NA, Los DA. Adapting from Low to High: An Update to CO 2-Concentrating Mechanisms of Cyanobacteria and Microalgae. PLANTS (BASEL, SWITZERLAND) 2023; 12:1569. [PMID: 37050194 PMCID: PMC10096703 DOI: 10.3390/plants12071569] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 06/19/2023]
Abstract
The intracellular accumulation of inorganic carbon (Ci) by microalgae and cyanobacteria under ambient atmospheric CO2 levels was first documented in the 80s of the 20th Century. Hence, a third variety of the CO2-concentrating mechanism (CCM), acting in aquatic photoautotrophs with the C3 photosynthetic pathway, was revealed in addition to the then-known schemes of CCM, functioning in CAM and C4 higher plants. Despite the low affinity of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) of microalgae and cyanobacteria for the CO2 substrate and low CO2/O2 specificity, CCM allows them to perform efficient CO2 fixation in the reductive pentose phosphate (RPP) cycle. CCM is based on the coordinated operation of strategically located carbonic anhydrases and CO2/HCO3- uptake systems. This cooperation enables the intracellular accumulation of HCO3-, which is then employed to generate a high concentration of CO2 molecules in the vicinity of Rubisco's active centers compensating up for the shortcomings of enzyme features. CCM functions as an add-on to the RPP cycle while also acting as an important regulatory link in the interaction of dark and light reactions of photosynthesis. This review summarizes recent advances in the study of CCM molecular and cellular organization in microalgae and cyanobacteria, as well as the fundamental principles of its functioning and regulation.
Collapse
|
14
|
Hoang Y, Azaldegui CA, Ghalmi M, Biteen JS, Vecchiarelli AG. An experimental framework to assess biomolecular condensates in bacteria. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.22.533878. [PMID: 36993636 PMCID: PMC10055370 DOI: 10.1101/2023.03.22.533878] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
High-resolution imaging of biomolecular condensates in living cells is essential for correlating their properties to those observed through in vitro assays. However, such experiments are limited in bacteria due to resolution limitations. Here we present an experimental framework that probes the formation, reversibility, and dynamics of condensate-forming proteins in Escherichia coli as a means to determine the nature of biomolecular condensates in bacteria. We demonstrate that condensates form after passing a threshold concentration, maintain a soluble fraction, dissolve upon shifts in temperature and concentration, and exhibit dynamics consistent with internal rearrangement and exchange between condensed and soluble fractions. We also discovered that an established marker for insoluble protein aggregates, IbpA, has different colocalization patterns with bacterial condensates and aggregates, demonstrating its applicability as a reporter to differentiate the two in vivo. Overall, this framework provides a generalizable, accessible, and rigorous set of experiments to probe the nature of biomolecular condensates on the sub-micron scale in bacterial cells.
Collapse
Affiliation(s)
- Y Hoang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109 USA
- Equal contribution
| | - Christopher A. Azaldegui
- Doctoral Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109 USA
- Equal contribution
| | - Maria Ghalmi
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109 USA
| | - Julie S. Biteen
- Doctoral Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109 USA
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109 USA
| | - Anthony G. Vecchiarelli
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109 USA
| |
Collapse
|
15
|
Huffine CA, Zhao R, Tang YJ, Cameron JC. Role of carboxysomes in cyanobacterial CO 2 assimilation: CO 2 concentrating mechanisms and metabolon implications. Environ Microbiol 2023; 25:219-228. [PMID: 36367380 DOI: 10.1111/1462-2920.16283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 11/09/2022] [Indexed: 11/13/2022]
Abstract
Many carbon-fixing organisms have evolved CO2 concentrating mechanisms (CCMs) to enhance the delivery of CO2 to RuBisCO, while minimizing reactions with the competitive inhibitor, molecular O2 . These distinct types of CCMs have been extensively studied using genetics, biochemistry, cell imaging, mass spectrometry, and metabolic flux analysis. Highlighted in this paper, the cyanobacterial CCM features a bacterial microcompartment (BMC) called 'carboxysome' in which RuBisCO is co-encapsulated with the enzyme carbonic anhydrase (CA) within a semi-permeable protein shell. The cyanobacterial CCM is capable of increasing CO2 around RuBisCO, leading to one of the most efficient processes known for fixing ambient CO2 . The carboxysome life cycle is dynamic and creates a unique subcellular environment that promotes activity of the Calvin-Benson (CB) cycle. The carboxysome may function within a larger cellular metabolon, physical association of functionally coupled proteins, to enhance metabolite channelling and carbon flux. In light of CCMs, synthetic biology approaches have been used to improve enzyme complex for CO2 fixations. Research on CCM-associated metabolons has also inspired biologists to engineer multi-step pathways by providing anchoring points for enzyme cascades to channel intermediate metabolites towards valuable products.
Collapse
Affiliation(s)
- Clair A Huffine
- Department of Biochemistry, University of Colorado, Boulder, Colorado, USA
- Renewable and Sustainable Energy Institute, University of Colorado, Boulder, Colorado, USA
- Interdisciplinary Quantitative Biology Program (IQ Biology), BioFrontiers Institute, University of Colorado, Boulder, Colorado, USA
| | - Runyu Zhao
- Department of Energy, Environmental and Chemical Engineering, Washington University in Saint Louis, Saint Louis, Missouri, USA
| | - Yinjie J Tang
- Department of Energy, Environmental and Chemical Engineering, Washington University in Saint Louis, Saint Louis, Missouri, USA
| | - Jeffrey C Cameron
- Department of Biochemistry, University of Colorado, Boulder, Colorado, USA
- Renewable and Sustainable Energy Institute, University of Colorado, Boulder, Colorado, USA
- National Renewable Energy Laboratory, Golden, Colorado, USA
| |
Collapse
|
16
|
Köhler R, Kaganovitch E, Murray SM. High-throughput imaging and quantitative analysis uncovers the nature of plasmid positioning by ParABS. eLife 2022; 11:78743. [PMID: 36374535 PMCID: PMC9662831 DOI: 10.7554/elife.78743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 10/23/2022] [Indexed: 11/16/2022] Open
Abstract
The faithful segregation and inheritance of bacterial chromosomes and low-copy number plasmids requires dedicated partitioning systems. The most common of these, ParABS, consists of ParA, a DNA-binding ATPase and ParB, a protein that binds to centromeric-like parS sequences on the DNA cargo. The resulting nucleoprotein complexes are believed to move up a self-generated gradient of nucleoid-associated ParA. However, it remains unclear how this leads to the observed cargo positioning and dynamics. In particular, the evaluation of models of plasmid positioning has been hindered by the lack of quantitative measurements of plasmid dynamics. Here, we use high-throughput imaging, analysis and modelling to determine the dynamical nature of these systems. We find that F plasmid is actively brought to specific subcellular home positions within the cell with dynamics akin to an over-damped spring. We develop a unified stochastic model that quantitatively explains this behaviour and predicts that cells with the lowest plasmid concentration transition to oscillatory dynamics. We confirm this prediction for F plasmid as well as a distantly-related ParABS system. Our results indicate that ParABS regularly positions plasmids across the nucleoid but operates just below the threshold of an oscillatory instability, which according to our model, minimises ATP consumption. Our work also clarifies how various plasmid dynamics are achievable in a single unified stochastic model. Overall, this work uncovers the dynamical nature of plasmid positioning by ParABS and provides insights relevant for chromosome-based systems.
Collapse
Affiliation(s)
- Robin Köhler
- Max Planck Institute for Terrestrial Microbiology and LOEWE Centre for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| | - Eugen Kaganovitch
- Max Planck Institute for Terrestrial Microbiology and LOEWE Centre for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| | - Seán M Murray
- Max Planck Institute for Terrestrial Microbiology and LOEWE Centre for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| |
Collapse
|
17
|
Wan J, Monteil CL, Taoka A, Ernie G, Park K, Amor M, Taylor-Cornejo E, Lefevre CT, Komeili A. McaA and McaB control the dynamic positioning of a bacterial magnetic organelle. Nat Commun 2022; 13:5652. [PMID: 36163114 PMCID: PMC9512821 DOI: 10.1038/s41467-022-32914-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 08/23/2022] [Indexed: 11/17/2022] Open
Abstract
Magnetotactic bacteria are a diverse group of microorganisms that use intracellular chains of ferrimagnetic nanocrystals, produced within magnetosome organelles, to align and navigate along the geomagnetic field. Several conserved genes for magnetosome formation have been described, but the mechanisms leading to distinct species-specific magnetosome chain configurations remain unclear. Here, we show that the fragmented nature of magnetosome chains in Magnetospirillum magneticum AMB-1 is controlled by genes mcaA and mcaB. McaA recognizes the positive curvature of the inner cell membrane, while McaB localizes to magnetosomes. Along with the MamK actin-like cytoskeleton, McaA and McaB create space for addition of new magnetosomes in between pre-existing magnetosomes. Phylogenetic analyses suggest that McaA and McaB homologs are widespread among magnetotactic bacteria and may represent an ancient strategy for magnetosome positioning.
Collapse
Affiliation(s)
- Juan Wan
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| | - Caroline L Monteil
- Aix-Marseille Université, CEA, CNRS, Institute of Biosciences and Biotechnologies of Aix-Marseille, 13108, Saint-Paul-lez-Durance, France
| | - Azuma Taoka
- Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan
| | - Gabriel Ernie
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| | - Kieop Park
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
- Department of Biology, Duke University, Box 90338, Durham, NC, 27708, USA
| | - Matthieu Amor
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
- Aix-Marseille Université, CEA, CNRS, Institute of Biosciences and Biotechnologies of Aix-Marseille, 13108, Saint-Paul-lez-Durance, France
| | - Elias Taylor-Cornejo
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
- Department of Biology, Randolph-Macon College, Ashland, VA, 23005, USA
| | - Christopher T Lefevre
- Aix-Marseille Université, CEA, CNRS, Institute of Biosciences and Biotechnologies of Aix-Marseille, 13108, Saint-Paul-lez-Durance, France
| | - Arash Komeili
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA.
| |
Collapse
|
18
|
Lacroix E, Audas TE. Keeping up with the condensates: The retention, gain, and loss of nuclear membrane-less organelles. Front Mol Biosci 2022; 9:998363. [PMID: 36203874 PMCID: PMC9530788 DOI: 10.3389/fmolb.2022.998363] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/19/2022] [Indexed: 12/04/2022] Open
Abstract
In recent decades, a growing number of biomolecular condensates have been identified in eukaryotic cells. These structures form through phase separation and have been linked to a diverse array of cellular processes. While a checklist of established membrane-bound organelles is present across the eukaryotic domain, less is known about the conservation of membrane-less subcellular structures. Many of these structures can be seen throughout eukaryotes, while others are only thought to be present in metazoans or a limited subset of species. In particular, the nucleus is a hub of biomolecular condensates. Some of these subnuclear domains have been found in a broad range of organisms, which is a characteristic often attributed to essential functionality. However, this does not always appear to be the case. For example, the nucleolus is critical for ribosomal biogenesis and is present throughout the eukaryotic domain, while the Cajal bodies are believed to be similarly conserved, yet these structures are dispensable for organismal survival. Likewise, depletion of the Drosophila melanogaster omega speckles reduces viability, despite the apparent absence of this domain in higher eukaryotes. By reviewing primary research that has analyzed the presence of specific condensates (nucleoli, Cajal bodies, amyloid bodies, nucleolar aggresomes, nuclear speckles, nuclear paraspeckles, nuclear stress bodies, PML bodies, omega speckles, NUN bodies, mei2 dots) in a cross-section of organisms (e.g., human, mouse, D. melanogaster, Caenorhabditis elegans, yeast), we adopt a human-centric view to explore the emergence, retention, and absence of a subset of nuclear biomolecular condensates. This overview is particularly important as numerous biomolecular condensates have been linked to human disease, and their presence in additional species could unlock new and well characterized model systems for health research.
Collapse
Affiliation(s)
- Emma Lacroix
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
- Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, BC, Canada
| | - Timothy E. Audas
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
- Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, BC, Canada
- *Correspondence: Timothy E. Audas,
| |
Collapse
|
19
|
Fuentes-Cabrera M, Sakkos JK, Ducat DC, Ziatdinov M. Investigating Carboxysome Morphology Dynamics with a Rotationally Invariant Variational Autoencoder. J Phys Chem A 2022; 126:5021-5030. [PMID: 35880991 DOI: 10.1021/acs.jpca.2c02179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Carboxysomes are a class of bacterial microcompartments that form proteinaceous organelles within the cytoplasm of cyanobacteria and play a central role in photosynthetic metabolism by defining a cellular microenvironment permissive to CO2 fixation. Critical aspects of the assembly of the carboxysomes remain relatively unknown, especially with regard to the dynamics of this microcompartment. Progress in understanding carboxysome dynamics is impeded in part because analysis of the subtle changes in carboxysome morphology with microscopy remains a low-throughput and subjective process. Here we use deep learning techniques, specifically a Rotationally Invariant Variational Autoencoder (rVAE), to analyze fluorescence microscopy images of cyanobacteria bearing a carboxysome reporter and quantitatively evaluate how carboxysome shell remodelling impacts subtle trends in the morphology of the microcompartment over time. Toward this goal, we use a recently developed tool to control endogenous protein levels, including carboxysomal components, in the model cyanobacterium Synechococcous elongatus PCC 7942. By utilization of this system, proteins that compose the carboxysome can be tuned in real time as a method to examine carboxysome dynamics. We find that rVAEs are able to assist in the quantitative evaluation of changes in carboxysome numbers, shape, and size over time. We propose that rVAEs may be a useful tool to accelerate the analysis of carboxysome assembly and dynamics in response to genetic or environmental perturbation and may be more generally useful to probe regulatory processes involving a broader array of bacterial microcompartments.
Collapse
Affiliation(s)
- Miguel Fuentes-Cabrera
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Jonathan K Sakkos
- Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824, United States
| | - Daniel C Ducat
- Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824, United States.,Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, United States
| | - Maxim Ziatdinov
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
20
|
Sugawara T, Kaneko K. Chemophoresis engine: A general mechanism of ATPase-driven cargo transport. PLoS Comput Biol 2022; 18:e1010324. [PMID: 35877681 PMCID: PMC9363008 DOI: 10.1371/journal.pcbi.1010324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 08/09/2022] [Accepted: 06/23/2022] [Indexed: 11/18/2022] Open
Abstract
Cell polarity regulates the orientation of the cytoskeleton members that directs intracellular transport for cargo-like organelles, using chemical gradients sustained by ATP or GTP hydrolysis. However, how cargo transports are directly mediated by chemical gradients remains unknown. We previously proposed a physical mechanism that enables directed movement of cargos, referred to as chemophoresis. According to the mechanism, a cargo with reaction sites is subjected to a chemophoresis force in the direction of the increased concentration. Based on this, we introduce an extended model, the chemophoresis engine, as a general mechanism of cargo motion, which transforms chemical free energy into directed motion through the catalytic ATP hydrolysis. We applied the engine to plasmid motion in a ParABS system to demonstrate the self-organization system for directed plasmid movement and pattern dynamics of ParA-ATP concentration, thereby explaining plasmid equi-positioning and pole-to-pole oscillation observed in bacterial cells and in vitro experiments. We mathematically show the existence and stability of the plasmid-surfing pattern, which allows the cargo-directed motion through the symmetry-breaking transition of the ParA-ATP spatiotemporal pattern. We also quantitatively demonstrate that the chemophoresis engine can work even under in vivo conditions. Finally, we discuss the chemophoresis engine as one of the general mechanisms of hydrolysis-driven intracellular transport. The formation of organelle/macromolecule patterns depending on chemical concentration under non-equilibrium conditions, first observed during macroscopic morphogenesis, has recently been observed at the intracellular level as well, and its relevance as intracellular morphogen has been demonstrated in the case of bacterial cell division. These studies have discussed how cargos maintain positional information provided by chemical concentration gradients/localization. However, how cargo transports are directly mediated by chemical gradients remains unknown. Based on the previously proposed mechanism of chemotaxis-like behavior of cargos (referred to as chemophoresis), we introduce a chemophoresis engine as a physicochemical mechanism of cargo motion, which transforms chemical free energy to directed motion. The engine is based on the chemophoresis force to make cargoes move in the direction of the increasing ATPase(-ATP) concentration and an enhanced catalytic ATPase hydrolysis at the positions of the cargoes. Applying the engine to ATPase-driven movement of plasmid-DNAs in bacterial cells, we constructed a mathematical model to demonstrate the self-organization for directed plasmid motion and pattern dynamics of ATPase concentration, as is consistent with in vitro and in vivo experiments. We propose that this chemophoresis engine works as a general mechanism of hydrolysis-driven intracellular transport.
Collapse
Affiliation(s)
- Takeshi Sugawara
- Universal Biology Institute, The University of Tokyo, Tokyo, Japan
- * E-mail:
| | - Kunihiko Kaneko
- Center for Complex Systems Biology, Universal Biology Institute, The University of Tokyo, Meguro-ku, Tokyo, Japan
- Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
21
|
Mishra D, Srinivasan R. Catching a Walker in the Act-DNA Partitioning by ParA Family of Proteins. Front Microbiol 2022; 13:856547. [PMID: 35694299 PMCID: PMC9178275 DOI: 10.3389/fmicb.2022.856547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/28/2022] [Indexed: 12/01/2022] Open
Abstract
Partitioning the replicated genetic material is a crucial process in the cell cycle program of any life form. In bacteria, many plasmids utilize cytoskeletal proteins that include ParM and TubZ, the ancestors of the eukaryotic actin and tubulin, respectively, to segregate the plasmids into the daughter cells. Another distinct class of cytoskeletal proteins, known as the Walker A type Cytoskeletal ATPases (WACA), is unique to Bacteria and Archaea. ParA, a WACA family protein, is involved in DNA partitioning and is more widespread. A centromere-like sequence parS, in the DNA is bound by ParB, an adaptor protein with CTPase activity to form the segregation complex. The ParA ATPase, interacts with the segregation complex and partitions the DNA into the daughter cells. Furthermore, the Walker A motif-containing ParA superfamily of proteins is associated with a diverse set of functions ranging from DNA segregation to cell division, cell polarity, chemotaxis cluster assembly, cellulose biosynthesis and carboxysome maintenance. Unifying principles underlying the varied range of cellular roles in which the ParA superfamily of proteins function are outlined. Here, we provide an overview of the recent findings on the structure and function of the ParB adaptor protein and review the current models and mechanisms by which the ParA family of proteins function in the partitioning of the replicated DNA into the newly born daughter cells.
Collapse
Affiliation(s)
- Dipika Mishra
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, India
- Homi Bhabha National Institutes, Mumbai, India
| | - Ramanujam Srinivasan
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, India
- Homi Bhabha National Institutes, Mumbai, India
| |
Collapse
|
22
|
Yang M, Wenner N, Dykes GF, Li Y, Zhu X, Sun Y, Huang F, Hinton JCD, Liu LN. Biogenesis of a bacterial metabolosome for propanediol utilization. Nat Commun 2022; 13:2920. [PMID: 35614058 PMCID: PMC9132943 DOI: 10.1038/s41467-022-30608-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 04/22/2022] [Indexed: 12/24/2022] Open
Abstract
Bacterial metabolosomes are a family of protein organelles in bacteria. Elucidating how thousands of proteins self-assemble to form functional metabolosomes is essential for understanding their significance in cellular metabolism and pathogenesis. Here we investigate the de novo biogenesis of propanediol-utilization (Pdu) metabolosomes and characterize the roles of the key constituents in generation and intracellular positioning of functional metabolosomes. Our results demonstrate that the Pdu metabolosome undertakes both "Shell first" and "Cargo first" assembly pathways, unlike the β-carboxysome structural analog which only involves the "Cargo first" strategy. Shell and cargo assemblies occur independently at the cell poles. The internal cargo core is formed through the ordered assembly of multiple enzyme complexes, and exhibits liquid-like properties within the metabolosome architecture. Our findings provide mechanistic insight into the molecular principles driving bacterial metabolosome assembly and expand our understanding of liquid-like organelle biogenesis.
Collapse
Affiliation(s)
- Mengru Yang
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB, United Kingdom
| | - Nicolas Wenner
- Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Crown Street, Liverpool, L69 7ZB, United Kingdom
| | - Gregory F Dykes
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB, United Kingdom
| | - Yan Li
- Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Crown Street, Liverpool, L69 7ZB, United Kingdom
| | - Xiaojun Zhu
- Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Crown Street, Liverpool, L69 7ZB, United Kingdom
| | - Yaqi Sun
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB, United Kingdom
| | - Fang Huang
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB, United Kingdom
| | - Jay C D Hinton
- Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Crown Street, Liverpool, L69 7ZB, United Kingdom
| | - Lu-Ning Liu
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB, United Kingdom.
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
23
|
The Histone H1-Like Protein AlgP Facilitates Even Spacing of Polyphosphate Granules in Pseudomonas aeruginosa. mBio 2022; 13:e0246321. [PMID: 35435704 PMCID: PMC9239181 DOI: 10.1128/mbio.02463-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Synthesis of polyphosphate (polyP) is an ancient and universal stress and starvation response in bacteria. In many bacteria, polyP chains come together to form granular superstructures within cells. Some species appear to regulate polyP granule subcellular organization. Despite the critical role of polyP in starvation fitness, the composition of these structures, mechanism(s) underpinning their organization, and functional significance of such organization are poorly understood. We previously determined that granules become transiently evenly spaced on the cell’s long axis during nitrogen starvation in the opportunistic human pathogen Pseudomonas aeruginosa. Here, we developed a granule-enrichment protocol to screen for polyP granule-localizing proteins. We identified AlgP as a protein that associates with polyP granules. We further discovered that AlgP is required for the even spacing of polyP granules. AlgP is a DNA-binding protein with a 154 amino acid C-terminal domain enriched in “KPAA” repeats and variants of this repeat, with an overall sequence composition similar to the C-terminal tail of eukaryotic histone H1. Granule size, number, and spacing are significantly perturbed in the absence of AlgP, or when AlgP is truncated to remove the C-terminus. The ΔalgP and algPΔCTD mutants have fewer, larger granules. We speculate that AlgP may contribute to spacing by tethering polyP granules to the chromosome, thereby inhibiting fusion with neighboring granules. Our discovery that AlgP facilitates granule spacing allows us for the first time to directly uncouple granule biogenesis from even spacing, and will inform future efforts to explore the functional significance of granule organization on fitness during starvation.
Collapse
|
24
|
Frank C, Pfeiffer D, Aktas M, Jendrossek D. Migration of Polyphosphate Granules in Agrobacterium tumefaciens. Microb Physiol 2022; 32:71-82. [PMID: 35168233 DOI: 10.1159/000521970] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 01/12/2022] [Indexed: 01/29/2023]
Abstract
Agrobacterium tumefaciens has two polyphosphate (polyP) kinases, one of which (PPK1AT) is responsible for the formation of polyP granules, while the other (PPK2AT) is used for replenishing the NTP pools by using polyP as a phosphate donor to phosphorylate nucleoside diphosphates. Fusions of eYFP with PPK2AT or of the polyP granule-associated phosin PptA from Ralstonia eutropha always co-localized with polyP granules in A. tumefaciens and allowed the tracking of polyP granules in time-lapse microscopy experiments without the necessity to label the cells with the toxic dye DAPI. Fusions of PPK1AT with mCherry formed fluorescent signals often attached to, but not completely co-localizing with, polyP granules in wild-type cells. Time-lapse microscopy revealed that polyP granules in about one-third of a cell population migrated from the old pole to the new cell pole shortly before or during cell division. Many cells de novo formed a second (nonmigrating) polyP granule at the opposite cell pole before cell division was completed, resulting in two daughter cells each having a polyP granule at the old pole after septum formation. Migration of polyP granules was disordered in mitomycin C-treated or in PopZ-depleted cells, suggesting that polyP granules can associate with DNA or with other molecules that are segregated during the cell cycle.
Collapse
Affiliation(s)
- Celina Frank
- Institute of Microbiology, University of Stuttgart, Stuttgart, Germany
| | - Daniel Pfeiffer
- Department of Microbiology, University Bayreuth, Bayreuth, Germany
| | - Meriyem Aktas
- Microbial Biology, Ruhr University Bochum, Bochum, Germany
| | - Dieter Jendrossek
- Institute of Microbiology, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
25
|
Liu LN. Advances in the bacterial organelles for CO 2 fixation. Trends Microbiol 2021; 30:567-580. [PMID: 34802870 DOI: 10.1016/j.tim.2021.10.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/19/2021] [Accepted: 10/22/2021] [Indexed: 02/08/2023]
Abstract
Carboxysomes are a family of bacterial microcompartments (BMCs), present in all cyanobacteria and some proteobacteria, which encapsulate the primary CO2-fixing enzyme, Rubisco, within a virus-like polyhedral protein shell. Carboxysomes provide significantly elevated levels of CO2 around Rubisco to maximize carboxylation and reduce wasteful photorespiration, thus functioning as the central CO2-fixation organelles of bacterial CO2-concentration mechanisms. Their intriguing architectural features allow carboxysomes to make a vast contribution to carbon assimilation on a global scale. In this review, we discuss recent research progress that provides new insights into the mechanisms of how carboxysomes are assembled and functionally maintained in bacteria and recent advances in synthetic biology to repurpose the metabolic module in diverse applications.
Collapse
Affiliation(s)
- Lu-Ning Liu
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK; College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, 266003 Qingdao, China.
| |
Collapse
|
26
|
Hakim P, Hoang Y, Vecchiarelli AG. Dissection of the ATPase active site of McdA reveals the sequential steps essential for carboxysome distribution. Mol Biol Cell 2021; 32:ar11. [PMID: 34406783 PMCID: PMC8684754 DOI: 10.1091/mbc.e21-03-0151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Carboxysomes, the most prevalent and well-studied anabolic bacterial microcompartment, play a central role in efficient carbon fixation by cyanobacteria and proteobacteria. In previous studies, we identified the two-component system called McdAB that spatially distributes carboxysomes across the bacterial nucleoid. Maintenance of carboxysome distribution protein A (McdA), a partition protein A (ParA)-like ATPase, forms a dynamic oscillating gradient on the nucleoid in response to the carboxysome-localized Maintenance of carboxysome distribution protein B (McdB). As McdB stimulates McdA ATPase activity, McdA is removed from the nucleoid in the vicinity of carboxysomes, propelling these proteinaceous cargos toward regions of highest McdA concentration via a Brownian-ratchet mechanism. How the ATPase cycle of McdA governs its in vivo dynamics and carboxysome positioning remains unresolved. Here, by strategically introducing amino acid substitutions in the ATP-binding region of McdA, we sequentially trap McdA at specific steps in its ATP cycle. We map out critical events in the ATPase cycle of McdA that allows the protein to bind ATP, dimerize, change its conformation into a DNA-binding state, interact with McdB-bound carboxysomes, hydrolyze ATP, and release from the nucleoid. We also find that McdA is a member of a previously unstudied subset of ParA family ATPases, harboring unique interactions with ATP and the nucleoid for trafficking their cognate intracellular cargos.
Collapse
Affiliation(s)
- Pusparanee Hakim
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - Y Hoang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - Anthony G Vecchiarelli
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
27
|
Hu L, Rech J, Bouet JY, Liu J. Spatial control over near-critical-point operation ensures fidelity of ParABS-mediated DNA partition. Biophys J 2021; 120:3911-3924. [PMID: 34418367 PMCID: PMC8511131 DOI: 10.1016/j.bpj.2021.08.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 06/26/2021] [Accepted: 08/13/2021] [Indexed: 01/20/2023] Open
Abstract
In bacteria, most low-copy-number plasmid and chromosomally encoded partition systems belong to the tripartite ParABS partition machinery. Despite the importance in genetic inheritance, the mechanisms of ParABS-mediated genome partition are not well understood. Combining theory and experiment, we provided evidence that the ParABS system-DNA partitioning in vivo via the ParA-gradient-based Brownian ratcheting-operates near a transition point in parameter space (i.e., a critical point), across which the system displays qualitatively different motile behaviors. This near-critical-point operation adapts the segregation distance of replicated plasmids to the half length of the elongating nucleoid, ensuring both cell halves to inherit one copy of the plasmids. Further, we demonstrated that the plasmid localizes the cytoplasmic ParA to buffer the partition fidelity against the large cell-to-cell fluctuations in ParA level. The spatial control over the near-critical-point operation not only ensures both sensitive adaptation and robust execution of partitioning but also sheds light on the fundamental question in cell biology: how do cells faithfully measure cellular-scale distance by only using molecular-scale interactions?
Collapse
Affiliation(s)
- Longhua Hu
- Center for Cell Dynamics, Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jérôme Rech
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre de Biologie Intégrative, Centre National de la Recherche Scientifique, Université de Toulouse, UPS, Toulouse, France
| | - Jean-Yves Bouet
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre de Biologie Intégrative, Centre National de la Recherche Scientifique, Université de Toulouse, UPS, Toulouse, France.
| | - Jian Liu
- Center for Cell Dynamics, Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
28
|
Rillema R, Hoang Y, MacCready JS, Vecchiarelli AG. Carboxysome Mispositioning Alters Growth, Morphology, and Rubisco Level of the Cyanobacterium Synechococcus elongatus PCC 7942. mBio 2021; 12:e0269620. [PMID: 34340540 PMCID: PMC8406218 DOI: 10.1128/mbio.02696-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/01/2021] [Indexed: 12/23/2022] Open
Abstract
Cyanobacteria are the prokaryotic group of phytoplankton responsible for a significant fraction of global CO2 fixation. Like plants, cyanobacteria use the enzyme ribulose 1,5-bisphosphate carboxylase/oxidase (Rubisco) to fix CO2 into organic carbon molecules via the Calvin-Benson-Bassham cycle. Unlike plants, cyanobacteria evolved a carbon-concentrating organelle called the carboxysome-a proteinaceous compartment that encapsulates and concentrates Rubisco along with its CO2 substrate. In the rod-shaped cyanobacterium Synechococcus elongatus PCC 7942, we recently identified the McdAB system responsible for uniformly distributing carboxysomes along the cell length. It remains unknown what role carboxysome positioning plays with respect to cellular physiology. Here, we show that a failure to distribute carboxysomes leads to slower cell growth, cell elongation, asymmetric cell division, and elevated levels of cellular Rubisco. Unexpectedly, we also report that even wild-type S. elongatus undergoes cell elongation and asymmetric cell division when grown at the cool, but environmentally relevant, growth temperature of 20°C or when switched from a high- to ambient-CO2 environment. The findings suggest that carboxysome positioning by the McdAB system functions to maintain the carbon fixation efficiency of Rubisco by preventing carboxysome aggregation, which is particularly important under growth conditions where rod-shaped cyanobacteria adopt a filamentous morphology. IMPORTANCE Photosynthetic cyanobacteria are responsible for almost half of global CO2 fixation. Due to eutrophication, rising temperatures, and increasing atmospheric CO2 concentrations, cyanobacteria have gained notoriety for their ability to form massive blooms in both freshwater and marine ecosystems across the globe. Like plants, cyanobacteria use the most abundant enzyme on Earth, Rubisco, to provide the sole source of organic carbon required for its photosynthetic growth. Unlike plants, cyanobacteria have evolved a carbon-concentrating organelle called the carboxysome that encapsulates and concentrates Rubisco with its CO2 substrate to significantly increase carbon fixation efficiency and cell growth. We recently identified the positioning system that distributes carboxysomes in cyanobacteria. However, the physiological consequence of carboxysome mispositioning in the absence of this distribution system remains unknown. Here, we find that carboxysome mispositioning triggers changes in cell growth and morphology as well as elevated levels of cellular Rubisco.
Collapse
Affiliation(s)
- Rees Rillema
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Y Hoang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Joshua S. MacCready
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Anthony G. Vecchiarelli
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
29
|
Liu LN, Yang M, Sun Y, Yang J. Protein stoichiometry, structural plasticity and regulation of bacterial microcompartments. Curr Opin Microbiol 2021; 63:133-141. [PMID: 34340100 DOI: 10.1016/j.mib.2021.07.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/17/2021] [Accepted: 07/06/2021] [Indexed: 12/13/2022]
Abstract
Bacterial microcompartments (BMCs) are self-assembling prokaryotic organelles consisting of a polyhedral proteinaceous shell and encapsulated enzymes that are involved in CO2 fixation or carbon catabolism. Addressing how the hundreds of building components self-assemble to form the metabolically functional organelles and how their structures and functions are modulated in the extremely dynamic bacterial cytoplasm is of importance for basic understanding of protein organelle formation and synthetic engineering of metabolic modules for biotechnological applications. Here, we highlight recent advances in understanding the protein composition and stoichiometry of BMCs, with a particular focus on carboxysomes and propanediol utilization microcompartments. We also discuss relevant research on the structural plasticity of native and engineered BMCs, and the physiological regulation of BMC assembly, function and positioning in native hosts.
Collapse
Affiliation(s)
- Lu-Ning Liu
- College of Marine Life Sciences and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, 266003 Qingdao, China; Institute of Systems Molecular and Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, United Kingdom.
| | - Mengru Yang
- Institute of Systems Molecular and Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, United Kingdom
| | - Yaqi Sun
- Institute of Systems Molecular and Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, United Kingdom
| | - Jing Yang
- Institute of Systems Molecular and Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, United Kingdom; Materials Innovation Factory and Department of Chemistry, University of Liverpool, Liverpool L7 3NY, United Kingdom
| |
Collapse
|
30
|
Sakkos JK, Hernandez-Ortiz S, Osteryoung KW, Ducat DC. Orthogonal Degron System for Controlled Protein Degradation in Cyanobacteria. ACS Synth Biol 2021; 10:1667-1681. [PMID: 34232633 DOI: 10.1021/acssynbio.1c00035] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Synechococcus elongatus PCC 7942 is a model cyanobacterium for study of the circadian clock, photosynthesis, and bioproduction of chemicals, yet nearly 40% of its gene identities and functions remain unknown, in part due to limitations of the existing genetic toolkit. While classical techniques for the study of genes (e.g., deletion or mutagenesis) can yield valuable information about the absence of a gene and its associated protein, there are limits to these approaches, particularly in the study of essential genes. Herein, we developed a tool for inducible degradation of target proteins in S. elongatus by adapting a method using degron tags from the Mesoplasma florum transfer-mRNA (tmRNA) system. We observed that M. florum lon protease can rapidly degrade exogenous and native proteins tagged with the cognate sequence within hours of induction. We used this system to inducibly degrade the essential cell division factor, FtsZ, as well as shell protein components of the carboxysome. Our results have implications for carboxysome biogenesis and the rate of carboxysome turnover during cell growth. Lon protease control of proteins offers an alternative approach for the study of essential proteins and protein dynamics in cyanobacteria.
Collapse
Affiliation(s)
- Jonathan K. Sakkos
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824, United States
| | - Sergio Hernandez-Ortiz
- Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Katherine W. Osteryoung
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824, United States
| | - Daniel C. Ducat
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824, United States
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
31
|
MacCready JS, Tran L, Basalla JL, Hakim P, Vecchiarelli AG. The McdAB system positions α-carboxysomes in proteobacteria. Mol Microbiol 2021; 116:277-297. [PMID: 33638215 PMCID: PMC8359340 DOI: 10.1111/mmi.14708] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 02/06/2023]
Abstract
Carboxysomes are protein-based organelles essential for carbon fixation in cyanobacteria and proteobacteria. Previously, we showed that the cyanobacterial nucleoid is used to equally space out β-carboxysomes across cell lengths by a two-component system (McdAB) in the model cyanobacterium Synechococcus elongatus PCC 7942. More recently, we found that McdAB systems are widespread among β-cyanobacteria, which possess β-carboxysomes, but are absent in α-cyanobacteria, which possess structurally and phyletically distinct α-carboxysomes. Cyanobacterial α-carboxysomes are thought to have arisen in proteobacteria and then horizontally transferred into cyanobacteria, which suggests that α-carboxysomes in proteobacteria may also lack the McdAB system. Here, using the model chemoautotrophic proteobacterium Halothiobacillus neapolitanus, we show that a McdAB system distinct from that of β-cyanobacteria operates to position α-carboxysomes across cell lengths. We further show that this system is widespread among α-carboxysome-containing proteobacteria and that cyanobacteria likely inherited an α-carboxysome operon from a proteobacterium lacking the mcdAB locus. These results demonstrate that McdAB is a cross-phylum two-component system necessary for positioning both α- and β-carboxysomes. The findings have further implications for understanding the positioning of other protein-based bacterial organelles involved in diverse metabolic processes. PLAIN LANGUAGE SUMMARY: Cyanobacteria are well known to fix atmospheric CO2 into sugars using the enzyme Rubisco. Less appreciated are the carbon-fixing abilities of proteobacteria with diverse metabolisms. Bacterial Rubisco is housed within organelles called carboxysomes that increase enzymatic efficiency. Here we show that proteobacterial carboxysomes are distributed in the cell by two proteins, McdA and McdB. McdA on the nucleoid interacts with McdB on carboxysomes to equidistantly space carboxysomes from one another, ensuring metabolic homeostasis and a proper inheritance of carboxysomes following cell division. This study illuminates how widespread carboxysome positioning systems are among diverse bacteria. Carboxysomes significantly contribute to global carbon fixation; therefore, understanding the spatial organization mechanism shared across the bacterial world is of great interest.
Collapse
Affiliation(s)
- Joshua S. MacCready
- Department of Molecular, Cellular, and Developmental BiologyUniversity of MichiganAnn ArborMIUSA
| | - Lisa Tran
- Department of Microbiology and ImmunologyUniversity of MichiganAnn ArborMIUSA
| | - Joseph L. Basalla
- Department of Molecular, Cellular, and Developmental BiologyUniversity of MichiganAnn ArborMIUSA
| | - Pusparanee Hakim
- Department of Molecular, Cellular, and Developmental BiologyUniversity of MichiganAnn ArborMIUSA
| | - Anthony G. Vecchiarelli
- Department of Molecular, Cellular, and Developmental BiologyUniversity of MichiganAnn ArborMIUSA
| |
Collapse
|
32
|
Abstract
Bacterial microcompartments (BMCs) confine a diverse array of metabolic reactions within a selectively permeable protein shell, allowing for specialized biochemistry that would be less efficient or altogether impossible without compartmentalization. BMCs play critical roles in carbon fixation, carbon source utilization, and pathogenesis. Despite their prevalence and importance in bacterial metabolism, little is known about BMC “homeostasis,” a term we use here to encompass BMC assembly, composition, size, copy-number, maintenance, turnover, positioning, and ultimately, function in the cell. The carbon-fixing carboxysome is one of the most well-studied BMCs with regard to mechanisms of self-assembly and subcellular organization. In this minireview, we focus on the only known BMC positioning system to date—the maintenance of carboxysome distribution (Mcd) system, which spatially organizes carboxysomes. We describe the two-component McdAB system and its proposed diffusion-ratchet mechanism for carboxysome positioning. We then discuss the prevalence of McdAB systems among carboxysome-containing bacteria and highlight recent evidence suggesting how liquid-liquid phase separation (LLPS) may play critical roles in carboxysome homeostasis. We end with an outline of future work on the carboxysome distribution system and a perspective on how other BMCs may be spatially regulated. We anticipate that a deeper understanding of BMC organization, including nontraditional homeostasis mechanisms involving LLPS and ATP-driven organization, is on the horizon.
Collapse
|
33
|
Azaldegui CA, Vecchiarelli AG, Biteen JS. The emergence of phase separation as an organizing principle in bacteria. Biophys J 2021; 120:1123-1138. [PMID: 33186556 PMCID: PMC8059088 DOI: 10.1016/j.bpj.2020.09.023] [Citation(s) in RCA: 109] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/10/2020] [Accepted: 09/15/2020] [Indexed: 12/12/2022] Open
Abstract
Recent investigations in bacteria suggest that membraneless organelles play a crucial role in the subcellular organization of bacterial cells. However, the biochemical functions and assembly mechanisms of these compartments have not yet been completely characterized. This article assesses the current methodologies used in the study of membraneless organelles in bacteria, highlights the limitations in determining the phase of complexes in cells that are typically an order of magnitude smaller than a eukaryotic cell, and identifies gaps in our current knowledge about the functional role of membraneless organelles in bacteria. Liquid-liquid phase separation (LLPS) is one proposed mechanism for membraneless organelle assembly. Overall, we outline the framework to evaluate LLPS in vivo in bacteria, we describe the bacterial systems with proposed LLPS activity, and we comment on the general role LLPS plays in bacteria and how it may regulate cellular function. Lastly, we provide an outlook for super-resolution microscopy and single-molecule tracking as tools to assess condensates in bacteria.
Collapse
Affiliation(s)
| | - Anthony G Vecchiarelli
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan.
| | - Julie S Biteen
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan.
| |
Collapse
|
34
|
Borden JS, Savage DF. New discoveries expand possibilities for carboxysome engineering. Curr Opin Microbiol 2021; 61:58-66. [PMID: 33798818 DOI: 10.1016/j.mib.2021.03.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 03/06/2021] [Accepted: 03/11/2021] [Indexed: 12/19/2022]
Abstract
Carboxysomes are CO2-fixing protein compartments present in all cyanobacteria and some proteobacteria. These structures are attractive candidates for carbon assimilation bioengineering because they concentrate carbon, allowing the fixation reaction to occur near its maximum rate, and because they self-assemble in diverse organisms with a set of standard biological parts. Recent discoveries have expanded our understanding of how the carboxysome assembles, distributes itself, and sustains its metabolism. These studies have already led to substantial advances in engineering the carboxysome and carbon concentrating mechanism into recombinant organisms, with an eye towards establishing the system in industrial microbes and plants. Future studies may also consider the potential of in vitro carboxysomes for both discovery and applied science.
Collapse
Affiliation(s)
- Julia S Borden
- Department of Molecular & Cellular Biology, UC Berkeley, Berkeley, CA 94720, USA
| | - David F Savage
- Department of Molecular & Cellular Biology, UC Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
35
|
MacCready JS, Basalla JL, Vecchiarelli AG. Origin and Evolution of Carboxysome Positioning Systems in Cyanobacteria. Mol Biol Evol 2021; 37:1434-1451. [PMID: 31899489 PMCID: PMC7182216 DOI: 10.1093/molbev/msz308] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Carboxysomes are protein-based organelles that are essential for allowing cyanobacteria to fix CO2. Previously, we identified a two-component system, McdAB, responsible for equidistantly positioning carboxysomes in the model cyanobacterium Synechococcus elongatus PCC 7942 (MacCready JS, Hakim P, Young EJ, Hu L, Liu J, Osteryoung KW, Vecchiarelli AG, Ducat DC. 2018. Protein gradients on the nucleoid position the carbon-fixing organelles of cyanobacteria. eLife 7:pii:e39723). McdA, a ParA-type ATPase, nonspecifically binds the nucleoid in the presence of ATP. McdB, a novel factor that directly binds carboxysomes, displaces McdA from the nucleoid. Removal of McdA from the nucleoid in the vicinity of carboxysomes by McdB causes a global break in McdA symmetry, and carboxysome motion occurs via a Brownian-ratchet-based mechanism toward the highest concentration of McdA. Despite the importance for cyanobacteria to properly position their carboxysomes, whether the McdAB system is widespread among cyanobacteria remains an open question. Here, we show that the McdAB system is widespread among β-cyanobacteria, often clustering with carboxysome-related components, and is absent in α-cyanobacteria. Moreover, we show that two distinct McdAB systems exist in β-cyanobacteria, with Type 2 systems being the most ancestral and abundant, and Type 1 systems, like that of S. elongatus, possibly being acquired more recently. Lastly, all McdB proteins share the sequence signatures of a protein capable of undergoing liquid–liquid phase separation. Indeed, we find that representatives of both McdB types undergo liquid–liquid phase separation in vitro, the first example of a ParA-type ATPase partner protein to exhibit this behavior. Our results have broader implications for understanding carboxysome evolution, biogenesis, homeostasis, and positioning in cyanobacteria.
Collapse
Affiliation(s)
- Joshua S MacCready
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI
| | - Joseph L Basalla
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI
| | - Anthony G Vecchiarelli
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI
| |
Collapse
|
36
|
Schumacher D, Harms A, Bergeler S, Frey E, Søgaard-Andersen L. PomX, a ParA/MinD ATPase activating protein, is a triple regulator of cell division in Myxococcus xanthus. eLife 2021; 10:66160. [PMID: 33734087 PMCID: PMC7993993 DOI: 10.7554/elife.66160] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/17/2021] [Indexed: 11/25/2022] Open
Abstract
Cell division site positioning is precisely regulated but the underlying mechanisms are incompletely understood. In the social bacterium Myxococcus xanthus, the ~15 MDa tripartite PomX/Y/Z complex associates with and translocates across the nucleoid in a PomZ ATPase-dependent manner to directly position and stimulate formation of the cytokinetic FtsZ-ring at midcell, and then undergoes fission during division. Here, we demonstrate that PomX consists of two functionally distinct domains and has three functions. The N-terminal domain stimulates ATPase activity of the ParA/MinD ATPase PomZ. The C-terminal domain interacts with PomY and forms polymers, which serve as a scaffold for PomX/Y/Z complex formation. Moreover, the PomX/PomZ interaction is important for fission of the PomX/Y/Z complex. These observations together with previous work support that the architecturally diverse ATPase activating proteins of ParA/MinD ATPases are highly modular and use the same mechanism to activate their cognate ATPase via a short positively charged N-terminal extension.
Collapse
Affiliation(s)
- Dominik Schumacher
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch, Marburg, Germany
| | - Andrea Harms
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch, Marburg, Germany
| | - Silke Bergeler
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilians-Universität München, München, Germany
| | - Erwin Frey
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilians-Universität München, München, Germany
| | - Lotte Søgaard-Andersen
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch, Marburg, Germany
| |
Collapse
|
37
|
Stewart AM, Stewart KL, Yeates TO, Bobik TA. Advances in the World of Bacterial Microcompartments. Trends Biochem Sci 2021; 46:406-416. [PMID: 33446424 DOI: 10.1016/j.tibs.2020.12.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/30/2020] [Accepted: 12/02/2020] [Indexed: 12/20/2022]
Abstract
Bacterial microcompartments (MCPs) are extremely large (100-400 nm) and diverse proteinaceous organelles that compartmentalize multistep metabolic pathways, increasing their efficiency and sequestering toxic and/or volatile intermediates. This review highlights recent studies that have expanded our understanding of the diversity, structure, function, and potential biotechnological uses of MCPs. Several new types of MCPs have been identified and characterized revealing new functions and potential new associations with human disease. Recent structural studies of MCP proteins and recombinant MCP shells have provided new insights into MCP assembly and mechanisms and raised new questions about MCP structure. We also discuss recent work on biotechnology applications that use MCP principles to develop nanobioreactors, nanocontainers, and molecular scaffolds.
Collapse
Affiliation(s)
- Andrew M Stewart
- The Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, USA
| | - Katie L Stewart
- The Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, USA
| | - Todd O Yeates
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA; UCLA-DOE Institute for Genomics and Proteomics, Los Angeles, CA, USA.
| | - Thomas A Bobik
- The Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, USA.
| |
Collapse
|
38
|
Springstein BL, Nürnberg DJ, Weiss GL, Pilhofer M, Stucken K. Structural Determinants and Their Role in Cyanobacterial Morphogenesis. Life (Basel) 2020; 10:E355. [PMID: 33348886 PMCID: PMC7766704 DOI: 10.3390/life10120355] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/04/2020] [Accepted: 12/09/2020] [Indexed: 12/16/2022] Open
Abstract
Cells have to erect and sustain an organized and dynamically adaptable structure for an efficient mode of operation that allows drastic morphological changes during cell growth and cell division. These manifold tasks are complied by the so-called cytoskeleton and its associated proteins. In bacteria, FtsZ and MreB, the bacterial homologs to tubulin and actin, respectively, as well as coiled-coil-rich proteins of intermediate filament (IF)-like function to fulfil these tasks. Despite generally being characterized as Gram-negative, cyanobacteria have a remarkably thick peptidoglycan layer and possess Gram-positive-specific cell division proteins such as SepF and DivIVA-like proteins, besides Gram-negative and cyanobacterial-specific cell division proteins like MinE, SepI, ZipN (Ftn2) and ZipS (Ftn6). The diversity of cellular morphologies and cell growth strategies in cyanobacteria could therefore be the result of additional unidentified structural determinants such as cytoskeletal proteins. In this article, we review the current advances in the understanding of the cyanobacterial cell shape, cell division and cell growth.
Collapse
Affiliation(s)
- Benjamin L. Springstein
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Dennis J. Nürnberg
- Department of Physics, Biophysics and Biochemistry of Photosynthetic Organisms, Freie Universität Berlin, 14195 Berlin, Germany;
| | - Gregor L. Weiss
- Department of Biology, Institute of Molecular Biology & Biophysics, ETH Zürich, 8092 Zürich, Switzerland; (G.L.W.); (M.P.)
| | - Martin Pilhofer
- Department of Biology, Institute of Molecular Biology & Biophysics, ETH Zürich, 8092 Zürich, Switzerland; (G.L.W.); (M.P.)
| | - Karina Stucken
- Department of Food Engineering, Universidad de La Serena, La Serena 1720010, Chile;
| |
Collapse
|
39
|
Flamholz AI, Dugan E, Blikstad C, Gleizer S, Ben-Nissan R, Amram S, Antonovsky N, Ravishankar S, Noor E, Bar-Even A, Milo R, Savage DF. Functional reconstitution of a bacterial CO 2 concentrating mechanism in Escherichia coli. eLife 2020; 9:59882. [PMID: 33084575 PMCID: PMC7714395 DOI: 10.7554/elife.59882] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 10/20/2020] [Indexed: 12/19/2022] Open
Abstract
Many photosynthetic organisms employ a CO2 concentrating mechanism (CCM) to increase the rate of CO2 fixation via the Calvin cycle. CCMs catalyze ≈50% of global photosynthesis, yet it remains unclear which genes and proteins are required to produce this complex adaptation. We describe the construction of a functional CCM in a non-native host, achieved by expressing genes from an autotrophic bacterium in an Escherichia coli strain engineered to depend on rubisco carboxylation for growth. Expression of 20 CCM genes enabled E. coli to grow by fixing CO2 from ambient air into biomass, with growth in ambient air depending on the components of the CCM. Bacterial CCMs are therefore genetically compact and readily transplanted, rationalizing their presence in diverse bacteria. Reconstitution enabled genetic experiments refining our understanding of the CCM, thereby laying the groundwork for deeper study and engineering of the cell biology supporting CO2 assimilation in diverse organisms.
Collapse
Affiliation(s)
- Avi I Flamholz
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Eli Dugan
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Cecilia Blikstad
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Shmuel Gleizer
- Department of Plant and Environmental Sciences, Weizmann Institute of ScienceRehovotIsrael
| | - Roee Ben-Nissan
- Department of Plant and Environmental Sciences, Weizmann Institute of ScienceRehovotIsrael
| | - Shira Amram
- Department of Plant and Environmental Sciences, Weizmann Institute of ScienceRehovotIsrael
| | - Niv Antonovsky
- Department of Plant and Environmental Sciences, Weizmann Institute of ScienceRehovotIsrael
| | - Sumedha Ravishankar
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Elad Noor
- Department of Plant and Environmental Sciences, Weizmann Institute of ScienceRehovotIsrael
| | - Arren Bar-Even
- Max Planck Institute of Molecular Plant PhysiologyPotsdamGermany
| | - Ron Milo
- Department of Plant and Environmental Sciences, Weizmann Institute of ScienceRehovotIsrael
| | - David F Savage
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| |
Collapse
|
40
|
Chen K, Shen W, Zhang Z, Xiong F, Ouyang Q, Luo C. Age-dependent decline in stress response capacity revealed by proteins dynamics analysis. Sci Rep 2020; 10:15211. [PMID: 32939000 PMCID: PMC7494919 DOI: 10.1038/s41598-020-72167-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 08/21/2020] [Indexed: 02/06/2023] Open
Abstract
The aging process is regarded as the progressive loss of physiological integrity, leading to impaired biological functions and the increased vulnerability to death. Among various biological functions, stress response capacity enables cells to alter gene expression patterns and survive when facing internal and external stresses. Here, we explored changes in stress response capacity during the replicative aging of Saccharomyces cerevisiae. To this end, we used a high-throughput microfluidic device to deliver intermittent pulses of osmotic stress and tracked the dynamic changes in the production of downstream stress-responsive proteins, in a large number of individual aging cells. Cells showed a gradual decline in stress response capacity of these osmotic-related downstream proteins during the aging process after the first 5 generations. Among the downstream stress-responsive genes and unrelated genes tested, the residual level of response capacity of Trehalose-6-Phosphate Synthase (TPS2) showed the best correlation with the cell remaining lifespan. By monitor dynamics of the upstream transcription factors and mRNA of Tps2, it was suggested that the decline in downstream stress response capacity was caused by the decline of translational rate of these proteins during aging.
Collapse
Affiliation(s)
- Kaiyue Chen
- The State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Peking University, Beijing, China.,Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Wenting Shen
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Zhiwen Zhang
- The State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Peking University, Beijing, China
| | - Fangzheng Xiong
- The State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Peking University, Beijing, China
| | - Qi Ouyang
- The State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Peking University, Beijing, China.,Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Chunxiong Luo
- The State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Peking University, Beijing, China. .,Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
| |
Collapse
|
41
|
Corrales-Guerrero L, He B, Refes Y, Panis G, Bange G, Viollier PH, Steinchen W, Thanbichler M. Molecular architecture of the DNA-binding sites of the P-loop ATPases MipZ and ParA from Caulobacter crescentus. Nucleic Acids Res 2020; 48:4769-4779. [PMID: 32232335 PMCID: PMC7229837 DOI: 10.1093/nar/gkaa192] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/18/2020] [Accepted: 03/17/2020] [Indexed: 12/21/2022] Open
Abstract
The spatiotemporal regulation of chromosome segregation and cell division in Caulobacter crescentus is mediated by two different P-loop ATPases, ParA and MipZ. Both of these proteins form dynamic concentration gradients that control the positioning of regulatory targets within the cell. Their proper localization depends on their nucleotide-dependent cycling between a monomeric and a dimeric state and on the ability of the dimeric species to associate with the nucleoid. In this study, we use a combination of genetic screening, biochemical analysis and hydrogen/deuterium exchange mass spectrometry to comprehensively map the residues mediating the interactions of MipZ and ParA with DNA. We show that MipZ has non-specific DNA-binding activity that relies on an array of positively charged and hydrophobic residues lining both sides of the dimer interface. Extending our analysis to ParA, we find that the MipZ and ParA DNA-binding sites differ markedly in composition, although their relative positions on the dimer surface and their mode of DNA binding are conserved. In line with previous experimental work, bioinformatic analysis suggests that the same principles may apply to other members of the P-loop ATPase family. P-loop ATPases thus share common mechanistic features, although their functions have diverged considerably during the course of evolution.
Collapse
Affiliation(s)
| | - Binbin He
- Department of Biology, University of Marburg, D-35043 Marburg, Germany
| | - Yacine Refes
- Department of Biology, University of Marburg, D-35043 Marburg, Germany
| | - Gaël Panis
- Department of Microbiology and Molecular Medicine, University of Geneva Medical School, CH-1211 Geneva, Switzerland
| | - Gert Bange
- Center for Synthetic Microbiology, D-35043 Marburg, Germany.,Department of Chemistry, University of Marburg, D-35043 Marburg, Germany
| | - Patrick H Viollier
- Department of Microbiology and Molecular Medicine, University of Geneva Medical School, CH-1211 Geneva, Switzerland
| | - Wieland Steinchen
- Center for Synthetic Microbiology, D-35043 Marburg, Germany.,Department of Chemistry, University of Marburg, D-35043 Marburg, Germany
| | - Martin Thanbichler
- Department of Biology, University of Marburg, D-35043 Marburg, Germany.,Center for Synthetic Microbiology, D-35043 Marburg, Germany.,Max Planck Fellow Group Bacterial Cell Biology, Max Planck Institute for Terrestrial Microbiology, D-35043 Marburg, Germany
| |
Collapse
|
42
|
Biedzinski S, Parmar B, Weber SC. Beyond Equilibrium Phase Diagrams: Enzymatic Activity Shakes Up Bacterial Condensates. Mol Cell 2020; 79:205-206. [PMID: 32679075 DOI: 10.1016/j.molcel.2020.06.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Phase separation is a thermodynamic process, but cells are inherently out of equilibrium. Guilhas et al. (2020) identify an active process through which an ATP-dependent motor controls the number and position of biomolecular condensates in bacteria.
Collapse
Affiliation(s)
- Stefan Biedzinski
- Department of Biology, McGill University, Montreal, QC H3A 1B1, Canada
| | - Baljyot Parmar
- Department of Physics, McGill University, Montreal, QC H3A 2T8, Canada
| | - Stephanie C Weber
- Department of Biology, McGill University, Montreal, QC H3A 1B1, Canada; Department of Physics, McGill University, Montreal, QC H3A 2T8, Canada.
| |
Collapse
|
43
|
Sun Y, Huang F, Dykes GF, Liu LN. Diurnal Regulation of In Vivo Localization and CO 2-Fixing Activity of Carboxysomes in Synechococcus elongatus PCC 7942. Life (Basel) 2020; 10:E169. [PMID: 32872408 PMCID: PMC7555275 DOI: 10.3390/life10090169] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/23/2020] [Accepted: 08/27/2020] [Indexed: 12/13/2022] Open
Abstract
Carboxysomes are the specific CO2-fixing microcompartments in all cyanobacteria. Although it is known that the organization and subcellular localization of carboxysomes are dependent on external light conditions and are highly relevant to their functions, how carboxysome organization and function are actively orchestrated in natural diurnal cycles has remained elusive. Here, we explore the dynamic regulation of carboxysome positioning and carbon fixation in the model cyanobacterium Synechococcus elongatus PCC 7942 in response to diurnal light-dark cycles, using live-cell confocal imaging and Rubisco assays. We found that carboxysomes are prone to locate close to the central line along the short axis of the cell and exhibit a greater preference of polar distribution in the dark phase, coupled with a reduction in carbon fixation. Moreover, we show that deleting the gene encoding the circadian clock protein KaiA could lead to an increase in carboxysome numbers per cell and reduced portions of pole-located carboxysomes. Our study provides insight into the diurnal regulation of carbon fixation in cyanobacteria and the general cellular strategies of cyanobacteria living in natural habitat for environmental acclimation.
Collapse
Affiliation(s)
| | | | | | - Lu-Ning Liu
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK; (Y.S.); (F.H.); (G.F.D.)
| |
Collapse
|
44
|
Oleksienko AA, Kot YG, Komaristaya VP. DNA-Specific DAPI Staining of the Pyrenoid Matrix During its Fission in Dunaliella salina (Dunal) Teodoresco (Chlorophyta). Curr Microbiol 2020; 77:3450-3459. [PMID: 32780204 DOI: 10.1007/s00284-020-02159-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 08/03/2020] [Indexed: 11/29/2022]
Abstract
The algal pyrenoid is a naked phase-separated liquid compartment inside the chloroplast consisting predominantly of densely packaged Rubisco and most often transversed by a system of lipid membranes. The pyrenoid participates in carbon-concentrating mechanisms of algae. During the cell division, the daughter cells of algae acquire the pyrenoids via their assembly or fission, the mechanisms of which are not fully understood. We suppose that the chloroplast nucleoid scaffolds the new pyrenoid like the cyanobacterial nucleoid positions carboxysomes before the cell division. This work was aimed at visualization and localization of the chloroplast DNA relative to the pyrenoid in synchronously dividing cells of Dunaliella salina with DNA-specific fluorescent DAPI stain through the fluorescent confocal microscope. The intense DNA-specific blue DAPI fluorescence was discovered in the pyrenoids matrix under the starch shell in the presumably pre-mitotic cells, during and following the pyrenoid fission. In the interphase cells, the chloroplast DNA localized both in the pyrenoid core and in several small nucleoids on the outer surface of the starch shell around the pyrenoid. The observations were compared with the literature data on the same and other algal species. The spatial pre-requisite exists in D. salina for the chloroplast nucleoid to scaffold the pyrenoid fission. A potential alternative explanation was declared being the algal pyrenoid as the chloroplast genetic center. The theoretical and practical implications of the findings were discussed.
Collapse
Affiliation(s)
- Anna A Oleksienko
- The School of Biology, V.N. Karazin Kharkiv National University, Svobody sq., 4, Kharkiv, 61022, Ukraine
| | - Yurii G Kot
- The School of Biology, V.N. Karazin Kharkiv National University, Svobody sq., 4, Kharkiv, 61022, Ukraine
| | - Victoria P Komaristaya
- The School of Biology, V.N. Karazin Kharkiv National University, Svobody sq., 4, Kharkiv, 61022, Ukraine.
| |
Collapse
|
45
|
Greening C, Lithgow T. Formation and function of bacterial organelles. Nat Rev Microbiol 2020; 18:677-689. [PMID: 32710089 DOI: 10.1038/s41579-020-0413-0] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2020] [Indexed: 01/28/2023]
Abstract
Advances in imaging technologies have revealed that many bacteria possess organelles with a proteomically defined lumen and a macromolecular boundary. Some are bound by a lipid bilayer (such as thylakoids, magnetosomes and anammoxosomes), whereas others are defined by a lipid monolayer (such as lipid bodies), a proteinaceous coat (such as carboxysomes) or have a phase-defined boundary (such as nucleolus-like compartments). These diverse organelles have various metabolic and physiological functions, facilitating adaptation to different environments and driving the evolution of cellular complexity. This Review highlights that, despite the diversity of reported organelles, some unifying concepts underlie their formation, structure and function. Bacteria have fundamental mechanisms of organelle formation, through which conserved processes can form distinct organelles in different species depending on the proteins recruited to the luminal space and the boundary of the organelle. These complex subcellular compartments provide evolutionary advantages as well as enabling metabolic specialization, biogeochemical processes and biotechnological advances. Growing evidence suggests that the presence of organelles is the rule, rather than the exception, in bacterial cells.
Collapse
Affiliation(s)
- Chris Greening
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Australia.
| | - Trevor Lithgow
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Australia.
| |
Collapse
|
46
|
Rubisco accumulation factor 1 (Raf1) plays essential roles in mediating Rubisco assembly and carboxysome biogenesis. Proc Natl Acad Sci U S A 2020; 117:17418-17428. [PMID: 32636267 PMCID: PMC7382273 DOI: 10.1073/pnas.2007990117] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Carboxysomes are membrane-free organelles for carbon assimilation in cyanobacteria. The carboxysome consists of a proteinaceous shell that structurally resembles virus capsids and internal enzymes including ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco), the primary carbon-fixing enzyme in photosynthesis. The formation of carboxysomes requires hierarchical self-assembly of thousands of protein subunits, initiated from Rubisco assembly and packaging to shell encapsulation. Here we study the role of Rubisco assembly factor 1 (Raf1) in Rubisco assembly and carboxysome formation in a model cyanobacterium, Synechococcus elongatus PCC7942 (Syn7942). Cryo-electron microscopy reveals that Raf1 facilitates Rubisco assembly by mediating RbcL dimer formation and dimer-dimer interactions. Syn7942 cells lacking Raf1 are unable to form canonical intact carboxysomes but generate a large number of intermediate assemblies comprising Rubisco, CcaA, CcmM, and CcmN without shell encapsulation and a low abundance of carboxysome-like structures with reduced dimensions and irregular shell shapes and internal organization. As a consequence, the Raf1-depleted cells exhibit reduced Rubisco content, CO2-fixing activity, and cell growth. Our results provide mechanistic insight into the chaperone-assisted Rubisco assembly and biogenesis of carboxysomes. Advanced understanding of the biogenesis and stepwise formation process of the biogeochemically important organelle may inform strategies for heterologous engineering of functional CO2-fixing modules to improve photosynthesis.
Collapse
|
47
|
Hill NC, Tay JW, Altus S, Bortz DM, Cameron JC. Life cycle of a cyanobacterial carboxysome. SCIENCE ADVANCES 2020; 6:eaba1269. [PMID: 32494723 PMCID: PMC7202890 DOI: 10.1126/sciadv.aba1269] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 02/18/2020] [Indexed: 05/20/2023]
Abstract
Carboxysomes, prototypical bacterial microcompartments (BMCs) found in cyanobacteria, are large (~1 GDa) and essential protein complexes that enhance CO2 fixation. While carboxysome biogenesis has been elucidated, the activity dynamics, lifetime, and degradation of these structures have not been investigated, owing to the inability of tracking individual BMCs over time in vivo. We have developed a fluorescence-imaging platform to simultaneously measure carboxysome number, position, and activity over time in a growing cyanobacterial population, allowing individual carboxysomes to be clustered on the basis of activity and spatial dynamics. We have demonstrated both BMC degradation, characterized by abrupt activity loss followed by polar recruitment of the deactivated complex, and a subclass of ultraproductive carboxysomes. Together, our results reveal the BMC life cycle after biogenesis and describe the first method for measuring activity of single BMCs in vivo.
Collapse
Affiliation(s)
- Nicholas C. Hill
- Department of Biochemistry, University of Colorado, Boulder, CO 80309, USA
- Renewable and Sustainable Energy Institute, University of Colorado, Boulder, CO 80309, USA
| | - Jian Wei Tay
- Renewable and Sustainable Energy Institute, University of Colorado, Boulder, CO 80309, USA
- Biofrontiers Institute, University of Colorado, Boulder, CO 80309, USA
| | - Sabina Altus
- Department of Applied Mathematics, University of Colorado, Boulder, CO 80309, USA
| | - David M. Bortz
- Department of Applied Mathematics, University of Colorado, Boulder, CO 80309, USA
| | - Jeffrey C. Cameron
- Department of Biochemistry, University of Colorado, Boulder, CO 80309, USA
- Renewable and Sustainable Energy Institute, University of Colorado, Boulder, CO 80309, USA
- National Renewable Energy Laboratory, Golden, CO 80401, USA
- Corresponding author.
| |
Collapse
|
48
|
Abstract
While the model bacteria Escherichia coli and Bacillus subtilis harbor single chromosomes, which is known as monoploidy, some freshwater cyanobacteria contain multiple chromosome copies per cell throughout their cell cycle, which is known as polyploidy. In the model cyanobacteria Synechococcus elongatus PCC 7942 and Synechocystis sp. PCC 6803, chromosome copy number (ploidy) is regulated in response to growth phase and environmental factors. In S. elongatus 7942, chromosome replication is asynchronous both among cells and chromosomes. Comparative analysis of S. elongatus 7942 and S. sp. 6803 revealed a variety of DNA replication mechanisms. In this review, the current knowledge of ploidy and DNA replication mechanisms in cyanobacteria is summarized together with information on the features common with plant chloroplasts. It is worth noting that the occurrence of polyploidy and its regulation are correlated with certain cyanobacterial lifestyles and are shared between some cyanobacteria and chloroplasts. ABBREVIATIONS NGS: next-generation sequencing; Repli-seq: replication sequencing; BrdU: 5-bromo-2'-deoxyuridine; TK: thymidine kinase; GCSI: GC skew index; PET: photosynthetic electron transport; RET: respiration electron transport; Cyt b6f complex: cytochrome b6f complex; PQ: plastoquinone; PC: plastocyanin.
Collapse
Affiliation(s)
- Satoru Watanabe
- Department of Bioscience, Tokyo University of Agriculture , Tokyo, Japan
| |
Collapse
|
49
|
Abstract
Plasmids are ubiquitous in the microbial world and have been identified in almost all species of bacteria that have been examined. Their localization inside the bacterial cell has been examined for about two decades; typically, they are not randomly distributed, and their positioning depends on copy number and their mode of segregation. Low-copy-number plasmids promote their own stable inheritance in their bacterial hosts by encoding active partition systems, which ensure that copies are positioned in both halves of a dividing cell. High-copy plasmids rely on passive diffusion of some copies, but many remain clustered together in the nucleoid-free regions of the cell. Here we review plasmid localization and partition (Par) systems, with particular emphasis on plasmids from Enterobacteriaceae and on recent results describing the in vivo localization properties and molecular mechanisms of each system. Partition systems also cause plasmid incompatibility such that distinct plasmids (with different replicons) with the same Par system cannot be stably maintained in the same cells. We discuss how partition-mediated incompatibility is a consequence of the partition mechanism.
Collapse
|
50
|
Young EJ, Sakkos JK, Huang J, Wright JK, Kachel B, Fuentes-Cabrera M, Kerfeld CA, Ducat DC. Visualizing in Vivo Dynamics of Designer Nanoscaffolds. NANO LETTERS 2020; 20:208-217. [PMID: 31747755 DOI: 10.1021/acs.nanolett.9b03651] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Enzymes of natural biochemical pathways are routinely subcellularly organized in space and time in order to improve pathway efficacy and control. Designer scaffolding platforms are under development to confer similar benefits upon engineered pathways. Herein, we evaluate bacterial microcompartment shell (pfam0936-domain) proteins as modules for constructing well-defined nanometer scale scaffolds in vivo. We use a suite of visualization techniques to evaluate scaffold assembly and dynamics. We demonstrate recruitment of target cargo molecules onto assembled scaffolds by appending reciprocally interacting adaptor domains. These interactions can be refined by fine-tuning the scaffold expression level. Real-time observation of this system reveals a nucleation-limited step where multiple scaffolds initially form within a cell. Over time, nucleated scaffolds reorganize into a single intracellular assembly, likely due to interscaffold competition for protein subunits. Our results suggest design considerations for using self-assembling proteins as building blocks to construct nanoscaffolds, while also providing a platform to visualize scaffold-cargo dynamics in vivo.
Collapse
Affiliation(s)
- Eric J Young
- MSU-DOE Plant Research Laboratory , Michigan State University , East Lansing , Michigan 48824 United States
- Department of Biochemistry & Molecular Biology , Michigan State University , East Lansing , Michigan 48824 United States
| | - Jonathan K Sakkos
- MSU-DOE Plant Research Laboratory , Michigan State University , East Lansing , Michigan 48824 United States
- Department of Biochemistry & Molecular Biology , Michigan State University , East Lansing , Michigan 48824 United States
| | - Jingcheng Huang
- MSU-DOE Plant Research Laboratory , Michigan State University , East Lansing , Michigan 48824 United States
- Department of Biochemistry & Molecular Biology , Michigan State University , East Lansing , Michigan 48824 United States
| | - Jacob K Wright
- MSU-DOE Plant Research Laboratory , Michigan State University , East Lansing , Michigan 48824 United States
- Department of Biochemistry & Molecular Biology , Michigan State University , East Lansing , Michigan 48824 United States
| | - Benjamin Kachel
- Institute for Technical Microbiology , Mannheim University of Applied Sciences , Mannheim , Germany
| | - Miguel Fuentes-Cabrera
- Computational Sciences and Engineering Division , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37830 United States
- Center for Nanophase Material Sciences Oak Ridge National Laboratory , Oak Ridge , Tennessee 37830 United States
| | - Cheryl A Kerfeld
- MSU-DOE Plant Research Laboratory , Michigan State University , East Lansing , Michigan 48824 United States
- Department of Biochemistry & Molecular Biology , Michigan State University , East Lansing , Michigan 48824 United States
- Environmental Genomics and Systems Biology and Molecular Biophysics and Integrated Bioimaging Divisions , Lawrence Berkeley National Laboratory , 1 Cyclotron Road , Berkeley , California 94720 , United States
| | - Daniel C Ducat
- MSU-DOE Plant Research Laboratory , Michigan State University , East Lansing , Michigan 48824 United States
- Department of Biochemistry & Molecular Biology , Michigan State University , East Lansing , Michigan 48824 United States
| |
Collapse
|