1
|
Cho CJ, Brown JW, Mills JC. Origins of cancer: ain't it just mature cells misbehaving? EMBO J 2024; 43:2530-2551. [PMID: 38773319 PMCID: PMC11217308 DOI: 10.1038/s44318-024-00099-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 03/15/2024] [Accepted: 03/22/2024] [Indexed: 05/23/2024] Open
Abstract
A pervasive view is that undifferentiated stem cells are alone responsible for generating all other cells and are the origins of cancer. However, emerging evidence demonstrates fully differentiated cells are plastic, can be coaxed to proliferate, and also play essential roles in tissue maintenance, regeneration, and tumorigenesis. Here, we review the mechanisms governing how differentiated cells become cancer cells. First, we examine the unique characteristics of differentiated cell division, focusing on why differentiated cells are more susceptible than stem cells to accumulating mutations. Next, we investigate why the evolution of multicellularity in animals likely required plastic differentiated cells that maintain the capacity to return to the cell cycle and required the tumor suppressor p53. Finally, we examine an example of an evolutionarily conserved program for the plasticity of differentiated cells, paligenosis, which helps explain the origins of cancers that arise in adults. Altogether, we highlight new perspectives for understanding the development of cancer and new strategies for preventing carcinogenic cellular transformations from occurring.
Collapse
Affiliation(s)
- Charles J Cho
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Jeffrey W Brown
- Division of Gastroenterology, Department of Medicine, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
| | - Jason C Mills
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, TX, USA.
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA.
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
2
|
Ernesto Alvarez F, Clairambault J. Phenotype divergence and cooperation in isogenic multicellularity and in cancer. MATHEMATICAL MEDICINE AND BIOLOGY : A JOURNAL OF THE IMA 2024; 41:135-155. [PMID: 38970827 DOI: 10.1093/imammb/dqae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 02/14/2024] [Indexed: 07/08/2024]
Abstract
We discuss the mathematical modelling of two of the main mechanisms that pushed forward the emergence of multicellularity: phenotype divergence in cell differentiation and between-cell cooperation. In line with the atavistic theory of cancer, this disease being specific of multicellular animals, we set special emphasis on how both mechanisms appear to be reversed, however not totally impaired, rather hijacked, in tumour cell populations. Two settings are considered: the completely innovating, tinkering, situation of the emergence of multicellularity in the evolution of species, which we assume to be constrained by external pressure on the cell populations, and the completely planned-in the body plan-situation of the physiological construction of a developing multicellular animal from the zygote, or of bet hedging in tumours, assumed to be of clonal formation, although the body plan is largely-but not completely-lost in its constituting cells. We show how cancer impacts these two settings and we sketch mathematical models for them. We present here our contribution to the question at stake with a background from biology, from mathematics and from philosophy of science.
Collapse
|
3
|
Trigos AS, Bongiovanni F, Zhang Y, Zethoven M, Tothill R, Pearson R, Papenfuss AT, Goode DL. Disruption of metazoan gene regulatory networks in cancer alters the balance of co-expression between genes of unicellular and multicellular origins. Genome Biol 2024; 25:110. [PMID: 38685127 PMCID: PMC11057133 DOI: 10.1186/s13059-024-03247-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 04/12/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND Metazoans inherited genes from unicellular ancestors that perform essential biological processes such as cell division, metabolism, and protein translation. Multicellularity requires careful control and coordination of these unicellular genes to maintain tissue integrity and homeostasis. Gene regulatory networks (GRNs) that arose during metazoan evolution are frequently altered in cancer, resulting in over-expression of unicellular genes. We propose that an imbalance in co-expression of unicellular (UC) and multicellular (MC) genes is a driving force in cancer. RESULTS We combine gene co-expression analysis to infer changes to GRNs in cancer with protein sequence conservation data to distinguish genes with UC and MC origins. Co-expression networks created using RNA sequencing data from 31 tumor types and normal tissue samples are divided into modules enriched for UC genes, MC genes, or mixed UC-MC modules. The greatest differences between tumor and normal tissue co-expression networks occur within mixed UC-MC modules. MC and UC genes not commonly co-expressed in normal tissues form distinct co-expression modules seen only in tumors. The degree of rewiring of genes within mixed UC-MC modules increases with tumor grade and stage. Mixed UC-MC modules are enriched for somatic mutations in cancer genes, particularly amplifications, suggesting an important driver of the rewiring observed in tumors is copy number changes. CONCLUSIONS Our study shows the greatest changes to gene co-expression patterns during tumor progression occur between genes of MC and UC origins, implicating the breakdown and rewiring of metazoan gene regulatory networks in cancer development and progression.
Collapse
Affiliation(s)
- Anna S Trigos
- Peter MacCallum Cancer Centre, 305 Grattan St., Melbourne, VIC, 3000, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia.
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3168, Australia.
| | - Felicia Bongiovanni
- Peter MacCallum Cancer Centre, 305 Grattan St., Melbourne, VIC, 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Yangyi Zhang
- Peter MacCallum Cancer Centre, 305 Grattan St., Melbourne, VIC, 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Maia Zethoven
- Peter MacCallum Cancer Centre, 305 Grattan St., Melbourne, VIC, 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Richard Tothill
- Centre for Cancer Research, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Richard Pearson
- Peter MacCallum Cancer Centre, 305 Grattan St., Melbourne, VIC, 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3168, Australia
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Anthony T Papenfuss
- Peter MacCallum Cancer Centre, 305 Grattan St., Melbourne, VIC, 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia
- Bioinformatics Division, The Walter & Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
| | - David L Goode
- Peter MacCallum Cancer Centre, 305 Grattan St., Melbourne, VIC, 3000, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
4
|
González-Ruíz J, A Baccarelli A, Cantu-de-Leon D, Prada D. Air Pollution and Lung Cancer: Contributions of Extracellular Vesicles as Pathogenic Mechanisms and Clinical Utility. Curr Environ Health Rep 2023; 10:478-489. [PMID: 38052753 PMCID: PMC10822800 DOI: 10.1007/s40572-023-00421-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2023] [Indexed: 12/07/2023]
Abstract
PURPOSE OF REVIEW This review addresses the pressing issue of air pollution's threat to human health, focusing on its connection to non-small cell lung cancer (NSCLC) development. The aim is to explore the role of extracellular vesicles (EVs) as potential pathogenic mechanisms in lung cancer, including NSCLC, induced by air pollutants. RECENT FINDINGS Recent research highlights EVs as vital mediators of intercellular communication and key contributors to cancer progression. Notably, this review emphasizes the cargo of EVs released by both cancerous and non-cancerous lung cells, shedding light on their potential role in promoting various aspects of tumor development. The review underscores the importance of comprehending the intricate interplay between air pollution, biological damage mechanisms, and EV-mediated communication during NSCLC development. Major takeaways emphasize the significance of this understanding in addressing air pollution-related lung cancer. Future research avenues are also highlighted, aiming to enhance the applicability of EVs for diagnosis and targeted therapies, ultimately mitigating the inevitable impact of air pollution on NSCLC development and treatment.
Collapse
Affiliation(s)
| | - Andrea A Baccarelli
- Mailman School of Public Health, Department of Environmental Health Sciences, Columbia University, New York City, NY, 10032, USA
| | | | - Diddier Prada
- Department of Population Health Science and Policy and the Department of Environmental Medicine and Public Health, Institute for Health Equity Research, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl · (212) 241-6500, Room L2-38, New York City, NY, 10029, USA.
| |
Collapse
|
5
|
Nagahata Y, Kawamoto H. Evolutionary reversion in tumorigenesis. Front Oncol 2023; 13:1282417. [PMID: 38023242 PMCID: PMC10662060 DOI: 10.3389/fonc.2023.1282417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
Cells forming malignant tumors are distinguished from those forming normal tissues based on several features: accelerated/dysregulated cell division, disruption of physiologic apoptosis, maturation/differentiation arrest, loss of polarity, and invasive potential. Among them, accelerated cell division and differentiation arrest make tumor cells similar to stem/progenitor cells, and this is why tumorigenesis is often regarded as developmental reversion. Here, in addition to developmental reversion, we propose another insight into tumorigenesis from a phylogeny viewpoint. Based on the finding that tumor cells also share some features with unicellular organisms, we propose that tumorigenesis can be regarded as "evolutionary reversion". Recent advances in sequencing technologies and the ability to identify gene homologous have made it possible to perform comprehensive cross-species transcriptome comparisons and, in our recent study, we found that leukemic cells resulting from a polycomb dysfunction transcriptionally resemble unicellular organisms. Analyzing tumorigenesis from the viewpoint of phylogeny should reveal new aspects of tumorigenesis in the near future, and contribute to overcoming malignant tumors by developing new therapies.
Collapse
Affiliation(s)
- Yosuke Nagahata
- Laboratory of Immunology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Hiroshi Kawamoto
- Laboratory of Immunology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
6
|
Gonzalez A, Leon DA, Perera Y, Perez R. On the gene expression landscape of cancer. PLoS One 2023; 18:e0277786. [PMID: 36802377 PMCID: PMC9942972 DOI: 10.1371/journal.pone.0277786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 11/03/2022] [Indexed: 02/23/2023] Open
Abstract
Kauffman picture of normal and tumor states as attractors in an abstract state space is used in order to interpret gene expression data for 15 cancer localizations obtained from The Cancer Genome Atlas. A principal component analysis of this data unveils the following qualitative aspects about tumors: 1) The state of a tissue in gene expression space can be described by a few variables. In particular, there is a single variable describing the progression from a normal tissue to a tumor. 2) Each cancer localization is characterized by a gene expression profile, in which genes have specific weights in the definition of the cancer state. There are no less than 2500 differentially-expressed genes, which lead to power-like tails in the expression distribution functions. 3) Tumors in different localizations share hundreds or even thousands of differentially expressed genes. There are 6 genes common to the 15 studied tumor localizations. 4) The tumor region is a kind of attractor. Tumors in advanced stages converge to this region independently of patient age or genetic characteristics. 5) There is a landscape of cancer in gene expression space with an approximate border separating normal tissues from tumors.
Collapse
Affiliation(s)
- Augusto Gonzalez
- University of Electronic Sciences and Technology of China, Chengdu, People Republic of China
- Institute of Cybernetics, Mathematics and Physics, Havana, Cuba
| | - Dario A. Leon
- Institute of Cybernetics, Mathematics and Physics, Havana, Cuba
- Department of Mechanical Engineering and Technology Management, Norwegian University of Life Sciences, Ås, Norway
- * E-mail:
| | - Yasser Perera
- China-Cuba Biotechnology Joint Innovation Center, Yongzhou, People Republic of China
- Center of Genetic Engineering and Biotechnology, Havana, Cuba
| | - Rolando Perez
- University of Electronic Sciences and Technology of China, Chengdu, People Republic of China
- Center of Molecular Immunology, Havana, Cuba
| |
Collapse
|
7
|
Gnocchi D, Sabbà C, Mazzocca A. Lactic acid fermentation: A maladaptive mechanism and an evolutionary throwback boosting cancer drug resistance. Biochimie 2023; 208:180-185. [PMID: 36638953 DOI: 10.1016/j.biochi.2023.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/28/2022] [Accepted: 01/10/2023] [Indexed: 01/12/2023]
Abstract
After four decades of research primarily focused on tumour genetics, the importance of metabolism in tumour biology is receiving renewed attention. Cancer cells undergo energy, biosynthetic and metabolic rewiring, which involves several pathways with a prevalent change from oxidative phosphorylation (OXPHOS) to lactic acid fermentation, known as the Warburg effect. During carcinogenesis, microenvironmental changes can trigger the transition from OXPHOS to lactic acid fermentation, an ancient form of energy supply, mimicking the behaviour of certain anaerobic unicellular organisms according to "atavistic" models of cancer. However, the role of this transition as a mechanism of cancer drug resistance is unclear. Here, we hypothesise that the metabolic rewiring of cancer cells to fermentation can be triggered, enhanced, and sustained by exposure to chronic or high-dose chemotherapy, thereby conferring resistance to drug therapy. We try to expand on the idea that metabolic reprogramming from OXPHOS to lactate fermentation in drug-resistant tumour cells occurs as a general phenotypic mechanism in any type of cancer, regardless of tumour cell heterogeneity, biodiversity, and genetic characteristics. This metabolic response may therefore represent a common feature in cancer biology that could be exploited for therapeutic purposes to overcome chemotherapy resistance, which is currently a major challenge in cancer treatment.
Collapse
Affiliation(s)
- Davide Gnocchi
- Interdisciplinary Department of Medicine, University of Bari School of Medicine, Piazza G. Cesare, 11, 70124, Bari, Italy
| | - Carlo Sabbà
- Interdisciplinary Department of Medicine, University of Bari School of Medicine, Piazza G. Cesare, 11, 70124, Bari, Italy
| | - Antonio Mazzocca
- Interdisciplinary Department of Medicine, University of Bari School of Medicine, Piazza G. Cesare, 11, 70124, Bari, Italy.
| |
Collapse
|
8
|
Evo-devo perspectives on cancer. Essays Biochem 2022; 66:797-815. [PMID: 36250956 DOI: 10.1042/ebc20220041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 12/13/2022]
Abstract
The integration of evolutionary and developmental approaches into the field of evolutionary developmental biology has opened new areas of inquiry- from understanding the evolution of development and its underlying genetic and molecular mechanisms to addressing the role of development in evolution. For the last several decades, the terms 'evolution' and 'development' have been increasingly linked to cancer, in many different frameworks and contexts. This mini-review, as part of a special issue on Evolutionary Developmental Biology, discusses the main areas in cancer research that have been addressed through the lenses of both evolutionary and developmental biology, though not always fully or explicitly integrated in an evo-devo framework. First, it briefly introduces the current views on carcinogenesis that invoke evolutionary and/or developmental perspectives. Then, it discusses the main mechanisms proposed to have specifically evolved to suppress cancer during the evolution of multicellularity. Lastly, it considers whether the evolution of multicellularity and development was shaped by the threat of cancer (a cancer-evo-devo perspective), and/or whether the evolution of developmental programs and life history traits can shape cancer resistance/risk in various lineages (an evo-devo-cancer perspective). A proper evolutionary developmental framework for cancer, both as a disease and in terms of its natural history (in the context of the evolution of multicellularity and development as well as life history traits), could bridge the currently disparate evolutionary and developmental perspectives and uncover aspects that will provide new insights for cancer prevention and treatment.
Collapse
|
9
|
Ma C, Li C, Ma H, Yu D, Zhang Y, Zhang D, Su T, Wu J, Wang X, Zhang L, Chen CL, Zhang YE. Pan-cancer surveys indicate cell cycle-related roles of primate-specific genes in tumors and embryonic cerebrum. Genome Biol 2022; 23:251. [PMID: 36474250 PMCID: PMC9724437 DOI: 10.1186/s13059-022-02821-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/24/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Despite having been extensively studied, it remains largely unclear why humans bear a particularly high risk of cancer. The antagonistic pleiotropy hypothesis predicts that primate-specific genes (PSGs) tend to promote tumorigenesis, while the molecular atavism hypothesis predicts that PSGs involved in tumors may represent recently derived duplicates of unicellular genes. However, these predictions have not been tested. RESULTS By taking advantage of pan-cancer genomic data, we find the upregulation of PSGs across 13 cancer types, which is facilitated by copy-number gain and promoter hypomethylation. Meta-analyses indicate that upregulated PSGs (uPSGs) tend to promote tumorigenesis and to play cell cycle-related roles. The cell cycle-related uPSGs predominantly represent derived duplicates of unicellular genes. We prioritize 15 uPSGs and perform an in-depth analysis of one unicellular gene-derived duplicate involved in the cell cycle, DDX11. Genome-wide screening data and knockdown experiments demonstrate that DDX11 is broadly essential across cancer cell lines. Importantly, non-neutral amino acid substitution patterns and increased expression indicate that DDX11 has been under positive selection. Finally, we find that cell cycle-related uPSGs are also preferentially upregulated in the highly proliferative embryonic cerebrum. CONCLUSIONS Consistent with the predictions of the atavism and antagonistic pleiotropy hypotheses, primate-specific genes, especially those PSGs derived from cell cycle-related genes that emerged in unicellular ancestors, contribute to the early proliferation of the human cerebrum at the cost of hitchhiking by similarly highly proliferative cancer cells.
Collapse
Affiliation(s)
- Chenyu Ma
- Key Laboratory of Zoological Systematics and Evolution & State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chunyan Li
- School of Engineering Medicine, Key Laboratory of Big Data-Based Precision Medicine (Ministry of Industry and Information Technology), and Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing, 100191, China
| | - Huijing Ma
- Key Laboratory of Zoological Systematics and Evolution & State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Daqi Yu
- Key Laboratory of Zoological Systematics and Evolution & State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yufei Zhang
- Key Laboratory of Zoological Systematics and Evolution & State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Life Sciences, Nanjing University, Nanjing, 210093, China
| | - Dan Zhang
- Key Laboratory of Zoological Systematics and Evolution & State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Tianhan Su
- Key Laboratory of Zoological Systematics and Evolution & State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianmin Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Center for Cancer Bioinformatics, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Xiaoyue Wang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Li Zhang
- Chinese Institute for Brain Research, Beijing, 102206, China
| | - Chun-Long Chen
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR3244, Dynamics of Genetic Information, 75005, Paris, France
| | - Yong E Zhang
- Key Laboratory of Zoological Systematics and Evolution & State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Chinese Institute for Brain Research, Beijing, 102206, China.
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China.
| |
Collapse
|
10
|
A comment on the article Jaques et al. "Origin and evolution of animal multicellularity in light of phylogenomics and cancer genetics ". MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 40:38. [PMID: 36460873 DOI: 10.1007/s12032-022-01868-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/03/2022] [Indexed: 12/04/2022]
Abstract
For developmental biologists, the work of Jaques et al. is quite surprising. It suggests that cancer genetics and cancer phylogenomics may contribute to the origin and evolution of multicellularity in animals. My commentary complements the work of Jaques et al. from the perspective of evolutionary life cycle biology and recalls the statement of Douglas H. Erwin, who said that understanding life cycle evolution is (equally) crucial to subsequent steps [1].
Collapse
|
11
|
Langthasa J, Mishra S, U M, Kalal R, Bhat R. Mutations in a set of ancient matrisomal glycoprotein genes across neoplasia predispose to disruption of morphogenetic transduction. COMPUTATIONAL AND SYSTEMS ONCOLOGY 2022. [DOI: 10.1002/cso2.1042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Jimpi Langthasa
- Department of Molecular Reproduction Development and Genetics Indian Institute of Science Bengaluru India
| | - Satyarthi Mishra
- Centre for Nano Science and Engineering Indian Institute of Science Bengaluru India
| | - Monica U
- Department of Molecular Reproduction Development and Genetics Indian Institute of Science Bengaluru India
| | - Ronak Kalal
- Department of Zoology University College of Science, Mohanlal Sukhadia University Udaipur India
| | - Ramray Bhat
- Department of Molecular Reproduction Development and Genetics Indian Institute of Science Bengaluru India
- Centre for BioSystems Science and Engineering Indian Institute of Science Bengaluru India
| |
Collapse
|
12
|
Vainshelbaum NM, Giuliani A, Salmina K, Pjanova D, Erenpreisa J. The Transcriptome and Proteome Networks of Malignant Tumours Reveal Atavistic Attractors of Polyploidy-Related Asexual Reproduction. Int J Mol Sci 2022; 23:ijms232314930. [PMID: 36499258 PMCID: PMC9736112 DOI: 10.3390/ijms232314930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/18/2022] [Accepted: 11/26/2022] [Indexed: 12/02/2022] Open
Abstract
The expression of gametogenesis-related (GG) genes and proteins, as well as whole genome duplications (WGD), are the hallmarks of cancer related to poor prognosis. Currently, it is not clear if these hallmarks are random processes associated only with genome instability or are programmatically linked. Our goal was to elucidate this via a thorough bioinformatics analysis of 1474 GG genes in the context of WGD. We examined their association in protein-protein interaction and coexpression networks, and their phylostratigraphic profiles from publicly available patient tumour data. The results show that GG genes are upregulated in most WGD-enriched somatic cancers at the transcriptome level and reveal robust GG gene expression at the protein level, as well as the ability to associate into correlation networks and enrich the reproductive modules. GG gene phylostratigraphy displayed in WGD+ cancers an attractor of early eukaryotic origin for DNA recombination and meiosis, and one relative to oocyte maturation and embryogenesis from early multicellular organisms. The upregulation of cancer-testis genes emerging with mammalian placentation was also associated with WGD. In general, the results suggest the role of polyploidy for soma-germ transition accessing latent cancer attractors in the human genome network, which appear as pre-formed along the whole Evolution of Life.
Collapse
Affiliation(s)
- Ninel M. Vainshelbaum
- Cancer Research Division, Latvian Biomedicine Research and Study Centre, LV-1067 Riga, Latvia
- Faculty of Biology, The University of Latvia, LV-1586 Riga, Latvia
- Correspondence: (N.M.V.); (J.E.)
| | - Alessandro Giuliani
- Environmen and Health Department, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Kristine Salmina
- Cancer Research Division, Latvian Biomedicine Research and Study Centre, LV-1067 Riga, Latvia
| | - Dace Pjanova
- Cancer Research Division, Latvian Biomedicine Research and Study Centre, LV-1067 Riga, Latvia
| | - Jekaterina Erenpreisa
- Cancer Research Division, Latvian Biomedicine Research and Study Centre, LV-1067 Riga, Latvia
- Correspondence: (N.M.V.); (J.E.)
| |
Collapse
|
13
|
Cancer – A devastating disease, but also an eye-opener and window into the deep mysteries of life and its origins. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2022; 175:131-139. [DOI: 10.1016/j.pbiomolbio.2022.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 09/01/2022] [Accepted: 09/28/2022] [Indexed: 01/04/2023]
|
14
|
Polyploidy and Myc Proto-Oncogenes Promote Stress Adaptation via Epigenetic Plasticity and Gene Regulatory Network Rewiring. Int J Mol Sci 2022; 23:ijms23179691. [PMID: 36077092 PMCID: PMC9456078 DOI: 10.3390/ijms23179691] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
Polyploid cells demonstrate biological plasticity and stress adaptation in evolution; development; and pathologies, including cardiovascular diseases, neurodegeneration, and cancer. The nature of ploidy-related advantages is still not completely understood. Here, we summarize the literature on molecular mechanisms underlying ploidy-related adaptive features. Polyploidy can regulate gene expression via chromatin opening, reawakening ancient evolutionary programs of embryonality. Chromatin opening switches on genes with bivalent chromatin domains that promote adaptation via rapid induction in response to signals of stress or morphogenesis. Therefore, stress-associated polyploidy can activate Myc proto-oncogenes, which further promote chromatin opening. Moreover, Myc proto-oncogenes can trigger polyploidization de novo and accelerate genome accumulation in already polyploid cells. As a result of these cooperative effects, polyploidy can increase the ability of cells to search for adaptive states of cellular programs through gene regulatory network rewiring. This ability is manifested in epigenetic plasticity associated with traits of stemness, unicellularity, flexible energy metabolism, and a complex system of DNA damage protection, combining primitive error-prone unicellular repair pathways, advanced error-free multicellular repair pathways, and DNA damage-buffering ability. These three features can be considered important components of the increased adaptability of polyploid cells. The evidence presented here contribute to the understanding of the nature of stress resistance associated with ploidy and may be useful in the development of new methods for the prevention and treatment of cardiovascular and oncological diseases.
Collapse
|
15
|
Gonzalez A, Quintela F, Leon DA, Bringas-Vega ML, Valdes-Sosa PA. Estimating the number of available states for normal and tumor tissues in gene expression space. BIOPHYSICAL REPORTS 2022; 2:100053. [PMID: 36425772 PMCID: PMC9680729 DOI: 10.1016/j.bpr.2022.100053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 03/25/2022] [Indexed: 05/15/2023]
Abstract
The topology of gene expression space for a set of 12 cancer types is studied by means of an entropy-like magnitude, which measures the volumes of the regions occupied by tumor and normal samples, i.e., the number of available states (genotypes) that can be classified as tumor-like or normal-like, respectively. Computations show that the number of available states is much greater for tumors than for normal tissues, suggesting the irreversibility of the progression to the tumor phase. The entropy is nearly constant for tumors, whereas it exhibits a higher variability in normal tissues, probably due to tissue differentiation. In addition, we show an interesting correlation between the fraction (tumor/normal) of available states and the overlap between the tumor and normal sample clouds, interpreted as a way of reducing the decay rate to the tumor phase in more ordered or structured tissues.
Collapse
Affiliation(s)
- Augusto Gonzalez
- The Clinical Hospital Chengdu Brain Sciences Institute, University of Electronic Sciences and Technology of China (UESTC), Chengdu, People Republic of China
- Institute of Cybernetics, Mathematics and Physics, Havana, Cuba
| | - Frank Quintela
- Institute of Cybernetics, Mathematics and Physics, Havana, Cuba
- University of Modena & Reggio Emilia, Modena, Italy
| | - Dario A. Leon
- Institute of Cybernetics, Mathematics and Physics, Havana, Cuba
- S3 Centre, Istituto Nanoscienze, CNR, Modena, Italy
| | - Maria Luisa Bringas-Vega
- The Clinical Hospital Chengdu Brain Sciences Institute, University of Electronic Sciences and Technology of China (UESTC), Chengdu, People Republic of China
- Cuban Neurosciences Center, Havana, Cuba
| | - Pedro A. Valdes-Sosa
- The Clinical Hospital Chengdu Brain Sciences Institute, University of Electronic Sciences and Technology of China (UESTC), Chengdu, People Republic of China
- Cuban Neurosciences Center, Havana, Cuba
| |
Collapse
|
16
|
Niculescu VF. Cancer genes and cancer stem cells in tumorigenesis: Evolutionary deep homology and controversies. Genes Dis 2022; 9:1234-1247. [PMID: 35873035 PMCID: PMC9293697 DOI: 10.1016/j.gendis.2022.03.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/10/2022] [Accepted: 03/08/2022] [Indexed: 12/18/2022] Open
|
17
|
Luo Y, Liang H. Convergent Usage of Amino Acids in Human Cancers as A Reversed Process of Tissue Development. GENOMICS, PROTEOMICS & BIOINFORMATICS 2022; 20:147-162. [PMID: 34492340 PMCID: PMC9510935 DOI: 10.1016/j.gpb.2021.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 07/13/2021] [Accepted: 08/26/2021] [Indexed: 01/01/2023]
Abstract
Genome- and transcriptome-wide amino acid usage preference across different species is a well-studied phenomenon in molecular evolution, but its characteristics and implication in cancer evolution and therapy remain largely unexplored. Here, we analyzed large-scale transcriptome/proteome profiles, such as The Cancer Genome Atlas (TCGA), the Genotype-Tissue Expression (GTEx), and the Clinical Proteomic Tumor Analysis Consortium (CPTAC), and found that compared to normal tissues, different cancer types showed a convergent pattern toward using biosynthetically low-cost amino acids. Such a pattern can be accurately captured by a single index based on the average biosynthetic energy cost of amino acids, termed energy cost per amino acid (ECPA). With this index, we further compared the trends of amino acid usage and the contributing genes in cancer and tissue development, and revealed their reversed patterns. Finally, focusing on the liver, a tissue with a dramatic increase in ECPA during development, we found that ECPA represents a powerful biomarker that could distinguish liver tumors from normal liver samples consistently across 11 independent patient cohorts and outperforms any index based on single genes. Our study reveals an important principle underlying cancer evolution and suggests the global amino acid usage as a system-level biomarker for cancer diagnosis.
Collapse
Affiliation(s)
- Yikai Luo
- Graduate Program in Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, TX 77030, USA; Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Han Liang
- Graduate Program in Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, TX 77030, USA; Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
18
|
Dressler L, Bortolomeazzi M, Keddar MR, Misetic H, Sartini G, Acha-Sagredo A, Montorsi L, Wijewardhane N, Repana D, Nulsen J, Goldman J, Pollitt M, Davis P, Strange A, Ambrose K, Ciccarelli FD. Comparative assessment of genes driving cancer and somatic evolution in non-cancer tissues: an update of the Network of Cancer Genes (NCG) resource. Genome Biol 2022; 23:35. [PMID: 35078504 PMCID: PMC8790917 DOI: 10.1186/s13059-022-02607-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 01/10/2022] [Indexed: 12/30/2022] Open
Abstract
Background Genetic alterations of somatic cells can drive non-malignant clone formation and promote cancer initiation. However, the link between these processes remains unclear and hampers our understanding of tissue homeostasis and cancer development. Results Here, we collect a literature-based repertoire of 3355 well-known or predicted drivers of cancer and non-cancer somatic evolution in 122 cancer types and 12 non-cancer tissues. Mapping the alterations of these genes in 7953 pan-cancer samples reveals that, despite the large size, the known compendium of drivers is still incomplete and biased towards frequently occurring coding mutations. High overlap exists between drivers of cancer and non-cancer somatic evolution, although significant differences emerge in their recurrence. We confirm and expand the unique properties of drivers and identify a core of evolutionarily conserved and essential genes whose germline variation is strongly counter-selected. Somatic alteration in even one of these genes is sufficient to drive clonal expansion but not malignant transformation. Conclusions Our study offers a comprehensive overview of our current understanding of the genetic events initiating clone expansion and cancer revealing significant gaps and biases that still need to be addressed. The compendium of cancer and non-cancer somatic drivers, their literature support, and properties are accessible in the Network of Cancer Genes and Healthy Drivers resource at http://www.network-cancer-genes.org/. Supplementary Information The online version contains supplementary material available at 10.1186/s13059-022-02607-z.
Collapse
|
19
|
Wu YC, Franzenburg S, Ribes M, Pita L. Wounding response in Porifera (sponges) activates ancestral signaling cascades involved in animal healing, regeneration, and cancer. Sci Rep 2022; 12:1307. [PMID: 35079031 PMCID: PMC8789774 DOI: 10.1038/s41598-022-05230-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 01/06/2022] [Indexed: 11/24/2022] Open
Abstract
Upon injury, the homeostatic balance that ensures tissue function is disrupted. Wound-induced signaling triggers the recovery of tissue integrity and offers a context to understand the molecular mechanisms for restoring tissue homeostasis upon disturbances. Marine sessile animals are particularly vulnerable to chronic wounds caused by grazers that can compromise prey's health. Yet, in comparison to other stressors like warming or acidification, we know little on how marine animals respond to grazing. Marine sponges (Phylum Porifera) are among the earliest-diverging animals and play key roles in the ecosystem; but they remain largely understudied. Here, we investigated the transcriptomic responses to injury caused by a specialist spongivorous opisthobranch (i.e., grazing treatment) or by clipping with a scalpel (i.e., mechanical damage treatment), in comparison to control sponges. We collected samples 3 h, 1 d, and 6 d post-treatment for differential gene expression analysis on RNA-seq data. Both grazing and mechanical damage activated a similar transcriptomic response, including a clotting-like cascade (e.g., with genes annotated as transglutaminases, metalloproteases, and integrins), calcium signaling, and Wnt and mitogen-activated protein kinase signaling pathways. Wound-induced gene expression signature in sponges resembles the initial steps of whole-body regeneration in other animals. Also, the set of genes responding to wounding in sponges included putative orthologs of cancer-related human genes. Further insights can be gained from taking sponge wound healing as an experimental system to understand how ancient genes and regulatory networks determine healthy animal tissues.
Collapse
Affiliation(s)
- Yu-Chen Wu
- Research Unit Marine Microbiology, Department Marine Ecology, GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany
- Christian-Albrechts University of Kiel, Kiel, Germany
| | - Soeren Franzenburg
- Institute of Clinical Molecular Biology (IKMB), Christian-Albrechts University of Kiel, Kiel, Germany
| | - Marta Ribes
- Department Marine Biology and Oceanography, Institute of Marine Sciences (ICM-CSIC), Barcelona, Spain
| | - Lucía Pita
- Research Unit Marine Microbiology, Department Marine Ecology, GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany.
- Department Marine Biology and Oceanography, Institute of Marine Sciences (ICM-CSIC), Barcelona, Spain.
| |
Collapse
|
20
|
Woodward K, Shirokikh NE. Translational control in cell ageing: an update. Biochem Soc Trans 2021; 49:2853-2869. [PMID: 34913471 PMCID: PMC8786278 DOI: 10.1042/bst20210844] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/18/2021] [Accepted: 11/22/2021] [Indexed: 12/28/2022]
Abstract
Cellular ageing is one of the main drivers of organismal ageing and holds keys towards improving the longevity and quality of the extended life. Elucidating mechanisms underlying the emergence of the aged cells as well as their altered responses to the environment will help understanding the evolutionarily defined longevity preferences across species with different strategies of survival. Much is understood about the role of alterations in the DNA, including many epigenetic modifications such as methylation, in relation to the aged cell phenotype. While transcriptomes of the aged cells are beginning to be better-characterised, their translational responses remain under active investigation. Many of the translationally controlled homeostatic pathways are centred around mitigation of DNA damage, cell stress response and regulation of the proliferative potential of the cells, and thus are critical for the aged cell function. Translation profiling-type studies have boosted the opportunities in discovering the function of protein biosynthesis control and are starting to be applied to the aged cells. Here, we provide a summary of the current knowledge about translational mechanisms considered to be commonly altered in the aged cells, including the integrated stress response-, mechanistic target of Rapamycin- and elongation factor 2 kinase-mediated pathways. We enlist and discuss findings of the recent works that use broad profiling-type approaches to investigate the age-related translational pathways. We outline the limitations of the methods and the remaining unknowns in the established ageing-associated translation mechanisms, and flag translational mechanisms with high prospective importance in ageing, for future studies.
Collapse
Affiliation(s)
- Katrina Woodward
- Division of Genome Sciences and Cancer, The John Curtin School of Medical Research, The Australian National University, Acton, Canberra, ACT 2601, Australia
| | - Nikolay E. Shirokikh
- Division of Genome Sciences and Cancer, The John Curtin School of Medical Research, The Australian National University, Acton, Canberra, ACT 2601, Australia
| |
Collapse
|
21
|
Robin AN, Denton KK, Horna Lowell ES, Dulay T, Ebrahimi S, Johnson GC, Mai D, O’Fallon S, Philson CS, Speck HP, Zhang XP, Nonacs P. Major Evolutionary Transitions and the Roles of Facilitation and Information in Ecosystem Transformations. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.711556] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
A small number of extraordinary “Major Evolutionary Transitions” (METs) have attracted attention among biologists. They comprise novel forms of individuality and information, and are defined in relation to organismal complexity, irrespective of broader ecosystem-level effects. This divorce between evolutionary and ecological consequences qualifies unicellular eukaryotes, for example, as a MET although they alone failed to significantly alter ecosystems. Additionally, this definition excludes revolutionary innovations not fitting into either MET type (e.g., photosynthesis). We recombine evolution with ecology to explore how and why entire ecosystems were newly created or radically altered – as Major System Transitions (MSTs). In doing so, we highlight important morphological adaptations that spread through populations because of their immediate, direct-fitness advantages for individuals. These are Major Competitive Transitions, or MCTs. We argue that often multiple METs and MCTs must be present to produce MSTs. For example, sexually-reproducing, multicellular eukaryotes (METs) with anisogamy and exoskeletons (MCTs) significantly altered ecosystems during the Cambrian. Therefore, we introduce the concepts of Facilitating Evolutionary Transitions (FETs) and Catalysts as key events or agents that are insufficient themselves to set a MST into motion, but are essential parts of synergies that do. We further elucidate the role of information in MSTs as transitions across five levels: (I) Encoded; (II) Epigenomic; (III) Learned; (IV) Inscribed; and (V) Dark Information. The latter is ‘authored’ by abiotic entities rather than biological organisms. Level IV has arguably allowed humans to produce a MST, and V perhaps makes us a FET for a future transition that melds biotic and abiotic life into one entity. Understanding the interactive processes involved in past major transitions will illuminate both current events and the surprising possibilities that abiotically-created information may produce.
Collapse
|
22
|
Growth of Biological Complexity from Prokaryotes to Hominids Reflected in the Human Genome. Int J Mol Sci 2021; 22:ijms222111640. [PMID: 34769071 PMCID: PMC8583824 DOI: 10.3390/ijms222111640] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/20/2021] [Accepted: 10/25/2021] [Indexed: 12/12/2022] Open
Abstract
The growth of complexity in evolution is a most intriguing phenomenon. Using gene phylostratigraphy, we showed this growth (as reflected in regulatory mechanisms) in the human genome, tracing the path from prokaryotes to hominids. Generally, the different regulatory gene families expanded at different times, yet only up to the Euteleostomi (bony vertebrates). The only exception was the expansion of transcription factors (TF) in placentals; however, we argue that this was not related to increase in general complexity. Surprisingly, although TF originated in the Prokaryota while chromatin appeared only in the Eukaryota, the expansion of epigenetic factors predated the expansion of TF. Signaling receptors, tumor suppressors, oncogenes, and aging- and disease-associated genes (indicating vulnerabilities in terms of complex organization and strongly enrichment in regulatory genes) also expanded only up to the Euteleostomi. The complexity-related gene properties (protein size, number of alternative splicing mRNA, length of untranslated mRNA, number of biological processes per gene, number of disordered regions in a protein, and density of TF–TF interactions) rose in multicellular organisms and declined after the Euteleostomi, and possibly earlier. At the same time, the speed of protein sequence evolution sharply increased in the genes that originated after the Euteleostomi. Thus, several lines of evidence indicate that molecular mechanisms of complexity growth were changing with time, and in the phyletic lineage leading to humans, the most salient shift occurred after the basic vertebrate body plan was fixed with bony skeleton. The obtained results can be useful for evolutionary medicine.
Collapse
|
23
|
Improving cancer treatments via dynamical biophysical models. Phys Life Rev 2021; 39:1-48. [PMID: 34688561 DOI: 10.1016/j.plrev.2021.10.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 10/13/2021] [Indexed: 12/17/2022]
Abstract
Despite significant advances in oncological research, cancer nowadays remains one of the main causes of mortality and morbidity worldwide. New treatment techniques, as a rule, have limited efficacy, target only a narrow range of oncological diseases, and have limited availability to the general public due their high cost. An important goal in oncology is thus the modification of the types of antitumor therapy and their combinations, that are already introduced into clinical practice, with the goal of increasing the overall treatment efficacy. One option to achieve this goal is optimization of the schedules of drugs administration or performing other medical actions. Several factors complicate such tasks: the adverse effects of treatments on healthy cell populations, which must be kept tolerable; the emergence of drug resistance due to the intrinsic plasticity of heterogeneous cancer cell populations; the interplay between different types of therapies administered simultaneously. Mathematical modeling, in which a tumor and its microenvironment are considered as a single complex system, can address this complexity and can indicate potentially effective protocols, that would require experimental verification. In this review, we consider classical methods, current trends and future prospects in the field of mathematical modeling of tumor growth and treatment. In particular, methods of treatment optimization are discussed with several examples of specific problems related to different types of treatment.
Collapse
|
24
|
Bussey KJ, Davies PCW. Reverting to single-cell biology: The predictions of the atavism theory of cancer. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 165:49-55. [PMID: 34371024 PMCID: PMC8833046 DOI: 10.1016/j.pbiomolbio.2021.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 11/24/2022]
Abstract
Cancer or cancer-like phenomena pervade multicellular life, implying deep evolutionary roots. Many of the hallmarks of cancer recapitulate unicellular modalities, suggesting that cancer initiation and progression represent a systematic reversion to simpler ancestral phenotypes in response to a stress or insult. This so-called atavism theory may be tested using phylostratigraphy, which can be used to assign ages to genes. Several research groups have confirmed that cancer cells tend to over-express evolutionary older genes, and rewire the architecture linking unicellular and multicellular gene networks. In addition, some of the elevated mutation rate - a well-known hallmark of cancer - is actually self-inflicted, driven by genes found to be homologs of the ancient SOS genes activated in stressed bacteria, and employed to evolve biological workarounds. These findings have obvious implications for therapy.
Collapse
Affiliation(s)
- Kimberly J Bussey
- Precision Medicine, Midwestern University, Glendale, AZ, USA; The BEYOND Center for Fundamental Concepts in Science, Department of Physics, Arizona State University, Tempe, AZ, USA
| | - Paul C W Davies
- The BEYOND Center for Fundamental Concepts in Science, Department of Physics, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
25
|
Catania F, Ujvari B, Roche B, Capp JP, Thomas F. Bridging Tumorigenesis and Therapy Resistance With a Non-Darwinian and Non-Lamarckian Mechanism of Adaptive Evolution. Front Oncol 2021; 11:732081. [PMID: 34568068 PMCID: PMC8462274 DOI: 10.3389/fonc.2021.732081] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/25/2021] [Indexed: 12/13/2022] Open
Abstract
Although neo-Darwinian (and less often Lamarckian) dynamics are regularly invoked to interpret cancer's multifarious molecular profiles, they shine little light on how tumorigenesis unfolds and often fail to fully capture the frequency and breadth of resistance mechanisms. This uncertainty frames one of the most problematic gaps between science and practice in modern times. Here, we offer a theory of adaptive cancer evolution, which builds on a molecular mechanism that lies outside neo-Darwinian and Lamarckian schemes. This mechanism coherently integrates non-genetic and genetic changes, ecological and evolutionary time scales, and shifts the spotlight away from positive selection towards purifying selection, genetic drift, and the creative-disruptive power of environmental change. The surprisingly simple use-it or lose-it rationale of the proposed theory can help predict molecular dynamics during tumorigenesis. It also provides simple rules of thumb that should help improve therapeutic approaches in cancer.
Collapse
Affiliation(s)
- Francesco Catania
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Beata Ujvari
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Deakin, VIC, Australia
| | - Benjamin Roche
- CREEC/CANECEV, MIVEGEC (CREES), Centre de Recherches Ecologiques et Evolutives sur le Cancer, University of Montpellier, CNRS, IRD, Montpellier, France
| | - Jean-Pascal Capp
- Toulouse Biotechnology Institute, University of Toulouse, INSA, CNRS, INRAE, Toulouse, France
| | - Frédéric Thomas
- CREEC/CANECEV, MIVEGEC (CREES), Centre de Recherches Ecologiques et Evolutives sur le Cancer, University of Montpellier, CNRS, IRD, Montpellier, France
| |
Collapse
|
26
|
The evolution of multicellularity and cancer: views and paradigms. Biochem Soc Trans 2021; 48:1505-1518. [PMID: 32677677 DOI: 10.1042/bst20190992] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/22/2020] [Accepted: 06/24/2020] [Indexed: 12/16/2022]
Abstract
Conceptually and mechanistically, the evolution of multicellularity required the integration of single cells into new functionally, reproductively and evolutionary stable multicellular individuals. As part of this process, a change in levels of selection occurred, with selection at the multicellular level overriding selection at the cell level. The stability of multicellular individuals is dependent on a combination of mechanisms that supress within-group evolution, by both reducing the occurrence of somatic mutations as well as supressing somatic selection. Nevertheless, mutations that, in a particular microenvironment, confer mutant lineages a fitness advantage relative to normal somatic cells do occur, and can result in cancer. This minireview highlights several views and paradigms that relate the evolution of multicellularity to cancer. As a phenomenon, cancer is generally understood as a failure of multicellular systems to suppress somatic evolution. However, as a disease, cancer is interpreted in different frameworks: (i) a breakdown of cooperative behaviors underlying the evolution of multicellularity, (ii) a disruption of molecular networks established during the emergence of multicellularity to impose constraints on single-celled units, or (iii) an atavistic state resulting from reactivating primitive programs that originated in the earliest unicellular species. A number of assumptions are common in all the views relating cancer as a disease to the evolution of multicellularity. For instance, cancer is considered a reversal to unicellularity, and cancer cells are thought to both resemble unicellular organisms and benefit from ancestral-like traits. Nevertheless, potential limitations of current paradigms should be acknowledged as different perspectives can provide novel insights with potential therapeutic implications.
Collapse
|
27
|
Liu J, Zhang H, Zhang J, Bing Z, Wang Y, Li Q, Yang K. Identification of robust diagnostic and prognostic gene signatures in different grades of gliomas: a retrospective study. PeerJ 2021; 9:e11350. [PMID: 34026352 PMCID: PMC8121073 DOI: 10.7717/peerj.11350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 04/05/2021] [Indexed: 12/23/2022] Open
Abstract
Background Gliomas are the most common primary tumors of the central nervous system. The complexity and heterogeneity of the tumor makes it difficult to obtain good biomarkers for drug development. In this study, through The Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA), we analyze the common diagnostic and prognostic moleculer markers in Caucasian and Asian populations, which can be used as drug targets in the future. Methods The RNA-seq data from Genotype-Tissue Expression (GTEx) and The Cancer Genome Atlas (TCGA) were analyzed to identify signatures. Based on the signatures, the prognosis index (PI) of every patient was constructed to predict the prognostic risk. Also, gene ontology (GO) functional enrichment analysis and KEGG analysis were conducted to investigate the biological functions of these mRNAs. Glioma patients’ data in the CGGA database were introduced to validate the effectiveness of the signatures among Chinese populations. Excluding the previously reported prognostic markers of gliomas from this study, the expression of HSPA5 and MTPN were examined by qRT-PCR and immunohistochemical assay. Results In total, 20 mRNAs were finally selected to build PI for patients from TCGA, including 16 high-risk genes and four low-risk genes. For Chinese patients, the log-rank test p values of PI were both less than 0.0001 in two independent datasets. And the AUCs were 0.831 and 0.907 for 3 years of two datasets, respectively. Moreover, among these 20 mRNAs, 10 and 15 mRNAs also had a significant predictive effect via univariate COX analysis in CGGA_693 and CGGA_325, respectively. qRT-PCR and Immunohistochemistry assay indicated that HSPA5 and MTPN over-expressed in Glioma samples compared to normal samples. Conclusion The 20-gene signature can forecast the risk of Glioma in TCGA effectively, moreover it can also predict the risks of Chinese patients through validation in the CGGA database. HSPA5 and MTPN are possible biomarkers of gliomas suitable for all populations to improve the prognosis of these patients.
Collapse
Affiliation(s)
- Jieting Liu
- The First Clinical Medical College, Lanzhou University, Lanzhou, China.,Department of Anesthesiology, Lanzhou University Second Hospital, Lanzhou, China.,Evidence-based Medicine Center, Lanzhou University, Lanzhou, China
| | - Hongrui Zhang
- College of Pharmacy, Lanzhou University, Lanzhou, China
| | - Jingyun Zhang
- School of Public Health and the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhitong Bing
- Department of Computational Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Lanzhou, China
| | - Yingbin Wang
- Department of Anesthesiology, Lanzhou University Second Hospital, Lanzhou, China
| | - Qiao Li
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, China
| | - Kehu Yang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China.,Evidence-based Medicine Center, Lanzhou University, Lanzhou, China
| |
Collapse
|
28
|
Russo M, Sogari A, Bardelli A. Adaptive Evolution: How Bacteria and Cancer Cells Survive Stressful Conditions and Drug Treatment. Cancer Discov 2021; 11:1886-1895. [PMID: 33952585 DOI: 10.1158/2159-8290.cd-20-1588] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cancer is characterized by loss of the regulatory mechanisms that preserve homeostasis in multicellular organisms, such as controlled proliferation, cell-cell adhesion, and tissue differentiation. The breakdown of multicellularity rules is accompanied by activation of "selfish," unicellular-like life features, which are linked to the increased adaptability to environmental changes displayed by cancer cells. Mechanisms of stress response, resembling those observed in unicellular organisms, are actively exploited by mammalian cancer cells to boost genetic diversity and increase chances of survival under unfavorable conditions, such as lack of oxygen/nutrients or exposure to drugs. Unicellular organisms under stressful conditions (e.g., antibiotic treatment) stop replicating or slowly divide and transiently increase their mutation rates to foster diversity, a process known as adaptive mutability. Analogously, tumor cells exposed to drugs enter a persister phenotype and can reduce DNA replication fidelity, which in turn fosters genetic diversity. The implications of adaptive evolution are of relevance to understand resistance to anticancer therapies.
Collapse
Affiliation(s)
- Mariangela Russo
- Department of Oncology, University of Torino, Candiolo 10060, Italy. Candiolo Cancer Institute, FPO-IRCCS, Candiolo 10060, Italy.
| | - Alberto Sogari
- Department of Oncology, University of Torino, Candiolo 10060, Italy. Candiolo Cancer Institute, FPO-IRCCS, Candiolo 10060, Italy
| | - Alberto Bardelli
- Department of Oncology, University of Torino, Candiolo 10060, Italy. Candiolo Cancer Institute, FPO-IRCCS, Candiolo 10060, Italy.
| |
Collapse
|
29
|
Ebrahimi S, Nonacs P. Genetic diversity through social heterosis can increase virulence in RNA viral infections and cancer progression. ROYAL SOCIETY OPEN SCIENCE 2021; 8:202219. [PMID: 34035948 PMCID: PMC8097216 DOI: 10.1098/rsos.202219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 04/12/2021] [Indexed: 05/04/2023]
Abstract
In viral infections and cancer tumours, negative health outcomes often correlate with increasing genetic diversity. Possible evolutionary processes for such relationships include mutant lineages escaping host control or diversity, per se, creating too many immune system targets. Another possibility is social heterosis where mutations and replicative errors create clonal lineages varying in intrinsic capability for successful dispersal; improved environmental buffering; resource extraction or effective defence against immune systems. Rather than these capabilities existing in one genome, social heterosis proposes complementary synergies occur across lineages in close proximity. Diverse groups overcome host defences as interacting 'social genomes' with group genetic tool kits exceeding limited individual plasticity. To assess the possibility of social heterosis in viral infections and cancer progression, we conducted extensive literature searches for examples consistent with general and specific predictions from the social heterosis hypothesis. Numerous studies found supportive patterns in cancers across multiple tissues and in several families of RNA viruses. In viruses, social heterosis mechanisms probably result from long coevolutionary histories of competition between pathogen and host. Conversely, in cancers, social heterosis is a by-product of recent mutations. Investigating how social genomes arise and function in viral quasi-species swarms and cancer tumours may lead to new therapeutic approaches.
Collapse
Affiliation(s)
- Saba Ebrahimi
- Department of Ecology and Evolutionary Biology, University of California, 621 Young Drive South, Los Angeles, CA 90024, USA
| | - Peter Nonacs
- Department of Ecology and Evolutionary Biology, University of California, 621 Young Drive South, Los Angeles, CA 90024, USA
| |
Collapse
|
30
|
Hao Y, Lee HJ, Baraboo M, Burch K, Maurer T, Somarelli JA, Conant GC. Baby Genomics: Tracing the Evolutionary Changes That Gave Rise to Placentation. Genome Biol Evol 2021; 12:35-47. [PMID: 32053193 PMCID: PMC7144826 DOI: 10.1093/gbe/evaa026] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2020] [Indexed: 12/12/2022] Open
Abstract
It has long been challenging to uncover the molecular mechanisms behind striking morphological innovations such as mammalian pregnancy. We studied the power of a robust comparative orthology pipeline based on gene synteny to address such problems. We inferred orthology relations between human genes and genes from each of 43 other vertebrate genomes, resulting in ∼18,000 orthologous pairs for each genome comparison. By identifying genes that first appear coincident with origin of the placental mammals, we hypothesized that we would define a subset of the genome enriched for genes that played a role in placental evolution. We thus pinpointed orthologs that appeared before and after the divergence of eutherian mammals from marsupials. Reinforcing previous work, we found instead that much of the genetic toolkit of mammalian pregnancy evolved through the repurposing of preexisting genes to new roles. These genes acquired regulatory controls for their novel roles from a group of regulatory genes, many of which did in fact originate at the appearance of the eutherians. Thus, orthologs appearing at the origin of the eutherians are enriched in functions such as transcriptional regulation by Krüppel-associated box-zinc-finger proteins, innate immune responses, keratinization, and the melanoma-associated antigen protein class. Because the cellular mechanisms of invasive placentae are similar to those of metastatic cancers, we then used our orthology inferences to explore the association between placenta invasion and cancer metastasis. Again echoing previous work, we find that genes that are phylogenetically older are more likely to be implicated in cancer development.
Collapse
Affiliation(s)
- Yue Hao
- Bioinformatics Research Center, North Carolina State University
| | - Hyuk Jin Lee
- Division of Biological Sciences, University of Missouri-Columbia
| | | | | | | | - Jason A Somarelli
- Duke Cancer Institute, Duke University Medical Center.,Department of Medicine, Duke University School of Medicine
| | - Gavin C Conant
- Bioinformatics Research Center, North Carolina State University.,Division of Animal Sciences, University of Missouri-Columbia.,Program in Genetics, North Carolina State University.,Department of Biological Sciences, North Carolina State University
| |
Collapse
|
31
|
Mathavarajah S, VanIderstine C, Dellaire G, Huber RJ. Cancer and the breakdown of multicellularity: What Dictyostelium discoideum, a social amoeba, can teach us. Bioessays 2021; 43:e2000156. [PMID: 33448043 DOI: 10.1002/bies.202000156] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 12/11/2020] [Accepted: 12/17/2020] [Indexed: 01/01/2023]
Abstract
Ancient pathways promoting unicellularity and multicellularity are associated with cancer, the former being pro-oncogenic and the latter acting to suppress oncogenesis. However, there are only a limited number of non-vertebrate models for studying these pathways. Here, we review Dictyostelium discoideum and describe how it can be used to understand these gene networks. D. discoideum has a unicellular and multicellular life cycle, making it possible to study orthologs of cancer-associated genes in both phases. During development, differentiated amoebae form a fruiting body composed of a mass of spores that are supported atop a stalk. A portion of the cells sacrifice themselves to become non-reproductive stalk cells. Cheating disrupts the principles of multicellularity, as cheater cells alter their cell fate to preferentially become spores. Importantly, D. discoideum has gene networks and several strategies for maintaining multicellularity. Therefore, D. discoideum can help us better understand how conserved genes and pathways involved in multicellularity also influence cancer development, potentially identifying new therapeutic avenues.
Collapse
Affiliation(s)
- Sabateeshan Mathavarajah
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Carter VanIderstine
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Graham Dellaire
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Biochemistry and Molecular Biology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Robert J Huber
- Department of Biology, Trent University, Peterborough, Ontario, Canada
| |
Collapse
|
32
|
Erenpreisa J, Salmina K, Anatskaya O, Cragg MS. Paradoxes of cancer: Survival at the brink. Semin Cancer Biol 2020; 81:119-131. [PMID: 33340646 DOI: 10.1016/j.semcancer.2020.12.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 12/17/2022]
Abstract
The fundamental understanding of how Cancer initiates, persists and then progresses is evolving. High-resolution technologies, including single-cell mutation and gene expression measurements, are now attainable, providing an ever-increasing insight into the molecular details. However, this higher resolution has shown that somatic mutation theory itself cannot explain the extraordinary resistance of cancer to extinction. There is a need for a more Systems-based framework of understanding cancer complexity, which in particular explains the regulation of gene expression during cell-fate decisions. Cancer displays a series of paradoxes. Here we attempt to approach them from the view-point of adaptive exploration of gene regulatory networks at the edge of order and chaos, where cell-fate is changed by oscillations between alternative regulators of cellular senescence and reprogramming operating through self-organisation. On this background, the role of polyploidy in accessing the phylogenetically pre-programmed "oncofetal attractor" state, related to unicellularity, and the de-selection of unsuitable variants at the brink of cell survival is highlighted. The concepts of the embryological and atavistic theory of cancer, cancer cell "life-cycle", and cancer aneuploidy paradox are dissected under this lense. Finally, we challenge researchers to consider that cancer "defects" are mostly the adaptation tools of survival programs that have arisen during evolution and are intrinsic of cancer. Recognition of these features should help in the development of more successful anti-cancer treatments.
Collapse
Affiliation(s)
| | - Kristine Salmina
- Latvian Biomedical Research and Study Centre, Riga, LV-1067, Latvia
| | | | - Mark S Cragg
- Centre for Cancer Immunology, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| |
Collapse
|
33
|
Clairambault J. Stepping From Modeling Cancer Plasticity to the Philosophy of Cancer. Front Genet 2020; 11:579738. [PMID: 33329717 PMCID: PMC7710795 DOI: 10.3389/fgene.2020.579738] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 10/03/2020] [Indexed: 12/13/2022] Open
Affiliation(s)
- Jean Clairambault
- Laboratoire Jacques-Louis Lions, BC 187, Sorbonne Université, Paris, France
- Inria, Paris, France
| |
Collapse
|
34
|
Castillo SP, Keymer JE, Marquet PA. Do microenvironmental changes disrupt multicellular organisation with ageing, enacting and favouring the cancer cell phenotype? Bioessays 2020; 43:e2000126. [PMID: 33184914 DOI: 10.1002/bies.202000126] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 12/13/2022]
Abstract
Cancer is a singular cellular state, the emergence of which destabilises the homeostasis reached through the evolution to multicellularity. We present the idea that the onset of the cellular disobedience to the metazoan functional and structural architecture, known as the cancer phenotype, is triggered by changes in the cell's external environment that occur with ageing: what ensues is a breach of the social contract of multicellular life characteristic of metazoans. By integrating old ideas with new evidence, we propose that with ageing the environmental information that maintains a multicellular organisation is eroded, rewiring internal processes of the cell, and resulting in an internal shift towards an ancestral condition resulting in the pseudo-multicellular cancer phenotype. Once that phenotype emerges, a new local social contract is built, different from the homeostatic one, leading to tumour formation and the foundation of a novel local ecosystem.
Collapse
Affiliation(s)
- Simon P Castillo
- Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Instituto de Ecología y Biodiversidad de Chile (IEB) Chile, Santiago, Chile
| | - Juan E Keymer
- Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Instituto de Física, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Ciencias Naturales y Tecnología, Universidad de Aysén, Coyhaique, Chile
| | - Pablo A Marquet
- Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Instituto de Ecología y Biodiversidad de Chile (IEB) Chile, Santiago, Chile.,Instituto de Sistemas Complejos de Valparaíso (ISCV), Valparaíso, Chile.,Santa Fe Institute, Santa Fe, New Mexico, USA
| |
Collapse
|
35
|
Aubier TG, Galipaud M, Erten EY, Kokko H. Transmissible cancers and the evolution of sex under the Red Queen hypothesis. PLoS Biol 2020; 18:e3000916. [PMID: 33211684 PMCID: PMC7676742 DOI: 10.1371/journal.pbio.3000916] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 09/21/2020] [Indexed: 12/14/2022] Open
Abstract
The predominance of sexual reproduction in eukaryotes remains paradoxical in evolutionary theory. Of the hypotheses proposed to resolve this paradox, the 'Red Queen hypothesis' emphasises the potential of antagonistic interactions to cause fluctuating selection, which favours the evolution and maintenance of sex. Whereas empirical and theoretical developments have focused on host-parasite interactions, the premises of the Red Queen theory apply equally well to any type of antagonistic interactions. Recently, it has been suggested that early multicellular organisms with basic anticancer defences were presumably plagued by antagonistic interactions with transmissible cancers and that this could have played a pivotal role in the evolution of sex. Here, we dissect this argument using a population genetic model. One fundamental aspect distinguishing transmissible cancers from other parasites is the continual production of cancerous cell lines from hosts' own tissues. We show that this influx dampens fluctuating selection and therefore makes the evolution of sex more difficult than in standard Red Queen models. Although coevolutionary cycling can remain sufficient to select for sex under some parameter regions of our model, we show that the size of those regions shrinks once we account for epidemiological constraints. Altogether, our results suggest that horizontal transmission of cancerous cells is unlikely to cause fluctuating selection favouring sexual reproduction. Nonetheless, we confirm that vertical transmission of cancerous cells can promote the evolution of sex through a separate mechanism, known as similarity selection, that does not depend on coevolutionary fluctuations.
Collapse
Affiliation(s)
- Thomas G. Aubier
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Matthias Galipaud
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - E. Yagmur Erten
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Hanna Kokko
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| |
Collapse
|
36
|
Abstract
In this review, we propose a recension of biological observations on plasticity in cancer cell populations and discuss theoretical considerations about their mechanisms.
Collapse
Affiliation(s)
- Shensi Shen
- Inserm U981, Institut Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Jean Clairambault
- Sorbonne Université, CNRS, Université de Paris, Laboratoire JacquesLouis Lions (LJLL), & Inria Mamba team, Paris, France
| |
Collapse
|
37
|
Erten EY, Kokko H. From zygote to a multicellular soma: Body size affects optimal growth strategies under cancer risk. Evol Appl 2020. [DOI: 10.1111/eva.12969] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- E. Yagmur Erten
- Department of Evolutionary Biology and Environmental Studies University of Zurich Zurich Switzerland
| | - Hanna Kokko
- Department of Evolutionary Biology and Environmental Studies University of Zurich Zurich Switzerland
| |
Collapse
|
38
|
Abstract
This review explores the incessant evolutionary interaction and co-development between immune system evolution and somatic evolution, to put it into context with the short, over 60-year, detailed human study of this extraordinary protective system. Over millions of years, the evolutionary development of the immune system in most species has been continuously shaped by environmental interactions between microbes, and aberrant somatic cells, including malignant cells. Not only has evolution occurred in somatic cells to adapt to environmental pressures for survival purposes, but the immune system and its function has been successively shaped by those same evolving somatic cells and microorganisms through continuous adaptive symbiotic processes of progressive simultaneous immunological and somatic change to provide what we observe today. Indeed, the immune system as an environmental influence has also shaped somatic and microbial evolution. Although the immune system is tuned to primarily controlling microbiological challenges for combatting infection, it can also remove damaged and aberrant cells, including cancer cells to induce long-term cures. Our knowledge of how this occurs is just emerging. Here we consider the connections between immunity, infection and cancer, by searching back in time hundreds of millions of years to when multi-cellular organisms first began. We are gradually appreciating that the immune system has evolved into a truly brilliant and efficient protective mechanism, the importance of which we are just beginning to now comprehend. Understanding these aspects will likely lead to more effective cancer and other therapies.
Collapse
Affiliation(s)
- Brendon J Coventry
- Discipline of Surgery, Royal Adelaide Hospital, University of Adelaide, Adelaide, South Australia, 5000, Australia
| | - Maciej Henneberg
- Biological Anthropology and Comparative Anatomy Unit, University of Adelaide, Adelaide, South Australia, 5005, Australia.,Institute of Evolutionary Medicine, The University of Zurich, 8057 Zurich, Switzerland
| |
Collapse
|