1
|
Mahadeva M, Niestępski S, Kowacz M. Modifying membrane potential synchronously controls the somite's formation periodicity and growth. Dev Biol 2025; 517:317-326. [PMID: 39521163 DOI: 10.1016/j.ydbio.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/22/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Coordination between periodicity of somite formation and somite growth is crucial for regular body pattern formation during somitogenesis. Yet, the specific mechanism that links the two processes remains unclear. Using chick embryos, we demonstrate that both temporal and spatial features can be simultaneously controlled by membrane potential (Vm) of somite-forming cells. Our findings show that somites hyperpolarize as they mature, displaying step-like changes in Vm observed between specific groups of somites, reflecting the reported onset of biochemical and structural changes within them. We modify Vm by changing chemical compositions of the microenvironment of the embryo. Alteration of Vm sets a new pace of somite formation (cell migration and self-assembly) and its concurrent growth (cell proliferation) without disturbing the somite's regular aspect ratio. Our results therefore suggest that Vm has the ability to orchestrate cell proliferation, migration and self-assembly - processes that are hallmarks of embryogenesis, tumorigenesis and tissue regeneration.
Collapse
Affiliation(s)
- Manohara Mahadeva
- Department of Reproductive Immunology & Pathology, Institute of Animal Reproduction and Food Research Polish Academy of Sciences, 10-748, Olsztyn, Poland.
| | - Sebastian Niestępski
- Department of Reproductive Immunology & Pathology, Institute of Animal Reproduction and Food Research Polish Academy of Sciences, 10-748, Olsztyn, Poland.
| | - Magdalena Kowacz
- Department of Reproductive Immunology & Pathology, Institute of Animal Reproduction and Food Research Polish Academy of Sciences, 10-748, Olsztyn, Poland.
| |
Collapse
|
2
|
Roy D, Michalet X, Miller EW, Bharadwaj K, Weiss S. Towards measurements of absolute membrane potential in Bacillus subtilis using fluorescence lifetime. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.13.598880. [PMID: 38915670 PMCID: PMC11195253 DOI: 10.1101/2024.06.13.598880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Membrane potential (MP) changes can provide a simple readout of bacterial functional and metabolic state or stress levels. While several optical methods exist for measuring fast changes in MP in excitable cells, there is a dearth of such methods for absolute and precise measurements of steady-state membrane potentials (MPs) in bacterial cells. Conventional electrode-based methods for the measurement of MP are not suitable for calibrating optical methods in small bacterial cells. While optical measurement based on Nernstian indicators have been successfully used, they do not provide absolute or precise quantification of MP or its changes. We present a novel, calibrated MP recording approach to address this gap. In this study, we used a fluorescence lifetime-based approach to obtain a single-cell resolved distribution of the membrane potential and its changes upon extracellular chemical perturbation in a population of bacterial cells for the first time. Our method is based on (i) a unique VoltageFluor (VF) optical transducer, whose fluorescence lifetime varies as a function of MP via photoinduced electron transfer (PeT) and (ii) a quantitative phasor-FLIM analysis for high-throughput readout. This method allows MP changes to be easily visualized, recorded and quantified. By artificially modulating potassium concentration gradients across the membrane using an ionophore, we have obtained a Bacillus subtilis-specific MP versus VF lifetime calibration and estimated the MP for unperturbed B. subtilis cells to be -65 mV (in MSgg), 127 mV (in M9) and that for chemically depolarized cells as -14 mV (in MSgg). We observed a population level MP heterogeneity of ~6-10 mV indicating a considerable degree of diversity of physiological and metabolic states among individual cells. Our work paves the way for deeper insights into bacterial electrophysiology and bioelectricity research.
Collapse
Affiliation(s)
- Debjit Roy
- UCLA-DOE Institute for Genomics and Proteomics, Department of Biological Chemistry, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Xavier Michalet
- Department of Chemistry and Biochemistry, University of California at Los Angeles, Los Angeles, CA 90095, USA
- California Nano Systems Institute, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Evan W. Miller
- Departments of Chemistry, Molecular and Cell Biology, Helen Wills Neuroscience Institute, University of California at Berkeley, CA 94720, USA
| | - Kiran Bharadwaj
- UCLA-DOE Institute for Genomics and Proteomics, Department of Biological Chemistry, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Shimon Weiss
- UCLA-DOE Institute for Genomics and Proteomics, Department of Biological Chemistry, University of California at Los Angeles, Los Angeles, CA 90095, USA
- Department of Chemistry and Biochemistry, University of California at Los Angeles, Los Angeles, CA 90095, USA
- Department of Physiology, University of California at Los Angeles, Los Angeles, CA 90095, USA
- California Nano Systems Institute, University of California at Los Angeles, Los Angeles, CA 90095, USA
- Department of Physics, Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| |
Collapse
|
3
|
Peng F, Ai X, Bu X, Zhao Z, Gao B. Visualizing Mitochondrial Membrane Potential with FRET Probes: Integrating Fluorescence Intensity Ratio and Lifetime Imaging. J Fluoresc 2024:10.1007/s10895-024-03929-w. [PMID: 39320633 DOI: 10.1007/s10895-024-03929-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 09/04/2024] [Indexed: 09/26/2024]
Abstract
Mitochondrial membrane potential (MMP) is crucial for mitochondrial function and serves as a key indicator of cellular health and metabolic activity. Traditional lipophilic cationic fluorescence intensity probes are unavoidably influenced by probe concentration, laser intensity, and photobleaching, limiting their accuracy. To address these issues, we designed and synthesized a pair of fluorescence molecules, OR-C8 and SiR-BA, based on the Förster Resonance Energy Transfer (FRET) mechanism, for dual-modality visualization of MMP. OR-C8 anchors to the inner mitochondrial membrane through strong hydrophobic interactions, while SiR-BA is expelled from mitochondria when MMP decreases, thereby regulating the FRET process. During MMP reduction, the fluorescence intensity and lifetime of OR-C8 increase, while the fluorescence intensity of SiR-BA decreases. By combining changes in fluorescence intensity ratio and fluorescence lifetime, dual-modality visualization of MMP was achieved. This method not only accurately reflects MMP changes but also provides a novel tool for in-depth studies of mitochondrial function and related disease mechanisms, offering significant potential for advancing mitochondrial research and therapeutic development.
Collapse
Affiliation(s)
- Fei Peng
- College of Chemistry and Materials Science, Hebei University, Baoding, 071002, China.
- Key Laboratory of Analytical Science and Technology of Hebei Province, Hebei University, Baoding, Hebei, 071002, China.
| | - Xiangnan Ai
- College of Chemistry and Materials Science, Hebei University, Baoding, 071002, China
| | - Xiaoyu Bu
- College of Chemistry and Materials Science, Hebei University, Baoding, 071002, China
| | - Zixuan Zhao
- College of Chemistry and Materials Science, Hebei University, Baoding, 071002, China
| | - Baoxiang Gao
- College of Chemistry and Materials Science, Hebei University, Baoding, 071002, China.
- Key Laboratory of Analytical Science and Technology of Hebei Province, Hebei University, Baoding, Hebei, 071002, China.
| |
Collapse
|
4
|
Hughes MP, Clarke KSP, Hoque R, Griffiths OV, Kruchek EJ, Johnson MP, Tariq MH, Kohli N, Lewis R, Labeed FH. Label-free, non-contact determination of resting membrane potential using dielectrophoresis. Sci Rep 2024; 14:18477. [PMID: 39122771 PMCID: PMC11316104 DOI: 10.1038/s41598-024-69000-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
Measurement of cellular resting membrane potential (RMP) is important in understanding ion channels and their role in regulation of cell function across a wide range of cell types. However, methods available for the measurement of RMP (including patch clamp, microelectrodes, and potential-sensitive fluorophores) are expensive, slow, open to operator bias, and often result in cell destruction. We present non-contact, label-free membrane potential estimation which uses dielectrophoresis to determine the cytoplasm conductivity slope as a function of medium conductivity. By comparing this to patch clamp data available in the literature, we have demonstratet the accuracy of this approach using seven different cell types, including primary suspension cells (red blood cells, platelets), cultured suspension cells (THP-1), primary adherent cells (chondrocytes, human umbilical mesenchymal stem cells), and adherent (HeLa) and suspension (Jurkat) cancer cell lines. Analysis of the effect of ion channel inhibitors suggests the effects of pharmaceutical agents (TEA on HeLa; DMSO and neuraminidase on red blood cells) can also be measured. Comparison with published values of membrane potential suggest that the differences between our estimates and values recorded by patch clamp are accurate to within published margins of error. The method is low-cost, non-destructive, operator-independent and label-free, and has previously been shown to allow cells to be recovered after measurement.
Collapse
Affiliation(s)
- Michael Pycraft Hughes
- Department of Biomedical Engineering and Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, UAE.
- Healthcare Engineering Innovation Center, Khalifa University of Science and Technology, Abu Dhabi, UAE.
| | - Krista S P Clarke
- Centre for Biomedical Engineering, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - Rashedul Hoque
- Centre for Biomedical Engineering, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - Oreoluwa V Griffiths
- Centre for Biomedical Engineering, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - Emily J Kruchek
- Centre for Biomedical Engineering, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - Matthew P Johnson
- Department of Biomedical Engineering and Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, UAE
| | - Muhammad Hamza Tariq
- Department of Biomedical Engineering and Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, UAE
| | - Nupur Kohli
- Department of Biomedical Engineering and Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, UAE
- Healthcare Engineering Innovation Center, Khalifa University of Science and Technology, Abu Dhabi, UAE
| | - Rebecca Lewis
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - Fatima H Labeed
- Department of Biology, United Arab Emirates University, Al Ain, UAE.
| |
Collapse
|
5
|
Peng F, Ai X, Sun J, Ge X, Li M, Xi P, Gao B. Fluorescence Lifetime Super-Resolution Imaging Unveil the Dynamic Relationship between Mitochondrial Membrane Potential and Cristae Structure Using the Förster Resonance Energy Transfer Strategy. Anal Chem 2024; 96:11052-11060. [PMID: 38924514 DOI: 10.1021/acs.analchem.4c01905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Mitochondrial cristae, invaginations of the inner mitochondrial membrane (IMM) into the matrix, are the main site for the generation of ATP via oxidative phosphorylation, and mitochondrial membrane potential (MMP). Synchronous study of the dynamic relationship between cristae and MMP is very important for further understanding of mitochondrial function. Due to the lack of suitable IMM probes and imaging techniques, the dynamic relationship between MMP and cristae structure alterations remains poorly understood. We designed a pair of FRET-based molecular probes, with the donor (OR-LA) being rhodamine modified with mitochondrial coenzyme lipoic acid and the acceptor (SiR-BA) being silicon-rhodamine modified with a butyl chain, for simultaneous dynamic monitoring of mitochondrial cristae structure and MMP. The FRET process of the molecular pair in mitochondria is regulated by MMP, enabling more precise visualization of MMP through fluorescence intensity ratio and fluorescence lifetime. By combining FRET with FLIM super-resolution imaging technology, we achieved simultaneous dynamic monitoring of mitochondrial cristae structure and MMP, revealing that during the decline of MMP, there is a progression involving cristae dilation, fragmentation, mitochondrial vacuolization, and eventual rupture. Significantly, we successfully observed that the rapid decrease in MMP at the site of mitochondrial membrane rupture may be a critical factor in mitochondrial fragmentation. These data collectively reveal the dynamic relationship between cristae structural alterations and MMP decline, laying a foundation for further investigation into cellular energy regulation mechanisms and therapeutic strategies for mitochondria-related diseases.
Collapse
Affiliation(s)
- Fei Peng
- College of Chemistry and Materials Science, Hebei University, Baoding 071002, China
| | - Xiangnan Ai
- College of Chemistry and Materials Science, Hebei University, Baoding 071002, China
| | - Jing Sun
- College of Chemistry and Materials Science, Hebei University, Baoding 071002, China
| | - Xichuan Ge
- College of Chemistry and Materials Science, Hebei University, Baoding 071002, China
| | - Meiqi Li
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Peng Xi
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China
| | - Baoxiang Gao
- College of Chemistry and Materials Science, Hebei University, Baoding 071002, China
- Key Laboratory of Analytical Science and Technology of Hebei Province, Hebei University, Baoding, Hebei 071002, China
| |
Collapse
|
6
|
Kocheril PA, Wang H, Lee D, Naji N, Wei L. Nitrile Vibrational Lifetimes as Probes of Local Electric Fields. J Phys Chem Lett 2024; 15:5306-5314. [PMID: 38722706 PMCID: PMC11486452 DOI: 10.1021/acs.jpclett.4c00597] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2024]
Abstract
Optical measurements of electric fields have wide-ranging applications in the fields of chemistry and biology. Previously, such measurements focused on shifts in intensity or frequency. Here, we show that nitrile vibrational lifetimes can report local electric fields through ultrasensitive picosecond mid-infrared-near-infrared double-resonance fluorescence spectro-microscopy on Rhodamine 800. Using a robust convolution fitting approach, we observe that the nitrile vibrational lifetimes are strongly linearly correlated (R2 = 0.841) with solvent reaction fields. Supported by density functional theory, we rationalize this trend through a doorway model of intramolecular vibrational energy redistribution. This work provides new fundamental insights into the nature of vibrational energy flow in large polyatomic molecular systems and establishes a theoretical basis for electric field sensing with vibrational lifetimes, offering a new experimental dimension for probing intracellular electrostatics.
Collapse
Affiliation(s)
- Philip A. Kocheril
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Haomin Wang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Dongkwan Lee
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Noor Naji
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Lu Wei
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
7
|
Rühl P, Nair AG, Gawande N, Dehiwalage SNCW, Münster L, Schönherr R, Heinemann SH. An Ultrasensitive Genetically Encoded Voltage Indicator Uncovers the Electrical Activity of Non-Excitable Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307938. [PMID: 38526185 PMCID: PMC11132041 DOI: 10.1002/advs.202307938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/10/2024] [Indexed: 03/26/2024]
Abstract
Most animal cell types are classified as non-excitable because they do not generate action potentials observed in excitable cells, such as neurons and muscle cells. Thus, resolving voltage signals in non-excitable cells demands sensors with exceptionally high voltage sensitivity. In this study, the ultrabright, ultrasensitive, and calibratable genetically encoded voltage sensor rEstus is developed using structure-guided engineering. rEstus is most sensitive in the resting voltage range of non-excitable cells and offers a 3.6-fold improvement in brightness change for fast voltage spikes over its precursor ASAP3. Using rEstus, it is uncovered that the membrane voltage in several non-excitable cell lines (A375, HEK293T, MCF7) undergoes spontaneous endogenous alterations on a second to millisecond timescale. Correlation analysis of these optically recorded voltage alterations provides a direct, real-time readout of electrical cell-cell coupling, showing that visually connected A375 and HEK293T cells are also largely electrically connected, while MCF7 cells are only weakly coupled. The presented work provides enhanced tools and methods for non-invasive voltage imaging in living cells and demonstrates that spontaneous endogenous membrane voltage alterations are not limited to excitable cells but also occur in a variety of non-excitable cell types.
Collapse
Affiliation(s)
- Philipp Rühl
- Center for Molecular Biomedicine, Department of BiophysicsFriedrich Schiller University Jena and Jena University HospitalD‐07745JenaGermany
| | - Anagha G. Nair
- Center for Molecular Biomedicine, Department of BiophysicsFriedrich Schiller University Jena and Jena University HospitalD‐07745JenaGermany
| | - Namrata Gawande
- Center for Molecular Biomedicine, Department of BiophysicsFriedrich Schiller University Jena and Jena University HospitalD‐07745JenaGermany
| | - Sassrika N. C. W. Dehiwalage
- Center for Molecular Biomedicine, Department of BiophysicsFriedrich Schiller University Jena and Jena University HospitalD‐07745JenaGermany
| | - Lukas Münster
- Center for Molecular Biomedicine, Department of BiophysicsFriedrich Schiller University Jena and Jena University HospitalD‐07745JenaGermany
| | - Roland Schönherr
- Center for Molecular Biomedicine, Department of BiophysicsFriedrich Schiller University Jena and Jena University HospitalD‐07745JenaGermany
| | - Stefan H. Heinemann
- Center for Molecular Biomedicine, Department of BiophysicsFriedrich Schiller University Jena and Jena University HospitalD‐07745JenaGermany
| |
Collapse
|
8
|
Gest AMM, Lazzari-Dean JR, Ortiz G, Yaeger-Weiss SK, Boggess SC, Miller EW. A red-emitting carborhodamine for monitoring and measuring membrane potential. Proc Natl Acad Sci U S A 2024; 121:e2315264121. [PMID: 38551837 PMCID: PMC10998576 DOI: 10.1073/pnas.2315264121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/25/2024] [Indexed: 04/02/2024] Open
Abstract
Biological membrane potentials, or voltages, are a central facet of cellular life. Optical methods to visualize cellular membrane voltages with fluorescent indicators are an attractive complement to traditional electrode-based approaches, since imaging methods can be high throughput, less invasive, and provide more spatial resolution than electrodes. Recently developed fluorescent indicators for voltage largely report changes in membrane voltage by monitoring voltage-dependent fluctuations in fluorescence intensity. However, it would be useful to be able to not only monitor changes but also measure values of membrane potentials. This study discloses a fluorescent indicator which can address both. We describe the synthesis of a sulfonated tetramethyl carborhodamine fluorophore. When this carborhodamine is conjugated with an electron-rich, methoxy (-OMe) containing phenylenevinylene molecular wire, the resulting molecule, CRhOMe, is a voltage-sensitive fluorophore with red/far-red fluorescence. Using CRhOMe, changes in cellular membrane potential can be read out using fluorescence intensity or lifetime. In fluorescence intensity mode, CRhOMe tracks fast-spiking neuronal action potentials (APs) with greater signal-to-noise than state-of-the-art BeRST 1 (another voltage-sensitive fluorophore). CRhOMe can also measure values of membrane potential. The fluorescence lifetime of CRhOMe follows a single exponential decay, substantially improving the quantification of membrane potential values using fluorescence lifetime imaging microscopy (FLIM). The combination of red-shifted excitation and emission, mono-exponential decay, and high voltage sensitivity enable fast FLIM recording of APs in cardiomyocytes. The ability to both monitor and measure membrane potentials with red light using CRhOMe makes it an important approach for studying biological voltages.
Collapse
Affiliation(s)
| | | | - Gloria Ortiz
- Department of Chemistry, University of California, Berkeley, CA 94720
| | | | - Steven C Boggess
- Department of Chemistry, University of California, Berkeley, CA 94720
| | - Evan W Miller
- Department of Chemistry, University of California, Berkeley, CA 94720
- Department of Molecular & Cell Biology, University of California, Berkeley, CA 94720
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720
| |
Collapse
|
9
|
Erazo-Oliveras A, Muñoz-Vega M, Salinas ML, Wang X, Chapkin RS. Dysregulation of cellular membrane homeostasis as a crucial modulator of cancer risk. FEBS J 2024; 291:1299-1352. [PMID: 36282100 PMCID: PMC10126207 DOI: 10.1111/febs.16665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 09/09/2022] [Accepted: 10/24/2022] [Indexed: 11/07/2022]
Abstract
Cellular membranes serve as an epicentre combining extracellular and cytosolic components with membranous effectors, which together support numerous fundamental cellular signalling pathways that mediate biological responses. To execute their functions, membrane proteins, lipids and carbohydrates arrange, in a highly coordinated manner, into well-defined assemblies displaying diverse biological and biophysical characteristics that modulate several signalling events. The loss of membrane homeostasis can trigger oncogenic signalling. More recently, it has been documented that select membrane active dietaries (MADs) can reshape biological membranes and subsequently decrease cancer risk. In this review, we emphasize the significance of membrane domain structure, organization and their signalling functionalities as well as how loss of membrane homeostasis can steer aberrant signalling. Moreover, we describe in detail the complexities associated with the examination of these membrane domains and their association with cancer. Finally, we summarize the current literature on MADs and their effects on cellular membranes, including various mechanisms of dietary chemoprevention/interception and the functional links between nutritional bioactives, membrane homeostasis and cancer biology.
Collapse
Affiliation(s)
- Alfredo Erazo-Oliveras
- Program in Integrative Nutrition and Complex Diseases; Texas A&M University; College Station, Texas, 77843; USA
- Department of Nutrition; Texas A&M University; College Station, Texas, 77843; USA
| | - Mónica Muñoz-Vega
- Program in Integrative Nutrition and Complex Diseases; Texas A&M University; College Station, Texas, 77843; USA
- Department of Nutrition; Texas A&M University; College Station, Texas, 77843; USA
| | - Michael L. Salinas
- Program in Integrative Nutrition and Complex Diseases; Texas A&M University; College Station, Texas, 77843; USA
- Department of Nutrition; Texas A&M University; College Station, Texas, 77843; USA
| | - Xiaoli Wang
- Program in Integrative Nutrition and Complex Diseases; Texas A&M University; College Station, Texas, 77843; USA
- Department of Nutrition; Texas A&M University; College Station, Texas, 77843; USA
| | - Robert S. Chapkin
- Program in Integrative Nutrition and Complex Diseases; Texas A&M University; College Station, Texas, 77843; USA
- Department of Nutrition; Texas A&M University; College Station, Texas, 77843; USA
- Center for Environmental Health Research; Texas A&M University; College Station, Texas, 77843; USA
| |
Collapse
|
10
|
Gest AM, Grenier V, Miller EW. Optical Estimation of Membrane Potential Values Using Fluorescence Lifetime Imaging Microscopy and Hybrid Chemical-Genetic Voltage Indicators. Bioelectricity 2024; 6:34-41. [PMID: 38516638 PMCID: PMC10951690 DOI: 10.1089/bioe.2023.0027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024] Open
Abstract
Introduction Membrane potential (Vm), the voltage across a cell membrane, is an important biophysical phenomenon, central to the physiology of cells, tissues, and organisms. Voltage-sensitive fluorescent indicators are a powerful method for interrogating membrane potential in living systems, but most indicators are best suited for detecting changes in membrane potential rather than measuring values of the membrane potential. One promising approach is to use fluorescence lifetime imaging microscopy (FLIM) in combination of chemically synthesized dyes to estimate a value of membrane potential. However, a drawback is that chemically synthesized dyes show poor specificity of staining. Objectives To address this problem, we applied a chemical-genetic voltage imaging approach to FLIM to enable optical estimation of membrane potential values from genetically defined cells. Results In this report, we detail the characterization and evaluation of two of these systems in mammalian cells. We further validate the use of a FLIM-based chemical genetic voltage indicator in mammalian neurons. Conclusions Finally, we discuss opportunities for future improvements to chemical-genetic FLIM-based voltage indicators.
Collapse
Affiliation(s)
- Anneliese M.M. Gest
- Department of Chemistry, University of California, Berkeley, California, USA
| | - Vincent Grenier
- Department of Chemistry, University of California, Berkeley, California, USA
| | - Evan W. Miller
- Department of Chemistry, University of California, Berkeley, California, USA
- Department of Molecular & Cell Biology, University of California, Berkeley, California, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, California, USA
| |
Collapse
|
11
|
Ma P, Chen P, Tilden EI, Aggarwal S, Oldenborg A, Chen Y. Fast and slow: Recording neuromodulator dynamics across both transient and chronic time scales. SCIENCE ADVANCES 2024; 10:eadi0643. [PMID: 38381826 PMCID: PMC10881037 DOI: 10.1126/sciadv.adi0643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 01/17/2024] [Indexed: 02/23/2024]
Abstract
Neuromodulators transform animal behaviors. Recent research has demonstrated the importance of both sustained and transient change in neuromodulators, likely due to tonic and phasic neuromodulator release. However, no method could simultaneously record both types of dynamics. Fluorescence lifetime of optical reporters could offer a solution because it allows high temporal resolution and is impervious to sensor expression differences across chronic periods. Nevertheless, no fluorescence lifetime change across the entire classes of neuromodulator sensors was previously known. Unexpectedly, we find that several intensity-based neuromodulator sensors also exhibit fluorescence lifetime responses. Furthermore, we show that lifetime measures in vivo neuromodulator dynamics both with high temporal resolution and with consistency across animals and time. Thus, we report a method that can simultaneously measure neuromodulator change over transient and chronic time scales, promising to reveal the roles of multi-time scale neuromodulator dynamics in diseases, in response to therapies, and across development and aging.
Collapse
Affiliation(s)
- Pingchuan Ma
- Department of Neuroscience, Washington University, St. Louis, MO 63110, USA
- Ph.D. Program in Neuroscience, Washington University, St. Louis, MO 63110, USA
| | - Peter Chen
- Department of Neuroscience, Washington University, St. Louis, MO 63110, USA
- Master’s Program in Biomedical Engineering, Washington University, St. Louis, MO 63110, USA
| | - Elizabeth I. Tilden
- Department of Neuroscience, Washington University, St. Louis, MO 63110, USA
- Ph.D. Program in Neuroscience, Washington University, St. Louis, MO 63110, USA
| | - Samarth Aggarwal
- Department of Neuroscience, Washington University, St. Louis, MO 63110, USA
| | - Anna Oldenborg
- Department of Neuroscience, Washington University, St. Louis, MO 63110, USA
| | - Yao Chen
- Department of Neuroscience, Washington University, St. Louis, MO 63110, USA
| |
Collapse
|
12
|
McMillen P, Levin M. Optical Estimation of Bioelectric Patterns in Living Embryos. Methods Mol Biol 2024; 2745:91-102. [PMID: 38060181 DOI: 10.1007/978-1-0716-3577-3_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Fluorescent lifetime imaging (FLIM) is a powerful tool for visualizing physiological parameters in vivo. We present here a 3-dye strategy for mapping bioelectric patterns in living Xenopus laevis embryos leveraging the quantitative power of fluorescent lifetime imaging. We discuss a general strategy for disentangling physiological artifacts from true bioelectric signals, a method for dye delivery via transcardial injection, and how to visualize and interpret the fluorescent lifetime of the dyes in vivo.
Collapse
Affiliation(s)
- Patrick McMillen
- Department of Biology, Allen Discovery Center, Tufts University, Medford, MA, USA
| | - Michael Levin
- Department of Biology, Allen Discovery Center, Tufts University, Medford, MA, USA.
- Wyss Institute, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
13
|
Handlin LJ, Dai G. Direct regulation of the voltage sensor of HCN channels by membrane lipid compartmentalization. Nat Commun 2023; 14:6595. [PMID: 37852983 PMCID: PMC10584925 DOI: 10.1038/s41467-023-42363-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/09/2023] [Indexed: 10/20/2023] Open
Abstract
Ion channels function within a membrane environment characterized by dynamic lipid compartmentalization. Limited knowledge exists regarding the response of voltage-gated ion channels to transmembrane potential within distinct membrane compartments. By leveraging fluorescence lifetime imaging microscopy (FLIM) and Förster resonance energy transfer (FRET), we visualized the localization of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels in membrane domains. HCN4 exhibits a greater propensity for incorporation into ordered lipid domains compared to HCN1. To investigate the conformational changes of the S4 helix voltage sensor of HCN channels, we used dual stop-codon suppression to incorporate different noncanonical amino acids, orthogonal click chemistry for site-specific fluorescence labeling, and transition metal FLIM-FRET. Remarkably, altered FRET levels were observed between VSD sites within HCN channels upon disruption of membrane domains. We propose that the voltage-sensor rearrangements, directly influenced by membrane lipid domains, can explain the heightened activity of pacemaker HCN channels when localized in cholesterol-poor, disordered lipid domains, leading to membrane hyperexcitability and diseases.
Collapse
Affiliation(s)
- Lucas J Handlin
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, 1100 South Grand Blvd., St. Louis, MO, 63104, USA
| | - Gucan Dai
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, 1100 South Grand Blvd., St. Louis, MO, 63104, USA.
| |
Collapse
|
14
|
Gest AMM, Lazzari-Dean JR, Ortiz G, Yaeger-Weiss SK, Boggess SC, Miller EW. A red-emitting carborhodamine for monitoring and measuring membrane potential. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.06.561080. [PMID: 37873283 PMCID: PMC10592620 DOI: 10.1101/2023.10.06.561080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Biological membrane potentials, or voltages, are a central facet of cellular life. Optical methods to visualize cellular membrane voltages with fluorescent indicators are an attractive complement to traditional electrode-based approaches, since imaging methods can be high throughput, less invasive, and provide more spatial resolution than electrodes. Recently developed fluorescent indicators for voltage largely report changes in membrane voltage by monitoring voltage-dependent fluctuations in fluorescence intensity. However, it would be useful to be able to not only monitor changes, but also measure values of membrane potentials. This study discloses a new fluorescent indicator which can address both. We describe the synthesis of a new sulfonated tetramethyl carborhodamine fluorophore. When this carborhodamine is conjugated with an electron-rich, methoxy (-OMe) containing phenylenevinylene molecular wire, the resulting molecule, CRhOMe, is a voltage-sensitive fluorophore with red/far-red fluorescence. Using CRhOMe, changes in cellular membrane potential can be read out using fluorescence intensity or lifetime. In fluorescence intensity mode, CRhOMe tracks fast-spiking neuronal action potentials with greater signal-to-noise than state-of-the-art BeRST (another voltage-sensitive fluorophore). CRhOMe can also measure values of membrane potential. The fluorescence lifetime of CRhOMe follows a single exponential decay, substantially improving the quantification of membrane potential values using fluorescence lifetime imaging microscopy (FLIM). The combination of red-shifted excitation and emission, mono-exponential decay, and high voltage sensitivity enable fast FLIM recording of action potentials in cardiomyocytes. The ability to both monitor and measure membrane potentials with red light using CRhOMe makes it an important approach for studying biological voltages.
Collapse
Affiliation(s)
| | | | - Gloria Ortiz
- Department of Chemistry, University of California, Berkeley
| | | | | | - Evan W Miller
- Department of Chemistry, University of California, Berkeley
- Department of Molecular & Cell Biology, University of California, Berkeley
- Helen Wills Neuroscience Institute, University of California, Berkeley
| |
Collapse
|
15
|
Bowman AJ, Huang C, Schnitzer MJ, Kasevich MA. Wide-field fluorescence lifetime imaging of neuron spiking and subthreshold activity in vivo. Science 2023; 380:1270-1275. [PMID: 37347862 PMCID: PMC10361454 DOI: 10.1126/science.adf9725] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 05/16/2023] [Indexed: 06/24/2023]
Abstract
The development of voltage-sensitive fluorescent probes suggests fluorescence lifetime as a promising readout for electrical activity in biological systems. Existing approaches fail to achieve the speed and sensitivity required for voltage imaging in neuroscience applications. We demonstrated that wide-field electro-optic fluorescence lifetime imaging microscopy (EO-FLIM) allows lifetime imaging at kilohertz frame-acquisition rates, spatially resolving action potential propagation and subthreshold neural activity in live adult Drosophila. Lifetime resolutions of <5 picoseconds at 1 kilohertz were achieved for single-cell voltage recordings. Lifetime readout is limited by photon shot noise, and the method provides strong rejection of motion artifacts and technical noise sources. Recordings revealed local transmembrane depolarizations, two types of spikes with distinct fluorescence lifetimes, and phase locking of spikes to an external mechanical stimulus.
Collapse
Affiliation(s)
- Adam J Bowman
- Physics Department, Stanford University, Stanford, CA 94305, USA
| | - Cheng Huang
- James H. Clark Center, Stanford University, Stanford, CA 94305, USA
| | - Mark J Schnitzer
- James H. Clark Center, Stanford University, Stanford, CA 94305, USA
- CNC Program, Stanford University, Stanford, CA 94305, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Mark A Kasevich
- Physics Department, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
16
|
Nikolaev DM, Mironov VN, Shtyrov AA, Kvashnin ID, Mereshchenko AS, Vasin AV, Panov MS, Ryazantsev MN. Fluorescence Imaging of Cell Membrane Potential: From Relative Changes to Absolute Values. Int J Mol Sci 2023; 24:2435. [PMID: 36768759 PMCID: PMC9916766 DOI: 10.3390/ijms24032435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 01/28/2023] Open
Abstract
Membrane potential is a fundamental property of biological cells. Changes in membrane potential characterize a vast number of vital biological processes, such as the activity of neurons and cardiomyocytes, tumorogenesis, cell-cycle progression, etc. A common strategy to record membrane potential changes that occur in the process of interest is to utilize organic dyes or genetically-encoded voltage indicators with voltage-dependent fluorescence. Sensors are introduced into target cells, and alterations of fluorescence intensity are recorded with optical methods. Techniques that allow recording relative changes of membrane potential and do not take into account fluorescence alterations due to factors other than membrane voltage are already widely used in modern biological and biomedical studies. Such techniques have been reviewed previously in many works. However, in order to investigate a number of processes, especially long-term processes, the measured signal must be corrected to exclude the contribution from voltage-independent factors or even absolute values of cell membrane potential have to be evaluated. Techniques that enable such measurements are the subject of this review.
Collapse
Affiliation(s)
- Dmitrii M. Nikolaev
- Institute of Biomedical Systems and Biotechnologies, Peter the Great Saint Petersburg Polytechnic University, 29 Polytechnicheskaya str., 195251 Saint Petersburg, Russia
- Nanotechnology Research and Education Centre RAS, Saint Petersburg Academic University, 8/3 Khlopina str., 194021 Saint Petersburg, Russia
| | - Vladimir N. Mironov
- Nanotechnology Research and Education Centre RAS, Saint Petersburg Academic University, 8/3 Khlopina str., 194021 Saint Petersburg, Russia
| | - Andrey A. Shtyrov
- Institute of Biomedical Systems and Biotechnologies, Peter the Great Saint Petersburg Polytechnic University, 29 Polytechnicheskaya str., 195251 Saint Petersburg, Russia
- Nanotechnology Research and Education Centre RAS, Saint Petersburg Academic University, 8/3 Khlopina str., 194021 Saint Petersburg, Russia
| | - Iaroslav D. Kvashnin
- Nanotechnology Research and Education Centre RAS, Saint Petersburg Academic University, 8/3 Khlopina str., 194021 Saint Petersburg, Russia
| | - Andrey S. Mereshchenko
- Institute of Chemistry, Saint Petersburg State University, 26 Universitetskii pr, 198504 Saint Petersburg, Russia
| | - Andrey V. Vasin
- Institute of Biomedical Systems and Biotechnologies, Peter the Great Saint Petersburg Polytechnic University, 29 Polytechnicheskaya str., 195251 Saint Petersburg, Russia
| | - Maxim S. Panov
- Institute of Chemistry, Saint Petersburg State University, 26 Universitetskii pr, 198504 Saint Petersburg, Russia
- Center for Biophysical Studies, Saint Petersburg State Chemical Pharmaceutical University, 14 Professor Popov str., lit. A, 197022 Saint Petersburg, Russia
| | - Mikhail N. Ryazantsev
- Nanotechnology Research and Education Centre RAS, Saint Petersburg Academic University, 8/3 Khlopina str., 194021 Saint Petersburg, Russia
- Institute of Chemistry, Saint Petersburg State University, 26 Universitetskii pr, 198504 Saint Petersburg, Russia
| |
Collapse
|
17
|
Mamontova AV, Simonyan TR, Bogdanov AM. Prospects of Genetically Encoded Flim Indicators for the Quantitative Assessment of Intracellular Parameters. Mol Biol 2022. [DOI: 10.1134/s0026893322050090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
18
|
Quicke P, Sun Y, Arias-Garcia M, Beykou M, Acker CD, Djamgoz MBA, Bakal C, Foust AJ. Voltage imaging reveals the dynamic electrical signatures of human breast cancer cells. Commun Biol 2022; 5:1178. [DOI: 10.1038/s42003-022-04077-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 10/05/2022] [Indexed: 11/13/2022] Open
Abstract
AbstractCancer cells feature a resting membrane potential (Vm) that is depolarized compared to normal cells, and express active ionic conductances, which factor directly in their pathophysiological behavior. Despite similarities to ‘excitable’ tissues, relatively little is known about cancer cell Vm dynamics. Here high-throughput, cellular-resolution Vm imaging reveals that Vm fluctuates dynamically in several breast cancer cell lines compared to non-cancerous MCF-10A cells. We characterize Vm fluctuations of hundreds of human triple-negative breast cancer MDA-MB-231 cells. By quantifying their Dynamic Electrical Signatures (DESs) through an unsupervised machine-learning protocol, we identify four classes ranging from "noisy” to “blinking/waving“. The Vm of MDA-MB-231 cells exhibits spontaneous, transient hyperpolarizations inhibited by the voltage-gated sodium channel blocker tetrodotoxin, and by calcium-activated potassium channel inhibitors apamin and iberiotoxin. The Vm of MCF-10A cells is comparatively static, but fluctuations increase following treatment with transforming growth factor-β1, a canonical inducer of the epithelial-to-mesenchymal transition. These data suggest that the ability to generate Vm fluctuations may be a property of hybrid epithelial-mesenchymal cells or those originated from luminal progenitors.
Collapse
|
19
|
McCann JT, Benlian BR, Yaeger-Weiss SK, Knudson IJ, He M, Miller EW. Flipping the Switch: Reverse-Demand Voltage-Sensitive Fluorophores. J Am Chem Soc 2022; 144:13050-13054. [PMID: 35834763 PMCID: PMC9462387 DOI: 10.1021/jacs.2c05385] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Fluorescence microscopy with fluorescent reporters that respond to environmental cues is a powerful method for interrogating biochemistry and biophysics in living systems. Photoinduced electron transfer (PeT) is commonly used as a trigger to modulate fluorescence in response to changes in the biological environment. PeT-based indicators rely on PeT either into the excited state (acceptor PeT) or out of the excited state (donor PeT). Our group has been developing voltage-sensitive fluorophores (VF dyes) that respond to changes in biological membrane potential (Vm). We hypothesize that the mechanism of voltage sensitivity arises from acceptor PeT (a-PeT) from an electron-rich aniline-containing molecular wire into the excited-state fluorophore, resulting in decreased fluorescence at negative Vm. In this work, we reversed the direction of electron flow to access donor-excited PeT (d-PeT) VF dyes by introducing electron-withdrawing rather than electron-rich molecular wires. VF dyes containing electron-withdrawing groups show voltage-sensitive fluorescence, but with the opposite polarity: hyperpolarizing Vm now gives fluorescence increases. We used a combination of computation and experiment to design and synthesize five d-PeT VF targets, two of which are voltage-sensitive.
Collapse
|
20
|
Klier PEZ, Gest AMM, Martin JG, Roo R, Navarro MX, Lesiak L, Deal PE, Dadina N, Tyson J, Schepartz A, Miller EW. Bioorthogonal, Fluorogenic Targeting of Voltage-Sensitive Fluorophores for Visualizing Membrane Potential Dynamics in Cellular Organelles. J Am Chem Soc 2022; 144:12138-12146. [PMID: 35776693 DOI: 10.1021/jacs.2c02664] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Electrical potential differences across lipid bilayers play foundational roles in cellular physiology. Plasma membrane voltage is the most widely studied; however, the bilayers of organelles like mitochondria, lysosomes, nuclei, and the endoplasmic reticulum (ER) also provide opportunities for ionic compartmentalization and the generation of transmembrane potentials. Unlike plasma membranes, organellar bilayers, cloistered within the cell, remain recalcitrant to traditional approaches like patch-clamp electrophysiology. To address the challenge of monitoring changes in organelle membrane potential, we describe the design, synthesis, and application of the LUnAR RhoVR (Ligation Unquenched for Activation and Redistribution Rhodamine-based Voltage Reporter) for optically monitoring membrane potential changes in the ER of living cells. We pair a tetrazine-quenched RhoVR for voltage sensing with a transcyclooctene (TCO)-conjugated ceramide (Cer-TCO) for targeting to the ER. Bright fluorescence is observed only at the coincidence of the LUnAR RhoVR and TCO in the ER, minimizing non-specific, off-target fluorescence. We show that the product of the LUnAR RhoVR and Cer-TCO is voltage-sensitive and that the LUnAR RhoVR can be targeted to an intact ER in living cells. Using the LUnAR RhoVR, we use two-color, ER-localized, fast voltage imaging coupled with cytosolic Ca2+ imaging to validate the electroneutrality of Ca2+ release from internal stores. Finally, we use the LUnAR RhoVR to directly visualize functional coupling between the plasma-ER membranes in patch clamped cell lines, providing the first direct evidence of the sign of the ER potential response to plasma membrane potential changes. We envision that the LUnAR RhoVR, along with other existing organelle-targeting TCO probes, could be applied widely for exploring organelle physiology.
Collapse
Affiliation(s)
- Pavel E Z Klier
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Anneliese M M Gest
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Julia G Martin
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Ryan Roo
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Marisol X Navarro
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Lauren Lesiak
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Parker E Deal
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Neville Dadina
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Jonathan Tyson
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Alanna Schepartz
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Department of Molecular & Cell Biology, University of California, Berkeley, California 94720, United States
| | - Evan W Miller
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Department of Molecular & Cell Biology, University of California, Berkeley, California 94720, United States.,Helen Wills Neuroscience Institute, University of California, Berkeley, California 94720, United States
| |
Collapse
|
21
|
Verdes M, Mace K, Margetts L, Cartmell S. Status and challenges of electrical stimulation use in chronic wound healing. Curr Opin Biotechnol 2022; 75:102710. [DOI: 10.1016/j.copbio.2022.102710] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/19/2021] [Accepted: 03/07/2022] [Indexed: 12/12/2022]
|
22
|
Yudovich S, Marzouqe A, Kantorovitsch J, Teblum E, Chen T, Enderlein J, Miller EW, Weiss S. Electrically Controlling and Optically Observing the Membrane Potential of Supported Lipid Bilayers. Biophys J 2022; 121:2624-2637. [PMID: 35619563 DOI: 10.1016/j.bpj.2022.05.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 04/26/2022] [Accepted: 05/23/2022] [Indexed: 11/02/2022] Open
Abstract
Supported lipid bilayers are a well-developed model system for the study of membranes and their associated proteins, such as membrane channels, enzymes, and receptors. These versatile model membranes can be made from various components, ranging from simple synthetic phospholipids to complex mixtures of constituents, mimicking the cell membrane with its relevant physiochemical and molecular phenomena. In addition, the high stability of supported lipid bilayers allows for their study via a wide array of experimental probes. In this work, we describe a platform for supported lipid bilayers that is accessible both electrically and optically, and demonstrate direct optical observation of the transmembrane potential of supported lipid bilayers. We show that the polarization of the supported membrane can be electrically controlled and optically probed using voltage-sensitive dyes. Membrane polarization dynamics is understood through electrochemical impedance spectroscopy and the analysis of an equivalent electrical circuit model. In addition, we describe the effect of the conducting electrode layer on the fluorescence of the optical probe through metal-induced energy transfer, and show that while this energy transfer has an adverse effect on the voltage sensitivity of the fluorescent probe, its strong distance dependency allows for axial localization of fluorescent emitters with ultrahigh accuracy. We conclude with a discussion on possible applications of this platform for the study of voltage-dependent membrane proteins and other processes in membrane biology and surface science.
Collapse
Affiliation(s)
- Shimon Yudovich
- Department of Physics, Bar-Ilan University, Ramat-Gan, 52900, Israel; Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, 52900, Israel.
| | - Adan Marzouqe
- Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, 52900, Israel; Department of Chemistry, Bar-Ilan University, Ramat-Gan, 52900, Israel
| | - Joseph Kantorovitsch
- Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, 52900, Israel
| | - Eti Teblum
- Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, 52900, Israel
| | - Tao Chen
- Third Institute of Physics-Biophysics, Georg August University, 37077 Göttingen, Germany
| | - Jörg Enderlein
- Third Institute of Physics-Biophysics, Georg August University, 37077 Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), Georg August University, Germany
| | - Evan W Miller
- Departments of Chemistry, Molecular & Cell Biology, and Helen Wills Neuroscience Institute, University of California, Berkeley, California 94720, United States
| | - Shimon Weiss
- Department of Physics, Bar-Ilan University, Ramat-Gan, 52900, Israel; Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, 52900, Israel; Departments of Chemistry and Biochemistry, Physiology, and California NanoSystems Institute, University of California Los Angeles, Los Angeles, CA 90095.
| |
Collapse
|
23
|
Veale CGL, Talukdar A, Vauzeilles B. ICBS 2021: Looking Toward the Next Decade of Chemical Biology. ACS Chem Biol 2022; 17:728-743. [PMID: 35293726 DOI: 10.1021/acschembio.2c00209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Clinton G. L. Veale
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town, 7700, South Africa
| | - Arindam Talukdar
- Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032, West Bengal, India
| | - Boris Vauzeilles
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198, Gif-sur-Yvette, France
| |
Collapse
|
24
|
George LF, Bates EA. Mechanisms Underlying Influence of Bioelectricity in Development. Front Cell Dev Biol 2022; 10:772230. [PMID: 35237593 PMCID: PMC8883286 DOI: 10.3389/fcell.2022.772230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 01/07/2022] [Indexed: 12/25/2022] Open
Abstract
To execute the intricate process of development, cells coordinate across tissues and organs to determine where each cell divides and differentiates. This coordination requires complex communication between cells. Growing evidence suggests that bioelectrical signals controlled via ion channels contribute to cell communication during development. Ion channels collectively regulate the transmembrane potential of cells, and their function plays a conserved role in the development of organisms from flies to humans. Spontaneous calcium oscillations can be found in nearly every cell type and tissue, and disruption of these oscillations leads to defects in development. However, the mechanism by which bioelectricity regulates development is still unclear. Ion channels play essential roles in the processes of cell death, proliferation, migration, and in each of the major canonical developmental signaling pathways. Previous reviews focus on evidence for one potential mechanism by which bioelectricity affects morphogenesis, but there is evidence that supports multiple different mechanisms which are not mutually exclusive. Evidence supports bioelectricity contributing to development through multiple different mechanisms. Here, we review evidence for the importance of bioelectricity in morphogenesis and provide a comprehensive review of the evidence for several potential mechanisms by which ion channels may act in developmental processes.
Collapse
Affiliation(s)
- Laura Faith George
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, United States
| | - Emily Anne Bates
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, United States
| |
Collapse
|
25
|
van der Linden FH, Mahlandt EK, Arts JJG, Beumer J, Puschhof J, de Man SMA, Chertkova AO, Ponsioen B, Clevers H, van Buul JD, Postma M, Gadella TWJ, Goedhart J. A turquoise fluorescence lifetime-based biosensor for quantitative imaging of intracellular calcium. Nat Commun 2021; 12:7159. [PMID: 34887382 PMCID: PMC8660884 DOI: 10.1038/s41467-021-27249-w] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 11/10/2021] [Indexed: 11/08/2022] Open
Abstract
The most successful genetically encoded calcium indicators (GECIs) employ an intensity or ratiometric readout. Despite a large calcium-dependent change in fluorescence intensity, the quantification of calcium concentrations with GECIs is problematic, which is further complicated by the sensitivity of all GECIs to changes in the pH in the biological range. Here, we report on a sensing strategy in which a conformational change directly modifies the fluorescence quantum yield and fluorescence lifetime of a circular permutated turquoise fluorescent protein. The fluorescence lifetime is an absolute parameter that enables straightforward quantification, eliminating intensity-related artifacts. An engineering strategy that optimizes lifetime contrast led to a biosensor that shows a 3-fold change in the calcium-dependent quantum yield and a fluorescence lifetime change of 1.3 ns. We dub the biosensor Turquoise Calcium Fluorescence LIfeTime Sensor (Tq-Ca-FLITS). The response of the calcium sensor is insensitive to pH between 6.2-9. As a result, Tq-Ca-FLITS enables robust measurements of intracellular calcium concentrations by fluorescence lifetime imaging. We demonstrate quantitative imaging of calcium concentrations with the turquoise GECI in single endothelial cells and human-derived organoids.
Collapse
Affiliation(s)
- Franka H van der Linden
- Section of Molecular Cytology, van Leeuwenhoek Centre for Advanced Microscopy, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Eike K Mahlandt
- Section of Molecular Cytology, van Leeuwenhoek Centre for Advanced Microscopy, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Janine J G Arts
- Section of Molecular Cytology, van Leeuwenhoek Centre for Advanced Microscopy, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
- Department of Molecular Hematology at Sanquin Research and Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Joep Beumer
- Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center, Utrecht, The Netherlands
| | - Jens Puschhof
- Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center, Utrecht, The Netherlands
| | - Saskia M A de Man
- Section of Molecular Cytology, van Leeuwenhoek Centre for Advanced Microscopy, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Anna O Chertkova
- Section of Molecular Cytology, van Leeuwenhoek Centre for Advanced Microscopy, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Bas Ponsioen
- Center for Molecular Medicine, Oncode Institute, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Hans Clevers
- Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center, Utrecht, The Netherlands
| | - Jaap D van Buul
- Section of Molecular Cytology, van Leeuwenhoek Centre for Advanced Microscopy, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
- Department of Molecular Hematology at Sanquin Research and Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Marten Postma
- Section of Molecular Cytology, van Leeuwenhoek Centre for Advanced Microscopy, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Theodorus W J Gadella
- Section of Molecular Cytology, van Leeuwenhoek Centre for Advanced Microscopy, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Joachim Goedhart
- Section of Molecular Cytology, van Leeuwenhoek Centre for Advanced Microscopy, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
26
|
Penzkofer A, Silapetere A, Hegemann P. Photocycle dynamics of the Archaerhodopsin 3 based fluorescent voltage sensor Archon2. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2021; 225:112331. [PMID: 34688164 DOI: 10.1016/j.jphotobiol.2021.112331] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/21/2021] [Accepted: 10/05/2021] [Indexed: 11/28/2022]
Abstract
The retinal photocycle dynamics of the fluorescent voltage sensor Archon2 in pH 8 Tris buffer was studied. Archon2 is a mutant of Archaerhodopsin 3 (Arch) from Halorubrum sodomense obtained by a robotic multidimensional directed evolution approach (Archon2 = Arch T56P-P60S-T80P-D95H-T99S-T116I-F161V-T183I-L197I-A225C). The samples were photo-excited to the first absorption band of the protonated retinal Schiff base (PRSB) Ret_586 (absorption maximum at λmax = 586 nm, excitation wavelengths λexc = 590 nm and 632.8 nm). The photocycle dynamics were studied by recording absorption spectra during light exposure and after light exposure. Ret_586 photoisomerized to Ret_535 (main component) and Ret_485 (minor component). Ret_535 backward photoisomerized to Ret_586 in light-adapted state (named Ret_586la) and partly deprotonated to neutral retinal Schiff base (RSB) Ret_372 in light adapted state (named Ret_372la, same isomer form as Ret_535). After excitation light switch-off Ret_372la recovered to Ret_372 in dark-adapted state (Ret_372da) which slowly re-protonated to Ret_535, and Ret_535 slowly isomerized back to Ret_586 in dark-adapted state (Ret_586da). Photocycle schemes and reaction coordinate diagrams are developed and photocycle parameters are determined.
Collapse
Affiliation(s)
- Alfons Penzkofer
- Fakultät für Physik, Universität Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany.
| | - Arita Silapetere
- Experimentelle Biophysik, Institut für Biologie, Humboldt Universität zu Berlin, Invalidenstraße 42, D-10115 Berlin, Germany
| | - Peter Hegemann
- Experimentelle Biophysik, Institut für Biologie, Humboldt Universität zu Berlin, Invalidenstraße 42, D-10115 Berlin, Germany
| |
Collapse
|
27
|
Kirk MJ, Benlian BR, Han Y, Gold A, Ravi A, Deal PE, Molina RS, Drobizhev M, Dickman D, Scott K, Miller EW. Voltage Imaging in Drosophila Using a Hybrid Chemical-Genetic Rhodamine Voltage Reporter. Front Neurosci 2021; 15:754027. [PMID: 34867164 PMCID: PMC8637050 DOI: 10.3389/fnins.2021.754027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/15/2021] [Indexed: 12/03/2022] Open
Abstract
We combine a chemically-synthesized, voltage-sensitive fluorophore with a genetically encoded, self-labeling enzyme to enable voltage imaging in Drosophila melanogaster. Previously, we showed that a rhodamine voltage reporter (RhoVR) combined with the HaloTag self-labeling enzyme could be used to monitor membrane potential changes from mammalian neurons in culture and brain slice. Here, we apply this hybrid RhoVR-Halo approach in vivo to achieve selective neuron labeling in intact fly brains. We generate a Drosophila UAS-HaloTag reporter line in which the HaloTag enzyme is expressed on the surface of cells. We validate the voltage sensitivity of this new construct in cell culture before driving expression of HaloTag in specific brain neurons in flies. We show that selective labeling of synapses, cells, and brain regions can be achieved with RhoVR-Halo in either larval neuromuscular junction (NMJ) or in whole adult brains. Finally, we validate the voltage sensitivity of RhoVR-Halo in fly tissue via dual-electrode/imaging at the NMJ, show the efficacy of this approach for measuring synaptic excitatory post-synaptic potentials (EPSPs) in muscle cells, and perform voltage imaging of carbachol-evoked depolarization and osmolarity-evoked hyperpolarization in projection neurons and in interoceptive subesophageal zone neurons in fly brain explants following in vivo labeling. We envision the turn-on response to depolarizations, fast response kinetics, and two-photon compatibility of chemical indicators, coupled with the cellular and synaptic specificity of genetically-encoded enzymes, will make RhoVR-Halo a powerful complement to neurobiological imaging in Drosophila.
Collapse
Affiliation(s)
- Molly J. Kirk
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Brittany R. Benlian
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Yifu Han
- Department of Neurobiology, University of Southern California, Los Angeles, CA, United States
| | - Arya Gold
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, United States
| | - Ashvin Ravi
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, United States
| | - Parker E. Deal
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, United States
| | - Rosana S. Molina
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, United States
| | - Mikhail Drobizhev
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, United States
| | - Dion Dickman
- Department of Neurobiology, University of Southern California, Los Angeles, CA, United States
| | - Kristin Scott
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, United States
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, United States
| | - Evan W. Miller
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, United States
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, United States
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, United States
| |
Collapse
|
28
|
Bowman AJ, Kasevich MA. Resonant Electro-Optic Imaging for Microscopy at Nanosecond Resolution. ACS NANO 2021; 15:16043-16054. [PMID: 34546704 DOI: 10.1021/acsnano.1c04470] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We demonstrate an electro-optic wide-field method to enable fluorescence lifetime microscopy (FLIM) with high throughput and single-molecule sensitivity. Resonantly driven Pockels cells are used to efficiently gate images at 39 MHz, allowing fluorescence lifetime to be captured on standard camera sensors. Lifetime imaging of single molecules is enabled in wide field with exposure times of less than 100 ms. This capability allows combination of wide-field FLIM with single-molecule super-resolution localization microscopy. Fast single-molecule dynamics such as FRET and molecular binding events are captured from wide-field images without prior spatial knowledge. A lifetime sensitivity of 1.9 times the photon shot-noise limit is achieved, and high throughput is shown by acquiring wide-field FLIM images with millisecond exposure and >108 photons per frame. Resonant electro-optic FLIM allows lifetime contrast in any wide-field microscopy method.
Collapse
Affiliation(s)
- Adam J Bowman
- Physics Department, Stanford University, 382 Via Pueblo Mall, Stanford, California 94305, United States
| | - Mark A Kasevich
- Physics Department, Stanford University, 382 Via Pueblo Mall, Stanford, California 94305, United States
| |
Collapse
|
29
|
Monitoring of compound resting membrane potentials of cell cultures with ratiometric genetically encoded voltage indicators. Commun Biol 2021; 4:1164. [PMID: 34620975 PMCID: PMC8497494 DOI: 10.1038/s42003-021-02675-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 09/13/2021] [Indexed: 11/29/2022] Open
Abstract
The cellular resting membrane potential (Vm) not only determines electrical responsiveness of excitable cells but also plays pivotal roles in non-excitable cells, mediating membrane transport, cell-cycle progression, and tumorigenesis. Studying these processes requires estimation of Vm, ideally over long periods of time. Here, we introduce two ratiometric genetically encoded Vm indicators, rArc and rASAP, and imaging and analysis procedures for measuring differences in average resting Vm between cell groups. We investigated the influence of ectopic expression of K+ channels and their disease-causing mutations involved in Andersen-Tawil (Kir2.1) and Temple-Baraitser (KV10.1) syndrome on median resting Vm of HEK293T cells. Real-time long-term monitoring of Vm changes allowed to estimate a 40–50 min latency from induction of transcription to functional Kir2.1 channels in HEK293T cells. The presented methodology is readily implemented with standard fluorescence microscopes and offers deeper insights into the role of the resting Vm in health and disease. Rühl et al. report the generation of ratiometric genetically encoded voltage indicators (GEVIs) and establish that they can be used in high-throughput automated imaging to measure compound membrane potential (Vm) in mammalian cells. This method is implementable with standard fluorescence microscopes and has the potential to offer insights into the role of the resting Vm in health and disease.
Collapse
|
30
|
Grupi A, Shapira Z, Yudovich S, Degani-Katzav N, Weiss S. Point-localized, site-specific membrane potential optical recording by single fluorescent nanodiscs. ACTA ACUST UNITED AC 2021; 1:None. [PMID: 34568861 PMCID: PMC8448295 DOI: 10.1016/j.bpr.2021.100007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 07/20/2021] [Indexed: 01/02/2023]
Abstract
Nanodisc technology was implemented as a platform for voltage nanosensors. A fluorescence (Förster) resonance energy transfer (FRET)- based voltage-sensing scheme employing fluorescent nanodiscs and the hydrophobic ion dipicrylamine was developed and utilized to optically record membrane potentials on the single-nanodisc level. Ensemble and single-nanosensor recordings were demonstrated for HEK293 cells and primary cortical neuron cells. Conjugation of nanodiscs to anti-GABAA antibodies allowed for site-specific membrane potential measurements from postsynaptic sites.
Collapse
Affiliation(s)
- Asaf Grupi
- Department of Physics, Institute for Nanotechnology and Advanced Materials.,Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, Israel
| | - Zehavit Shapira
- Department of Physics, Institute for Nanotechnology and Advanced Materials.,Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, Israel
| | - Shimon Yudovich
- Department of Physics, Institute for Nanotechnology and Advanced Materials.,Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, Israel
| | - Nurit Degani-Katzav
- Department of Physics, Institute for Nanotechnology and Advanced Materials.,Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, Israel
| | - Shimon Weiss
- Department of Physics, Institute for Nanotechnology and Advanced Materials.,Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, Israel.,Department of Chemistry and Biochemistry.,California NanoSystems Institute, University of California Los Angeles, Los Angeles, California
| |
Collapse
|
31
|
Lazzari-Dean JR, Miller EW. Optical Estimation of Absolute Membrane Potential Using One- and Two-Photon Fluorescence Lifetime Imaging Microscopy. Bioelectricity 2021; 3:197-203. [PMID: 34734167 DOI: 10.1089/bioe.2021.0007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Background: Membrane potential (V mem) exerts physiological influence across a wide range of time and space scales. To study V mem in these diverse contexts, it is essential to accurately record absolute values of V mem, rather than solely relative measurements. Materials and Methods: We use fluorescence lifetime imaging of a small molecule voltage sensitive dye (VF2.1.Cl) to estimate mV values of absolute membrane potential. Results: We test the consistency of VF2.1.Cl lifetime measurements performed on different single-photon counting instruments and find that they are in striking agreement (differences of <0.5 ps/mV in the slope and <50 ps in the y-intercept). We also demonstrate that VF2.1.Cl lifetime reports absolute V mem under two-photon (2P) illumination with better than 20 mV of V mem resolution, a nearly 10-fold improvement over other lifetime-based methods. Conclusions: We demonstrate that VF-FLIM is a robust and portable metric for V mem across imaging platforms and under both one-photon and 2P illumination. This work is a critical foundation for application of VF-FLIM to record absolute membrane potential signals in thick tissue.
Collapse
Affiliation(s)
- Julia R Lazzari-Dean
- Department of Chemistry, University of California, Berkeley, Berkeley, California, USA
| | - Evan W Miller
- Department of Chemistry, University of California, Berkeley, Berkeley, California, USA.,Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, USA.,Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, California, USA
| |
Collapse
|
32
|
Ouyang Y, Liu Y, Wang ZM, Liu Z, Wu M. FLIM as a Promising Tool for Cancer Diagnosis and Treatment Monitoring. NANO-MICRO LETTERS 2021; 13:133. [PMID: 34138374 PMCID: PMC8175610 DOI: 10.1007/s40820-021-00653-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 04/19/2021] [Indexed: 05/04/2023]
Abstract
Fluorescence lifetime imaging microscopy (FLIM) has been rapidly developed over the past 30 years and widely applied in biomedical engineering. Recent progress in fluorophore-dyed probe design has widened the application prospects of fluorescence. Because fluorescence lifetime is sensitive to microenvironments and molecule alterations, FLIM is promising for the detection of pathological conditions. Current cancer-related FLIM applications can be divided into three main categories: (i) FLIM with autofluorescence molecules in or out of a cell, especially with reduced form of nicotinamide adenine dinucleotide, and flavin adenine dinucleotide for cellular metabolism research; (ii) FLIM with Förster resonance energy transfer for monitoring protein interactions; and (iii) FLIM with fluorophore-dyed probes for specific aberration detection. Advancements in nanomaterial production and efficient calculation systems, as well as novel cancer biomarker discoveries, have promoted FLIM optimization, offering more opportunities for medical research and applications to cancer diagnosis and treatment monitoring. This review summarizes cutting-edge researches from 2015 to 2020 on cancer-related FLIM applications and the potential of FLIM for future cancer diagnosis methods and anti-cancer therapy development. We also highlight current challenges and provide perspectives for further investigation.
Collapse
Affiliation(s)
- Yuzhen Ouyang
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, 410013, Hunan, People's Republic of China
- School of Physics and Electronics, Hunan Key Laboratory for Super-Microstructure and Ultrafast Process, Central South University, 932 South Lushan Road, Changsha, 410083, Hunan, People's Republic of China
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Yanping Liu
- School of Physics and Electronics, Hunan Key Laboratory for Super-Microstructure and Ultrafast Process, Central South University, 932 South Lushan Road, Changsha, 410083, Hunan, People's Republic of China.
- Shenzhen Research Institute of Central South University, A510a, Virtual University Building, Nanshan District, Southern District, High-tech Industrial Park, Yuehai Street, Shenzhen, People's Republic of China.
- State Key Laboratory of High-Performance Complex Manufacturing, Central South University, 932 South Lushan Road, Changsha, 410083, Hunan, People's Republic of China.
| | - Zhiming M Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, People's Republic of China
| | - Zongwen Liu
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia.
| | - Minghua Wu
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, 410013, Hunan, People's Republic of China.
- School of Physics and Electronics, Hunan Key Laboratory for Super-Microstructure and Ultrafast Process, Central South University, 932 South Lushan Road, Changsha, 410083, Hunan, People's Republic of China.
| |
Collapse
|
33
|
Paternò GM, Bondelli G, Lanzani G. Bringing Microbiology to Light: Toward All-Optical Electrophysiology in Bacteria. Bioelectricity 2021; 3:136-142. [PMID: 34476389 DOI: 10.1089/bioe.2021.0008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The observation of neuron-like behavior in bacteria, such as the occurrence of electric spiking and extended bioelectric signaling, points to the role of membrane dynamics in prokaryotes. Electrophysiology of bacteria, however, has been overlooked for long time, due to the difficulties in monitoring bacterial bioelectric phenomena with those probing techniques that are commonly used for eukaryotes. Optical technologies can allow a paradigm shift in the field of electrophysiology of bacteria, as they would permit to elicit and monitor signaling rapidly, remotely, and with high spatiotemporal precision. In this perspective, we discuss about the potentiality of light interrogation methods in microbiology, encouraging the development of all-optical electrophysiology of bacteria.
Collapse
Affiliation(s)
| | - Gaia Bondelli
- Center for Nanoscience and Technology, Istituto Italiano di Tecnologia, Milano, Italy.,Physics Department, Politecnico di Milano, Milano, Italy
| | - Guglielmo Lanzani
- Center for Nanoscience and Technology, Istituto Italiano di Tecnologia, Milano, Italy.,Physics Department, Politecnico di Milano, Milano, Italy
| |
Collapse
|
34
|
Abstract
Membrane potential (Vmem) is a fundamental biophysical signal present in all cells. Vmem signals range in time from milliseconds to days, and they span lengths from microns to centimeters. Vmem affects many cellular processes, ranging from neurotransmitter release to cell cycle control to tissue patterning. However, existing tools are not suitable for Vmem quantification in many of these areas. In this review, we outline the diverse biology of Vmem, drafting a wish list of features for a Vmem sensing platform. We then use these guidelines to discuss electrode-based and optical platforms for interrogating Vmem. On the one hand, electrode-based strategies exhibit excellent quantification but are most effective in short-term, cellular recordings. On the other hand, optical strategies provide easier access to diverse samples but generally only detect relative changes in Vmem. By combining the respective strengths of these technologies, recent advances in optical quantification of absolute Vmem enable new inquiries into Vmem biology.
Collapse
Affiliation(s)
- Julia R Lazzari-Dean
- Department of Chemistry, University of California, Berkeley, California 94720, USA; ,
| | - Anneliese M M Gest
- Department of Chemistry, University of California, Berkeley, California 94720, USA; ,
| | - Evan W Miller
- Department of Chemistry, University of California, Berkeley, California 94720, USA; ,
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, California 94720, USA
| |
Collapse
|
35
|
Gest AMM, Yaeger-Weiss SK, Lazzari-Dean JR, Miller EW. VoltageFluor dyes and fluorescence lifetime imaging for optical measurement of membrane potential. Methods Enzymol 2021; 653:267-293. [PMID: 34099175 DOI: 10.1016/bs.mie.2021.02.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Membrane potential is a fundamental biophysical parameter common to all of cellular life. Traditional methods to measure membrane potential rely on electrodes, which are invasive and low-throughput. Optical methods to measure membrane potential are attractive because they have the potential to be less invasive and higher throughput than classic electrode based techniques. However, most optical measurements rely on changes in fluorescence intensity to detect changes in membrane potential. In this chapter, we discuss the use of fluorescence lifetime imaging microscopy (FLIM) and voltage-sensitive fluorophores (VoltageFluors, or VF dyes) to estimate the millivolt value of membrane potentials in living cells. We discuss theory, application, protocols, and shortcomings of this approach.
Collapse
Affiliation(s)
- Anneliese M M Gest
- Department of Chemistry, University of California, Berkeley, CA, United States
| | | | | | - Evan W Miller
- Department of Chemistry, University of California, Berkeley, CA, United States; Department of Molecular & Cell Biology, University of California, Berkeley, CA, United States; Helen Wills Neuroscience Institute, University of California, Berkeley, CA, United States.
| |
Collapse
|
36
|
Saminathan A, Devany J, Veetil AT, Suresh B, Pillai KS, Schwake M, Krishnan Y. A DNA-based voltmeter for organelles. NATURE NANOTECHNOLOGY 2021; 16:96-103. [PMID: 33139937 PMCID: PMC8513801 DOI: 10.1038/s41565-020-00784-1] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 09/21/2020] [Indexed: 05/16/2023]
Abstract
The role of membrane potential in most intracellular organelles remains unexplored because of the lack of suitable tools. Here, we describe Voltair, a fluorescent DNA nanodevice that reports the absolute membrane potential and can be targeted to organelles in live cells. Voltair consists of a voltage-sensitive fluorophore and a reference fluorophore for ratiometry, and acts as an endocytic tracer. Using Voltair, we could measure the membrane potential of different organelles in situ in live cells. Voltair can potentially guide the rational design of biocompatible electronics and enhance our understanding of how membrane potential regulates organelle biology.
Collapse
Affiliation(s)
- Anand Saminathan
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- Grossman Institute of Neuroscience, Quantitative Biology and Human Behavior, The University of Chicago, Chicago, IL, USA
| | - John Devany
- Department of Physics, The University of Chicago, Chicago, IL, USA
| | - Aneesh Tazhe Veetil
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- Grossman Institute of Neuroscience, Quantitative Biology and Human Behavior, The University of Chicago, Chicago, IL, USA
| | - Bhavyashree Suresh
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- Grossman Institute of Neuroscience, Quantitative Biology and Human Behavior, The University of Chicago, Chicago, IL, USA
| | | | - Michael Schwake
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Biochemistry III/Faculty of Chemistry, Bielefeld University, Universitätsstraße 25, Bielefeld, Germany
| | - Yamuna Krishnan
- Department of Chemistry, The University of Chicago, Chicago, IL, USA.
- Grossman Institute of Neuroscience, Quantitative Biology and Human Behavior, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
37
|
Abstract
Inherited cardiac arrhythmias contribute substantially to sudden cardiac death in the young. The underlying pathophysiology remains incompletely understood because of the lack of representative study models and the labour-intensive nature of electrophysiological patch clamp experiments. Whereas patch clamp is still considered the gold standard for investigating electrical properties in a cell, optical mapping of voltage and calcium transients has paved the way for high-throughput studies. Moreover, the development of human-induced pluripotent stem-cell-derived cardiomyocytes (hiPSC-CMs) has enabled the study of patient specific cell lines capturing the full genomic background. Nevertheless, hiPSC-CMs do not fully address the complex interactions between various cell types in the heart. Studies using in vivo models, are therefore necessary. Given the analogies between the human and zebrafish cardiovascular system, zebrafish has emerged as a cost-efficient model for arrhythmogenic diseases. In this review, we describe how hiPSC-CM and zebrafish are employed as models to study primary electrical disorders. We provide an overview of the contemporary electrophysiological phenotyping tools and discuss in more depth the different strategies available for optical mapping. We consider the current advantages and disadvantages of both hiPSC-CM and zebrafish as a model and optical mapping as phenotyping tool and propose strategies for further improvement. Overall, the combination of experimental readouts at cellular (hiPSC-CM) and whole organ (zebrafish) level can raise our understanding of the complexity of inherited cardiac arrhythmia disorders to the next level.
Collapse
|
38
|
Boggess SC, Lazzari-Dean JR, Raliski BK, Mun DM, Li AY, Turnbull JL, Miller EW. Fluorescence lifetime predicts performance of voltage sensitive fluorophores in cardiomyocytes and neurons. RSC Chem Biol 2020; 2:248-258. [PMID: 34212146 PMCID: PMC8240514 DOI: 10.1039/d0cb00152j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Voltage imaging with fluorescent indicators offers a powerful complement to traditional electrode or Ca2+-imaging approaches for monitoring electrical activity. Small molecule fluorescent indicators present the unique opportunity for exquisite control over molecular structure, enabling detailed investigations of structure/function relationships. In this paper, we tune the conjugation between aniline donors and aromatic π systems within the context of photoinduced electron transfer (PeT) based voltage indicators. We describe the design and synthesis of four new voltage-sensitive fluorophores (VoltageFluors, or VFs). Three of these dyes have higher relative voltage sensitivities (ΔF/F) than the previously-reported indicator, VF2.1.Cl. We pair these new indicators with existing VFs to construct a library of voltage indicators with varying degrees of conjugation between the aniline nitrogen lone pair and the aromatic π system. Using a combination of steady-state and time-resolved fluorescence spectroscopy, cellular electrophysiology, fluorescence lifetime imaging microscopy (FLIM), and functional imaging in mammalian neurons and human cardiomyocytes, we establish a detailed link between the photophysical properties of VF dyes and their ability to report on membrane potential dynamics with high signal-to-noise. Anilines with intermediate degrees of conjugation to the aromatic π system experience intermediate rates of PeT and possess the highest absolute voltage sensitivities. Measured using FLIM in patch-clamped HEK cells, we find that the absolute voltage sensitivity of fluorescence lifetime (Δτfl per mV), coupled with traditional fluorescence intensity-based metrics like ΔF/F and signal-to-noise ratio (SNR), provides a powerful method to both predict and understand indicator performance in cellular systems. Voltage imaging with fluorescent indicators offers a powerful complement to traditional electrode or Ca2+-imaging approaches for monitoring electrical activity.![]()
Collapse
Affiliation(s)
- Steven C Boggess
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Julia R Lazzari-Dean
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Benjamin K Raliski
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Dong Min Mun
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Amy Y Li
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Joshua L Turnbull
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Evan W Miller
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Department of Molecular & Cell Biology, University of California, Berkeley, California 94720, United States.,Helen Wills Neuroscience Institute, University of California, Berkeley, California 94720, United States
| |
Collapse
|
39
|
Zablotskii V, Polyakova T, Dejneka A. Modulation of the Cell Membrane Potential and Intracellular Protein Transport by High Magnetic Fields. Bioelectromagnetics 2020; 42:27-36. [PMID: 33179821 DOI: 10.1002/bem.22309] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 10/16/2020] [Accepted: 10/22/2020] [Indexed: 01/26/2023]
Abstract
To explore cellular responses to high magnetic fields (HMF), we present a model of the interactions of cells with a homogeneous HMF that accounts for the magnetic force exerted on paramagnetic/diamagnetic species. There are various chemical species inside a living cell, many of which may have large concentration gradients. Thus, when an HMF is applied to a cell, the concentration-gradient magnetic forces act on paramagnetic or diamagnetic species and can either assist or oppose large particle movement through the cytoplasm. We demonstrate possibilities for changing the machinery in living cells with HMFs and predict two new mechanisms for modulating cellular functions with HMFs via (i) changes in the membrane potential and (ii) magnetically assisted intracellular diffusiophoresis of large proteins. By deriving a generalized form for the Nernst equation, we find that an HMF can change the membrane potential of the cell and thus have a significant impact on the properties and biological functionality of cells. The elaborated model provides a universal framework encompassing current studies on controlling cell functions by high static magnetic fields. Bioelectromagnetics. 2021;42:27-36. © 2020 Bioelectromagnetics Society.
Collapse
Affiliation(s)
- Vitalii Zablotskii
- Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Tatyana Polyakova
- Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Alexandr Dejneka
- Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
40
|
Bruemmer KJ, Crossley SWM, Chang CJ. Activity-Based Sensing: A Synthetic Methods Approach for Selective Molecular Imaging and Beyond. Angew Chem Int Ed Engl 2020; 59:13734-13762. [PMID: 31605413 PMCID: PMC7665898 DOI: 10.1002/anie.201909690] [Citation(s) in RCA: 153] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Indexed: 01/10/2023]
Abstract
Emerging from the origins of supramolecular chemistry and the development of selective chemical receptors that rely on lock-and-key binding, activity-based sensing (ABS)-which utilizes molecular reactivity rather than molecular recognition for analyte detection-has rapidly grown into a distinct field to investigate the production and regulation of chemical species that mediate biological signaling and stress pathways, particularly metal ions and small molecules. Chemical reactions exploit the diverse chemical reactivity of biological species to enable the development of selective and sensitive synthetic methods to decipher their contributions within complex living environments. The broad utility of this reaction-driven approach facilitates application to imaging platforms ranging from fluorescence, luminescence, photoacoustic, magnetic resonance, and positron emission tomography modalities. ABS methods are also being expanded to other fields, such as drug and materials discovery.
Collapse
Affiliation(s)
- Kevin J Bruemmer
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Steven W M Crossley
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Christopher J Chang
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, 94720, USA
| |
Collapse
|
41
|
Bruemmer KJ, Crossley SWM, Chang CJ. Aktivitätsbasierte Sensorik: ein synthetisch‐methodischer Ansatz für die selektive molekulare Bildgebung und darüber hinaus. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201909690] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Kevin J. Bruemmer
- Department of Chemistry University of California, Berkeley Berkeley CA 94720 USA
| | | | - Christopher J. Chang
- Department of Chemistry University of California, Berkeley Berkeley CA 94720 USA
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute University of California, Berkeley Berkeley CA 94720 USA
| |
Collapse
|
42
|
Abstract
Membrane potential is a fundamental biophysical property maintained by every cell on earth. In specialized cells like neurons, rapid changes in membrane potential drive the release of chemical neurotransmitters. Coordinated, rapid changes in neuronal membrane potential across large numbers of interconnected neurons form the basis for all of human cognition, sensory perception, and memory. Despite the importance of this highly orchestrated and distributed activity, the traditional method for recording membrane potential is through the use of highly invasive single-cell electrodes that offer only a small glimpse of the total activity within a system. Fluorescent dyes that change their optical properties in response to changes in biological voltage have the potential to provide a powerful complement to traditional electrode-based methods of inquiry. Voltage-sensitive fluorescent indicators would allow the direct observation of membrane potential changes, significantly expanding our ability to monitor membrane potential dynamics in living systems. Toward this end, we have initiated a program to design, synthesize, and apply voltage-sensitive fluorophores that report on membrane potential dynamics with high sensitivity and speed. The basis for this optical voltage sensing is membrane potential-dependent photoinduced electron transfer (PeT). Voltage-sensitive fluorophores, or VoltageFluors, possess a fluorophore, a conjugated molecular wire, and an aniline donor. At resting potentials, in which the cell has a hyperpolarized or negative potential relative to the outside of the cell, PeT from the aniline donor is enhanced and fluorescence is diminished. At depolarized potentials, the membrane potential decreases the rate of PeT, allowing an increase in fluorescence. We show that a number of different fluorophores, molecular wires, and aniline donors can be employed to generate fast and sensitive VoltageFluor dyes. Multiple lines of evidence point to a PeT-based mechanism for voltage sensing, delivering fast response kinetics (∼25 ns), good sensitivity (>60% ΔF/F), compatibility with two-photon illumination, excellent signal-to-noise, and the ability to detect neuronal and cardiac action potentials in single trials. In this Account, we provide an overview of the challenges facing the design of fluorescent voltage indicators. We trace the development of molecular wire-based fluorescent voltage indicators within our group, beginning from fluorescein-based VoltageFluor to long-wavelength indicators that use modern fluorophores like silicon rhodamine and carbofluorescein. We examine design principles for PeT-based voltage indicators, showcase the use of our recent indicators for two-photon voltage imaging in intact brains, and explore the development of hybrid indicators that can localize to genetically defined cells. Finally, we highlight outstanding challenges to and opportunities for voltage imaging.
Collapse
Affiliation(s)
- Pei Liu
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Evan W. Miller
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Department of Molecular & Cell Biology, University of California, Berkeley, California 94720, United States
- Department of Helen Wills Neuroscience Institute. University of California, Berkeley, California 94720, United States
| |
Collapse
|
43
|
Deal PE, Liu P, Al-Abdullatif SH, Muller VR, Shamardani K, Adesnik H, Miller EW. Covalently Tethered Rhodamine Voltage Reporters for High Speed Functional Imaging in Brain Tissue. J Am Chem Soc 2020; 142:614-622. [PMID: 31829585 PMCID: PMC6949409 DOI: 10.1021/jacs.9b12265] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Voltage-sensitive fluorophores enable the direct visualization of membrane potential changes in living systems. To pair the speed and sensitivity of chemically synthesized fluorescent indicators with cell-type specific genetic methods, we here develop Rhodamine-based Voltage Reporters (RhoVR) that can be covalently tethered to genetically encoded, self-labeling enzymes. These chemical-genetic hybrids feature a photoinduced electron transfer triggered RhoVR voltage-sensitive indicator coupled to a chloroalkane HaloTag ligand through a long, water-soluble polyethylene glycol linker (RhoVR-Halo). When applied to cells, RhoVR-Halo dyes selectively and covalently bind to surface-expressed HaloTag enzyme on genetically modified cells. RhoVR-Halo dyes maintain high voltage sensitivities-up to 34% ΔF/F per 100 mV-and fast response times typical of untargeted RhoVRs, while gaining the selectivity of genetically encodable voltage indicators. We show that RhoVR-Halos can record action potentials in single trials from cultured rat hippocampal neurons and can be used in concert with green-fluorescent Ca2+ indicators like GCaMP to provide simultaneous voltage and Ca2+ imaging. In a brain slice, RhoVR-Halos provide exquisite labeling of defined cells and can be imaged using epifluorescence, confocal, or two-photon microscopy. Using high-speed epifluorescence microscopy, RhoVR-Halos provide a read-out of action potentials from labeled cortical neurons in a rat brain slice, without the need for trial averaging. These results demonstrate the potential of hybrid chemical-genetic voltage indicators to combine the optical performance of small-molecule chromophores with the inherent selectivity of genetically encodable systems, permitting imaging modalities inaccessible to either technique individually.
Collapse
Affiliation(s)
- Parker E. Deal
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Pei Liu
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Sarah H. Al-Abdullatif
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Vikram R. Muller
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Kiarash Shamardani
- Department of Molecular & Cell Biology, University of California, Berkeley, California 94720, United States
- Helen Wills Neuroscience Institute. University of California, Berkeley, California 94720, United States
| | - Hillel Adesnik
- Department of Molecular & Cell Biology, University of California, Berkeley, California 94720, United States
- Helen Wills Neuroscience Institute. University of California, Berkeley, California 94720, United States
| | - Evan W. Miller
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Department of Molecular & Cell Biology, University of California, Berkeley, California 94720, United States
- Helen Wills Neuroscience Institute. University of California, Berkeley, California 94720, United States
| |
Collapse
|