1
|
Liessmann F, von Bredow L, Meiler J, Liebscher I. Targeting adhesion G protein-coupled receptors. Current status and future perspectives. Structure 2024; 32:2188-2205. [PMID: 39520987 DOI: 10.1016/j.str.2024.10.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/29/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024]
Abstract
G protein-coupled receptors (GPCRs) orchestrate many physiological functions and are a crucial target in drug discovery. Adhesion GPCRs (aGPCRs), the second largest family within this superfamily, are promising yet underexplored targets for treating various diseases, including obesity, psychiatric disorders, and cancer. However, the receptors' unique and complex structure and miscellaneous interactions complicate comprehensive pharmacological studies. Despite recent progress in determining structures and elucidation of the activation mechanism, the function of many receptors remains to be determined. This review consolidates current knowledge on aGPCR ligands, focusing on small molecule orthosteric ligands and allosteric modulators identified for the ADGRGs subfamily (subfamily VIII), (GPR56/ADGRG1, GPR64/ADGRG2, GPR97/ADGRG3, GPR114/ADGRG5, GPR126/ADGRG6, and GPR128/ADGRG7). We discuss challenges in hit identification, target validation, and drug discovery, highlighting molecular compositions and recent structural breakthroughs. ADGRG ligands can offer new insights into aGPCR modulation and have significant potential for novel therapeutic interventions targeting various diseases.
Collapse
Affiliation(s)
- Fabian Liessmann
- Institute for Drug Discovery, Medical Faculty, Leipzig University, 04103 Leipzig, Saxony, Germany; Center for Scalable Data Analytics and Artificial Intelligence, Leipzig University, 04105 Leipzig, Saxony, Germany
| | - Lukas von Bredow
- Institute for Drug Discovery, Medical Faculty, Leipzig University, 04103 Leipzig, Saxony, Germany
| | - Jens Meiler
- Institute for Drug Discovery, Medical Faculty, Leipzig University, 04103 Leipzig, Saxony, Germany; Center for Scalable Data Analytics and Artificial Intelligence, Leipzig University, 04105 Leipzig, Saxony, Germany; Center for Structural Biology, Vanderbilt University, Nashville, TN 37235, USA; Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA.
| | - Ines Liebscher
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, 04103 Leipzig, Saxony, Germany.
| |
Collapse
|
2
|
Asad A, Shahidan NO, de la Vega de León A, Wiggin GR, Whitfield TT, Baxendale S. A screen of pharmacologically active compounds to identify modulators of the Adgrg6/Gpr126 signalling pathway in zebrafish embryos. Basic Clin Pharmacol Toxicol 2023; 133:364-377. [PMID: 37394692 PMCID: PMC10952222 DOI: 10.1111/bcpt.13923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/20/2023] [Accepted: 06/27/2023] [Indexed: 07/04/2023]
Abstract
Adhesion G protein-coupled receptors (GPCRs) are an underrepresented class of GPCRs in drug discovery. We previously developed an in vivo drug screening pipeline to identify compounds with agonist activity for Adgrg6 (Gpr126), an adhesion GPCR required for myelination of the peripheral nervous system in vertebrates. The screening assay tests for rescue of an ear defect found in adgrg6tb233c-/- hypomorphic homozygous mutant zebrafish, using the expression of versican b (vcanb) mRNA as an easily identifiable phenotype. In the current study, we used the same assay to screen a commercially available library of 1280 diverse bioactive compounds (Sigma LOPAC). Comparison with published hits from two partially overlapping compound collections (Spectrum, Tocris) confirms that the screening assay is robust and reproducible. Using a modified counter screen for myelin basic protein (mbp) gene expression, we have identified 17 LOPAC compounds that can rescue both inner ear and myelination defects in adgrg6tb233c-/- hypomorphic mutants, three of which (ebastine, S-methylisothiourea hemisulfate, and thapsigargin) are new hits. A further 25 LOPAC hit compounds were effective at rescuing the otic vcanb expression but not mbp. Together, these and previously identified hits provide a wealth of starting material for the development of novel and specific pharmacological modulators of Adgrg6 receptor activity.
Collapse
Affiliation(s)
- Anzar Asad
- School of BiosciencesUniversity of SheffieldSheffieldUK
| | | | | | | | | | - Sarah Baxendale
- School of BiosciencesUniversity of SheffieldSheffieldUK
- Sheffield Zebrafish Screening Facility, School of BiosciencesUniversity of SheffieldSheffieldUK
| |
Collapse
|
3
|
Gupta C, Bernadyn TF, Tall GG. Structural clarity is brought to adhesion G protein-coupled receptor tethered agonism. Basic Clin Pharmacol Toxicol 2023; 133:295-300. [PMID: 36585032 PMCID: PMC10310886 DOI: 10.1111/bcpt.13831] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/20/2022] [Accepted: 12/26/2022] [Indexed: 01/01/2023]
Abstract
An elusive problem in the adhesion G protein-coupled receptor (AGPCR) field is full understanding of the activation mechanisms of the 33-member receptor class. With the recent solution of active-state structures of nearly one quarter of AGPCRs, clarity has been brought to how AGPCRs are activated in response to endogenous full agonists. AGPCRs are self-activated via a tethered peptide agonist (TA) that transitions from a concealed or encrypted location to a decrypted state that binds to a typical GPCR orthosteric binding pocket. Here, we summarize the key milestones that led to the discovery of the AGPCR TA activation mechanism and discuss how extracellular shear forces may initiate TA decryption in physiological contexts. We compare the new active-state AGPCR structures and note that the orthosteric site-engaged TAs adopt a remarkably similar partial α-helical hook-like conformation, despite divergence of overall receptor similarity. Further, we contrast the TA-bound AGPCR structures to a partially active AGPCR structure to highlight the transitions AGPCRs may undergo during activation. Finally, we provide commentary on the validity of alternative AGPCR activation mechanisms.
Collapse
Affiliation(s)
- Charu Gupta
- Department of Pharmacology, University of Michigan Medical Center, Ann Arbor, MI 48109
| | - Tyler F Bernadyn
- Department of Pharmacology, University of Michigan Medical Center, Ann Arbor, MI 48109
| | - Gregory G Tall
- Department of Pharmacology, University of Michigan Medical Center, Ann Arbor, MI 48109
| |
Collapse
|
4
|
Göttle P, Tsigaras T, Küry P. There is more than one route to achieve myelin repair. Regen Med 2022; 17:699-703. [PMID: 35815390 DOI: 10.2217/rme-2022-0089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Peter Göttle
- Department of Neurology and Neuroregeneration, Medical Faculty, Heinrich Heine University, Düsseldorf, 40225, Germany
| | - Thanos Tsigaras
- Department of Neurology and Neuroregeneration, Medical Faculty, Heinrich Heine University, Düsseldorf, 40225, Germany
| | - Patrick Küry
- Department of Neurology and Neuroregeneration, Medical Faculty, Heinrich Heine University, Düsseldorf, 40225, Germany
| |
Collapse
|
5
|
Mitgau J, Franke J, Schinner C, Stephan G, Berndt S, Placantonakis DG, Kalwa H, Spindler V, Wilde C, Liebscher I. The N Terminus of Adhesion G Protein–Coupled Receptor GPR126/ADGRG6 as Allosteric Force Integrator. Front Cell Dev Biol 2022; 10:873278. [PMID: 35813217 PMCID: PMC9259995 DOI: 10.3389/fcell.2022.873278] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/12/2022] [Indexed: 12/15/2022] Open
Abstract
The adhesion G protein–coupled receptor (aGPCR) GPR126/ADGRG6 plays an important role in several physiological functions, such as myelination or peripheral nerve repair. This renders the receptor an attractive pharmacological target. GPR126 is a mechano-sensor that translates the binding of extracellular matrix (ECM) molecules to its N terminus into a metabotropic intracellular signal. To date, the structural requirements and the character of the forces needed for this ECM-mediated receptor activation are largely unknown. In this study, we provide this information by combining classic second-messenger detection with single-cell atomic force microscopy. We established a monoclonal antibody targeting the N terminus to stimulate GPR126 and compared it to the activation through its known ECM ligands, collagen IV and laminin 211. As each ligand uses a distinct mode of action, the N terminus can be regarded as an allosteric module that can fine-tune receptor activation in a context-specific manner.
Collapse
Affiliation(s)
- Jakob Mitgau
- Rudolf Schönheimer Institute for Biochemistry, Molecular Biochemistry, University of Leipzig, Leipzig, Germany
| | - Julius Franke
- Rudolf Schönheimer Institute for Biochemistry, Molecular Biochemistry, University of Leipzig, Leipzig, Germany
| | - Camilla Schinner
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Gabriele Stephan
- Department of Neurosurgery, Kimmel Center for Stem Cell Biology, Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, United States
| | - Sandra Berndt
- Rudolf Schönheimer Institute for Biochemistry, Molecular Biochemistry, University of Leipzig, Leipzig, Germany
| | - Dimitris G. Placantonakis
- Department of Neurosurgery, Kimmel Center for Stem Cell Biology, Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, United States
| | - Hermann Kalwa
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, University of Leipzig, Leipzig, Germany
| | - Volker Spindler
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Caroline Wilde
- Rudolf Schönheimer Institute for Biochemistry, Molecular Biochemistry, University of Leipzig, Leipzig, Germany
| | - Ines Liebscher
- Rudolf Schönheimer Institute for Biochemistry, Molecular Biochemistry, University of Leipzig, Leipzig, Germany
- *Correspondence: Ines Liebscher,
| |
Collapse
|
6
|
Structural basis for the tethered peptide activation of adhesion GPCRs. Nature 2022; 604:763-770. [PMID: 35418678 DOI: 10.1038/s41586-022-04619-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 03/07/2022] [Indexed: 12/11/2022]
Abstract
Adhesion G-protein-coupled receptors (aGPCRs) are important for organogenesis, neurodevelopment, reproduction and other processes1-6. Many aGPCRs are activated by a conserved internal (tethered) agonist sequence known as the Stachel sequence7-12. Here, we report the cryogenic electron microscopy (cryo-EM) structures of two aGPCRs in complex with Gs: GPR133 and GPR114. The structures indicate that the Stachel sequences of both receptors assume an α-helical-bulge-β-sheet structure and insert into a binding site formed by the transmembrane domain (TMD). A hydrophobic interaction motif (HIM) within the Stachel sequence mediates most of the intramolecular interactions with the TMD. Combined with the cryo-EM structures, biochemical characterization of the HIM motif provides insight into the cross-reactivity and selectivity of the Stachel sequences. Two interconnected mechanisms, the sensing of Stachel sequences by the conserved 'toggle switch' W6.53 and the constitution of a hydrogen-bond network formed by Q7.49/Y7.49 and the P6.47/V6.47φφG6.50 motif (φ indicates a hydrophobic residue), are important in Stachel sequence-mediated receptor activation and Gs coupling. Notably, this network stabilizes kink formation in TM helices 6 and 7 (TM6 and TM7, respectively). A common Gs-binding interface is observed between the two aGPCRs, and GPR114 has an extended TM7 that forms unique interactions with Gs. Our structures reveal the detailed mechanisms of aGPCR activation by Stachel sequences and their Gs coupling.
Collapse
|
7
|
Abstract
Cerebral small vessel disease (cSVD) is a leading cause of ischaemic and haemorrhagic stroke and a major contributor to dementia. Covert cSVD, which is detectable with brain MRI but does not manifest as clinical stroke, is highly prevalent in the general population, particularly with increasing age. Advances in technologies and collaborative work have led to substantial progress in the identification of common genetic variants that are associated with cSVD-related stroke (ischaemic and haemorrhagic) and MRI-defined covert cSVD. In this Review, we provide an overview of collaborative studies - mostly genome-wide association studies (GWAS) - that have identified >50 independent genetic loci associated with the risk of cSVD. We describe how these associations have provided novel insights into the biological mechanisms involved in cSVD, revealed patterns of shared genetic variation across cSVD traits, and shed new light on the continuum between rare, monogenic and common, multifactorial cSVD. We consider how GWAS summary statistics have been leveraged for Mendelian randomization studies to explore causal pathways in cSVD and provide genetic evidence for drug effects, and how the combination of findings from GWAS with gene expression resources and drug target databases has enabled identification of putative causal genes and provided proof-of-concept for drug repositioning potential. We also discuss opportunities for polygenic risk prediction, multi-ancestry approaches and integration with other omics data.
Collapse
|
8
|
Torregrosa-Carrión R, Piñeiro-Sabarís R, Siguero-Álvarez M, Grego-Bessa J, Luna-Zurita L, Fernandes VS, MacGrogan D, Stainier DYR, de la Pompa JL. Adhesion G protein-coupled receptor Gpr126/Adgrg6 is essential for placental development. SCIENCE ADVANCES 2021; 7:eabj5445. [PMID: 34767447 PMCID: PMC8589310 DOI: 10.1126/sciadv.abj5445] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Mutations in the G protein–coupled receptor GPR126/ADGRG6 cause human diseases, including defective peripheral nervous system (PNS) myelination. To study GPR126 function, we generated new genetic mice and zebrafish models. Murine Gpr126 is expressed in developing heart endocardium, and global Gpr126 inactivation is embryonically lethal, with mutants having thin-walled ventricles but unaffected heart patterning or maturation. Endocardial-specific Gpr126 deletion does not affect heart development or function, and transgenic endocardial GPR126 expression fails to rescue lethality in Gpr126-null mice. Zebrafish gpr126 mutants display unaffected heart development. Gpr126 is also expressed in placental trophoblast giant cells. Gpr126-null mice with a heterozygous placenta survive but exhibit GPR126-defective PNS phenotype. In contrast, Gpr126-null embryos with homozygous mutant placenta die but are rescued by placental GPR126 expression. Gpr126-deficient placentas display down-regulation of preeclampsia markers Mmp9, Cts7, and Cts8. We propose that the placenta-heart axis accounts for heart abnormalities secondary to placental defects in Gpr126 mutants.
Collapse
Affiliation(s)
- Rebeca Torregrosa-Carrión
- Intercellular Signalling in Cardiovascular Development and Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
- Ciber de Enfermedades Cardiovasculares, 28029 Madrid, Spain
| | - Rebeca Piñeiro-Sabarís
- Intercellular Signalling in Cardiovascular Development and Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
- Ciber de Enfermedades Cardiovasculares, 28029 Madrid, Spain
| | - Marcos Siguero-Álvarez
- Intercellular Signalling in Cardiovascular Development and Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
- Ciber de Enfermedades Cardiovasculares, 28029 Madrid, Spain
| | - Joaquím Grego-Bessa
- Intercellular Signalling in Cardiovascular Development and Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
- Ciber de Enfermedades Cardiovasculares, 28029 Madrid, Spain
| | - Luis Luna-Zurita
- Intercellular Signalling in Cardiovascular Development and Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
- Ciber de Enfermedades Cardiovasculares, 28029 Madrid, Spain
| | - Vitor Samuel Fernandes
- Intercellular Signalling in Cardiovascular Development and Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
- Ciber de Enfermedades Cardiovasculares, 28029 Madrid, Spain
| | - Donal MacGrogan
- Intercellular Signalling in Cardiovascular Development and Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
- Ciber de Enfermedades Cardiovasculares, 28029 Madrid, Spain
| | - Didier Y. R. Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - José Luis de la Pompa
- Intercellular Signalling in Cardiovascular Development and Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
- Ciber de Enfermedades Cardiovasculares, 28029 Madrid, Spain
- Corresponding author.
| |
Collapse
|
9
|
Small molecule screening as an approach to encounter inefficient myelin repair. Curr Opin Pharmacol 2021; 61:127-135. [PMID: 34753035 DOI: 10.1016/j.coph.2021.09.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/28/2021] [Accepted: 09/30/2021] [Indexed: 11/20/2022]
Abstract
While current multiple sclerosis therapies are focused on immunomodulation, thereby slowing down disease progression, scientific interest has nowadays been shifted toward regenerative therapies aiming at reversing already existing deficits. The application of chemical compounds was proven to be valuable for the understanding of oligodendrogenesis and for exposing mechanisms that can boost remyelination. However, sufficient myelin repair has not been achieved yet, thus underscoring the need for more studies toward this unmet clinical goal. In this regard, many research groups have significantly contributed to the field via developing compound screening approaches or using single substances. We, here, present an overview of recent studies addressing the identification of myelin repair drugs and provide insights into technical aspects and identified substances.
Collapse
|
10
|
Baxendale S, Asad A, Shahidan NO, Wiggin GR, Whitfield TT. The adhesion GPCR Adgrg6 (Gpr126): Insights from the zebrafish model. Genesis 2021; 59:e23417. [PMID: 33735533 PMCID: PMC11475505 DOI: 10.1002/dvg.23417] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 12/13/2022]
Abstract
Adhesion GPCRs are important regulators of conserved developmental processes and represent an untapped pool of potential targets for drug discovery. The adhesion GPCR Adgrg6 (Gpr126) has critical developmental roles in Schwann cell maturation and inner ear morphogenesis in the zebrafish embryo. Mutations in the human ADGRG6 gene can result in severe deficits in peripheral myelination, and variants have been associated with many other disease conditions. Here, we review work on the zebrafish Adgrg6 signaling pathway and its potential as a disease model. Recent advances have been made in the analysis of the structure of the Adgrg6 receptor, demonstrating alternative structural conformations and the presence of a conserved calcium-binding site within the CUB domain of the extracellular region that is critical for receptor function. Homozygous zebrafish adgrg6 hypomorphic mutants have been used successfully as a whole-animal screening platform, identifying candidate molecules that can influence signaling activity and rescue mutant phenotypes. These compounds offer promise for further development as small molecule modulators of Adgrg6 pathway activity.
Collapse
Affiliation(s)
- Sarah Baxendale
- Department of Biomedical Science, Bateson Centre and Neuroscience InstituteUniversity of SheffieldSheffieldUK
| | - Anzar Asad
- Department of Biomedical Science, Bateson Centre and Neuroscience InstituteUniversity of SheffieldSheffieldUK
| | - Nahal O. Shahidan
- Department of Biomedical Science, Bateson Centre and Neuroscience InstituteUniversity of SheffieldSheffieldUK
| | | | - Tanya T. Whitfield
- Department of Biomedical Science, Bateson Centre and Neuroscience InstituteUniversity of SheffieldSheffieldUK
| |
Collapse
|
11
|
Cui H, Yu W, Yu M, Luo Y, Yang M, Cong R, Chu X, Gao G, Zhong M. GPR126 regulates colorectal cancer cell proliferation by mediating HDAC2 and GLI2 expression. Cancer Sci 2021; 112:1798-1810. [PMID: 33629464 PMCID: PMC8088945 DOI: 10.1111/cas.14868] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/20/2021] [Accepted: 02/20/2021] [Indexed: 12/15/2022] Open
Abstract
The G‐protein‐coupled receptor 126 (GPR126) may play an important role in tumor development, although its role remains poorly understood. We found that GPR126 had higher expression in most colorectal cancer cell lines than in normal colon epithelial cell lines, and higher expression levels in colorectal cancer tissues than in normal adjacent colon tissues. GPR126 knockdown induced by shRNA inhibited cell viability and colony formation in HT‐29, HCT116, and LoVo cells, decreased BrdU incorporation into newly synthesized proliferating HT‐29 cells, led to an arrest of cell cycle progression at the G1 phase in HCT‐116 and HT‐29 cells, and suppressed tumorigenesis of HT‐29, HCT116, and LoVo cells in nude mouse xenograft models. GPR126 knockdown engendered decreased transcription and translation of histone deacetylase 2 (HDAC2), previously implicated in the activation of GLI1 and GLI2 in the Hedgehog signaling pathway. Ectopic expression of HDAC2 in GPR126‐silenced cells restored cell viability and proliferation, GLI2 luciferase reporter activity, partially recovered GLI2 expression, and reduced the cell cycle arrest. HDAC2 regulated GLI2 expression and, along with GLI2, it bound to the PTCH1 promoter, as evidenced by a chip assay with HT‐29 cells. Purmorphamine, a hedgehog agonist, largely restored the cell viability and expression of GLI2 proteins in GPR126‐silenced HT‐29 cells, whereas GANT61, a hedgehog inhibitor, further enhanced the GPR126 knockdown‐induced inhibitory effects. Our findings demonstrate that GPR126 regulates colorectal cancer cell proliferation by mediating the expression of HDAC2 and GLI2, therefore it may represent a suitable therapeutic target for colorectal cancer treatment.
Collapse
Affiliation(s)
- Hengxiang Cui
- Medical Research Center, Second Affiliated Hospital of Nantong University, Nantong, China.,Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Wenjie Yu
- Department of Internal Medicine, Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
| | - Minhao Yu
- Department of Gastrointestinal Surgery, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yang Luo
- Department of Gastrointestinal Surgery, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Mingming Yang
- Department of Biochemistry and Molecular Biology, School of Medicine, Nantong University, Nantong, China
| | - Ruochen Cong
- Medical Research Center, Second Affiliated Hospital of Nantong University, Nantong, China
| | - Xin Chu
- Medical Research Center, Second Affiliated Hospital of Nantong University, Nantong, China
| | - Ganglong Gao
- Department of Gastrointestinal Surgery, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Ming Zhong
- Department of Gastrointestinal Surgery, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
12
|
Manousi A, Göttle P, Reiche L, Cui QL, Healy LM, Akkermann R, Gruchot J, Schira-Heinen J, Antel JP, Hartung HP, Küry P. Identification of novel myelin repair drugs by modulation of oligodendroglial differentiation competence. EBioMedicine 2021; 65:103276. [PMID: 33714029 PMCID: PMC7970057 DOI: 10.1016/j.ebiom.2021.103276] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND In multiple sclerosis loss of myelin and oligodendrocytes impairs saltatory signal transduction and leads to neuronal loss and functional deficits. Limited capacity of oligodendroglial precursor cells to differentiate into mature cells is the main reason for inefficient myelin repair in the central nervous system. Drug repurposing constitutes a powerful approach for identification of pharmacological compounds promoting this process. METHODS A phenotypic compound screening using the subcellular distribution of a potent inhibitor of oligodendroglial cell differentiation, namely p57kip2, as differentiation competence marker was conducted. Hit compounds were validated in terms of their impact on developmental cell differentiation and myelination using both rat and human primary cell cultures and organotypic cerebellar slice cultures, respectively. Their effect on spontaneous remyelination was then investigated following cuprizone-mediated demyelination of the corpus callosum. FINDINGS A number of novel small molecules able to promote oligodendroglial cell differentiation were identified and a subset was found to foster human oligodendrogenesis as well as myelination ex vivo. Among them the steroid danazol and the anthelminthic parbendazole were found to increase myelin repair. INTERPRETATION We provide evidence that early cellular processes involved in differentiation decisions are applicable for the identification of regeneration promoting drugs and we suggest danazol and parbendazole as potent therapeutic candidates for demyelinating diseases. FUNDING This work was supported by the Jürgen Manchot Foundation, Düsseldorf; Research Commission of the Medical Faculty of Heinrich-Heine-University Düsseldorf; Christiane and Claudia Hempel Foundation; Stifterverband/Novartisstiftung; James and Elisabeth Cloppenburg, Peek and Cloppenburg Düsseldorf Stiftung and International Progressive MS Alliance (BRAVEinMS).
Collapse
Affiliation(s)
- Anastasia Manousi
- Department of Neurology, Medical Faculty, Heinrich-Heine-University Düsseldorf, 40225, Germany
| | - Peter Göttle
- Department of Neurology, Medical Faculty, Heinrich-Heine-University Düsseldorf, 40225, Germany
| | - Laura Reiche
- Department of Neurology, Medical Faculty, Heinrich-Heine-University Düsseldorf, 40225, Germany
| | - Qiao-Ling Cui
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC H4A 3K9, Canada
| | - Luke M Healy
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC H4A 3K9, Canada
| | - Rainer Akkermann
- Department of Neurology, Medical Faculty, Heinrich-Heine-University Düsseldorf, 40225, Germany
| | - Joel Gruchot
- Department of Neurology, Medical Faculty, Heinrich-Heine-University Düsseldorf, 40225, Germany
| | - Jessica Schira-Heinen
- Department of Neurology, Medical Faculty, Heinrich-Heine-University Düsseldorf, 40225, Germany
| | - Jack P Antel
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC H4A 3K9, Canada
| | - Hans-Peter Hartung
- Department of Neurology, Medical Faculty, Heinrich-Heine-University Düsseldorf, 40225, Germany; Brain and Mind Centre, University of Sydney, Camperdown NSW 2050, Australia
| | - Patrick Küry
- Department of Neurology, Medical Faculty, Heinrich-Heine-University Düsseldorf, 40225, Germany.
| |
Collapse
|
13
|
Lago-Baldaia I, Fernandes VM, Ackerman SD. More Than Mortar: Glia as Architects of Nervous System Development and Disease. Front Cell Dev Biol 2020; 8:611269. [PMID: 33381506 PMCID: PMC7767919 DOI: 10.3389/fcell.2020.611269] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 11/17/2020] [Indexed: 12/12/2022] Open
Abstract
Glial cells are an essential component of the nervous system of vertebrates and invertebrates. In the human brain, glia are as numerous as neurons, yet the importance of glia to nearly every aspect of nervous system development has only been expounded over the last several decades. Glia are now known to regulate neural specification, synaptogenesis, synapse function, and even broad circuit function. Given their ubiquity, it is not surprising that the contribution of glia to neuronal disease pathogenesis is a growing area of research. In this review, we will summarize the accumulated evidence of glial participation in several distinct phases of nervous system development and organization-neural specification, circuit wiring, and circuit function. Finally, we will highlight how these early developmental roles of glia contribute to nervous system dysfunction in neurodevelopmental and neurodegenerative disorders.
Collapse
Affiliation(s)
- Inês Lago-Baldaia
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Vilaiwan M. Fernandes
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Sarah D. Ackerman
- Institute of Neuroscience, Howard Hughes Medical Institute, University of Oregon, Eugene, OR, United States
| |
Collapse
|
14
|
Schöneberg T, Liebscher I. Mutations in G Protein-Coupled Receptors: Mechanisms, Pathophysiology and Potential Therapeutic Approaches. Pharmacol Rev 2020; 73:89-119. [PMID: 33219147 DOI: 10.1124/pharmrev.120.000011] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
There are approximately 800 annotated G protein-coupled receptor (GPCR) genes, making these membrane receptors members of the most abundant gene family in the human genome. Besides being involved in manifold physiologic functions and serving as important pharmacotherapeutic targets, mutations in 55 GPCR genes cause about 66 inherited monogenic diseases in humans. Alterations of nine GPCR genes are causatively involved in inherited digenic diseases. In addition to classic gain- and loss-of-function variants, other aspects, such as biased signaling, trans-signaling, ectopic expression, allele variants of GPCRs, pseudogenes, gene fusion, and gene dosage, contribute to the repertoire of GPCR dysfunctions. However, the spectrum of alterations and GPCR involvement is probably much larger because an additional 91 GPCR genes contain homozygous or hemizygous loss-of-function mutations in human individuals with currently unidentified phenotypes. This review highlights the complexity of genomic alteration of GPCR genes as well as their functional consequences and discusses derived therapeutic approaches. SIGNIFICANCE STATEMENT: With the advent of new transgenic and sequencing technologies, the number of monogenic diseases related to G protein-coupled receptor (GPCR) mutants has significantly increased, and our understanding of the functional impact of certain kinds of mutations has substantially improved. Besides the classical gain- and loss-of-function alterations, additional aspects, such as biased signaling, trans-signaling, ectopic expression, allele variants of GPCRs, uniparental disomy, pseudogenes, gene fusion, and gene dosage, need to be elaborated in light of GPCR dysfunctions and possible therapeutic strategies.
Collapse
Affiliation(s)
- Torsten Schöneberg
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, Leipzig, Germany
| | - Ines Liebscher
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, Leipzig, Germany
| |
Collapse
|
15
|
Soluble dimeric prion protein ligand activates Adgrg6 receptor but does not rescue early signs of demyelination in PrP-deficient mice. PLoS One 2020; 15:e0242137. [PMID: 33180885 PMCID: PMC7660510 DOI: 10.1371/journal.pone.0242137] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/28/2020] [Indexed: 02/07/2023] Open
Abstract
The adhesion G-protein coupled receptor Adgrg6 (formerly Gpr126) is instrumental in the development, maintenance and repair of peripheral nervous system myelin. The prion protein (PrP) is a potent activator of Adgrg6 and could be used as a potential therapeutic agent in treating peripheral demyelinating and dysmyelinating diseases. We designed a dimeric Fc-fusion protein comprising the myelinotrophic domain of PrP (FT2Fc), which activated Adgrg6 in vitro and exhibited favorable pharmacokinetic properties for in vivo treatment of peripheral neuropathies. While chronic FT2Fc treatment elicited specific transcriptomic changes in the sciatic nerves of PrP knockout mice, no amelioration of the early molecular signs demyelination was detected. Instead, RNA sequencing of sciatic nerves revealed downregulation of cytoskeletal and sarcomere genes, akin to the gene expression changes seen in myopathic skeletal muscle of PrP overexpressing mice. These results call for caution when devising myelinotrophic therapies based on PrP-derived Adgrg6 ligands. While our treatment approach was not successful, Adgrg6 remains an attractive therapeutic target to be addressed in other disease models or by using different biologically active Adgrg6 ligands.
Collapse
|
16
|
Maser RL, Calvet JP. Adhesion GPCRs as a paradigm for understanding polycystin-1 G protein regulation. Cell Signal 2020; 72:109637. [PMID: 32305667 DOI: 10.1016/j.cellsig.2020.109637] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/12/2020] [Accepted: 04/13/2020] [Indexed: 12/21/2022]
Abstract
Polycystin-1, whose mutation is the most frequent cause of autosomal dominant polycystic kidney disease, is an extremely large and multi-faceted membrane protein whose primary or proximal cyst-preventing function remains undetermined. Accumulating evidence supports the idea that modulation of cellular signaling by heterotrimeric G proteins is a critical function of polycystin-1. The presence of a cis-autocatalyzed, G protein-coupled receptor (GPCR) proteolytic cleavage site, or GPS, in its extracellular N-terminal domain immediately preceding the first transmembrane domain is one of the notable conserved features of the polycystin-1-like protein family, and also of the family of cell adhesion GPCRs. Adhesion GPCRs are one of five families within the GPCR superfamily and are distinguished by a large N-terminal extracellular region consisting of multiple adhesion modules with a GPS-containing GAIN domain and bimodal functions in cell adhesion and signal transduction. Recent advances from studies of adhesion GPCRs provide a new paradigm for unraveling the mechanisms by which polycystin-1-associated G protein signaling contributes to the pathogenesis of polycystic kidney disease. This review highlights the structural and functional features shared by polycystin-1 and the adhesion GPCRs and discusses the implications of such similarities for our further understanding of the functions of this complicated protein.
Collapse
Affiliation(s)
- Robin L Maser
- Department of Clinical Laboratory Sciences, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, Kansas 66160, USA; Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, Kansas 66160, USA; Jared Grantham Kidney Institute, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, Kansas 66160, USA.
| | - James P Calvet
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, Kansas 66160, USA; Jared Grantham Kidney Institute, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, Kansas 66160, USA.
| |
Collapse
|
17
|
Bradley EC, Cunningham RL, Wilde C, Morgan RK, Klug EA, Letcher SM, Schöneberg T, Monk KR, Liebscher I, Petersen SC. In vivo identification of small molecules mediating Gpr126/Adgrg6 signaling during Schwann cell development. Ann N Y Acad Sci 2019; 1456:44-63. [PMID: 31529518 PMCID: PMC7189964 DOI: 10.1111/nyas.14233] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 07/30/2019] [Accepted: 08/26/2019] [Indexed: 12/13/2022]
Abstract
Gpr126/Adgrg6, an adhesion family G protein-coupled receptor (aGPCR), is required for the development of myelinating Schwann cells in the peripheral nervous system. Myelin supports and insulates vertebrate axons to permit rapid signal propagation throughout the nervous system. In mammals and zebrafish, mutations in Gpr126 arrest Schwann cells at early developmental stages. We exploited the optical and pharmacological tractability of larval zebrafish to uncover drugs that mediate myelination by activating Gpr126 or functioning in parallel. Using a fluorescent marker of mature myelinating glia (Tg[mbp:EGFP-CAAX]), we screened hypomorphic gpr126 mutant larvae for restoration of myelin basic protein (mbp) expression along peripheral nerves following small molecule treatment. Our screens identified five compounds sufficient to promote mbp expression in gpr126 hypomorphs. Using an allelic series of gpr126 mutants, we parsed the ability of small molecules to restore mbp, suggesting differences in drug efficacy dependent on Schwann cell developmental state. Finally, we identify apomorphine hydrochloride as a direct small molecule activator of Gpr126 using combined in vivo/in vitro assays and show that aporphine class compounds promote Schwann cell development in vivo. Our results demonstrate the utility of in vivo screening for aGPCR modulators and identify small molecules that interact with the gpr126-mediated myelination program.
Collapse
Affiliation(s)
| | - Rebecca L. Cunningham
- Department of Developmental Biology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Caroline Wilde
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Rory K. Morgan
- Vollum Institute, Oregon Health & Science University, Portland, OR, USA
| | - Emma A. Klug
- Department of Neuroscience, Kenyon College, Gambier, OH, USA
| | | | - Torsten Schöneberg
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Kelly R. Monk
- Department of Developmental Biology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
- Vollum Institute, Oregon Health & Science University, Portland, OR, USA
| | - Ines Liebscher
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Sarah C. Petersen
- Department of Neuroscience, Kenyon College, Gambier, OH, USA
- Department of Developmental Biology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| |
Collapse
|