1
|
Koller D, Kocot KM, Degnan BM, Wollesen T. Developmental gene expression in the eyes of the pygmy squid Xipholeptos notoides. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2024; 342:483-498. [PMID: 39161250 DOI: 10.1002/jez.b.23270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 06/11/2024] [Accepted: 07/24/2024] [Indexed: 08/21/2024]
Abstract
The eyes of squids, octopuses, and cuttlefish are a textbook example for evolutionary convergence, due to their striking similarity to those of vertebrates. For this reason, studies on cephalopod photoreception and vision are of importance for a broader audience. Previous studies showed that genes such as pax6, or certain opsin-encoding genes, are evolutionarily highly conserved and play similar roles during ontogenesis in remotely related bilaterians. In this study, genes that encode photosensitive proteins and Reflectins are identified and characterized. The expression patterns of rhodopsin, xenopsin, retinochrome, and two reflectin genes have been visualized in developing embryos of the pygmy squid Xipholeptos notoides by in situ hybridization experiments. Rhodopsin is not only expressed in the retina of X. notoides but also in the olfactory organ and the dorsal parolfactory vesicles, the latter a cephalopod apomorphy. Both reflectin genes are expressed in the eyes and in the olfactory organ. These findings corroborate previous studies that found opsin genes in the transcriptomes of the eyes and several extraocular tissues of various cephalopods. Expression of rhodopsin, xenopsin, retinochrome, and the two reflectin genes in the olfactory organ is a finding that has not been described so far. In other organisms, it has been shown that Retinochrome and Rhodopsin proteins are obligatorily associated with each other as both molecules rely on each other for Retinal isomerisation. In addition, we demonstrate that retinochrome is expressed in the retina of X. notoides and in the olfactory organ. This study shows numerous new expression patterns for Opsin-encoding genes in organs that have not been associated with photoreception before, suggesting that either Opsins may not only be involved in photoreception or organs such as the olfactory organ are involved in photoreception.
Collapse
Affiliation(s)
- David Koller
- Unit for Integrative Zoology, Department of Evolutionary Biology, University of Vienna, Vienna, Austria
| | - Kevin M Kocot
- Department of Biological Sciences, University of Alabama, Tuscaloosa, Alabama, USA
| | - Bernard M Degnan
- Centre for Marine Science and School of the Environment, University of Queensland, Brisbane, Queensland, Australia
| | - Tim Wollesen
- Unit for Integrative Zoology, Department of Evolutionary Biology, University of Vienna, Vienna, Austria
| |
Collapse
|
2
|
Krivenko OV, Kuleshova ON, Baiandina IS. Light sensitivity in Beroidae ctenophores: Insights from laboratory studies and genomics. Comp Biochem Physiol A Mol Integr Physiol 2024; 296:111694. [PMID: 38992417 DOI: 10.1016/j.cbpa.2024.111694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/05/2024] [Accepted: 07/01/2024] [Indexed: 07/13/2024]
Abstract
Light detection underlies a variety of animal behaviors, including those related to spatial orientation, feeding, avoidance of predators, and reproduction. Ctenophores are likely the oldest animal group in which light sensitivity based on opsins evolved, so they may still have the ancestral molecular mechanisms for photoreception. However, knowledge about ctenophore photosensitivity, associated morphological structures, molecular mechanisms involved, and behavioral reactions is limited and fragmented. We present the initial experiments on the responses of adult Beroe ovata to high-intensity light exposure with different spectra and photosensitivity in various parts of the animal's body. Ctenophores have shown a consistent behavioral response when their aboral organ is exposed to a household-grade laser in the violet spectrum. To investigate the genes responsible for the photosensitivity of Beroidae, we have analyzed transcriptome and genome-wide datasets. We identified three opsins in Beroe that are homologous to those found in Mnemiopsis leidyi (Lobata) and Pleurobrachia bachei (Cydippida). These opsins form clades Ctenopsin1, 2, and 3, respectively. Ctenopsin3 is significantly distinct from other ctenophore opsins and clustered outside the main animal opsin groups. The Ctenopsin1 and Ctenopsin2 groups are sister clusters within the canonical animal opsin tree. These two groups could have originated from gene duplication in the common ancestor of the species we studied and then developed independently in different lineages of Ctenophores. So far, there is no evidence of additional expansion of the opsin family in ctenophore evolution. The involvement of ctenophore opsins in photoreception is discussed by analyzing their protein structures.
Collapse
Affiliation(s)
- Olga V Krivenko
- Laboratory of functional genomics, A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Moscow, Russia.
| | - Olga N Kuleshova
- Laboratory of functional genomics, A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Moscow, Russia
| | - Iuliia S Baiandina
- Laboratory of functional genomics, A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Moscow, Russia
| |
Collapse
|
3
|
Hasan MS, McElroy KE, Audino JA, Serb JM. Opsin expression varies across larval development and taxa in pteriomorphian bivalves. Front Neurosci 2024; 18:1357873. [PMID: 38562306 PMCID: PMC10982516 DOI: 10.3389/fnins.2024.1357873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/28/2024] [Indexed: 04/04/2024] Open
Abstract
Introduction Many marine organisms have a biphasic life cycle that transitions between a swimming larva with a more sedentary adult form. At the end of the first phase, larvae must identify suitable sites to settle and undergo a dramatic morphological change. Environmental factors, including photic and chemical cues, appear to influence settlement, but the sensory receptors involved are largely unknown. We targeted the protein receptor, opsin, which belongs to large superfamily of transmembrane receptors that detects environmental stimuli, hormones, and neurotransmitters. While opsins are well-known for light-sensing, including vision, a growing number of studies have demonstrated light-independent functions. We therefore examined opsin expression in the Pteriomorphia, a large, diverse clade of marine bivalves, that includes commercially important species, such as oysters, mussels, and scallops. Methods Genomic annotations combined with phylogenetic analysis show great variation of opsin abundance among pteriomorphian bivalves, including surprisingly high genomic abundance in many species that are eyeless as adults, such as mussels. Therefore, we investigated the diversity of opsin expression from the perspective of larval development. We collected opsin gene expression in four families of Pteriomorphia, across three distinct larval stages, i.e., trochophore, veliger, and pediveliger, and compared those to adult tissues. Results We found larvae express all opsin types in these bivalves, but opsin expression patterns are largely species-specific across development. Few opsins are expressed in the adult mantle, but many are highly expressed in adult eyes. Intriguingly, opsin genes such as retinochrome, xenopsins, and Go-opsins have higher levels of expression in the later larval stages when substrates for settlement are being tested, such as the pediveliger. Conclusion Investigating opsin gene expression during larval development provides crucial insights into their intricate interactions with the surroundings, which may shed light on how opsin receptors of these organisms respond to various environmental cues that play a pivotal role in their settlement process.
Collapse
Affiliation(s)
- Md Shazid Hasan
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA, United States
| | - Kyle E. McElroy
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA, United States
| | - Jorge A. Audino
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA, United States
- Department of Zoology, University of São Paulo, São Paulo, Brazil
| | - Jeanne M. Serb
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA, United States
| |
Collapse
|
4
|
Kong F, Ran Z, Zhang M, Liao K, Chen D, Yan X, Xu J. Eyeless razor clam Sinonovacula constricta discriminates light spectra through opsins to guide Ca 2+ and cAMP signaling pathways. J Biol Chem 2024; 300:105527. [PMID: 38043801 PMCID: PMC10788561 DOI: 10.1016/j.jbc.2023.105527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 11/17/2023] [Accepted: 11/26/2023] [Indexed: 12/05/2023] Open
Abstract
Phototransduction is based on opsins that drive distinct types of Gα cascades. Although nonvisual photosensitivity has long been known in marine bivalves, the underlying molecular basis and phototransduction mechanism are poorly understood. Here, we introduced the eyeless razor clam Sinonovacula constricta as a model to clarify this issue. First, we showed that S. constricta was highly diverse in opsin family members, with a significant expansion in xenopsins. Second, the expression of putative S. constricta opsins was highly temporal-spatio specific, indicating their potential roles in S. constricta development and its peripheral photosensitivity. Third, by cloning four S. constricta opsins with relatively higher expression (Sc_opsin1, 5, 7, and 12), we found that they exhibited different expression levels in response to different light environments. Moreover, we demonstrated that these opsins (excluding Sc_opsin7) couple with Gαq and Gαi cascades to mediate the light-dependent Ca2+ (Sc_opsin1 and 5) and cAMP (Sc_opsin12) signaling pathways. The results indicated that Sc_opsin1 and 5 belonged to Gq-opsins, Sc_opsin12 belonged to Gi-opsins, while Sc_opsin7 might act as a photo-isomerase. Furthermore, we found that the phototransduction function of S. constricta Gq-opsins was dependent on the lysine at the seventh transmembrane domain, and greatly influenced by the external light spectra in a complementary way. Thus, a synergistic photosensitive system mediated by opsins might exist in S. constricta to rapidly respond to the transient or subtle changes of the external light environment. Collectively, our findings provide valuable insights into the evolution of opsins in marine bivalves and their potential functions in nonvisual photosensitivity.
Collapse
Affiliation(s)
- Fei Kong
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, Zhejiang, China
| | - Zhaoshou Ran
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, Zhejiang, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, Zhejiang, China.
| | - Mengqi Zhang
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, Zhejiang, China
| | - Kai Liao
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, Zhejiang, China
| | - Deshui Chen
- Fujian Dalai Seedling Technology Co, LTD, Luoyuan, Fujian, China
| | - Xiaojun Yan
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, Zhejiang, China
| | - Jilin Xu
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, Zhejiang, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, Zhejiang, China; Fujian Dalai Seedling Technology Co, LTD, Luoyuan, Fujian, China.
| |
Collapse
|
5
|
Matsuo R, Koyanagi M, Sugihara T, Shirata T, Nagata T, Inoue K, Matsuo Y, Terakita A. Functional characterization of four opsins and two G alpha subtypes co-expressed in the molluscan rhabdomeric photoreceptor. BMC Biol 2023; 21:291. [PMID: 38110917 PMCID: PMC10729476 DOI: 10.1186/s12915-023-01789-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 11/09/2023] [Indexed: 12/20/2023] Open
Abstract
BACKGROUND Rhabdomeric photoreceptors of eyes in the terrestrial slug Limax are the typical invertebrate-type but unique in that three visual opsins (Gq-coupled rhodopsin, xenopsin, Opn5A) and one retinochrome, all belonging to different groups, are co-expressed. However, molecular properties including spectral sensitivity and G protein selectivity of any of them are not determined, which prevents us from understanding an advantage of multiplicity of opsin properties in a single rhabdomeric photoreceptor. To gain insight into the functional role of the co-expression of multiple opsin species in a photoreceptor, we investigated the molecular properties of the visual opsins in the present study. RESULTS First, we found that the fourth member of visual opsins, Opn5B, is also co-expressed in the rhabdomere of the photoreceptor together with previously identified three opsins. The photoreceptors were also demonstrated to express Gq and Go alpha subunits. We then determined the spectral sensitivity of the four visual opsins using biochemical and spectroscopic methods. Gq-coupled rhodopsin and xenopsin exhibit maximum sensitivity at ~ 456 and 475 nm, respectively, and Opn5A and Opn5B exhibit maximum sensitivity at ~ 500 and 470 nm, respectively, with significant UV sensitivity. Notably, in vitro experiments revealed that Go alpha was activated by all four visual opsins, in contrast to the specific activation of Gq alpha by Gq-coupled rhodopsin, suggesting that the eye photoreceptor of Limax uses complex G protein signaling pathways. CONCLUSIONS The eye photoreceptor in Limax expresses as many as four different visual opsin species belonging to three distinct classes. The combination of opsins with different spectral sensitivities and G protein selectivities may underlie physiological properties of the ocular photoreception, such as a shift in spectral sensitivity between dark- and light-adapted states. This may be allowed by adjustment of the relative contribution of the four opsins without neural networks, enabling a simple strategy for fine-tuning of vision.
Collapse
Affiliation(s)
- Ryota Matsuo
- International College of Arts and Sciences, Fukuoka Women's University, 1-1-1 Kasumigaoka, Higashi-Ku, Fukuoka, 813-8529, Japan.
| | - Mitsumasa Koyanagi
- Department of Biology, Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-Ku, Osaka, 558-8585, Japan
- Department of Biology and Geosciences, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-Ku, Osaka, 558-8585, Japan
- The OMU Advanced Research Institute of Natural Science and Technology, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-Ku, Osaka, 558-8585, Japan
| | - Tomohiro Sugihara
- Department of Biology, Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-Ku, Osaka, 558-8585, Japan
| | - Taishi Shirata
- Department of Biology and Geosciences, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-Ku, Osaka, 558-8585, Japan
| | - Takashi Nagata
- The Institute for Solid State Physics, The University of Tokyo, Kashiwa, Japan
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Japan
| | - Keiichi Inoue
- The Institute for Solid State Physics, The University of Tokyo, Kashiwa, Japan
| | - Yuko Matsuo
- International College of Arts and Sciences, Fukuoka Women's University, 1-1-1 Kasumigaoka, Higashi-Ku, Fukuoka, 813-8529, Japan
| | - Akihisa Terakita
- Department of Biology, Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-Ku, Osaka, 558-8585, Japan.
- Department of Biology and Geosciences, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-Ku, Osaka, 558-8585, Japan.
- The OMU Advanced Research Institute of Natural Science and Technology, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-Ku, Osaka, 558-8585, Japan.
| |
Collapse
|
6
|
McElroy KE, Audino JA, Serb JM. Molluscan Genomes Reveal Extensive Differences in Photopigment Evolution Across the Phylum. Mol Biol Evol 2023; 40:msad263. [PMID: 38039155 PMCID: PMC10733189 DOI: 10.1093/molbev/msad263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/14/2023] [Accepted: 11/14/2023] [Indexed: 12/03/2023] Open
Abstract
In animals, opsins and cryptochromes are major protein families that transduce light signals when bound to light-absorbing chromophores. Opsins are involved in various light-dependent processes, like vision, and have been co-opted for light-independent sensory modalities. Cryptochromes are important photoreceptors in animals, generally regulating circadian rhythm, they belong to a larger protein family with photolyases, which repair UV-induced DNA damage. Mollusks are great animals to explore questions about light sensing as eyes have evolved multiple times across, and within, taxonomic classes. We used molluscan genome assemblies from 80 species to predict protein sequences and examine gene family evolution using phylogenetic approaches. We found extensive opsin family expansion and contraction, particularly in bivalve xenopsins and gastropod Go-opsins, while other opsins, like retinochrome, rarely duplicate. Bivalve and gastropod lineages exhibit fluctuations in opsin repertoire, with cephalopods having the fewest number of opsins and loss of at least 2 major opsin types. Interestingly, opsin expansions are not limited to eyed species, and the highest opsin content was seen in eyeless bivalves. The dynamic nature of opsin evolution is quite contrary to the general lack of diversification in mollusk cryptochromes, though some taxa, including cephalopods and terrestrial gastropods, have reduced repertoires of both protein families. We also found complete loss of opsins and cryptochromes in multiple, but not all, deep-sea species. These results help set the stage for connecting genomic changes, including opsin family expansion and contraction, with differences in environmental, and biological features across Mollusca.
Collapse
Affiliation(s)
- Kyle E McElroy
- Ecology, Evolutionary, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Jorge A Audino
- Ecology, Evolutionary, and Organismal Biology, Iowa State University, Ames, IA, USA
- Department of Zoology, University of São Paulo, São Paulo, Brazil
| | - Jeanne M Serb
- Ecology, Evolutionary, and Organismal Biology, Iowa State University, Ames, IA, USA
| |
Collapse
|
7
|
Gąsiorowski L, Dittmann IL, Brand JN, Ruhwedel T, Möbius W, Egger B, Rink JC. Convergent evolution of the sensory pits in and within flatworms. BMC Biol 2023; 21:266. [PMID: 37993917 PMCID: PMC10664644 DOI: 10.1186/s12915-023-01768-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 11/13/2023] [Indexed: 11/24/2023] Open
Abstract
BACKGROUND Unlike most free-living platyhelminths, catenulids, the sister group to all remaining flatworms, do not have eyes. Instead, the most prominent sensory structures in their heads are statocysts or sensory pits. The latter, found in the family Stenostomidae, are concave depressions located laterally on the head that represent one of the taxonomically important traits of the family. In the past, the sensory pits of flatworms have been homologized with the cephalic organs of nemerteans, a clade that occupies a sister position to platyhelminths in some recent phylogenies. To test for this homology, we studied morphology and gene expression in the sensory pits of the catenulid Stenostomum brevipharyngium. RESULTS We used confocal and electron microscopy to investigate the detailed morphology of the sensory pits, as well as their formation during regeneration and asexual reproduction. The most prevalent cell type within the organ is epidermally-derived neuron-like cells that have cell bodies embedded deeply in the brain lobes and long neurite-like processes extending to the bottom of the pit. Those elongated processes are adorned with extensive microvillar projections that fill up the cavity of the pit, but cilia are not associated with the sensory pit. We also studied the expression patterns of some of the transcription factors expressed in the nemertean cephalic organs during the development of the pits. Only a single gene, pax4/6, is expressed in both the cerebral organs of nemerteans and sensory pits of S. brevipharyngium, challenging the idea of their deep homology. CONCLUSIONS Since there is no morphological or molecular correspondence between the sensory pits of Stenostomum and the cerebral organs of nemerteans, we reject their homology. Interestingly, the major cell type contributing to the sensory pits of stenostomids shows ultrastructural similarities to the rhabdomeric photoreceptors of other flatworms and expresses ortholog of the gene pax4/6, the pan-bilaterian master regulator of eye development. We suggest that the sensory pits of stenostomids might have evolved from the ancestral rhabdomeric photoreceptors that lost their photosensitivity and evolved secondary function. The mapping of head sensory structures on plathelminth phylogeny indicates that sensory pit-like organs evolved many times independently in flatworms.
Collapse
Affiliation(s)
- Ludwik Gąsiorowski
- Department of Tissue Dynamics and Regeneration, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany.
| | - Isabel Lucia Dittmann
- Institut Für Zoologie, Universität Innsbruck, Technikerstraße 25 6020, Innsbruck, Austria
| | - Jeremias N Brand
- Department of Tissue Dynamics and Regeneration, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany
| | - Torben Ruhwedel
- Electron Microscopy Facility, Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, City Campus, Hermann-Rein-Str. 3, 37075, Göttingen, Germany
| | - Wiebke Möbius
- Electron Microscopy Facility, Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, City Campus, Hermann-Rein-Str. 3, 37075, Göttingen, Germany
| | - Bernhard Egger
- Institut Für Zoologie, Universität Innsbruck, Technikerstraße 25 6020, Innsbruck, Austria
| | - Jochen C Rink
- Department of Tissue Dynamics and Regeneration, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany.
| |
Collapse
|
8
|
Brodrick E, Jékely G. Photobehaviours guided by simple photoreceptor systems. Anim Cogn 2023; 26:1817-1835. [PMID: 37650997 PMCID: PMC10770211 DOI: 10.1007/s10071-023-01818-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/29/2023] [Accepted: 08/01/2023] [Indexed: 09/01/2023]
Abstract
Light provides a widely abundant energy source and valuable sensory cue in nature. Most animals exposed to light have photoreceptor cells and in addition to eyes, there are many extraocular strategies for light sensing. Here, we review how these simpler forms of detecting light can mediate rapid behavioural responses in animals. Examples of these behaviours include photophobic (light avoidance) or scotophobic (shadow) responses, photokinesis, phototaxis and wavelength discrimination. We review the cells and response mechanisms in these forms of elementary light detection, focusing on aquatic invertebrates with some protist and terrestrial examples to illustrate the general principles. Light cues can be used very efficiently by these simple photosensitive systems to effectively guide animal behaviours without investment in complex and energetically expensive visual structures.
Collapse
Affiliation(s)
- Emelie Brodrick
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK.
| | - Gáspár Jékely
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
- Centre for Organismal Studies, University of Heidelberg, 69120, Heidelberg, Germany
| |
Collapse
|
9
|
Wollesen T, Rodriguez Monje SV, Oel AP, Arendt D. Characterization of eyes, photoreceptors, and opsins in developmental stages of the arrow worm Spadella cephaloptera (Chaetognatha). JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2023; 340:342-353. [PMID: 36855226 PMCID: PMC10952353 DOI: 10.1002/jez.b.23193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 02/03/2023] [Accepted: 02/16/2023] [Indexed: 03/02/2023]
Abstract
The phylogenetic position of chaetognaths, or arrow worms, has been debated for decades, however recently they have been grouped into the Gnathifera, a sister clade to all other Spiralia. Chaetognath photoreceptor cells are anatomically unique by exhibiting a highly modified cilium and are arranged differently in the eyes of the various species. Studies investigating eye development and underlying gene regulatory networks are so far missing. To gain insights into the development and the molecular toolkit of chaetognath photoreceptors and eyes a new transcriptome of the epibenthic species Spadella cephaloptera was searched for opsins. Our screen revealed two copies of xenopsin and a single copy of peropsin. Gene expression analyses demonstrated that only xenopsin1 is expressed in photoreceptor cells of the developing lateral eyes. Adults likewise exhibit two xenopsin1 + photoreceptor cells in each of their lateral eyes. Beyond that, a single cryptochrome gene was uncovered and found to be expressed in photoreceptor cells of the lateral developing eye. In addition, cryptochrome is also expressed in the cerebral ganglia in a region in which also peropsin expression was observed. This condition is reminiscent of a nonvisual photoreceptive zone in the apical nervous system of the annelid Platynereis dumerilii that performs circadian entrainment and melatonin release. Cryptochrome is also expressed in cells of the corona ciliata, an organ in the posterior dorsal head region, indicating a role in circadian entrainment. Our study highlights the importance of the Gnathifera for unraveling the evolution of photoreceptors and eyes in Spiralia and Bilateria.
Collapse
Affiliation(s)
- Tim Wollesen
- Department of Evolutionary Biology, Faculty of Life SciencesUniversity of ViennaViennaAustria
| | | | - Adam P. Oel
- Developmental Biology UnitEuropean Molecular Biology LaboratoryHeidelbergGermany
| | - Detlev Arendt
- Developmental Biology UnitEuropean Molecular Biology LaboratoryHeidelbergGermany
| |
Collapse
|
10
|
De Vivo G, Crocetta F, Ferretti M, Feuda R, D’Aniello S. Duplication and Losses of Opsin Genes in Lophotrochozoan Evolution. Mol Biol Evol 2023; 40:msad066. [PMID: 36947081 PMCID: PMC10097855 DOI: 10.1093/molbev/msad066] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/01/2023] [Accepted: 03/13/2023] [Indexed: 03/23/2023] Open
Abstract
Opsins are G-coupled receptors playing a key role in metazoan visual processes. While many studies enriched our understanding of opsin diversity in several animal clades, the opsin evolution in Lophotrochozoa, one of the major metazoan groups, remains poorly understood. Using recently developed phylogenetic approaches, we investigated the opsin evolution in 74 lophotrochozoan genomes. We found that the common ancestor of Lophotrochozoa possessed at least seven opsin paralog groups that underwent divergent evolutionary history in the different phyla. Furthermore, we showed for the first time opsin-related molecules in Bilateria that we named pseudopsins, which may prove critical in uncovering opsin evolution.
Collapse
Affiliation(s)
- Giacinto De Vivo
- Department of Biology and Evolution of Marine Organisms (BEOM), Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - Fabio Crocetta
- Department of Integrative Marine Ecology (EMI), Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - Miriam Ferretti
- Department of Biology and Evolution of Marine Organisms (BEOM), Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - Roberto Feuda
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Salvatore D’Aniello
- Department of Biology and Evolution of Marine Organisms (BEOM), Stazione Zoologica Anton Dohrn, Napoli, Italy
| |
Collapse
|
11
|
Vöcking O, Macias-Muñoz A, Jaeger SJ, Oakley TH. Deep Diversity: Extensive Variation in the Components of Complex Visual Systems across Animals. Cells 2022; 11:cells11243966. [PMID: 36552730 PMCID: PMC9776813 DOI: 10.3390/cells11243966] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/19/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Abstract
Understanding the molecular underpinnings of the evolution of complex (multi-part) systems is a fundamental topic in biology. One unanswered question is to what the extent do similar or different genes and regulatory interactions underlie similar complex systems across species? Animal eyes and phototransduction (light detection) are outstanding systems to investigate this question because some of the genetics underlying these traits are well characterized in model organisms. However, comparative studies using non-model organisms are also necessary to understand the diversity and evolution of these traits. Here, we compare the characteristics of photoreceptor cells, opsins, and phototransduction cascades in diverse taxa, with a particular focus on cnidarians. In contrast to the common theme of deep homology, whereby similar traits develop mainly using homologous genes, comparisons of visual systems, especially in non-model organisms, are beginning to highlight a "deep diversity" of underlying components, illustrating how variation can underlie similar complex systems across taxa. Although using candidate genes from model organisms across diversity was a good starting point to understand the evolution of complex systems, unbiased genome-wide comparisons and subsequent functional validation will be necessary to uncover unique genes that comprise the complex systems of non-model groups to better understand biodiversity and its evolution.
Collapse
Affiliation(s)
- Oliver Vöcking
- Department of Biology, University of Kentucky, Lexington, KY 40508, USA
| | - Aide Macias-Muñoz
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA 93106, USA
| | - Stuart J. Jaeger
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA 93106, USA
| | - Todd H. Oakley
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA 93106, USA
- Correspondence:
| |
Collapse
|
12
|
The diversity of invertebrate visual opsins spanning Protostomia, Deuterostomia, and Cnidaria. Dev Biol 2022; 492:187-199. [PMID: 36272560 DOI: 10.1016/j.ydbio.2022.10.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/28/2022] [Accepted: 10/14/2022] [Indexed: 11/21/2022]
Abstract
Across eumetazoans, the ability to perceive and respond to visual stimuli is largely mediated by opsins, a family of proteins belonging to the G protein-coupled receptor (GPCR) superclass. Lineage-specific gains and losses led to a striking diversity in the numbers, types, and spectral sensitivities conferred by visual opsin gene expression. Here, we review the diversity of visual opsins and differences in opsin gene expression from well-studied protostome, invertebrate deuterostome, and cnidarian groups. We discuss the functional significance of opsin expression differences and spectral tuning among lineages. In some cases, opsin evolution has been linked to the detection of relevant visual signals, including sexually selected color traits and host plant features. In other instances, variation in opsins has not been directly linked to functional or ecological differences. Overall, the array of opsin expression patterns and sensitivities across invertebrate lineages highlight the diversity of opsins in the eumetazoan ancestor and the labile nature of opsins over evolutionary time.
Collapse
|
13
|
Leite DJ, Piovani L, Telford MJ. Genome assembly of the polyclad flatworm Prostheceraeus crozieri. Genome Biol Evol 2022; 14:6678951. [PMID: 36040059 PMCID: PMC9469890 DOI: 10.1093/gbe/evac133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2022] [Indexed: 11/24/2022] Open
Abstract
Polyclad flatworms are widely thought to be one of the least derived of the flatworm classes and, as such, are well placed to investigate evolutionary and developmental features such as spiral cleavage and larval diversification lost in other platyhelminths. Prostheceraeus crozieri, (formerly Maritigrella crozieri), is an emerging model polyclad flatworm that already has some useful transcriptome data but, to date, no sequenced genome. We have used high molecular weight DNA extraction and long-read PacBio sequencing to assemble the highly repetitive (67.9%) P. crozieri genome (2.07 Gb). We have annotated 43,325 genes, with 89.7% BUSCO completeness. Perhaps reflecting its large genome, introns were considerably larger than other free-living flatworms, but evidence of abundant transposable elements suggests genome expansion has been principally via transposable elements activity. This genome resource will be of great use for future developmental and phylogenomic research.
Collapse
Affiliation(s)
- Daniel J Leite
- Department of Biosciences, Durham University, Durham DH1 3LE, UK.,Centre for Life's Origins and Evolution, Department of Genetics, Evolution, and Environment, University College London, Gower Street, London WC1E 6BT, UK
| | - Laura Piovani
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution, and Environment, University College London, Gower Street, London WC1E 6BT, UK
| | - Maximilian J Telford
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution, and Environment, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
14
|
Sakai K, Ikeuchi H, Fujiyabu C, Imamoto Y, Yamashita T. Convergent evolutionary counterion displacement of bilaterian opsins in ciliary cells. Cell Mol Life Sci 2022; 79:493. [PMID: 36001156 PMCID: PMC11071972 DOI: 10.1007/s00018-022-04525-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/10/2022] [Accepted: 08/10/2022] [Indexed: 11/26/2022]
Abstract
Opsins are universal photoreceptive proteins in animals. Vertebrate rhodopsin in ciliary photoreceptor cells photo-converts to a metastable active state to regulate cyclic nucleotide signaling. This active state cannot photo-convert back to the dark state, and thus vertebrate rhodopsin is categorized as a mono-stable opsin. By contrast, mollusk and arthropod rhodopsins in rhabdomeric photoreceptor cells photo-convert to a stable active state to stimulate IP3/calcium signaling. This active state can photo-convert back to the dark state, and thus these rhodopsins are categorized as bistable opsins. Moreover, the negatively charged counterion position crucial for the visible light sensitivity is different between vertebrate rhodopsin (Glu113) and mollusk and arthropod rhodopsins (Glu181). This can be explained by an evolutionary scenario where vertebrate rhodopsin newly acquired Glu113 as a counterion, which is thought to have led to higher signaling efficiency of vertebrate rhodopsin. However, the detailed evolutionary steps which led to the higher efficiency in vertebrate rhodopsin still remain unknown. Here, we analyzed the xenopsin group, which is phylogenetically distinct from vertebrate rhodopsin and functions in protostome ciliary cells. Xenopsins are blue-sensitive bistable opsins that regulate cAMP signaling. We found that a bistable xenopsin of Leptochiton asellus had Glu113 as a counterion but did not exhibit elevated signaling efficiency. Therefore, our results show that vertebrate rhodopsin and L. asellus xenopsin regulate cyclic nucleotide signaling in ciliary cells and displaced the counterion position from Glu181 to Glu113 via convergent evolution, whereas subsequently only vertebrate rhodopsin elevated its signaling efficiency by acquiring the mono-stable property.
Collapse
Affiliation(s)
- Kazumi Sakai
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan
| | - Hiroki Ikeuchi
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan
| | - Chihiro Fujiyabu
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan
| | - Yasushi Imamoto
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan
| | - Takahiro Yamashita
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan.
| |
Collapse
|
15
|
Gühmann M, Porter ML, Bok MJ. The Gluopsins: Opsins without the Retinal Binding Lysine. Cells 2022; 11:cells11152441. [PMID: 35954284 PMCID: PMC9368030 DOI: 10.3390/cells11152441] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/23/2022] [Accepted: 07/28/2022] [Indexed: 12/14/2022] Open
Abstract
Opsins allow us to see. They are G-protein-coupled receptors and bind as ligand retinal, which is bound covalently to a lysine in the seventh transmembrane domain. This makes opsins light-sensitive. The lysine is so conserved that it is used to define a sequence as an opsin and thus phylogenetic opsin reconstructions discard any sequence without it. However, recently, opsins were found that function not only as photoreceptors but also as chemoreceptors. For chemoreception, the lysine is not needed. Therefore, we wondered: Do opsins exists that have lost this lysine during evolution? To find such opsins, we built an automatic pipeline for reconstructing a large-scale opsin phylogeny. The pipeline compiles and aligns sequences from public sources, reconstructs the phylogeny, prunes rogue sequences, and visualizes the resulting tree. Our final opsin phylogeny is the largest to date with 4956 opsins. Among them is a clade of 33 opsins that have the lysine replaced by glutamic acid. Thus, we call them gluopsins. The gluopsins are mainly dragonfly and butterfly opsins, closely related to the RGR-opsins and the retinochromes. Like those, they have a derived NPxxY motif. However, what their particular function is, remains to be seen.
Collapse
Affiliation(s)
- Martin Gühmann
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
- Correspondence:
| | - Megan L. Porter
- Department of Biology, University of Hawai’i at Mānoa, Honolulu, HI 96822, USA
| | - Michael J. Bok
- Lund Vision Group, Department of Biology, University of Lund, 223 62 Lund, Sweden
| |
Collapse
|
16
|
de Grip WJ, Ganapathy S. Rhodopsins: An Excitingly Versatile Protein Species for Research, Development and Creative Engineering. Front Chem 2022; 10:879609. [PMID: 35815212 PMCID: PMC9257189 DOI: 10.3389/fchem.2022.879609] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 05/16/2022] [Indexed: 01/17/2023] Open
Abstract
The first member and eponym of the rhodopsin family was identified in the 1930s as the visual pigment of the rod photoreceptor cell in the animal retina. It was found to be a membrane protein, owing its photosensitivity to the presence of a covalently bound chromophoric group. This group, derived from vitamin A, was appropriately dubbed retinal. In the 1970s a microbial counterpart of this species was discovered in an archaeon, being a membrane protein also harbouring retinal as a chromophore, and named bacteriorhodopsin. Since their discovery a photogenic panorama unfolded, where up to date new members and subspecies with a variety of light-driven functionality have been added to this family. The animal branch, meanwhile categorized as type-2 rhodopsins, turned out to form a large subclass in the superfamily of G protein-coupled receptors and are essential to multiple elements of light-dependent animal sensory physiology. The microbial branch, the type-1 rhodopsins, largely function as light-driven ion pumps or channels, but also contain sensory-active and enzyme-sustaining subspecies. In this review we will follow the development of this exciting membrane protein panorama in a representative number of highlights and will present a prospect of their extraordinary future potential.
Collapse
Affiliation(s)
- Willem J. de Grip
- Leiden Institute of Chemistry, Department of Biophysical Organic Chemistry, Leiden University, Leiden, Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Srividya Ganapathy
- Department of Imaging Physics, Delft University of Technology, Netherlands
| |
Collapse
|
17
|
Abstract
Every aspect of vision, from the opsin proteins to the eyes and the ways that they serve animal behavior, is incredibly diverse. It is only with an evolutionary perspective that this diversity can be understood and fully appreciated. In this review, I describe and explain the diversity at each level and try to convey an understanding of how the origin of the first opsin some 800 million years ago could initiate the avalanche that produced the astonishing diversity of eyes and vision that we see today. Despite the diversity, many types of photoreceptors, eyes, and visual roles have evolved multiple times independently in different animals, revealing a pattern of eye evolution strictly guided by functional constraints and driven by the evolution of gradually more demanding behaviors. I conclude the review by introducing a novel distinction between active and passive vision that points to uncharted territories in vision research. Expected final online publication date for the Annual Review of Vision Science, Volume 7 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Dan-E Nilsson
- Lund Vision Group, Department of Biology, Lund University, 22362 Lund, Sweden;
| |
Collapse
|
18
|
Discovery of a body-wide photosensory array that matures in an adult-like animal and mediates eye-brain-independent movement and arousal. Proc Natl Acad Sci U S A 2021; 118:2021426118. [PMID: 33941643 DOI: 10.1073/pnas.2021426118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The ability to respond to light has profoundly shaped life. Animals with eyes overwhelmingly rely on their visual circuits for mediating light-induced coordinated movements. Building on previously reported behaviors, we report the discovery of an organized, eye-independent (extraocular), body-wide photosensory framework that allows even a head-removed animal to move like an intact animal. Despite possessing sensitive cerebral eyes and a centralized brain that controls most behaviors, head-removed planarians show acute, coordinated ultraviolet-A (UV-A) aversive phototaxis. We find this eye-brain-independent phototaxis is mediated by two noncanonical rhabdomeric opsins, the first known function for this newly classified opsin-clade. We uncover a unique array of dual-opsin-expressing photoreceptor cells that line the periphery of animal body, are proximal to a body-wide nerve net, and mediate UV-A phototaxis by engaging multiple modes of locomotion. Unlike embryonically developing cerebral eyes that are functional when animals hatch, the body-wide photosensory array matures postembryonically in "adult-like animals." Notably, apart from head-removed phototaxis, the body-wide, extraocular sensory organization also impacts physiology of intact animals. Low-dose UV-A, but not visible light (ocular-stimulus), is able to arouse intact worms that have naturally cycled to an inactive/rest-like state. This wavelength selective, low-light arousal of resting animals is noncanonical-opsin dependent but eye independent. Our discovery of an autonomous, multifunctional, late-maturing, organized body-wide photosensory system establishes a paradigm in sensory biology and evolution of light sensing.
Collapse
|
19
|
Hussein AAA, Bloem E, Fodor I, Baz ES, Tadros MM, Soliman MFM, El-Shenawy NS, Koene JM. Slowly seeing the light: an integrative review on ecological light pollution as a potential threat for mollusks. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:5036-5048. [PMID: 33341922 PMCID: PMC7838132 DOI: 10.1007/s11356-020-11824-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 11/23/2020] [Indexed: 06/12/2023]
Abstract
Seasonal changes in the natural light condition play a pivotal role in the regulation of many biological processes in organisms. Disruption of this natural condition via the growing loss of darkness as a result of anthropogenic light pollution has been linked to species-wide shifts in behavioral and physiological traits. This review starts with a brief overview of the definition of light pollution and the most recent insights into the perception of light. We then go on to review the evidence for some adverse effects of ecological light pollution on different groups of animals and will focus on mollusks. Taken together, the available evidence suggests a critical role for light pollution as a recent, growing threat to the regulation of various biological processes in these animals, with the potential to disrupt ecosystem stability. The latter indicates that ecological light pollution is an environmental threat that needs to be taken seriously and requires further research attention.
Collapse
Affiliation(s)
- Ahmed A A Hussein
- Zoology Department, Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt.
- Theodor Bilharz Research Institute (TBRI), Giza, Egypt.
- Department of Ecological Science, Faculty of Science, Vrije University, De Boelelaan 1085, 1081, Amsterdam, Netherlands.
| | - Erik Bloem
- Department of Ecological Science, Faculty of Science, Vrije University, De Boelelaan 1085, 1081, Amsterdam, Netherlands
| | - István Fodor
- NAP Adaptive Neuroethology, Department of Experimental Zoology, Balaton Limnological Institute, Centre for Ecological Research, 8237, Tihany, Hungary
| | - El-Sayed Baz
- Zoology Department, Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt
| | | | - Maha F M Soliman
- Zoology Department, Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt
| | - Nahla S El-Shenawy
- Zoology Department, Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt
| | - Joris M Koene
- Department of Ecological Science, Faculty of Science, Vrije University, De Boelelaan 1085, 1081, Amsterdam, Netherlands
| |
Collapse
|
20
|
Bonadè M, Ogura A, Corre E, Bassaglia Y, Bonnaud-Ponticelli L. Diversity of Light Sensing Molecules and Their Expression During the Embryogenesis of the Cuttlefish ( Sepia officinalis). Front Physiol 2020; 11:521989. [PMID: 33117186 PMCID: PMC7553075 DOI: 10.3389/fphys.2020.521989] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 08/17/2020] [Indexed: 11/30/2022] Open
Abstract
Eyes morphologies may differ but those differences are not reflected at the molecular level. Indeed, the ability to perceive light is thought to come from the same conserved gene families: opsins and cryptochromes. Even though cuttlefish (Cephalopoda) are known for their visually guided behaviors, there is a lack of data about the different opsins and cryptochromes orthologs represented in the genome and their expressions. Here we studied the evolutionary history of opsins, cryptochromes but also visual arrestins in molluscs with an emphasis on cephalopods. We identified 6 opsins, 2 cryptochromes and 1 visual arrestin in Sepia officinalis and we showed these families undergo several duplication events in Mollusca: one duplication in the arrestin family and two in the opsin family. In cuttlefish, we studied the temporal expression of these genes in the eyes of embryos from stage 23 to hatching and their expression in two extraocular tissues, skin and central nervous system (CNS = brain + optic lobes). We showed in embryos that some of these genes (Sof_CRY6, Sof_reti-1, Sof_reti-2, Sof_r-opsin1 and Sof_v-arr) are expressed in the eyes and not in the skin or CNS. By looking at a juvenile and an adult S. officinalis, it seems that some of these genes (Sof_r-opsin1 and Sof_reti1) are used for light detection in these extraocular tissues but that they set-up later in development than in the eyes. We also showed that their expression (except for Sof_CRY6) undergoes an increase in the eyes from stage 25 to 28 thus confirming their role in the ability of the cuttlefish embryos to perceive light through the egg capsule. This study raises the question of the role of Sof_CRY6 in the developing eyes in cuttlefish embryos and the role and localization of xenopsins and r-opsin2. Consequently, the diversity of molecular actors involved in light detection both in the eyes and extraocular tissues is higher than previously known. These results open the way for studying new molecules such as those of the signal transduction cascade.
Collapse
Affiliation(s)
- Morgane Bonadè
- Laboratoire Biologie des Organismes et Ecosystèmes Aquatiques, Muséum National d'Histoire Naturelle, Sorbonne Université, Centre National de la Recherche Française (FRE2030), Université de Caen Normandie, Institut de Recherche pour le Développement (IRD 207), Université des Antilles, Paris, France
| | - Atsushi Ogura
- Department of Computer Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Japan
| | - Erwan Corre
- Station biologique de Roscoff, plateforme ABiMS, FR2424 CNRS-Sorbonne Université (UPMC), Roscoff, France
| | - Yann Bassaglia
- Laboratoire Biologie des Organismes et Ecosystèmes Aquatiques, Muséum National d'Histoire Naturelle, Sorbonne Université, Centre National de la Recherche Française (FRE2030), Université de Caen Normandie, Institut de Recherche pour le Développement (IRD 207), Université des Antilles, Paris, France.,Université Paris Est Créteil-Val de Marne (UPEC), Créteil, France
| | - Laure Bonnaud-Ponticelli
- Laboratoire Biologie des Organismes et Ecosystèmes Aquatiques, Muséum National d'Histoire Naturelle, Sorbonne Université, Centre National de la Recherche Française (FRE2030), Université de Caen Normandie, Institut de Recherche pour le Développement (IRD 207), Université des Antilles, Paris, France
| |
Collapse
|
21
|
Döring CC, Kumar S, Tumu SC, Kourtesis I, Hausen H. The visual pigment xenopsin is widespread in protostome eyes and impacts the view on eye evolution. eLife 2020; 9:55193. [PMID: 32880369 PMCID: PMC7529461 DOI: 10.7554/elife.55193] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 09/01/2020] [Indexed: 12/31/2022] Open
Abstract
Photoreceptor cells in the eyes of Bilateria are often classified into microvillar cells with rhabdomeric opsin and ciliary cells with ciliary opsin, each type having specialized molecular components and physiology. First data on the recently discovered xenopsin point towards a more complex situation in protostomes. In this study, we provide clear evidence that xenopsin enters cilia in the eye of the larval bryozoan Tricellaria inopinata and triggers phototaxis. As reported from a mollusc, we find xenopsin coexpressed with rhabdomeric-opsin in eye photoreceptor cells bearing both microvilli and cilia in larva of the annelid Malacoceros fuliginosus. This is the first organism known to have both xenopsin and ciliary opsin, showing that these opsins are not necessarily mutually exclusive. Compiling existing data, we propose that xenopsin may play an important role in many protostome eyes and provides new insights into the function, evolution, and possible plasticity of animal eye photoreceptor cells.
Collapse
Affiliation(s)
| | - Suman Kumar
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
| | - Sharat Chandra Tumu
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
| | - Ioannis Kourtesis
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
| | - Harald Hausen
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
| |
Collapse
|
22
|
Rawlinson KA, Lapraz F, Ballister ER, Terasaki M, Rodgers J, McDowell RJ, Girstmair J, Criswell KE, Boldogkoi M, Simpson F, Goulding D, Cormie C, Hall B, Lucas RJ, Telford MJ. Extraocular, rod-like photoreceptors in a flatworm express xenopsin photopigment. eLife 2019; 8:45465. [PMID: 31635694 PMCID: PMC6805122 DOI: 10.7554/elife.45465] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 08/15/2019] [Indexed: 11/17/2022] Open
Abstract
Animals detect light using opsin photopigments. Xenopsin, a recently classified subtype of opsin, challenges our views on opsin and photoreceptor evolution. Originally thought to belong to the Gαi-coupled ciliary opsins, xenopsins are now understood to have diverged from ciliary opsins in pre-bilaterian times, but little is known about the cells that deploy these proteins, or if they form a photopigment and drive phototransduction. We characterized xenopsin in a flatworm, Maritigrella crozieri, and found it expressed in ciliary cells of eyes in the larva, and in extraocular cells around the brain in the adult. These extraocular cells house hundreds of cilia in an intra-cellular vacuole (phaosome). Functional assays in human cells show Maritigrella xenopsin drives phototransduction primarily by coupling to Gαi. These findings highlight similarities between xenopsin and c-opsin and reveal a novel type of opsin-expressing cell that, like jawed vertebrate rods, encloses the ciliary membrane within their own plasma membrane. Eyes are elaborate organs that many animals use to detect light and see, but light can also be sensed in other, simpler ways and for purposes other than seeing. All animals that perceive light rely on cells called photoreceptors, which come in two main types: ciliary or rhabdomeric. Sometimes, an organism has both types of photoreceptors, but one is typically more important than the other. For example, most vertebrates see using ciliary photoreceptors, while rhabdomeric photoreceptors underpin vision in invertebrates. Flatworms are invertebrates that have long been studied due to their ability to regenerate following injuries. These worms have rhabdomeric photoreceptors in their eyes, but they also have unusual cells outside their eyes that have cilia – slender protuberances from the cell body - and could potentially be light sensitive. One obvious way to test if a cell is a photoreceptor is to see if it produces any light-sensing proteins, such as opsins. Until recently it was thought that each type of photoreceptor produced a different opsin, which were therefore classified into rhabdomeric of ciliary opsins. However, recent work has identified a new type of opsin, called xenopsin, in the ciliary photoreceptors of the larvae of some marine invertebrates. To determine whether the cells outside the flatworm’s eye were ciliary photoreceptors, Rawlinson et al. examined the genetic code of 30 flatworm species looking for ciliary opsin and xenopsin genes. This search revealed that all the flatworm species studied contained the genetic sequence for xenopsin, but not for the ciliary opsin. Rawlinson et al. chose the tiger flatworm to perform further experiments. First, they showed that, in this species, xenopsin genes are active both in the eyes of larvae and in the unusual ciliary cells found outside the eyes of the adult. Next, they put the xenopsin from the tiger flatworm into human embryonic kidney cells, and found that when the protein is present these cells can respond to light. This demonstrates that the newly discovered xenopsin is light-sensitive, suggesting that the unusual ciliary cells found expressing this protein outside the eyes in flatworms are likely photoreceptive cells. It is unclear why flatworms have developed these unusual ciliary photoreceptor cells or what their purpose is outside the eye. Often, photoreceptor cells outside the eyes are used to align the ‘body clock’ with the day-night cycle. This can be a factor in healing, hinting perhaps that these newly found cells may have a role in flatworms’ ability to regenerate.
Collapse
Affiliation(s)
- Kate A Rawlinson
- Wellcome Sanger Institute, Hinxton, United Kingdom.,Department of Zoology, University of Cambridge, Cambridge, United Kingdom.,Marine Biological Laboratory, Woods Hole, United States
| | - Francois Lapraz
- Université Côte D'Azur, CNRS, Institut de Biologie Valrose, Nice, France
| | - Edward R Ballister
- New York University School of Medicine, New York, United States.,Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Mark Terasaki
- Marine Biological Laboratory, Woods Hole, United States.,University of Connecticut Health Center, Farmington, United States
| | - Jessica Rodgers
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Richard J McDowell
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Johannes Girstmair
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, London, United Kingdom.,Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Katharine E Criswell
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom.,Marine Biological Laboratory, Woods Hole, United States
| | - Miklos Boldogkoi
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Fraser Simpson
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | | | | | - Brian Hall
- Department of Biology, Dalhousie University, Halifax, Canada
| | - Robert J Lucas
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Maximilian J Telford
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| |
Collapse
|