1
|
Cui G, Dong K, Zhou JY, Li S, Wu Y, Han Q, Yao B, Shen Q, Zhao YL, Yang Y, Cai J, Zhang S, Yang YG. Spatiotemporal transcriptomic atlas reveals the dynamic characteristics and key regulators of planarian regeneration. Nat Commun 2023; 14:3205. [PMID: 37268637 DOI: 10.1038/s41467-023-39016-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 05/25/2023] [Indexed: 06/04/2023] Open
Abstract
Whole-body regeneration of planarians is a natural wonder but how it occurs remains elusive. It requires coordinated responses from each cell in the remaining tissue with spatial awareness to regenerate new cells and missing body parts. While previous studies identified new genes essential to regeneration, a more efficient screening approach that can identify regeneration-associated genes in the spatial context is needed. Here, we present a comprehensive three-dimensional spatiotemporal transcriptomic landscape of planarian regeneration. We describe a pluripotent neoblast subtype, and show that depletion of its marker gene makes planarians more susceptible to sub-lethal radiation. Furthermore, we identified spatial gene expression modules essential for tissue development. Functional analysis of hub genes in spatial modules, such as plk1, shows their important roles in regeneration. Our three-dimensional transcriptomic atlas provides a powerful tool for deciphering regeneration and identifying homeostasis-related genes, and provides a publicly available online spatiotemporal analysis resource for planarian regeneration research.
Collapse
Affiliation(s)
- Guanshen Cui
- CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, College of Future Technology, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- China National Center for Bioinformation, Beijing, 100101, China
| | - Kangning Dong
- NCMIS, CEMS, RCSDS, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, 100190, China
- School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jia-Yi Zhou
- CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, College of Future Technology, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China.
- China National Center for Bioinformation, Beijing, 100101, China.
| | - Shang Li
- NCMIS, CEMS, RCSDS, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, 100190, China
- School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ying Wu
- CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, College of Future Technology, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- China National Center for Bioinformation, Beijing, 100101, China
| | - Qinghua Han
- NCMIS, CEMS, RCSDS, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, 100190, China
- School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bofei Yao
- CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, College of Future Technology, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- China National Center for Bioinformation, Beijing, 100101, China
| | - Qunlun Shen
- NCMIS, CEMS, RCSDS, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, 100190, China
- School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yong-Liang Zhao
- CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, College of Future Technology, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ying Yang
- CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, College of Future Technology, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- China National Center for Bioinformation, Beijing, 100101, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 101408, China
- Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jun Cai
- CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, College of Future Technology, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China.
- China National Center for Bioinformation, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Shihua Zhang
- NCMIS, CEMS, RCSDS, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, 100190, China.
- School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China.
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.
| | - Yun-Gui Yang
- CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, College of Future Technology, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China.
- China National Center for Bioinformation, Beijing, 100101, China.
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 101408, China.
- Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
2
|
Song Y, Li M, Lei S, Hao L, Lv Q, Liu M, Wang G, Wang Z, Fu X, Wang L. Silk sericin patches delivering miRNA-29-enriched extracellular vesicles-decorated myoblasts (SPEED) enhances regeneration and functional repair after severe skeletal muscle injury. Biomaterials 2022; 287:121630. [PMID: 35816980 DOI: 10.1016/j.biomaterials.2022.121630] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 06/05/2022] [Accepted: 06/08/2022] [Indexed: 11/02/2022]
Abstract
Severe skeletal muscle injuries usually lead to a series of poor recovery issues, such as massive myofibers loss, scar tissue formation, significant muscle function impairment, etc. Here, a silk sericin patch delivering miRNA-29-enriched extracellular vesicles-decorated myoblasts (SPEED) is designed for the rapid regeneration and functional repair after severe skeletal muscle injury. Specifically, miR29-enriched extracellular vesicles (miR29-EVs) are prepared and used to deliver miR29 into primary myoblasts, which promote the myotube formation of myoblasts and increase the expression of myogenic genes while inhibiting the expression of fibrotic genes. Our results indicate that miR29-EVs promote the integration of primary myoblasts and host muscle in a severe mouse tibialis anterior (TA) muscle injury model. Moreover, implantation of SPEED drastically stimulates skeletal muscle regeneration, inhibits fibrosis of injured muscles, and leads to significant improvement of muscle contraction forces and motor ability of mice about 3 weeks after treatment. Subsequently, we further evaluate the transcriptomes of TA muscles and find that SPEED can significantly ameliorate energy metabolism and muscular microenvironment of TA muscles on day 9 after implantation. Additionally, bioinformatic analysis and comprehensive molecular biology studies also reveal that the down-regulation of CDC20-MEF2C signaling axis may participate in the muscle repair process. Together, SPEED may serve as an effective alternative for the rapid repair of severe skeletal muscle injuries in the future.
Collapse
Affiliation(s)
- Yu Song
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Miaomiao Li
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shijun Lei
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lu Hao
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qiying Lv
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Miaodeng Liu
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Guobin Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zheng Wang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Xiaobing Fu
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and 4th Medical Center, PLA General Hospital and PLA Medical College, Beijing, 100853, China.
| | - Lin Wang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
3
|
Ferrari R, Cong G, Chattopadhyay A, Xie B, Assaf E, Morder K, Calderon MJ, Watkins SC, Sachdev U. Attenuated cell-cycle division protein 2 and elevated mitotic roles of polo-like kinase 1 characterize deficient myoblast fusion in peripheral arterial disease. Biochem Biophys Res Commun 2022; 609:163-168. [PMID: 35436627 PMCID: PMC10687717 DOI: 10.1016/j.bbrc.2022.03.161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/26/2022] [Accepted: 03/31/2022] [Indexed: 11/02/2022]
Abstract
INTRODUCTION We propose that MuSC-derived myoblasts in PAD have transcriptomic differences that can highlight underlying causes of ischemia-induced myopathy. METHODS Differentiation capacity among perfused and ischemic human myoblasts was compared. Following next generation sequencing of mRNA, Ingenuity Pathway Analysis (IPA) was performed for canonical pathway enrichment. Live cell imaging and immunofluorescence were performed to determine myocyte fusion index and protein expression based on insights from IPA, specifically concerning cell cycle regulators including cell-division cycle protein 2 (CDC2) and polo-like kinase 1 (PLK1). RESULTS Ischemic myoblasts formed attenuated myotubes indicative of reduced fusion. Additionally, myoblasts from ischemic segments showed significant differences in canonical pathways associated with PLK1 (upregulated) and G2/M DNA damage checkpoint regulation (downregulated). PLK1 inhibition with BI2536 did not affect cell viability in any group over 24 h but deterred fusion more significantly in PAD myoblasts. Furthermore, PLK1 inhibition reduced the expression of checkpoint protein CDC2 in perfused but not ischemic cells. CONCLUSION Differentiating myoblasts derived from ischemic muscle have significant differences in gene expression including those essential to DNA-damage checkpoint regulation and cell cycle progress. DNA-damage checkpoint dysregulation may contribute to myopathy in PAD.
Collapse
Affiliation(s)
- Ricardo Ferrari
- University of Pittsburgh Medical Center Department of Surgery, Division of Vascular Surgery, USA
| | - Guangzhi Cong
- University of Pittsburgh Medical Center Department of Surgery, Division of Vascular Surgery, USA; Department of Cardiology, Cardiovascular Institute, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | | | - B Xie
- University of Pittsburgh Medical Center Department of Surgery, Division of Vascular Surgery, USA
| | - E Assaf
- University of Pittsburgh Medical Center Department of Surgery, Division of Vascular Surgery, USA
| | - K Morder
- University of Pittsburgh Medical Center Department of Surgery, Division of Vascular Surgery, USA
| | | | | | - Ulka Sachdev
- University of Pittsburgh Medical Center Department of Surgery, Division of Vascular Surgery, USA.
| |
Collapse
|
4
|
Yang S, McAdow J, Du Y, Trigg J, Taghert PH, Johnson AN. Spatiotemporal expression of regulatory kinases directs the transition from mitosis to cellular morphogenesis in Drosophila. Nat Commun 2022; 13:772. [PMID: 35140224 PMCID: PMC8828718 DOI: 10.1038/s41467-022-28322-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 01/17/2022] [Indexed: 02/01/2023] Open
Abstract
Embryogenesis depends on a tightly regulated balance between mitosis, differentiation, and morphogenesis. Understanding how the embryo uses a relatively small number of proteins to transition between growth and morphogenesis is a central question of developmental biology, but the mechanisms controlling mitosis and differentiation are considered to be fundamentally distinct. Here we show the mitotic kinase Polo, which regulates all steps of mitosis in Drosophila, also directs cellular morphogenesis after cell cycle exit. In mitotic cells, the Aurora kinases activate Polo to control a cytoskeletal regulatory module that directs cytokinesis. We show that in the post-mitotic mesoderm, the control of Polo activity transitions from the Aurora kinases to the uncharacterized kinase Back Seat Driver (Bsd), where Bsd and Polo cooperate to regulate muscle morphogenesis. Polo and its effectors therefore direct mitosis and cellular morphogenesis, but the transition from growth to morphogenesis is determined by the spatiotemporal expression of upstream activating kinases. The mechanisms regulating mitosis and differentiation during development are thought to be distinct. Here they show that in Drosophila the mitotic kinase Polo regulates cellular morphogenesis after cell cycle exit.
Collapse
Affiliation(s)
- Shuo Yang
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Jennifer McAdow
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Yingqiu Du
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Jennifer Trigg
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Paul H Taghert
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Aaron N Johnson
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
5
|
Cao Y, Wang Z, Yu T, Zhang Y, Wang Z, Lu Z, Lu W, Yu J. Sepsis induces muscle atrophy by inhibiting proliferation and promoting apoptosis via PLK1-AKT signalling. J Cell Mol Med 2021; 25:9724-9739. [PMID: 34514712 PMCID: PMC8505846 DOI: 10.1111/jcmm.16921] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/23/2021] [Accepted: 09/01/2021] [Indexed: 02/06/2023] Open
Abstract
Sepsis and sepsis-induced skeletal muscle atrophy are common in patients in intensive care units with high mortality, while the mechanisms are controversial and complicated. In the present study, the atrophy of skeletal muscle was evaluated in sepsis mouse model as well as the apoptosis of muscle fibres. Sepsis induced atrophy of skeletal muscle and apoptosis of myofibres in vivo and in vitro. In cell-based in vitro experiments, lipopolysaccharide (LPS) stimulation also inhibited the proliferation of myoblasts. At the molecular level, the expression of polo-like kinase 1 (PLK1) and phosphorylated protein kinase B (p-AKT) was decreased. Overexpression of PLK1 partly rescued LPS-induced apoptosis, proliferation suppression and atrophy in C2C12 cells. Furthermore, inhibiting the AKT pathway deteriorated LPS-induced atrophy in PLK1-overexpressing C2C12 myotubes. PLK1 was found to participate in regulating apoptosis and E3 ubiquitin ligase activity in C2C12 cells. Taken together, these results indicate that sepsis induces skeletal muscle atrophy by promoting apoptosis of muscle fibres and inhibiting proliferation of myoblasts via regulation of the PLK1-AKT pathway. These findings enhance understanding of the mechanism of sepsis-induced skeletal muscle atrophy.
Collapse
Affiliation(s)
- Ying‐Ya Cao
- Department of Anesthesiology and Critical Care MedicineTianjin Nankai HospitalTianjin Medical UniversityTianjinChina
| | - Zhen Wang
- Department of Intensive Care UnitThe First Affiliated Hospital of Wannan Medical CollegeWuhuAnhuiChina
| | - Tao Yu
- Department of NeurosurgeryThe First Affiliated Hospital of Wannan Medical CollegeWuhuAnhuiChina
| | - Yuan Zhang
- Department of Anesthesiology and Critical Care MedicineTianjin Nankai HospitalTianjin Medical UniversityTianjinChina
| | - Zhong‐Han Wang
- Department of Intensive Care UnitThe First Affiliated Hospital of Wannan Medical CollegeWuhuAnhuiChina
| | - Zi‐Meng Lu
- College of Food Science and EngineeringNorthwest A&F UniversityYanglingShanxiChina
| | - Wei‐Hua Lu
- Department of Intensive Care UnitThe First Affiliated Hospital of Wannan Medical CollegeWuhuAnhuiChina
| | - Jian‐Bo Yu
- Department of Anesthesiology and Critical Care MedicineTianjin Nankai HospitalTianjin Medical UniversityTianjinChina
| |
Collapse
|
6
|
Luo N, Yue F, Jia Z, Chen J, Deng Q, Zhao Y, Kuang S. Reduced electron transport chain complex I protein abundance and function in Mfn2-deficient myogenic progenitors lead to oxidative stress and mitochondria swelling. FASEB J 2021; 35:e21426. [PMID: 33749882 DOI: 10.1096/fj.202002464r] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/29/2020] [Accepted: 01/04/2021] [Indexed: 11/11/2022]
Abstract
Mitochondrial remodeling through fusion and fission is crucial for progenitor cell differentiation but its role in myogenesis is poorly understood. Here, we characterized the function of mitofusin 2 (Mfn2), a mitochondrial outer membrane protein critical for mitochondrial fusion, in muscle progenitor cells (myoblasts). Mfn2 expression is upregulated during myoblast differentiation in vitro and muscle regeneration in vivo. Targeted deletion of Mfn2 gene in myoblasts (Mfn2MKO ) increases oxygen-consumption rates (OCR) associated with the maximal respiration and spare respiratory capacity, and increased levels of reactive oxygen species (ROS). Skeletal muscles of Mfn2MKO mice exhibit robust mitochondrial swelling with normal mitochondrial DNA content. Additionally, mitochondria isolated from Mfn2MKO muscles have reduced OCR at basal state and for complex I respiration, associated with decreased levels of complex I proteins NDUFB8 (NADH ubiquinone oxidoreductase subunit B8) and NDUFS3 (NADH ubiquinone oxidoreductase subunit S3). However, Mfn2MKO has no obvious effects on myoblast differentiation, muscle development and function, and muscle regeneration. These results demonstrate a novel role of Mfn2 in regulating mitochondrial complex I protein abundance and respiratory functions in myogenic progenitors and myofibers.
Collapse
Affiliation(s)
- Nanjian Luo
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA.,College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Feng Yue
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA
| | - Zhihao Jia
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA
| | - Jingjuan Chen
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA
| | - Qing Deng
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA.,Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, USA.,Purdue Institute of Inflammation, Immunology and Infectious Disease, West Lafayette, IN, USA
| | - Yongju Zhao
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Shihuan Kuang
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA.,Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, USA.,Purdue Institute of Inflammation, Immunology and Infectious Disease, West Lafayette, IN, USA
| |
Collapse
|
7
|
Kim KH, Qiu J, Kuang S. Isolation, Culture, and Differentiation of Primary Myoblasts Derived from Muscle Satellite Cells. Bio Protoc 2020; 10:e3686. [PMID: 33659356 DOI: 10.21769/bioprotoc.3686] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/27/2020] [Accepted: 06/24/2020] [Indexed: 11/02/2022] Open
Abstract
The skeletal muscle is key for body mobility and motor performance, but aging and diseases often lead to progressive loss of muscle mass due to wasting or degeneration of muscle cells. Muscle satellite cells (MuSCs) represent a population of tissue stem cells residing in the skeletal muscles and are responsible for homeostatic maintenance and regeneration of skeletal muscles. Growth, injury, and degenerative signals activate MuSCs, which then proliferate (proliferating MuSCs are called myoblasts), differentiate and fuse with existing multinuclear muscle cells (myofibers) to mediate muscle growth and repair. Here, we describe a protocol for isolating MuSCs from skeletal muscles of mice for in vitro analysis. In addition, we provide a detailed protocol on how to culture and differentiate primary myoblasts into myotubes and an immunofluorescent staining procedure to characterize the cells. These methods are essential for modeling regenerative myogenesis in vitro to understand the dynamics, function and molecular regulation of MuSCs.
Collapse
Affiliation(s)
- Kun Ho Kim
- Department of Animal Sciences, Purdue University, West Lafayette, United States
| | - Jiamin Qiu
- Department of Animal Sciences, Purdue University, West Lafayette, United States
| | - Shihuan Kuang
- Department of Animal Sciences, Purdue University, West Lafayette, United States
| |
Collapse
|
8
|
Role of BET Inhibitors in Triple Negative Breast Cancers. Cancers (Basel) 2020; 12:cancers12040784. [PMID: 32218352 PMCID: PMC7226117 DOI: 10.3390/cancers12040784] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/20/2020] [Accepted: 03/24/2020] [Indexed: 12/20/2022] Open
Abstract
Bromodomain and extraterminal domain (BET) proteins have evolved as key multifunctional super-regulators that control gene expression. These proteins have been shown to upregulate transcriptional machinery leading to over expression of genes involved in cell proliferation and carcinogenesis. Based on favorable preclinical evidence of BET inhibitors in various cancer models; currently, 26 clinical trials are underway in various stages of study on various hematological and solid organ cancers. Unfortunately, preliminary evidence for these clinical studies does not support the application of BET inhibitors as monotherapy in cancer treatment. Furthermore, the combinatorial efficiency of BET inhibitors with other chemo-and immunotherapeutic agents remain elusive. In this review, we will provide a concise summary of the molecular basis and preliminary clinical outcomes of BET inhibitors in cancer therapy, with special focus on triple negative breast cancer.
Collapse
|
9
|
Stem Cell Aging in Skeletal Muscle Regeneration and Disease. Int J Mol Sci 2020; 21:ijms21051830. [PMID: 32155842 PMCID: PMC7084237 DOI: 10.3390/ijms21051830] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/04/2020] [Accepted: 03/04/2020] [Indexed: 12/19/2022] Open
Abstract
Skeletal muscle comprises 30-40% of the weight of a healthy human body and is required for voluntary movements in humans. Mature skeletal muscle is formed by multinuclear cells, which are called myofibers. Formation of myofibers depends on the proliferation, differentiation, and fusion of muscle progenitor cells during development and after injury. Muscle progenitor cells are derived from muscle satellite (stem) cells (MuSCs), which reside on the surface of the myofiber but beneath the basement membrane. MuSCs play a central role in postnatal maintenance, growth, repair, and regeneration of skeletal muscle. In sedentary adult muscle, MuSCs are mitotically quiescent, but are promptly activated in response to muscle injury. Physiological and chronological aging induces MuSC aging, leading to an impaired regenerative capability. Importantly, in pathological situations, repetitive muscle injury induces early impairment of MuSCs due to stem cell aging and leads to early impairment of regeneration ability. In this review, we discuss (1) the role of MuSCs in muscle regeneration, (2) stem cell aging under physiological and pathological conditions, and (3) prospects related to clinical applications of controlling MuSCs.
Collapse
|