1
|
Jasim SA, Farhan SH, Ahmad I, Hjazi A, Kumar A, Jawad MA, Pramanik A, Altalbawy FMA, Alsaadi SB, Abosaoda MK. Role of homeobox genes in cancer: immune system interactions, long non-coding RNAs, and tumor progression. Mol Biol Rep 2024; 51:964. [PMID: 39240390 DOI: 10.1007/s11033-024-09857-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 08/09/2024] [Indexed: 09/07/2024]
Abstract
The intricate interplay between Homeobox genes, long non-coding RNAs (lncRNAs), and the development of malignancies represents a rapidly expanding area of research. Specific discernible lncRNAs have been discovered to adeptly regulate HOX gene expression in the context of cancer, providing fresh insights into the molecular mechanisms that govern cancer development and progression. An in-depth comprehension of these intricate associations may pave the way for innovative therapeutic strategies in cancer treatment. The HOX gene family is garnering increasing attention due to its involvement in immune system regulation, interaction with long non-coding RNAs, and tumor progression. Although initially recognized for its crucial role in embryonic development, this comprehensive exploration of the world of HOX genes contributes to our understanding of their diverse functions, potentially leading to immunology, developmental biology, and cancer research discoveries. Thus, the primary objective of this review is to delve into these aspects of HOX gene biology in greater detail, shedding light on their complex functions and potential therapeutic applications.
Collapse
Affiliation(s)
| | - Shireen Hamid Farhan
- Biotechnology Department, College of Applied Science, Fallujah University, Al-Fallujah, Iraq
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, 11942, Al-Kharj, Saudi Arabia
| | - Ashwani Kumar
- Department of Life Sciences, School of Sciences, Jain (Deemed-to-Be) University, Bengaluru, Karnataka, 560069, India
- Department of Pharmacy, Vivekananda Global University, Jaipur, Rajasthan, 303012, India
| | | | - Atreyi Pramanik
- School of Applied and Life Sciences, Division of Research and Innovation, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Farag M A Altalbawy
- Department of Chemistry, University College of Duba, University of Tabuk, Tabuk, Saudi Arabia
| | - Salim B Alsaadi
- Department of Pharmaceutics, Al-Hadi University College, Baghdad, 10011, Iraq
| | - Munther Kadhim Abosaoda
- College of Pharmacy, the Islamic University, Najaf, Iraq
- College of Pharmacy, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Pharmacy, the Islamic University of Babylon, Al Diwaniyah, Iraq
| |
Collapse
|
2
|
LePore CN, McLain MA. Variation in the sacrum of phytosaurs: New evidence from a partial skeleton of Machaeroprosopus mccauleyi. J Anat 2024; 244:959-976. [PMID: 38284134 PMCID: PMC11095306 DOI: 10.1111/joa.14007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 01/03/2024] [Accepted: 01/08/2024] [Indexed: 01/30/2024] Open
Abstract
Phytosaurs are a group of Upper Triassic semi-aquatic archosauriform reptiles. Their variable skull morphology forms the foundation of our understanding of their relationships and paleoecology, while only a few studies have focused on demonstrating the existence of postcranial variation. The numbers of vertebrae in the sacrum are thought to vary from two, the plesiomorphic condition for archosauriforms, to three, with the addition of a sacralized dorsal (i.e., dorsosacral) vertebra. In this study, we demonstrate the presence of a sacralized first caudal (i.e., caudosacral) vertebra in a sacrum belonging to Machaeroprosopus mccauleyi. We rule out taphonomic distortion or pathology as explanations for the inclusion of this element in the sacrum, suggesting instead that it occurred through modifications of the same developmental processes that likely produced dorsosacral vertebrae in phytosaurs. Additionally, we show that a dorsosacral vertebra is common in phytosaur specimens from the Chinle Formation and Dockum Group of the southwestern United States and suggest that it may be widespread among phytosaurs. The addition of sacral vertebrae potentially aided adaptation to larger body sizes or more terrestrial lifestyles in certain taxa.
Collapse
Affiliation(s)
- Caleb N. LePore
- Department of Earth and Biological SciencesLoma Linda UniversityLoma LindaCaliforniaUSA
| | - Matthew A. McLain
- Department of Earth and Biological SciencesLoma Linda UniversityLoma LindaCaliforniaUSA
- Department of Biological and Physical SciencesThe Master's UniversitySanta ClaritaCaliforniaUSA
| |
Collapse
|
3
|
Brownstein CD. High morphological disparity in a bizarre Paleocene fauna of predatory freshwater reptiles. BMC Ecol Evol 2022; 22:34. [PMID: 35313822 PMCID: PMC8935759 DOI: 10.1186/s12862-022-01985-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/04/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The consequences of the K-Pg mass extinction are reflected across present biodiversity, but many faunas that appeared immediately after the extinction event were very different from current ones. Choristodera is a clade of reptiles of uncertain phylogenetic placement that have an extremely poor fossil record throughout their 150-million-year history. Yet, choristoderes survived the K-Pg event and persisted until the Miocene. RESULTS I describe the skulls and skeletons of two new choristoderes from a single Paleocene ecosystem in western North America that reveal the hidden Cenozoic diversity of this reptile clade. Despite their similar size, the new species deviate dramatically in morphology. Kosmodraco magnicornis gen. et sp. nov. possesses an extremely short snout and extensive cranial ornamentation. The sacrum of K. magnicornis bears enlarged muscle attachment sites and other modifications reminiscent of some giant crocodylians. In contrast, Champsosaurus norelli sp. nov. is a longirostrine species with an uninflated and ventrally divergent postorbital skull. Together with a North American choristodere previously classified in the European genus Simoedosaurus, K. magnicornis substantiates a new clade of giant, short-snouted taxa endemic to the Americas. C. norelli is found to be an early-diverging member of the genus Champsosaurus from the Cretaceous-Paleogene of the northern hemisphere. This suggests the presence of several ghost lineages of champsosaurid that crossed the K-Pg boundary. CONCLUSIONS The new taxa greatly increase Cenozoic choristodere richness and strengthen the evidence for the existence of distinctive freshwater faunas in Paleogene Eurasia and North America, where this clade diversified to exploit newly available macropredatory niches in the aftermath of the asteroid impact. The new choristoderes also reveal the distinct ecological context in which extant freshwater predators of the Americas like alligatoroids and gars have their origins: Paleocene fluviolacustrine ecosystems in North America displayed high large predator diversity and morphological disparity relative to modern ones.
Collapse
Affiliation(s)
- Chase Doran Brownstein
- Stamford Museum and Nature Center, Stamford, CT, USA. .,Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA.
| |
Collapse
|
4
|
Weldon SA, Münsterberg AE. Somite development and regionalisation of the vertebral axial skeleton. Semin Cell Dev Biol 2021; 127:10-16. [PMID: 34690064 DOI: 10.1016/j.semcdb.2021.10.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/27/2021] [Accepted: 10/06/2021] [Indexed: 11/25/2022]
Abstract
A critical stage in the development of all vertebrate embryos is the generation of the body plan and its subsequent patterning and regionalisation along the main anterior-posterior axis. This includes the formation of the vertebral axial skeleton. Its organisation begins during early embryonic development with the periodic formation of paired blocks of mesoderm tissue called somites. Here, we review axial patterning of somites, with a focus on studies using amniote model systems - avian and mouse. We summarise the molecular and cellular mechanisms that generate paraxial mesoderm and review how the different anatomical regions of the vertebral column acquire their specific identity and thus shape the body plan. We also discuss the generation of organoids and embryo-like structures from embryonic stem cells, which provide insights regarding axis formation and promise to be useful for disease modelling.
Collapse
Affiliation(s)
- Shannon A Weldon
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | | |
Collapse
|
5
|
Gignac PM, Smaers JB, O'Brien HD. Unexpected bite-force conservatism as a stable performance foundation across mesoeucrocodylian historical diversity. Anat Rec (Hoboken) 2021; 305:2823-2837. [PMID: 34555273 DOI: 10.1002/ar.24768] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 07/07/2021] [Accepted: 08/09/2021] [Indexed: 12/29/2022]
Abstract
Effective interpretation of historical selective regimes requires comprehensive in vivo performance evaluations and well-constrained ecomorphological proxies. The feeding apparatus is a frequent target of such evolutionary studies due to a direct relationship between feeding and survivorship, and the durability of craniodental elements in the fossil record. Among vertebrates, behaviors such as bite force have been central to evaluation of clade dynamics; yet, in the absence of detailed performance studies, such evaluations can misidentify potential selective factors and their roles. Here, we combine the results of a total-clade performance study with fossil-inclusive, phylogenetically informed methods to assess bite-force proxies throughout mesoeucrocodylian evolution. Although bite-force shifts were previously thought to respond to changing rostrodental selective regimes, we find body-size dependent conservation of performance proxies throughout the history of the clade, indicating stabilizing selection for bite-force potential. Such stasis reveals that mesoeucrocodylians with dietary ecologies as disparate as herbivory and hypercarnivory maintain similar bite-force-to-body-size relationships, a pattern which contrasts the precept that vertebrate bite forces should vary most strongly by diet. Furthermore, it may signal that bite-force conservation supported mesoeucrocodylian craniodental disparity by providing a stable performance foundation for the exploration of novel ecomorphospace.
Collapse
Affiliation(s)
- Paul M Gignac
- Department of Anatomy and Cell Biology, Oklahoma State University Center for Health Sciences, Tulsa, Oklahoma, USA
| | - Jeroen B Smaers
- Department of Anthropology, Stony Brook University, Circle Road, Social & Behavioral Sciences Building, Stony Brook, New York, USA
| | - Haley D O'Brien
- Department of Anatomy and Cell Biology, Oklahoma State University Center for Health Sciences, Tulsa, Oklahoma, USA
| |
Collapse
|
6
|
Rio JP, Mannion PD. Phylogenetic analysis of a new morphological dataset elucidates the evolutionary history of Crocodylia and resolves the long-standing gharial problem. PeerJ 2021; 9:e12094. [PMID: 34567843 PMCID: PMC8428266 DOI: 10.7717/peerj.12094] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 08/09/2021] [Indexed: 12/16/2022] Open
Abstract
First appearing in the latest Cretaceous, Crocodylia is a clade of semi-aquatic, predatory reptiles, defined by the last common ancestor of extant alligators, caimans, crocodiles, and gharials. Despite large strides in resolving crocodylian interrelationships over the last three decades, several outstanding problems persist in crocodylian systematics. Most notably, there has been persistent discordance between morphological and molecular datasets surrounding the affinities of the extant gharials, Gavialis gangeticus and Tomistoma schlegelii. Whereas molecular data consistently support a sister taxon relationship, in which they are more closely related to crocodylids than to alligatorids, morphological data indicate that Gavialis is the sister taxon to all other extant crocodylians. Here we present a new morphological dataset for Crocodylia based on a critical reappraisal of published crocodylian character data matrices and extensive firsthand observations of a global sample of crocodylians. This comprises the most taxonomically comprehensive crocodylian dataset to date (144 OTUs scored for 330 characters) and includes a new, illustrated character list with modifications to the construction and scoring of characters, and 46 novel characters. Under a maximum parsimony framework, our analyses robustly recover Gavialis as more closely related to Tomistoma than to other extant crocodylians for the first time based on morphology alone. This result is recovered regardless of the weighting strategy and treatment of quantitative characters. However, analyses using continuous characters and extended implied weighting (with high k-values) produced the most resolved, well-supported, and stratigraphically congruent topologies overall. Resolution of the gharial problem reveals that: (1) several gavialoids lack plesiomorphic features that formerly drew them towards the stem of Crocodylia; and (2) more widespread similarities occur between species traditionally divided into tomistomines and gavialoids, with these interpreted here as homology rather than homoplasy. There remains significant temporal incongruence regarding the inferred divergence timing of the extant gharials, indicating that several putative gavialids ('thoracosaurs') are incorrectly placed and require future re-appraisal. New alligatoroid interrelationships include: (1) support for a North American origin of Caimaninae in the latest Cretaceous; (2) the recovery of the early Paleogene South American taxon Eocaiman as a 'basal' alligatoroid; and (3) the paraphyly of the Cenozoic European taxon Diplocynodon. Among crocodyloids, notable results include modifications to the taxonomic content of Mekosuchinae, including biogeographic affinities of this clade with latest Cretaceous-early Paleogene Asian crocodyloids. In light of our new results, we provide a comprehensive review of the evolutionary and biogeographic history of Crocodylia, which included multiple instances of transoceanic and continental dispersal.
Collapse
Affiliation(s)
- Jonathan P. Rio
- Department of Earth Science and Engineering, Imperial College London, London, United Kingdom
| | - Philip D. Mannion
- Department of Earth Sciences, University College London, London, United Kingdom
| |
Collapse
|
7
|
Souza LGDE, Bandeira KLN, Pêgas RV, Brum AS, Machado R, Guilherme E, Loboda TS, Souza-Filho JPDE. The history, importance and anatomy of the specimen that validated the giant Purussaurus brasiliensis Barbosa-Rodrigues 1892 (Crocodylia: Caimaninae). AN ACAD BRAS CIENC 2021; 93:e20200369. [PMID: 34161448 DOI: 10.1590/0001-3765202120200369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 09/06/2020] [Indexed: 11/22/2022] Open
Abstract
The Solimões Formation is a southwest geological unit of the Brazilian Amazon, being well-known for the Cenozoic giant eusuchian fossils. Among the eight species of Crocodylia described for this formation, the alligatoroid Purussaurus brasiliensis is the best known worldwide due to its enormous size. The holotype was described in 1892 by Barbosa-Rodrigues, composed by a right hemimandible. Later, two other species were assigned to the genus, but the loss of the type specimen brought a series of doubts and discussions about genus and species validity. Here, we provide a historical reconstruction of the genus Purussaurus, especially with a new description of the specimen DGM 527-R, which was first described by L. I. Price. We also provide a review of Purussaurus brasiliensis as a valid species, highlighting the importance of the paleontologist Diogenes de Almeida Campos to the preservation, study availability and divulgation of the specimen. From the six mandibular features discussed, at least two are putative synapomorphies for the genus: the false ziphodont teeth and the thinning of the medial surface of the mandible posterior to the fourteen alveoli, while the lateral surface become laterally expanded from ninth alveoli to behind. The review of the other species of the genus was aggravated due to little sampling of photos and low quality of those contributions. Finally, the curatorial efforts initiated by Price and kept for decades by Campos turned possible the revision of DGM 527-R, an important specimen for understanding the paleobiology and evolution of the genus, and, consequently P. brasiliensis. Such importance was recognized here scientifically and by Campos when considered this specimen as the center-piece of the exhibition in honor of the centenary anniversary of Price.
Collapse
Affiliation(s)
- Lucy G DE Souza
- Museu da Amazônia (MUSA), Avenida Margarita, 6305, Jorge Teixeira, 10795-265 Manaus, AM, Brazil
| | - Kamila L N Bandeira
- Universidade Federal do Rio de Janeiro, Laboratório de Sistemática e Tafonomia de Vertebrados Fósseis, Departamento de Geologia e Paleontologia, Museu Nacional, Quinta da Boa Vista, s/n, São Cristóvão, 20940-040 Rio de Janeiro, RJ, Brazil
| | - Rodrigo V Pêgas
- Universidade Federal do ABC, Laboratório de Paleontologia de Vertebrados e Comportamento Animal, Alameda da Universidade, s/n, Anchieta, 09606-045 São Bernardo do Campo, SP, Brazil
| | - Arthur S Brum
- Universidade Federal do Rio de Janeiro, Laboratório de Sistemática e Tafonomia de Vertebrados Fósseis, Departamento de Geologia e Paleontologia, Museu Nacional, Quinta da Boa Vista, s/n, São Cristóvão, 20940-040 Rio de Janeiro, RJ, Brazil
| | - Rodrigo Machado
- CPRM, Museu de Ciências da Terra, Av. Pasteur, 404, Urca, 22290-240 Rio de Janeiro, RJ, Brazil
| | - Edson Guilherme
- Universidade Federal do Acre, Laboratório de Pesquisas Paleontológicas, Rodovia BR 364, Km 04, Distrito Industrial, 69915-900 Rio Branco, AC, Brazil
| | - Thiago S Loboda
- Universidade Federal do Acre, Laboratório de Pesquisas Paleontológicas, Rodovia BR 364, Km 04, Distrito Industrial, 69915-900 Rio Branco, AC, Brazil
| | - Jonas P DE Souza-Filho
- Universidade Federal do Acre, Laboratório de Pesquisas Paleontológicas, Rodovia BR 364, Km 04, Distrito Industrial, 69915-900 Rio Branco, AC, Brazil
| |
Collapse
|
8
|
Abstract
Giant land vertebrates have evolved more than 30 times, notably in dinosaurs and mammals. The evolutionary and biomechanical perspectives considered here unify data from extant and extinct species, assessing current theory regarding how the locomotor biomechanics of giants has evolved. In terrestrial tetrapods, isometric and allometric scaling patterns of bones are evident throughout evolutionary history, reflecting general trends and lineage-specific divergences as animals evolve giant size. Added to data on the scaling of other supportive tissues and neuromuscular control, these patterns illuminate how lineages of giant tetrapods each evolved into robust forms adapted to the constraints of gigantism, but with some morphological variation. Insights from scaling of the leverage of limbs and trends in maximal speed reinforce the idea that, beyond 100-300 kg of body mass, tetrapods reduce their locomotor abilities, and eventually may lose entire behaviours such as galloping or even running. Compared with prehistory, extant megafaunas are depauperate in diversity and morphological disparity; therefore, turning to the fossil record can tell us more about the evolutionary biomechanics of giant tetrapods. Interspecific variation and uncertainty about unknown aspects of form and function in living and extinct taxa still render it impossible to use first principles of theoretical biomechanics to tightly bound the limits of gigantism. Yet sauropod dinosaurs demonstrate that >50 tonne masses repeatedly evolved, with body plans quite different from those of mammalian giants. Considering the largest bipedal dinosaurs, and the disparity in locomotor function of modern megafauna, this shows that even in terrestrial giants there is flexibility allowing divergent locomotor specialisations.
Collapse
Affiliation(s)
- John R. Hutchinson
- Structure & Motion Lab, Department of Comparative Biomedical Sciences, The Royal Veterinary College, Hawkshead Lane, North Mymms, Hertfordshire AL9 7TA,UK
| |
Collapse
|
9
|
Carrillo-Briceño JD, Sánchez R, Scheyer TM, Carrillo JD, Delfino M, Georgalis GL, Kerber L, Ruiz-Ramoni D, Birindelli JLO, Cadena EA, Rincón AF, Chavez-Hoffmeister M, Carlini AA, Carvalho MR, Trejos-Tamayo R, Vallejo F, Jaramillo C, Jones DS, Sánchez-Villagra MR. A Pliocene-Pleistocene continental biota from Venezuela. SWISS JOURNAL OF PALAEONTOLOGY 2021; 140:9. [PMID: 34721281 PMCID: PMC8550326 DOI: 10.1186/s13358-020-00216-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/25/2020] [Indexed: 06/13/2023]
Abstract
The Pliocene-Pleistocene transition in the Neotropics is poorly understood despite the major climatic changes that occurred at the onset of the Quaternary. The San Gregorio Formation, the younger unit of the Urumaco Sequence, preserves a fauna that documents this critical transition. We report stingrays, freshwater bony fishes, amphibians, crocodiles, lizards, snakes, aquatic and terrestrial turtles, and mammals. A total of 49 taxa are reported from the Vergel Member (late Pliocene) and nine taxa from the Cocuiza Member (Early Pleistocene), with 28 and 18 taxa reported for the first time in the Urumaco sequence and Venezuela, respectively. Our findings include the first fossil record of the freshwater fishes Megaleporinus, Schizodon, Amblydoras, Scorpiodoras, and the pipesnake Anilius scytale, all from Pliocene strata. The late Pliocene and Early Pleistocene ages proposed here for the Vergel and Cocuiza members, respectively, are supported by their stratigraphic position, palynology, nannoplankton, and 86Sr/88Sr dating. Mammals from the Vergel Member are associated with the first major pulse of the Great American Biotic Interchange. In contrast to the dry conditions prevailing today, the San Gregorio Formation documents mixed open grassland/forest areas surrounding permanent freshwater systems, following the isolation of the northern South American basin from western Amazonia. These findings support the hypothesis that range contraction of many taxa to their current distribution in northern South America occurred rapidly during at least the last 1.5 million years.
Collapse
Affiliation(s)
- Jorge D. Carrillo-Briceño
- Universität Zürich, Paläontologisches Institut und Museum, Karl-Schmid-Straße 4, 8006 Zurich, Switzerland
| | - Rodolfo Sánchez
- Museo Paleontológico de Urumaco, Calle Bolívar s/n, Urumaco, Estado Falcón Venezuela
| | - Torsten M. Scheyer
- Universität Zürich, Paläontologisches Institut und Museum, Karl-Schmid-Straße 4, 8006 Zurich, Switzerland
| | - Juan D. Carrillo
- CR2P, Muséum National d’Histoire Naturelle, CNRS, Sorbonne Université, 8 Rue Buffon, 75005 Paris, France
- Gothenburg Global Biodiversity Centre, Carl Skottsbergs gata 22B, 41319 Gothenburg, Sweden
| | - Massimo Delfino
- Dipartimento di Scienze della Terra, Università di Torino, Via Valperga Caluso 35, 10125 Torino, Italy
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Edifici ICTA/ICP, c/Columnes s/n, Campus de la UAB, 08193 Cerdanyola del Vallès, Barcelona Spain
| | - Georgios L. Georgalis
- Universität Zürich, Paläontologisches Institut und Museum, Karl-Schmid-Straße 4, 8006 Zurich, Switzerland
| | - Leonardo Kerber
- Centro de Apoio à Pesquisa Paleontológica da Quarta Colônia (CAPPA), Universidade Federal de Santa Maria (UFSM), São João do Polêsine, Rio Grande do Sul Brazil
- Museu Paraense Emílio Goeldi, Coordenação de Ciências da Terra e Ecologia, Belém, PA Brazil
| | - Damián Ruiz-Ramoni
- Centro Regional de Investigaciones Científicas y Transferencia Tecnológica de La Rioja (CRILAR), Provincia de La Rioja, CONICET, UNLaR, SEGEMAR, UNCa, Entre Ríos y Mendoza s/n, 5301 Anillaco, La Rioja, Argentina
| | - José L. O. Birindelli
- Departamento de Biologia Animal e Vegetal, Universidade Estadual de Londrina, Londrina, Brazil
| | - Edwin-Alberto Cadena
- Grupo de Investigación Paleontología Neotropical Tradicional y Molecular (PaleoNeo), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
- Smithsonian Tropical Research Institute, Apartado, 0843-03092 Balboa, Ancón Panama
| | - Aldo F. Rincón
- Departamento de Física y Geociencias, Universidad del Norte, Km. 5 Vía Puerto Colombia, Barranquilla, Colombia
| | - Martin Chavez-Hoffmeister
- Laboratorio de Paleontología, Instituto de Ciencias de La Tierra, Universidad Austral de Chile, Valdivia, Chile
| | - Alfredo A. Carlini
- Lab. Morfología Evolutiva Desarrollo (MORPHOS), and División Paleontología de Vertebrados, Museo de La Plata, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Paseo del Bosque s/n, B1900FWA La Plata, Argentina
| | - Mónica R. Carvalho
- Smithsonian Tropical Research Institute, Apartado, 0843-03092 Balboa, Ancón Panama
| | - Raúl Trejos-Tamayo
- Instituto de Investigaciones en Estratigrafía (IIES), Universidad de Caldas, Calle 65 #26-10, Manizales, Colombia
- Departamento de Geología, Universidad de Salamanca, 37008 Salamanca, Spain
| | - Felipe Vallejo
- Instituto de Investigaciones en Estratigrafía (IIES), Universidad de Caldas, Calle 65 #26-10, Manizales, Colombia
- Departamento de Geología, Universidad de Salamanca, 37008 Salamanca, Spain
| | - Carlos Jaramillo
- Smithsonian Tropical Research Institute, Apartado, 0843-03092 Balboa, Ancón Panama
- Departamento de Geología, Universidad de Salamanca, 37008 Salamanca, Spain
- ISEM, U. Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Douglas S. Jones
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611 USA
| | | |
Collapse
|
10
|
Moro D, Kerber L, Müller RT, Pretto FA. Sacral co-ossification in dinosaurs: The oldest record of fused sacral vertebrae in Dinosauria and the diversity of sacral co-ossification patterns in the group. J Anat 2021; 238:828-844. [PMID: 33164207 PMCID: PMC7930772 DOI: 10.1111/joa.13356] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/15/2020] [Accepted: 10/21/2020] [Indexed: 12/11/2022] Open
Abstract
The fusion of the sacrum occurs in the major dinosaur lineages, i.e. ornithischians, theropods, and sauropodomorphs, but it is unclear if this trait is a common ancestral condition, or if it evolved independently in each lineage, or even how or if it is related to ontogeny. In addition, the order in which the different structures of the sacrum are fused, as well as the causes that lead to this co-ossification, are poorly understood. Herein, we described the oldest record of fused sacral vertebrae within dinosaurs, based on two primordial sacral vertebrae from the Late Triassic of Candelária Sequence, southern Brazil. We used computed microtomography (micro-CT) to analyze the extent of vertebral fusion, which revealed that it occurred only between the centra. We also assessed the occurrence of sacral fusion in Dinosauria and close relatives. The degree of fusion observed in representatives of the major dinosaur lineages suggested that there may be a sequential pattern of fusion of the elements of the sacrum, more clearly observed in Sauropodomorpha. Our analyses suggest that primordial sacral vertebrae fuse earlier in the lineage (as seen in Norian sauropodomorphs). Intervertebral fusion is observed to encompass progressively more vertebral units as sauropodomorphs evolve, reaching up to five or more fully fused sacrals in Neosauropoda. Furthermore, the new specimen described here indicates that the fusion of sacral elements occurred early in the evolution of dinosaurs. Factors such as ontogeny and the increase in body size, combined with the incorporation of vertebrae to the sacrum may have a significant role in the process and in the variation of sacral fusion observed.
Collapse
Affiliation(s)
- Débora Moro
- Programa de Pós‐Graduação em Biodiversidade AnimalUniversidade Federal de Santa MariaSanta MariaRSBrazil
- Centro de Apoio à Pesquisa Paleontológica da Quarta ColôniaUniversidade Federal de Santa MariaSão João do PolêsineRSBrazil
| | - Leonardo Kerber
- Programa de Pós‐Graduação em Biodiversidade AnimalUniversidade Federal de Santa MariaSanta MariaRSBrazil
- Centro de Apoio à Pesquisa Paleontológica da Quarta ColôniaUniversidade Federal de Santa MariaSão João do PolêsineRSBrazil
- Museu Paraense Emílio GoeldiCoordenação de Ciências da Terra e EcologiaBelémBrazil
| | - Rodrigo T. Müller
- Centro de Apoio à Pesquisa Paleontológica da Quarta ColôniaUniversidade Federal de Santa MariaSão João do PolêsineRSBrazil
| | - Flávio A. Pretto
- Programa de Pós‐Graduação em Biodiversidade AnimalUniversidade Federal de Santa MariaSanta MariaRSBrazil
- Centro de Apoio à Pesquisa Paleontológica da Quarta ColôniaUniversidade Federal de Santa MariaSão João do PolêsineRSBrazil
| |
Collapse
|
11
|
Griffin CT, Stocker MR, Colleary C, Stefanic CM, Lessner EJ, Riegler M, Formoso K, Koeller K, Nesbitt SJ. Assessing ontogenetic maturity in extinct saurian reptiles. Biol Rev Camb Philos Soc 2020; 96:470-525. [PMID: 33289322 DOI: 10.1111/brv.12666] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 10/09/2020] [Accepted: 10/28/2020] [Indexed: 01/06/2023]
Abstract
Morphology forms the most fundamental level of data in vertebrate palaeontology because it is through interpretations of morphology that taxa are identified, creating the basis for broad evolutionary and palaeobiological hypotheses. Assessing maturity is one of the most basic aspects of morphological interpretation and provides the means to study the evolution of ontogenetic changes, population structure and palaeoecology, life-history strategies, and heterochrony along evolutionary lineages that would otherwise be lost to time. Saurian reptiles (the least-inclusive clade containing Lepidosauria and Archosauria) have remained an incredibly diverse, numerous, and disparate clade through their ~260-million-year history. Because of the great disparity in this group, assessing maturity of saurian reptiles is difficult, fraught with methodological and terminological ambiguity. We compiled a novel database of literature, assembling >900 individual instances of saurian maturity assessment, to examine critically how saurian maturity has been diagnosed. We review the often inexact and inconsistent terminology used in saurian maturity assessment (e.g. 'juvenile', 'mature') and provide routes for better clarity and cross-study coherence. We describe the various methods that have been used to assess maturity in every major saurian group, integrating data from both extant and extinct taxa to give a full account of the current state of the field and providing method-specific pitfalls, best practices, and fruitful directions for future research. We recommend that a new standard subsection, 'Ontogenetic Assessment', be added to the Systematic Palaeontology portions of descriptive studies to provide explicit ontogenetic diagnoses with clear criteria. Because the utility of different ontogenetic criteria is highly subclade dependent among saurians, even for widely used methods (e.g. neurocentral suture fusion), we recommend that phylogenetic context, preferably in the form of a phylogenetic bracket, be used to justify the use of a maturity assessment method. Different methods should be used in conjunction as independent lines of evidence when assessing maturity, instead of an ontogenetic diagnosis resting entirely on a single criterion, which is common in the literature. Critically, there is a need for data from extant taxa with well-represented growth series to be integrated with the fossil record to ground maturity assessments of extinct taxa in well-constrained, empirically tested methods.
Collapse
Affiliation(s)
- Christopher T Griffin
- Department of Geosciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA, 24061, U.S.A
| | - Michelle R Stocker
- Department of Geosciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA, 24061, U.S.A
| | - Caitlin Colleary
- Department of Geosciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA, 24061, U.S.A
- Department of Vertebrate Paleontology, Cleveland Museum of Natural History, 1 Wade Oval Drive, Cleveland, OH, 44106, U.S.A
| | - Candice M Stefanic
- Department of Geosciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA, 24061, U.S.A
- Department of Anatomical Sciences, Stony Brook University, 100 Nicolls Road, Stony Brook, NY, 11794, U.S.A
| | - Emily J Lessner
- Department of Geosciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA, 24061, U.S.A
- Department of Pathology and Anatomical Sciences, University of Missouri, 1 Hospital Drive, Columbia, MO, 65212, U.S.A
| | - Mitchell Riegler
- Department of Geosciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA, 24061, U.S.A
- Department of Geological Sciences, University of Florida, 241 Williamson Hall, Gainesville, FL, 32611, U.S.A
| | - Kiersten Formoso
- Department of Geosciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA, 24061, U.S.A
- Department of Earth Sciences, University of Southern California, 3651 Trousdale Pkwy, Los Angeles, CA, 90089, U.S.A
- Dinosaur Institute, Natural History Museum of Los Angeles County, 900 W Exposition Boulevard, Los Angeles, CA, 90007, U.S.A
| | - Krista Koeller
- Department of Geosciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA, 24061, U.S.A
- Department of Biology, University of Florida, 220 Bartram Hall, Gainesville, FL, 32611, U.S.A
| | - Sterling J Nesbitt
- Department of Geosciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA, 24061, U.S.A
| |
Collapse
|
12
|
Iijima M, Kubo T. Vertebrae-Based Body Length Estimation in Crocodylians and Its Implication for Sexual Maturity and the Maximum Sizes. Integr Org Biol 2020; 2:obaa042. [PMID: 33791579 PMCID: PMC7891683 DOI: 10.1093/iob/obaa042] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Body size is fundamental to the physiology and ecology of organisms. Crocodyliforms are no exception, and several methods have been developed to estimate their absolute body sizes from bone measurements. However, species-specific sizes, such as sexually mature sizes and the maximum sizes were not taken into account due to the challenging maturity assessment of osteological specimens. Here, we provide a vertebrae-based method to estimate absolute and species-specific body lengths in crocodylians. Lengths of cervical to anterior caudal centra were measured and relations between the body lengths (snout-vent and total lengths [TLs]) and lengths of either a single centrum or a series of centra were modeled for extant species. Additionally, states of neurocentral (NC) suture closure were recorded for the maturity assessment. Comparisons of TLs and timings of NC suture closure showed that most extant crocodylians reach sexual maturity before closure of precaudal NC sutures. Centrum lengths (CLs) of the smallest individuals with closed precaudal NC sutures within species were correlated with the species maximum TLs in extant taxa; therefore, the upper or lower limit of the species maximum sizes can be determined from CLs and states of NC suture closure. The application of the current method to noncrocodylian crocodyliforms requires similar numbers of precaudal vertebrae, body proportions, and timings of NC suture closure as compared to extant crocodylians.
Collapse
Affiliation(s)
- Masaya Iijima
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
- Nagoya University Museum, Furocho, Chikusa-Ku, Nagoya, Aichi 464-8601, Japan
- Engineering Research Center for Mineral Resources and Mine Environments, School of Resource and Environmental Engineering, Hefei University of Technology, 193 Tunxi Road, Baohe, Hefei, Anhui 230009, China
| | - Tai Kubo
- The University Museum, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
13
|
Johnson MM, Young MT, Brusatte SL. The phylogenetics of Teleosauroidea (Crocodylomorpha, Thalattosuchia) and implications for their ecology and evolution. PeerJ 2020; 8:e9808. [PMID: 33083104 PMCID: PMC7548081 DOI: 10.7717/peerj.9808] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 08/03/2020] [Indexed: 12/11/2022] Open
Abstract
Teleosauroidea was a clade of ancient crocodylomorphs that were a key element of coastal marine environments during the Jurassic. Despite a 300-year research history and a recent renaissance in the study of their morphology and taxonomy, macroevolutionary studies of teleosauroids are currently limited by our poor understanding of their phylogenetic interrelationships. One major problem is the genus Steneosaurus, a wastebasket taxon recovered as paraphyletic or polyphyletic in phylogenetic analyses. We constructed a newly updated phylogenetic data matrix containing 153 taxa (27 teleosauroids, eight of which were newly added) and 502 characters, which we analysed under maximum parsimony using TNT 1.5 (weighted and unweighted analyses) and Bayesian inference using MrBayes v3.2.6 (standard, gamma and variation). The resulting topologies were then analysed to generate comprehensive higher-level phylogenetic hypotheses of teleosauroids and shed light on species-level interrelationships within the clade. The results from our parsimony and Bayesian analyses are largely consistent. Two large subclades within Teleosauroidea are recovered, and they are morphologically, ecologically and biogeographically distinct from one another. Based on comparative anatomical and phylogenetic results, we propose the following major taxonomic revisions to Teleosauroidea: (1) redefining Teleosauridae; (2) introducing one new family and three new subfamilies; (3) the resurrection of three historical genera; and (4) erecting seven new generic names and one new species name. The phylogeny infers that the Laurasian subclade was more phenotypically plastic overall than the Sub-Boreal-Gondwanan subclade. The proposed phylogeny shows that teleosauroids were more diverse than previously thought, in terms of morphology, ecology, dispersal and abundance, and that they represented some of the most successful crocodylomorphs during the Jurassic.
Collapse
Affiliation(s)
| | - Mark T Young
- School of GeoSciences, University of Edinburgh, Edinburgh, UK
| | - Stephen L Brusatte
- School of GeoSciences, University of Edinburgh, Edinburgh, UK.,National Museum of Scotland, Edinburgh, UK
| |
Collapse
|
14
|
Abstract
Abstract
The origin of birds from their terrestrial antecedents was accompanied by a wholesale transformation of their skeleton as they transitioned from a terrestrial to aerial realm. Part of this dramatic transformation is the reduction of separate vertebral elements into regional fusions to limit axial flexibility. This is partially mirrored within the development of the axial column, with regions of the axial column experiencing increasing morphological modularity and the loss of skeletal elements through vertebral fusions. Using a detailed description of the morphological development of the axial column in the model domestic chicken, Gallus gallus domesticus, we present a map of axial ossification based on discrete characters. Delays in ossification are found to occur in conjunction with the formation of fusions. Our study shows that the pattern and sequence of fusion and ossification during development may reflect the presence of independent modules as subsets within the typical regions of the avian axial column. Interestingly, few of these fusion modules correspond to the initial axial Hox expression patterns, suggesting another patterning mechanism is driving axial fusion regionalization. Additionally, two regions of fusion are discovered in the synsacrum. The anterior region of seven fused synsacrals may correspond to the non-ornithuran pygostylian synsacrum of the same number of vertebrae.
Collapse
|
15
|
Abstract
A complex pelvic morphology has been discovered in the fossils of one of the largest crocodylians.
Collapse
|