1
|
Goffin L, Lemoine D, Clotman F. Potential contribution of spinal interneurons to the etiopathogenesis of amyotrophic lateral sclerosis. Front Neurosci 2024; 18:1434404. [PMID: 39091344 PMCID: PMC11293063 DOI: 10.3389/fnins.2024.1434404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 06/21/2024] [Indexed: 08/04/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) consists of a group of adult-onset fatal and incurable neurodegenerative disorders characterized by the progressive death of motor neurons (MNs) throughout the central nervous system (CNS). At first, ALS was considered to be an MN disease, caused by cell-autonomous mechanisms acting specifically in MNs. Accordingly, data from ALS patients and ALS animal models revealed alterations in excitability in multiple neuronal populations, including MNs, which were associated with a variety of cellular perturbations such as protein aggregation, ribonucleic acid (RNA) metabolism defects, calcium dyshomeostasis, modified electrophysiological properties, and autophagy malfunctions. However, experimental evidence rapidly demonstrated the involvement of other types of cells, including glial cells, in the etiopathogenesis of ALS through non-cell autonomous mechanisms. Surprisingly, the contribution of pre-motor interneurons (INs), which regulate MN activity and could therefore critically modulate their excitability at the onset or during the progression of the disease, has to date been severely underestimated. In this article, we review in detail how spinal pre-motor INs are affected in ALS and their possible involvement in the etiopathogenesis of the disease.
Collapse
Affiliation(s)
| | | | - Frédéric Clotman
- Université catholique de Louvain, Louvain Institute of Biomolecular Science and Technology, Animal Molecular and Cellular Biology, Louvain-la-Neuve, Belgium
| |
Collapse
|
2
|
Zhu H, Dalvi U, Cazenave W, Cattaert D, Branchereau P. Excitatory action of low frequency depolarizing GABA/glycine synaptic inputs is prevalent in prenatal spinal SOD1 G93A motoneurons. J Physiol 2024; 602:913-932. [PMID: 38345477 DOI: 10.1113/jp285105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 01/24/2024] [Indexed: 03/09/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal adult-onset neurodegenerative disease characterized by progressive motor neuron degeneration and muscle paralysis. Recent evidence suggests the dysfunction of inhibitory signalling in ALS motor neurons. We have shown that embryonic day (E)17.5 spinal motoneurons (MNs) of the SOD1G93A mouse model of ALS exhibit an altered chloride homeostasis. At this prenatal stage, inhibition of spinal motoneurons (MNs) is mediated by depolarizing GABAergic/glycinergic postsynaptic potentials (dGPSPs). Here, using an ex vivo preparation and patch clamp recording from MNs with a chloride equilibrium set below spike threshold, we report that low input resistance (Rin ) E17.5 MNs from the SOD1G93A ALS mouse model do not correctly integrate dGPSPs evoked by electrical stimulations of GABA/glycine inputs at different frequencies. Indeed, firing activity of most wild-type (WT) MNs with low Rin was inhibited by incoming dGPSPs, whereas low Rin SOD1G93A MNs were excited or exhibited a dual response (excited by low frequency dGPSPs and inhibited by high frequency dGPSPs). Simulation highlighted the importance of the GABA/glycine input density and showed that pure excitation could be obtained in SOD-like MNs by moving GABA/glycine input away from the cell body to dendrites. This was in agreement with confocal imaging showing a lack of peri-somatic inhibitory terminals in SOD1G93A MNs compared to WT littermates. Putative fast ALS-vulnerable MNs with low Rin are therefore lacking functional inhibition at the near-term prenatal stage. KEY POINTS: We analysed the integration of GABAergic/glycinergic synaptic events by embryonic spinal motoneurons (MNs) in a mouse model of the amyotrophic lateral sclerosis (ALS) neurodegenerative disease. We found that GABAergic/glycinergic synaptic events do not properly inhibit ALS MNs with low input resistance, most probably corresponding to future vulnerable MNs. We used a neuron model to highlight the importance of the GABA/glycine terminal location and density in the integration of the GABAergic/glycinergic synaptic events. Confocal imaging showed a lack of GABA/glycine terminals on the cell body of ALS MNs. The present study suggests that putative ALS vulnerable MNs with low Rin lack functional inhibition at the near-term stage.
Collapse
Affiliation(s)
- Hongmei Zhu
- University Bordeaux, CNRS, INCIA, UMR 5287, Bordeaux, France
| | - Urvashi Dalvi
- University Bordeaux, CNRS, INCIA, UMR 5287, Bordeaux, France
| | | | - Daniel Cattaert
- University Bordeaux, CNRS, INCIA, UMR 5287, Bordeaux, France
| | | |
Collapse
|
3
|
Mohammadi S, Ghaderi S, Fatehi F. MRI biomarkers and neuropsychological assessments of hippocampal and parahippocampal regions affected by ALS: A systematic review. CNS Neurosci Ther 2024; 30:e14578. [PMID: 38334254 PMCID: PMC10853901 DOI: 10.1111/cns.14578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 02/10/2024] Open
Abstract
BACKGROUND AND OBJECTIVE Amyotrophic lateral sclerosis (ALS) is a progressive motor and extra-motor neurodegenerative disease. This systematic review aimed to examine MRI biomarkers and neuropsychological assessments of the hippocampal and parahippocampal regions in patients with ALS. METHODS A systematic review was conducted in the Scopus and PubMed databases for studies published between January 2000 and July 2023. The inclusion criteria were (1) MRI studies to assess hippocampal and parahippocampal regions in ALS patients, and (2) studies reporting neuropsychological data in patients with ALS. RESULTS A total of 46 studies were included. Structural MRI revealed hippocampal atrophy, especially in ALS-FTD, involving specific subregions (CA1, dentate gyrus). Disease progression and genetic factors impacted atrophy patterns. Diffusion tensor imaging (DTI) showed increased mean diffusivity (MD), axial diffusivity (AD), radial diffusivity (RD), and decreased fractional anisotropy (FA) in the hippocampal tracts and adjacent regions, indicating loss of neuronal and white matter integrity. Functional MRI (fMRI) revealed reduced functional connectivity (FC) between the hippocampus, parahippocampus, and other regions, suggesting disrupted networks. Perfusion MRI showed hypoperfusion in parahippocampal gyri. Magnetic resonance spectroscopy (MRS) found changes in the hippocampus, indicating neuronal loss. Neuropsychological tests showed associations between poorer memory and hippocampal atrophy or connectivity changes. CA1-2, dentate gyrus, and fimbria atrophy were correlated with worse memory. CONCLUSIONS The hippocampus and the connected regions are involved in ALS. Hippocampal atrophy disrupted connectivity and metabolite changes correlate with cognitive and functional decline. Specific subregions can be particularly affected. The hippocampus is a potential biomarker for disease monitoring and prognosis.
Collapse
Affiliation(s)
- Sana Mohammadi
- Neuromuscular Research Center, Department of Neurology, Shariati HospitalTehran University of Medical SciencesTehranIran
- Department of Medical Sciences, School of MedicineIran University of Medical SciencesTehranIran
| | - Sadegh Ghaderi
- Neuromuscular Research Center, Department of Neurology, Shariati HospitalTehran University of Medical SciencesTehranIran
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in MedicineTehran University of Medical SciencesTehranIran
| | - Farzad Fatehi
- Neuromuscular Research Center, Department of Neurology, Shariati HospitalTehran University of Medical SciencesTehranIran
| |
Collapse
|
4
|
Verdile V, Riccioni V, Guerra M, Ferrante G, Sette C, Valle C, Ferri A, Paronetto MP. An impaired splicing program underlies differentiation defects in hSOD1 G93A neural progenitor cells. Cell Mol Life Sci 2023; 80:236. [PMID: 37524863 PMCID: PMC11072603 DOI: 10.1007/s00018-023-04893-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 08/02/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is an adult devastating neurodegenerative disease characterized by the loss of upper and lower motor neurons (MNs), resulting in progressive paralysis and death. Genetic animal models of ALS have highlighted dysregulation of synaptic structure and function as a pathogenic feature of ALS-onset and progression. Alternative pre-mRNA splicing (AS), which allows expansion of the coding power of genomes by generating multiple transcript isoforms from each gene, is widely associated with synapse formation and functional specification. Deciphering the link between aberrant splicing regulation and pathogenic features of ALS could pave the ground for novel therapeutic opportunities. Herein, we found that neural progenitor cells (NPCs) derived from the hSOD1G93A mouse model of ALS displayed increased proliferation and propensity to differentiate into neurons. In parallel, hSOD1G93A NPCs showed impaired splicing patterns in synaptic genes, which could contribute to the observed phenotype. Remarkably, master splicing regulators of the switch from stemness to neural differentiation are de-regulated in hSOD1G93A NPCs, thus impacting the differentiation program. Our data indicate that hSOD1G93A mutation impacts on neurogenesis by increasing the NPC pool in the developing mouse cortex and affecting their intrinsic properties, through the establishment of a specific splicing program.
Collapse
Affiliation(s)
- Veronica Verdile
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Piazza Lauro de Bosis 6, 00135, Rome, Italy
- Laboratory of Molecular and Cellular Neurobiology and of Neurochemistry, Fondazione Santa Lucia IRCCS, Via del Fosso di Fiorano, 64, 00143, Rome, Italy
| | - Veronica Riccioni
- Laboratory of Molecular and Cellular Neurobiology and of Neurochemistry, Fondazione Santa Lucia IRCCS, Via del Fosso di Fiorano, 64, 00143, Rome, Italy
| | - Marika Guerra
- Section of Human Anatomy, Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - Gabriele Ferrante
- Laboratory of Molecular and Cellular Neurobiology and of Neurochemistry, Fondazione Santa Lucia IRCCS, Via del Fosso di Fiorano, 64, 00143, Rome, Italy
| | - Claudio Sette
- Section of Human Anatomy, Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
- Fondazione Policlinico Agostino Gemelli IRCCS, 00168, Rome, Italy
| | - Cristiana Valle
- Laboratory of Molecular and Cellular Neurobiology and of Neurochemistry, Fondazione Santa Lucia IRCCS, Via del Fosso di Fiorano, 64, 00143, Rome, Italy
- Institute of Translational Pharmacology (IFT), Consiglio Nazionale delle Ricerche (CNR), 00133, Rome, Italy
| | - Alberto Ferri
- Laboratory of Molecular and Cellular Neurobiology and of Neurochemistry, Fondazione Santa Lucia IRCCS, Via del Fosso di Fiorano, 64, 00143, Rome, Italy
- Institute of Translational Pharmacology (IFT), Consiglio Nazionale delle Ricerche (CNR), 00133, Rome, Italy
| | - Maria Paola Paronetto
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Piazza Lauro de Bosis 6, 00135, Rome, Italy.
- Laboratory of Molecular and Cellular Neurobiology and of Neurochemistry, Fondazione Santa Lucia IRCCS, Via del Fosso di Fiorano, 64, 00143, Rome, Italy.
| |
Collapse
|
5
|
Nikolić D. Where is the mind within the brain? Transient selection of subnetworks by metabotropic receptors and G protein-gated ion channels. Comput Biol Chem 2023; 103:107820. [PMID: 36724606 DOI: 10.1016/j.compbiolchem.2023.107820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023]
Abstract
Perhaps the most important question posed by brain research is: How the brain gives rise to the mind. To answer this question, we have primarily relied on the connectionist paradigm: The brain's entire knowledge and thinking skills are thought to be stored in the connections; and the mental operations are executed by network computations. I propose here an alternative paradigm: Our knowledge and skills are stored in metabotropic receptors (MRs) and the G protein-gated ion channels (GPGICs). Here, mental operations are assumed to be executed by the functions of MRs and GPGICs. As GPGICs have the capacity to close or open branches of dendritic trees and axon terminals, their states transiently re-route neural activity throughout the nervous system. First, MRs detect ligands that signal the need to activate GPGICs. Next, GPGICs transiently select a subnetwork within the brain. The process of selecting this new subnetwork is what constitutes a mental operation - be it in a form of directed attention, perception or making a decision. Synaptic connections and network computations play only a secondary role, supporting MRs and GPGICs. According to this new paradigm, the mind emerges within the brain as the function of MRs and GPGICs whose primary function is to continually select the pathways over which neural activity will be allowed to pass. It is argued that MRs and GPGICs solve the scaling problem of intelligence from which the connectionism paradigm suffers.
Collapse
Affiliation(s)
- Danko Nikolić
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Germany; evocenta GmbH, Germany; Robots Go Mental UG, Germany.
| |
Collapse
|
6
|
Nagy ZF, Sonkodi B, Pál M, Klivényi P, Széll M. Likely Pathogenic Variants of Ca v1.3 and Na v1.1 Encoding Genes in Amyotrophic Lateral Sclerosis Could Elucidate the Dysregulated Pain Pathways. Biomedicines 2023; 11:933. [PMID: 36979911 PMCID: PMC10046311 DOI: 10.3390/biomedicines11030933] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/12/2023] [Accepted: 03/14/2023] [Indexed: 03/22/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a lethal multisystem neurodegenerative disease associated with progressive loss of motor neurons, leading to death. Not only is the clinical picture of ALS heterogenous, but also the pain sensation due to different types of pain involvement. ALS used to be considered a painless disease, but research has been emerging and depicting a more complex pain representation in ALS. Pain has been detected even a couple years before the symptomatic stage of ALS, referring to primary pain associated with muscle denervation, although secondary pain due to nociceptive causes is also a part of the clinical picture. A new non-contact dying-back injury mechanism theory of ALS recently postulated that the irreversible intrafusal proprioceptive Piezo2 microinjury could be the primary damage, with underlying genetic and environmental risk factors. Moreover, this Piezo2 primary damage is also proposed to dysregulate the primary pain pathways in the spinal dorsal horn in ALS due to the lost imbalanced subthreshold Ca2+ currents, NMDA activation and lost L-type Ca2+ currents, leading to the lost activation of wide dynamic range neurons. Our investigation is the first to show that the likely pathogenic variants of the Cav1.3 encoding CACNA1D gene may play a role in ALS pathology and the associated dysregulation or loss of the pain sensation. Furthermore, our reanalysis also shows that the SCN1A gene might also contribute to the dysregulated pain sensation in ALS. Finally, the absence of pathogenic variants of Piezo2 points toward the new non-contact dying-back injury mechanism theory of ALS. However, molecular and genetic investigations are needed to identify the functionally diverse features of this proposed novel critical pathway.
Collapse
Affiliation(s)
- Zsófia Flóra Nagy
- Department of Medical Genetics, Albert Szent-Györgyi Medical School, University of Szeged, 6725 Szeged, Hungary
| | - Balázs Sonkodi
- Department of Health Sciences and Sport Medicine, Hungarian University of Sports Science, 1123 Budapest, Hungary
| | - Margit Pál
- Department of Medical Genetics, Albert Szent-Györgyi Medical School, University of Szeged, 6725 Szeged, Hungary
- ELKH-SZTE Functional Clinical Genetics Research Group, 6720 Szeged, Hungary
| | - Péter Klivényi
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, 6725 Szeged, Hungary
| | - Márta Széll
- Department of Medical Genetics, Albert Szent-Györgyi Medical School, University of Szeged, 6725 Szeged, Hungary
- ELKH-SZTE Functional Clinical Genetics Research Group, 6720 Szeged, Hungary
| |
Collapse
|
7
|
Venugopal S, Ghulam-Jhelani Z, Ahn IS, Yang X, Wiedau M, Simmons D, Chandler SH. Early deficits in GABA inhibition parallels an increase in L-type Ca 2+ currents in the jaw motor neurons of SOD1 G93A mouse model for ALS. Neurobiol Dis 2023; 177:105992. [PMID: 36623607 DOI: 10.1016/j.nbd.2023.105992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 12/21/2022] [Accepted: 01/05/2023] [Indexed: 01/09/2023] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) involves protracted pre-symptomatic periods of abnormal motor neuron (MN) excitability occurring in parallel with central and peripheral synaptic perturbations. Focusing on inhibitory control of MNs, we first compared longitudinal changes in pre-synaptic terminal proteins for GABA and glycine neurotransmitters around the soma of retrogradely identified trigeminal jaw closer (JC) MNs and ChAT-labeled midbrain extraocular (EO) MNs in the SOD1G93A mouse model for ALS. Fluorescence immunocytochemistry and confocal imaging were used to quantify GAD67 and GlyT2 synaptic bouton density (SBD) around MN soma at pre-symptomatic ages ∼P12 (postnatal), ∼P50 (adult) and near disease end-stage (∼P135) in SOD1G93A mice and age-matched wild-type (WT) controls. We noted reduced GAD67 innervation in the SOD1G93A trigeminal jaw closer MNs around P12, relative to age-matched WT and no significant difference around P50 and P135. In contrast, both GAD67 and GlyT2 innervation were elevated in the SOD1G93A EO MNs at the pre-symptomatic time points. Considering trigeminal MNs are vulnerable in ALS while EO MNs are spared, we suggest that upregulation of inhibition in the latter might be compensatory. Notable contrast also existed in the innate co-expression patterns of GAD67 and GlyT2 with higher mutual information (co-dependency) in EO MNs compared to JC in both SOD1G93A and WT mice, especially at adult stages (P50 and P135). Around P12 when GAD67 terminals expression was low in the mutant, we further tested for persistent GABA inhibition in those MNs using in vitro patch-clamp electrophysiology. Our results show that SOD1G93A JC MNs have reduced persistent GABA inhibition, relative to WT. Pharmacological blocking of an underlying tonically active GABA conductance using the GABA-α5 subunit inverse agonist, L-655-708, disinhibited WT JC MNs and lowered their recruitment threshold, suggesting its role in the control of intrinsic MN excitability. Quantitative RT-PCR in laser dissected JC MNs further supported a reduction in GABA-α5 subunit mRNA expression in the mutant. In light of our previous report that JC MNs forming putative fast motor units have lower input threshold in the SOD1G93A mice, we suggest that our present result on reduced GABA-α5 tonic inhibition provides for a mechanism contributing to such imbalance. In parallel with reduced GABA inhibition, we noted an increase in voltage-gated L-type Ca2+ currents in the mutant JC MNs around P12. Together these results support that, early modifications in intrinsic properties of vulnerable MNs could be an adaptive response to counter synaptic deficits.
Collapse
Affiliation(s)
- Sharmila Venugopal
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Neurology, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Zohal Ghulam-Jhelani
- Undergraduate Interdepartmental Program for Neuroscience, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - In Sook Ahn
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Xia Yang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Martina Wiedau
- Department of Neurology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Dwayne Simmons
- Department of Biology, Baylor University, Waco, TX 76798, USA
| | - Scott H Chandler
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
8
|
Cavarsan CF, Steele PR, Genry LT, Reedich EJ, McCane LM, LaPre KJ, Puritz AC, Manuel M, Katenka N, Quinlan KA. Inhibitory interneurons show early dysfunction in a SOD1 mouse model of amyotrophic lateral sclerosis. J Physiol 2023; 601:647-667. [PMID: 36515374 PMCID: PMC9898203 DOI: 10.1113/jp284192] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Few studies in amyotrophic lateral sclerosis (ALS) measure effects of the disease on inhibitory interneurons synapsing onto motoneurons (MNs). However, inhibitory interneurons could contribute to dysfunction, particularly if altered before MN neuropathology, and establish a long-term imbalance of inhibition/excitation. We directly assessed excitability and morphology of glycinergic (GlyT2 expressing) ventral lumbar interneurons from SOD1G93AGlyT2eGFP (SOD1) and wild-type GlyT2eGFP (WT) mice on postnatal days 6-10. Patch clamp revealed dampened excitability in SOD1 interneurons, including depolarized persistent inward currents (PICs), increased voltage and current threshold for firing action potentials, along with a marginal decrease in afterhyperpolarization duration. Primary neurites of ventral SOD1 inhibitory interneurons were larger in volume and surface area than WT. GlyT2 interneurons were then divided into three subgroups based on location: (1) interneurons within 100 μm of the ventral white matter, where Renshaw cells (RCs) are located, (2) interneurons interspersed with MNs in lamina IX, and (3) interneurons in the intermediate ventral area including laminae VII and VIII. Ventral interneurons in the RC area were the most profoundly affected, exhibiting more depolarized PICs and larger primary neurites. Interneurons in lamina IX had depolarized PIC onset. In lamina VII-VIII, interneurons were least affected. In summary, inhibitory interneurons show very early region-specific perturbations poised to impact excitatory/inhibitory balance of MNs, modify motor output and provide early biomarkers of ALS. Therapeutics like riluzole that universally reduce CNS excitability could exacerbate the inhibitory dysfunction described here. KEY POINTS: Spinal inhibitory interneurons could contribute to amyotrophic lateral sclerosis (ALS) pathology, but their excitability has never been directly measured. We studied the excitability and morphology of glycinergic interneurons in early postnatal transgenic mice (SOD1G93A GlyT2eGFP). Interneurons were less excitable and had marginally smaller somas but larger primary neurites in SOD1 mice. GlyT2 interneurons were analysed according to their localization within the ventral spinal cord. Interestingly, the greatest differences were observed in the most ventrally located interneurons. We conclude that inhibitory interneurons show presymptomatic changes that may contribute to excitatory/inhibitory imbalance in ALS.
Collapse
Affiliation(s)
- Clarissa F Cavarsan
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, USA
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, USA
| | - Preston R Steele
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, USA
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, USA
- Interdisciplinary Neuroscience Program, University of Rhode Island, Kingston, RI, USA
| | - Landon T Genry
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, USA
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, USA
- Interdisciplinary Neuroscience Program, University of Rhode Island, Kingston, RI, USA
| | - Emily J Reedich
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, USA
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, USA
| | - Lynn M McCane
- Interdisciplinary Neuroscience Program, University of Rhode Island, Kingston, RI, USA
| | - Kay J LaPre
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, USA
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, USA
| | - Alyssa C Puritz
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Marin Manuel
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, USA
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, USA
| | - Natallia Katenka
- Department of Computer Science and Statistics, University of Rhode Island, Kingston, RI, USA
| | - Katharina A Quinlan
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, USA
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, USA
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
9
|
Beaubois R, Khoyratee F, Branchereau P, Ikeuchi Y, Levi T. From real-time single to multicompartmental Hodgkin-Huxley neurons on FPGA for bio-hybrid systems. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:1602-1606. [PMID: 36083914 DOI: 10.1109/embc48229.2022.9871176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Modeling biological neural networks has been a field opening to major advances in our understanding of the mechanisms governing the functioning of the brain in normal and pathological conditions. The emergence of real-time neuromorphic platforms has been leading to a rising significance of bio-hybrid experiments as part of the development of neuromorphic biomedical devices such as neuroprosthesis. To provide a new tool for the neurological disorder characterization, we design real-time single and multicompartmental Hodgkin-Huxley neurons on FPGA. These neurons allow biological neural network emulation featuring improved accuracy through compartment modeling and show integration in bio-hybrid system thanks to its real-time dynamics.
Collapse
|
10
|
Branchereau P, Cattaert D. Chloride Homeostasis in Developing Motoneurons. ADVANCES IN NEUROBIOLOGY 2022; 28:45-61. [PMID: 36066820 DOI: 10.1007/978-3-031-07167-6_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Maturation of GABA/Glycine chloride-mediated synaptic inhibitions is crucial for the establishment of a balance between excitation and inhibition. GABA and glycine are excitatory neurotransmitters on immature neurons that exhibit elevated [Cl-]i. Later in development [Cl-]i drops leading to the occurrence of inhibitory synaptic activity. This ontogenic change is closely correlated to a differential expression of two cation-chloride cotransporters that are the Cl- channel K+/Cl- co-transporter type 2 (KCC2) that extrudes Cl- ions and the Na+-K+-2Cl- cotransporter NKCC1 that accumulates Cl- ions. The classical scheme built from studies performed on cortical and hippocampal networks proposes that immature neurons display high [Cl-]i because NKCC1 is overexpressed compared to KCC2 and that the co-transporters ratio reverses in mature neurons, lowering [Cl-]i. In this chapter, we will see that this classical scheme is not true in motoneurons (MNs) and that an early alteration of the chloride homeostasis may be involved in pathological conditions.
Collapse
Affiliation(s)
- Pascal Branchereau
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (INCIA), Univ. Bordeaux, UMR 5287, CNRS, Bordeaux, France.
| | - Daniel Cattaert
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (INCIA), Univ. Bordeaux, UMR 5287, CNRS, Bordeaux, France
| |
Collapse
|
11
|
Lotti F, Przedborski S. Motoneuron Diseases. ADVANCES IN NEUROBIOLOGY 2022; 28:323-352. [PMID: 36066831 DOI: 10.1007/978-3-031-07167-6_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Motoneuron diseases (MNDs) represent a heterogeneous group of progressive paralytic disorders, mainly characterized by the loss of upper (corticospinal) motoneurons, lower (spinal) motoneurons or, often both. MNDs can occur from birth to adulthood and have a highly variable clinical presentation, even within gene-positive forms, suggesting the existence of environmental and genetic modifiers. A combination of cell autonomous and non-cell autonomous mechanisms contributes to motoneuron degeneration in MNDs, suggesting multifactorial pathogenic processes.
Collapse
Affiliation(s)
- Francesco Lotti
- Departments of Neurology, Pathology & Cell Biology, and Neuroscience, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Serge Przedborski
- Departments of Neurology, Pathology & Cell Biology, and Neuroscience, College of Physicians and Surgeons, Columbia University, New York, NY, USA.
| |
Collapse
|
12
|
Zhou X, Wang Z, Lin Z, Zhu Y, Zhu D, Xie C, Calcutt NA, Guan Y. Rate-dependent depression is impaired in amyotrophic lateral sclerosis. Neurol Sci 2021; 43:1831-1838. [PMID: 34518934 DOI: 10.1007/s10072-021-05596-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/06/2021] [Indexed: 11/28/2022]
Abstract
OBJECTIVE We investigated rate-dependent depression (RDD) of the Hoffman reflex (H-reflex) in patients with amyotrophic lateral sclerosis (ALS), a degenerative disease with ventral horn involvement. PATIENTS AND METHODS In this case-control study, we enrolled 27 patients with ALS and 30 matched healthy control subjects. Clinical and electrophysiological assessments, as well as RDD in response to various stimulation frequencies (0.5 Hz, 1 Hz, 3 Hz and 5 Hz), were compared between groups. Multiple clinical and electrophysiological factors were also explored to determine any underlying associations with RDD. RESULTS The ALS group showed a significant loss of RDD across all frequencies compared to the control group, most notably following 1 Hz stimulation (19.1 ± 20.3 vs. 34.0 ± 13.7%, p = 0.003). Among factors that might influence RDD, the enlargement of the motor unit potential (MUP) showed a significant relationship with RDD following multifactor analysis of variance (p = 0.007) and Pearson correlation analysis (ρ = - 0.70, p < 0.001), while various upper motor neuron manifestations were not correlated with RDD values (p > 0.05). CONCLUSION We report a loss of RDD in patients with ALS. The strong correlation detected between the RDD deficit and increased MUP suggests that RDD is a sensitive indicator of underlying spinal disinhibition in ALS. TRIAL REGISTRATION ChiCTR2000038848, 10/7/2020 (retrospectively registered), http://www.chictr.org.cn/ .
Collapse
Affiliation(s)
- Xiajun Zhou
- Department of Neurology, Renji Hospital, Shanghai Jiaotong University School of Medicine, 160 Pujian Road, Pudong, Shanghai, 200127, China
| | - Ze Wang
- Department of Neurology, Renji Hospital, Shanghai Jiaotong University School of Medicine, 160 Pujian Road, Pudong, Shanghai, 200127, China
| | - Zhi Lin
- Department of Neurology, Renji Hospital, Shanghai Jiaotong University School of Medicine, 160 Pujian Road, Pudong, Shanghai, 200127, China
| | - Ying Zhu
- Department of Neurology, Shanghai International Medical Center, Shanghai, 201318, China
| | - Desheng Zhu
- Department of Neurology, Renji Hospital, Shanghai Jiaotong University School of Medicine, 160 Pujian Road, Pudong, Shanghai, 200127, China
| | - Chong Xie
- Department of Neurology, Renji Hospital, Shanghai Jiaotong University School of Medicine, 160 Pujian Road, Pudong, Shanghai, 200127, China
| | - Nigel A Calcutt
- Department of Pathology, University of California San Diego, San Diego, CA, 92093, USA
| | - Yangtai Guan
- Department of Neurology, Renji Hospital, Shanghai Jiaotong University School of Medicine, 160 Pujian Road, Pudong, Shanghai, 200127, China.
| |
Collapse
|
13
|
Falgairolle M, O'Donovan MJ. Motoneuronal Spinal Circuits in Degenerative Motoneuron Disease. Front Mol Neurosci 2020; 13:74. [PMID: 32523513 PMCID: PMC7261878 DOI: 10.3389/fnmol.2020.00074] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 04/15/2020] [Indexed: 12/22/2022] Open
Abstract
The most evident phenotype of degenerative motoneuron disease is the loss of motor function which accompanies motoneuron death. In both amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA), it is now clear that dysfunction is not restricted to motoneurons but is manifest in the spinal circuits in which motoneurons are embedded. As mounting evidence shows that motoneurons possess more elaborate and extensive connections within the spinal cord than previously realized, it is necessary to consider the role of this circuitry and its dysfunction in the disease process. In this review article, we ask if the selective vulnerability of the different motoneuron types and the relative disease resistance of distinct motoneuron groups can be understood in terms of their intraspinal connections.
Collapse
Affiliation(s)
- Mélanie Falgairolle
- Section on Developmental Neurobiology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Michael J O'Donovan
- Section on Developmental Neurobiology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
14
|
Martin E, Cazenave W, Allain AE, Cattaert D, Branchereau P. Implication of 5-HT in the Dysregulation of Chloride Homeostasis in Prenatal Spinal Motoneurons from the G93A Mouse Model of Amyotrophic Lateral Sclerosis. Int J Mol Sci 2020; 21:E1107. [PMID: 32046135 PMCID: PMC7039234 DOI: 10.3390/ijms21031107] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 02/04/2020] [Accepted: 02/05/2020] [Indexed: 12/14/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by progressive motor neuron degeneration and muscle paralysis. The early presymptomatic onset of abnormal processes is indicative of cumulative defects that ultimately lead to a late manifestation of clinical symptoms. It remains of paramount importance to identify the primary defects that underlie this condition and to determine how these deficits lead to a cycle of deterioration. We recently demonstrated that prenatal E17.5 lumbar spinal motoneurons (MNs) from SOD1G93A mice exhibit a KCC2-related alteration in chloride homeostasis, i.e., the EGABAAR is more depolarized than in WT littermates. Here, using immunohistochemistry, we found that the SOD1G93A lumbar spinal cord is less enriched with 5-HT descending fibres than the WT lumbar spinal cord. High-performance liquid chromatography confirmed the lower level of the monoamine 5-HT in the SOD1G93A spinal cord compared to the WT spinal cord. Using ex vivo perforated patch-clamp recordings of lumbar MNs coupled with pharmacology, we demonstrated that 5-HT strongly hyperpolarizes the EGABAAR by interacting with KCC2. Therefore, the deregulation of the interplay between 5-HT and KCC2 may explain the alteration in chloride homeostasis detected in prenatal SOD1G93A MNs. In conclusion, 5-HT and KCC2 are two likely key factors in the presymptomatic phase of ALS, particular in familial ALS involving the SOD1G93A mutation.
Collapse
Affiliation(s)
| | | | | | | | - Pascal Branchereau
- University of Bordeaux, CNRS, INCIA, UMR 5287, F-33000 Bordeaux, France; (E.M.); (W.C.); (A.-E.A.); (D.C.)
| |
Collapse
|