1
|
Fu B, Yang H, Kountz DJ, Lundahl MN, Beller HR, Broderick WE, Broderick JB, Hoffman BH, Balskus EP. Discovery of a New Class of Aminoacyl Radical Enzymes Expands Nature's Known Radical Chemistry. J Am Chem Soc 2024; 146:29645-29655. [PMID: 39392720 PMCID: PMC11528403 DOI: 10.1021/jacs.4c10348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/24/2024] [Accepted: 10/02/2024] [Indexed: 10/13/2024]
Abstract
Radical enzymes, including the evolutionarily ancient glycyl radical enzyme (GRE) family, catalyze chemically challenging reactions that are involved in a myriad of important biological processes. All GREs possess an essential, conserved backbone glycine that forms a stable, catalytically essential α-carbon radical. Through close examination of the GRE family, we unexpectedly identified hundreds of noncanonical GRE homologs that encode either an alanine, serine, or threonine in place of the catalytic glycine residue. Contrary to a long-standing belief, we experimentally demonstrate that these aminoacyl radical enzymes (AAREs) form stable α-carbon radicals on the three cognate residues when activated by partner activating enzymes. The previously unrecognized AAREs are widespread in microbial genomes, highlighting their biological importance and potential for exhibiting new reactivity. Collectively, these studies expand the known radical chemistry of living systems while raising questions about the evolutionary emergence of the AAREs.
Collapse
Affiliation(s)
- Beverly Fu
- Department
of Chemistry and Chemical Biology, Harvard
University, Cambridge, Massachusetts 02138, United States
| | - Hao Yang
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Duncan J. Kountz
- Department
of Chemistry and Chemical Biology, Harvard
University, Cambridge, Massachusetts 02138, United States
| | - Maike N. Lundahl
- Department
of Chemistry and Biochemistry, Montana State
University, Bozeman, Montana 59717, United States
| | - Harry R. Beller
- Lawrence
Berkeley National Laboratory, Berkeley, California 94720, United States
- Department
of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S 3E5, Canada
| | - William E. Broderick
- Department
of Chemistry and Biochemistry, Montana State
University, Bozeman, Montana 59717, United States
| | - Joan B. Broderick
- Department
of Chemistry and Biochemistry, Montana State
University, Bozeman, Montana 59717, United States
| | - Brian H. Hoffman
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Emily P. Balskus
- Department
of Chemistry and Chemical Biology, Harvard
University, Cambridge, Massachusetts 02138, United States
- Howard Hughes
Medical Institute, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
2
|
Deng WH, Liao RZ. Cysteine Radical and Glutamate Collaboratively Enable C-H Bond Activation and C-N Bond Cleavage in a Glycyl Radical Enzyme HplG. J Chem Inf Model 2024; 64:4168-4179. [PMID: 38745447 DOI: 10.1021/acs.jcim.4c00122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Hydroxyprolines are abundant in nature and widely utilized by many living organisms. Isomerization of trans-4-hydroxy-d-proline (t4D-HP) to generate 2-amino-4-ketopentanoate has been found to need a glycyl radical enzyme HplG, which catalyzes the cleavage of the C-N bond, while dehydration of trans-4-hydroxy-l-proline involves a homologous enzyme of HplG. Herein, molecular dynamics simulations and quantum mechanics/molecular mechanics (QM/MM) calculations are employed to understand the reaction mechanism of HplG. Two possible reaction pathways of HplG have been explored to decipher the origin of its chemoselectivity. The QM/MM calculations reveal that the isomerization proceeds via an initial hydrogen shift from the Cγ site of t4D-HP to a catalytic cysteine radical, followed by cleavage of the Cδ-N bond in t4D-HP to form a radical intermediate that captures a hydrogen atom from the cysteine. Activation of the Cδ-H bond in t4D-HP to bring about dehydration of t4D-HP possesses an extremely high energy barrier, thus rendering the dehydration pathway implausible in HplG. On the basis of the current calculations, conserved residue Glu429 plays a pivotal role in the isomerization pathway: the hydrogen bonding between it and t4D-HP weakens the hydroxyalkyl Cγ-Hγ bond, and it acts as a proton acceptor to trigger the cleavage of the C-N bond in t4D-HP. Our current QM/MM calculations rationalize the origin of the experimentally observed chemoselectivity of HplG and propose an H-bond-assisted bond activation strategy in radical-containing enzymes. These findings have general implications on radical-mediated enzymatic catalysis and expand our understanding of how nature wisely and selectively activates the C-H bond to modulate catalytic selectivity.
Collapse
Affiliation(s)
- Wen-Hao Deng
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Rong-Zhen Liao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
3
|
Liu Y, Li Y, Wang A, Xu Z, Li C, Wang Z, Guo B, Chen Y, Tang F, Li J. Enhancing cold resistance in Banana (Musa spp.) through EMS-induced mutagenesis, L-Hyp pressure selection: phenotypic alterations, biomass composition, and transcriptomic insights. BMC PLANT BIOLOGY 2024; 24:101. [PMID: 38331759 PMCID: PMC10854111 DOI: 10.1186/s12870-024-04775-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/29/2024] [Indexed: 02/10/2024]
Abstract
BACKGROUND The cultivation of bananas encounters substantial obstacles, particularly due to the detrimental effects of cold stress on their growth and productivity. A potential remedy that has gained attention is the utilization of ethyl mesylate (EMS)-induced mutagenesis technology, which enables the creation of a genetically varied group of banana mutants. This complex procedure entails subjecting the mutants to further stress screening utilizing L-Hyp in order to identify those exhibiting improved resistance to cold. This study conducted a comprehensive optimization of the screening conditions for EMS mutagenesis and L-Hyp, resulting in the identification of the mutant cm784, which exhibited remarkable cold resistance. Subsequent investigations further elucidated the physiological and transcriptomic responses of cm784 to low-temperature stress. RESULTS EMS mutagenesis had a substantial effect on banana seedlings, resulting in modifications in shoot and root traits, wherein a majority of seedlings exhibited delayed differentiation and limited elongation. Notably, mutant leaves displayed altered biomass composition, with starch content exhibiting the most pronounced variation. The application of L-Hyp pressure selection aided in the identification of cold-resistant mutants among seedling-lethal phenotypes. The mutant cm784 demonstrated enhanced cold resistance, as evidenced by improved survival rates and reduced symptoms of chilling injury. Physiological analyses demonstrated heightened activities of antioxidant enzymes and increased proline production in cm784 when subjected to cold stress. Transcriptome analysis unveiled 946 genes that were differentially expressed in cm784, with a notable enrichment in categories related to 'Carbohydrate transport and metabolism' and 'Secondary metabolites biosynthesis, transport, and catabolism'. CONCLUSION The present findings provide insights into the molecular mechanisms that contribute to the heightened cold resistance observed in banana mutants. These mechanisms encompass enhanced carbohydrate metabolism and secondary metabolite biosynthesis, thereby emphasizing the adaptive strategies employed to mitigate the detrimental effects induced by cold stress.
Collapse
Affiliation(s)
- Yumeng Liu
- National Key Laboratory for Tropical Crop Breeding, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya/Haikou, Hainan, 572024/571101, China
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yujia Li
- National Key Laboratory for Tropical Crop Breeding, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya/Haikou, Hainan, 572024/571101, China
- Hainan Banana Healthy Seedling Propagation Engineering Research Center, Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China
| | - Anbang Wang
- National Key Laboratory for Tropical Crop Breeding, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya/Haikou, Hainan, 572024/571101, China
- Hainan Banana Healthy Seedling Propagation Engineering Research Center, Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China
| | - Zhuye Xu
- Hainan Banana Healthy Seedling Propagation Engineering Research Center, Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China
- College of Horticulture, Hainan University, Haikou, 571101, Hainan, China
| | - Chunfang Li
- Collage of Tropical Crop, Yunnan Agricultural University, Puer, 611101, Yunnan, China
| | - Zuo Wang
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China
| | - Borui Guo
- National Key Laboratory for Tropical Crop Breeding, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya/Haikou, Hainan, 572024/571101, China
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yan Chen
- Collage of Tropical Crop, Yunnan Agricultural University, Puer, 611101, Yunnan, China
| | - Fenling Tang
- National Key Laboratory for Tropical Crop Breeding, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya/Haikou, Hainan, 572024/571101, China
- Hainan Banana Healthy Seedling Propagation Engineering Research Center, Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China
| | - Jingyang Li
- National Key Laboratory for Tropical Crop Breeding, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya/Haikou, Hainan, 572024/571101, China.
- Hainan Banana Healthy Seedling Propagation Engineering Research Center, Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China.
| |
Collapse
|
4
|
Nishio E, Iwata A, Kawasaki R, Iwao K, Nishizawa H, Fujii T. Metabolomic and microbiome analysis of cervicovaginal mucus in in vitro fertilization-embryo transfer: Toward predicting pregnancy success. Reprod Med Biol 2024; 23:e12568. [PMID: 38476960 PMCID: PMC10927931 DOI: 10.1002/rmb2.12568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 02/15/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Purpose In the context of in vitro fertilization-embryo transfer (IVF-ET), factors other than egg quality may be key determinants of treatment success, in particular, maternal factors related to uterine endometrial receptivity and unidentified factors. We therefore aimed to analyze the metabolome and microbiome in IVF-ET patients who did and did not achieve pregnancy. Methods Cervicovaginal mucus was collected from patients undergoing IVF-ET. Metabolite analysis was conducted by liquid chromatography-mass spectrometry and the microbiota were determined by the polymerase chain reaction using universal 16S-rRNA gene bacterial primers by MiSeq sequencing. Patients were classified as pregnant (N = 10) or nonpregnant (N = 13). Metabolic pathways were examined by MetaboAnalyst. Results Three metabolic pathways, including alanine-aspartate-glutamate metabolism, arginine biosynthesis, and cysteine-methionine metabolism, were commonly decreased at the time of embryo transfer irrespective pregnant outcomes. Notably, pyruvate was decreased in the pregnant group. Amino acid metabolites showed inverse correlations with the presence of anaerobic microbiota in the nonpregnant group. Conclusions Metabolism decreased during embryo transplantation, with a notable decrease in pyruvate metabolism, particularly in patients who became pregnant. The behavior of metabolites in the pregnant and nonpregnant groups suggests that metabolome analysis in the cervicovaginal mucus may be a diagnostic marker for predicting pregnancy.
Collapse
Affiliation(s)
- Eiji Nishio
- Department of Obstetrics and GynecologyFujita Health University, School of MedicineToyoakeAichiJapan
| | - Aya Iwata
- Department of Obstetrics and GynecologyFujita Health University, School of MedicineToyoakeAichiJapan
- Department of GynecologyFujita Health University Okazaki Medical CenterOkazakiAichiJapan
| | - Rie Kawasaki
- Department of Obstetrics and GynecologyFujita Health University, School of MedicineToyoakeAichiJapan
- Department of GynecologyFujita Health University Okazaki Medical CenterOkazakiAichiJapan
| | - Kukimoto Iwao
- Pathogen Genomics CenterNational Institute of Infectious DiseasesTokyoJapan
| | - Haruki Nishizawa
- Department of Obstetrics and GynecologyFujita Health University, School of MedicineToyoakeAichiJapan
| | - Takuma Fujii
- Department of Obstetrics and GynecologyFujita Health University, School of MedicineToyoakeAichiJapan
- Department of GynecologyFujita Health University Okazaki Medical CenterOkazakiAichiJapan
| |
Collapse
|
5
|
Cersosimo LM, Graham M, Monestier A, Pavao A, Worley JN, Peltier J, Dupuy B, Bry L. Central in vivo mechanisms by which C. difficile's proline reductase drives efficient metabolism, growth, and toxin production. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.19.541423. [PMID: 37292778 PMCID: PMC10245720 DOI: 10.1101/2023.05.19.541423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Clostridioides difficile (CD) is a sporulating and toxin-producing nosocomial pathogen that opportunistically infects the gut, particularly in patients with depleted microbiota after antibiotic exposure. Metabolically, CD rapidly generates energy and substrates for growth from Stickland fermentations of amino acids, with proline being a preferred reductive substrate. To investigate the in vivo effects of reductive proline metabolism on C. difficile's virulence in an enriched gut nutrient environment, we evaluated wild-type and isogenic ΔprdB strains of ATCC43255 on pathogen behaviors and host outcomes in highly susceptible gnotobiotic mice. Mice infected with the ΔprdB mutant demonstrated extended survival via delayed colonization, growth and toxin production but ultimately succumbed to disease. In vivo transcriptomic analyses demonstrated how the absence of proline reductase activity more broadly disrupted the pathogen's metabolism including failure to recruit oxidative Stickland pathways, ornithine transformations to alanine, and additional pathways generating growth-promoting substrates, contributing to delayed growth, sporulation, and toxin production. Our findings illustrate the central role for proline reductase metabolism to support early stages of C. difficile colonization and subsequent impact on the pathogen's ability to rapidly expand and cause disease.
Collapse
Affiliation(s)
- Laura M. Cersosimo
- Massachusetts Host-Microbiome Center, Dept. Pathology, Brigham & Women’s Hospital, Harvard Medical School. Boston, MA 02115
| | - Madeline Graham
- Massachusetts Host-Microbiome Center, Dept. Pathology, Brigham & Women’s Hospital, Harvard Medical School. Boston, MA 02115
| | - Auriane Monestier
- Department of Microbiology, Institut Pasteur, Paris, France
- I2BC, Université Paris-Saclay, Saclay, France
| | - Aidan Pavao
- Massachusetts Host-Microbiome Center, Dept. Pathology, Brigham & Women’s Hospital, Harvard Medical School. Boston, MA 02115
| | - Jay N. Worley
- Massachusetts Host-Microbiome Center, Dept. Pathology, Brigham & Women’s Hospital, Harvard Medical School. Boston, MA 02115
- National Center for Biotechnology Information, NIH, Bethesda, MD, USA
| | | | - Bruno Dupuy
- Department of Microbiology, Institut Pasteur, Paris, France
| | - Lynn Bry
- Massachusetts Host-Microbiome Center, Dept. Pathology, Brigham & Women’s Hospital, Harvard Medical School. Boston, MA 02115
| |
Collapse
|
6
|
Andorfer MC, King-Roberts DT, Imrich CN, Brotheridge BG, Drennan CL. Development of an in vitro method for activation of X-succinate synthases for fumarate hydroalkylation. iScience 2023; 26:106902. [PMID: 37283811 PMCID: PMC10239695 DOI: 10.1016/j.isci.2023.106902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/08/2023] [Accepted: 05/12/2023] [Indexed: 06/08/2023] Open
Abstract
Anaerobic microbial degradation of hydrocarbons is often initiated through addition of the hydrocarbon to fumarate by enzymes known as X-succinate synthases (XSSs). XSSs use a glycyl radical cofactor, which is installed by an activating enzyme (XSS-AE), to catalyze this carbon-carbon coupling reaction. The activation step, although crucial for catalysis, has not previously been possible in vitro because of insolubility of XSS-AEs. Here, we take a genome mining approach to find an XSS-AE, a 4-isopropylbenzylsuccinate synthase (IBSS)-AE (IbsAE) that can be solubly expressed in Escherichia coli. This soluble XSS-AE can activate both IBSS and the well-studied benzylsuccinate synthase (BSS) in vitro, allowing us to explore XSSs biochemically. To start, we examine the role of BSS subunits and find that the beta subunit accelerates the rate of hydrocarbon addition. Looking forward, the methodology and insight gathered here can be used more broadly to understand and engineer XSSs as synthetically useful biocatalysts.
Collapse
Affiliation(s)
- Mary C. Andorfer
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Devin T. King-Roberts
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Christa N. Imrich
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Balyn G. Brotheridge
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Catherine L. Drennan
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Center for Environmental Health, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Bio-inspired Solar Energy Program, Canadian Institute for Advanced Research (CIFAR), Toronto, ON M5G 1M1, Canada
| |
Collapse
|
7
|
Aziz S, Waqas M, Iqbal A, Halim SA, Abdellattif MH, Khan A, Al-Harrasi A. Structure-based identification of potential substrate antagonists for isethionate sulfite-lyase enzyme of Bilophila Wadsworthia: Towards novel therapeutic intervention to curb gut-associated illness. Int J Biol Macromol 2023; 240:124428. [PMID: 37062383 DOI: 10.1016/j.ijbiomac.2023.124428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/03/2023] [Accepted: 04/09/2023] [Indexed: 04/18/2023]
Abstract
Bilophila wadsworthia is one of the prominent sources of hydrogen sulfide (H2S) production in appendices, excessive levels of which can result in a weaker colonic mucus barrier, inflammatory bowel disease, and colorectal cancer. Isethionate sulfite-lyase (IslA) enzyme catalyzes H2S production by cleaving CS bond in isethionate, producing acetaldehyde and sulfite. In this study, we aimed to identify potential substrate antagonists for IsIA using a structure-based drug design. Initially, pharmacophore-based computational screening of the ZINC20 database yielded 66 hits that were subjected to molecular docking targeting the isethionate binding site of IsIA. Based on striking docking scores, nine compounds showed strong interaction with critical IsIA residues (Arg189, Gln193, Glu470, Cys468, and Arg678), drug-like features, appropriate adsorption, metabolism, excretion, and excretion profile with non-toxicity. Molecular dynamics simulations uncovered the significant impact of binding the compounds on protein conformational dynamics. Finally, binding free energies revealed substantial binding affinity (ranging from -35.23 to -53.88 kcal/mol) of compounds (ZINC913876497, ZINC913856647, ZINC914263733, ZINC914137795, ZINC915757996, ZINC914357083, ZINC913934833, ZINC9143362047, and ZINC913854740) for IsIA. The compounds proposed herein through a multi-faceted computational strategy can be experimentally validated as potential substrate antagonists of B. wadsworthia's IsIA for developing new medications to curb gut-associated illness in the future.
Collapse
Affiliation(s)
- Shahkaar Aziz
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture, Peshawar, Pakistan
| | - Muhammad Waqas
- Department of Biotechnology and Genetic Engineering, Hazara University, Mansehra, Pakistan; Natural and Medical Sciences Research Center, University of Nizwa, Birkat-ul-Mouz, Nizwa, Oman
| | - Aqib Iqbal
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture, Peshawar, Pakistan; Department of Biotechnology, Abdul Wali Khan University Mardan, Mardan, Pakistan.
| | - Sobia Ahsan Halim
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat-ul-Mouz, Nizwa, Oman
| | - Magda H Abdellattif
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Ajmal Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat-ul-Mouz, Nizwa, Oman.
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat-ul-Mouz, Nizwa, Oman.
| |
Collapse
|
8
|
Multi-Fold Computational Analysis to Discover Novel Putative Inhibitors of Isethionate Sulfite-Lyase (Isla) from Bilophila wadsworthia: Combating Colorectal Cancer and Inflammatory Bowel Diseases. Cancers (Basel) 2023; 15:cancers15030901. [PMID: 36765864 PMCID: PMC9913583 DOI: 10.3390/cancers15030901] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/19/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
A glycal radical enzyme called isethionate sulfite-lyase (Isla) breaks the C-S bond in isethionate to produce acetaldehyde and sulfite. This enzyme was found in the Gram-negative, colonial Bilophila wadsworthia bacteria. Sulfur dioxide, acetate, and ammonia are produced by the anaerobic respiration route from (sulfonate isethionate). Strong genotoxic H2S damages the colon's mucous lining, which aids in the development of colorectal cancer. H2S production also contributes to inflammatory bowel diseases such as colitis. Here, we describe the structure-based drug designing for the Isla using an in-house database of naturally isolated compounds and synthetic derivatives. In structure-based drug discovery, a combination of methods was used, including molecular docking, pharmacokinetics properties evaluation, binding free energy calculations by the molecular mechanics/generalized born surface area (MM/GBSA) method, and protein structure dynamics exploration via molecular dynamic simulations, to retrieve novel and putative inhibitors for the Isla protein. Based on the docking score, six compounds show significant binding interaction with the Isla active site crucial residues and exhibit drug-like features, good absorption, distribution, metabolism, and excretion profile with no toxicity. The binding free energy reveals that these compounds have a strong affinity with the Isla. In addition, the molecular dynamics simulations reveal that these compounds substantially affect the protein structure dynamics. As per our knowledge, this study is the first attempt to discover Isla potential inhibitors. The compounds proposed in the study using a multi-fold computational technique may be verified in vitro as possible inhibitors of Isla and possess the potential for the future development of new medications that target Isla.
Collapse
|
9
|
Hanževački M, Croft AK, Jäger CM. Activation of Glycyl Radical Enzymes─Multiscale Modeling Insights into Catalysis and Radical Control in a Pyruvate Formate-Lyase-Activating Enzyme. J Chem Inf Model 2022; 62:3401-3414. [PMID: 35771966 PMCID: PMC9326890 DOI: 10.1021/acs.jcim.2c00362] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Pyruvate formate-lyase (PFL) is a glycyl radical enzyme (GRE) playing a pivotal role in the metabolism of strict and facultative anaerobes. Its activation is carried out by a PFL-activating enzyme, a member of the radical S-adenosylmethionine (rSAM) superfamily of metalloenzymes, which introduces a glycyl radical into the Gly radical domain of PFL. The activation mechanism is still not fully understood and is structurally based on a complex with a short model peptide of PFL. Here, we present extensive molecular dynamics simulations in combination with quantum mechanics/molecular mechanics (QM/MM)-based kinetic and thermodynamic reaction evaluations of a more complete activation model comprising the 49 amino acid long C-terminus region of PFL. We reveal the benefits and pitfalls of the current activation model, providing evidence that the bound peptide conformation does not resemble the bound protein-protein complex conformation with PFL, with implications for the activation process. Substitution of the central glycine with (S)- and (R)-alanine showed excellent binding of (R)-alanine over unstable binding of (S)-alanine. Radical stabilization calculations indicate that a higher radical stability of the glycyl radical might not be the sole origin of the evolutionary development of GREs. QM/MM-derived radical formation kinetics further demonstrate feasible activation barriers for both peptide and C-terminus activation, demonstrating why the crystalized model peptide system is an excellent inhibitory system for natural activation. This new evidence supports the theory that GREs converged on glycyl radical formation due to the better conformational accessibility of the glycine radical loop, rather than the highest radical stability of the formed peptide radicals.
Collapse
Affiliation(s)
- Marko Hanževački
- Department of Chemical and Environmental Engineering, University of Nottingham, Nottingham NG7 2RD, U.K
| | - Anna K Croft
- Department of Chemical and Environmental Engineering, University of Nottingham, Nottingham NG7 2RD, U.K
| | - Christof M Jäger
- Department of Chemical and Environmental Engineering, University of Nottingham, Nottingham NG7 2RD, U.K
| |
Collapse
|
10
|
Duan Y, Wei Y, Xing M, Liu J, Jiang L, Lu Q, Liu X, Liu Y, Ang EL, Liao RZ, Yuchi Z, Zhao H, Zhang Y. Anaerobic Hydroxyproline Degradation Involving C-N Cleavage by a Glycyl Radical Enzyme. J Am Chem Soc 2022; 144:9715-9722. [PMID: 35611954 DOI: 10.1021/jacs.2c01673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hydroxyprolines are highly abundant in nature as they are components of many structural proteins and osmolytes. Anaerobic degradation of trans-4-hydroxy-l-proline (t4L-HP) was previously found to involve the glycyl radical enzyme (GRE) t4L-HP dehydratase (HypD). Here, we report a pathway for anaerobic hydroxyproline degradation that involves a new GRE, trans-4-hydroxy-d-proline (t4D-HP) C-N-lyase (HplG). In this pathway, cis-4-hydroxy-l-proline (c4L-HP) is first isomerized to t4D-HP, followed by radical-mediated ring opening by HplG to give 2-amino-4-ketopentanoate (AKP), the first example of a ring opening reaction catalyzed by a GRE 1,2-eliminase. Subsequent cleavage by AKP thiolase (OrtAB) yields acetyl-CoA and d-alanine. We report a crystal structure of HplG in complex with t4D-HP at a resolution of 2.7 Å, providing insights into its catalytic mechanism. Different from HypD commonly identified in proline-reducing Clostridia, HplG is present in other types of fermenting bacteria, including propionate-producing bacteria, underscoring the diversity of enzymatic radical chemistry in the anaerobic microbiome.
Collapse
Affiliation(s)
- Yongxu Duan
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.,Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Yifeng Wei
- Singapore Institute of Food and Biotechnology Innovation, Agency for Science, Technology and Research (A*STAR), Singapore 138669, Singapore
| | - Meining Xing
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.,Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Jiayi Liu
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.,Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Li Jiang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.,Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Qiang Lu
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.,Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Xumei Liu
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.,Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Yanhong Liu
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Ee Lui Ang
- Singapore Institute of Food and Biotechnology Innovation, Agency for Science, Technology and Research (A*STAR), Singapore 138669, Singapore
| | - Rong-Zhen Liao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Zhiguang Yuchi
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Huimin Zhao
- Singapore Institute of Food and Biotechnology Innovation, Agency for Science, Technology and Research (A*STAR), Singapore 138669, Singapore.,Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Yan Zhang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.,Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, China
| |
Collapse
|
11
|
Deng WH, Lu Y, Liao RZ. Revealing the Mechanism of Isethionate Sulfite-Lyase by QM/MM Calculations. J Chem Inf Model 2021; 61:5871-5882. [PMID: 34806370 DOI: 10.1021/acs.jcim.1c00978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Isethionate sulfite-lyase (IseG) is a recently characterized glycyl radical enzyme (GRE) that catalyzes radical-mediated C-S bond cleavage of isethionate to produce acetaldehyde and sulfite. Herein, we use quantum mechanical/molecular mechanical (QM/MM) calculations to investigate the detailed catalytic reaction mechanism of IseG. Our calculations indicate that a previously proposed direct 1,2-elimination mechanism is disfavored. Instead, we suggest a new 1,2-migration mechanism for this enzymatic reaction: a key stepwise 1,2-SO3- radical migration occurs after the catalytically active cysteinyl radical grabs a hydrogen atom from isethionate, followed by hydrogen atom transfer from cysteine to a 1-hydroxylethane-1-sulfonate radical intermediate. Finally, the elimination of sulfite from 1-hydroxylethane-1-sulfonate to result in the final product is likely to occur outside the enzyme. Glu468 in the active site is found to help orient the substrate rather than grabbing a proton from the hydroxyl group of the substrate. Our findings help reveal the mechanisms of radical-mediated C-S bond cleavage of organosulfonates catalyzed by GREs and expand the understanding of radical-based enzymatic catalysis.
Collapse
Affiliation(s)
- Wen-Hao Deng
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - You Lu
- Scientific Computing Department, UKRI STFC Daresbury Laboratory, Sci-Tech Daresbury, Warrington WA4 4AD, United Kingdom
| | - Rong-Zhen Liao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| |
Collapse
|
12
|
Rescuing activity of oxygen-damaged pyruvate formate-lyase by a spare part protein. J Biol Chem 2021; 297:101423. [PMID: 34801558 PMCID: PMC8683613 DOI: 10.1016/j.jbc.2021.101423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 11/09/2021] [Accepted: 11/12/2021] [Indexed: 11/21/2022] Open
Abstract
Pyruvate formate-lyase (PFL) is a glycyl radical enzyme (GRE) that converts pyruvate and coenzyme A into acetyl-CoA and formate in a reaction that is crucial to the primary metabolism of many anaerobic bacteria. The glycyl radical cofactor, which is posttranslationally installed by a radical S-adenosyl-L-methionine (SAM) activase, is a simple and effective catalyst, but is also susceptible to oxidative damage in microaerobic environments. Such damage occurs at the glycyl radical cofactor, resulting in cleaved PFL (cPFL). Bacteria have evolved a spare part protein termed YfiD that can be used to repair cPFL. Previously, we obtained a structure of YfiD by NMR spectroscopy and found that the N-terminus of YfiD was disordered and that the C-terminus of YfiD duplicates the structure of the C-terminus of PFL, including a β-strand that is not removed by the oxygen-induced cleavage. We also showed that cPFL is highly susceptible to proteolysis, suggesting that YfiD rescue of cPFL competes with protein degradation. Here, we probe the mechanism by which YfiD can bind and restore activity to cPFL through enzymatic and spectroscopic studies. Our data show that the disordered N-terminal region of YfiD is important for YfiD glycyl radical installation but not for catalysis, and that the duplicate β-strand does not need to be cleaved from cPFL for YfiD to bind. In fact, truncation of this PFL region prevents YfiD rescue. Collectively our data suggest the molecular mechanisms by which YfiD activation is precluded both when PFL is not damaged and when it is highly damaged.
Collapse
|
13
|
McLean JT, Benny A, Nolan MD, Swinand G, Scanlan EM. Cysteinyl radicals in chemical synthesis and in nature. Chem Soc Rev 2021; 50:10857-10894. [PMID: 34397045 DOI: 10.1039/d1cs00254f] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nature harnesses the unique properties of cysteinyl radical intermediates for a diverse range of essential biological transformations including DNA biosynthesis and repair, metabolism, and biological photochemistry. In parallel, the synthetic accessibility and redox chemistry of cysteinyl radicals renders them versatile reactive intermediates for use in a vast array of synthetic applications such as lipidation, glycosylation and fluorescent labelling of proteins, peptide macrocyclization and stapling, desulfurisation of peptides and proteins, and development of novel therapeutics. This review provides the reader with an overview of the role of cysteinyl radical intermediates in both chemical synthesis and biological systems, with a critical focus on mechanistic details. Direct insights from biological systems, where applied to chemical synthesis, are highlighted and potential avenues from nature which are yet to be explored synthetically are presented.
Collapse
Affiliation(s)
- Joshua T McLean
- Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse St., Dublin, D02 R590, Ireland.
| | - Alby Benny
- Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse St., Dublin, D02 R590, Ireland.
| | - Mark D Nolan
- Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse St., Dublin, D02 R590, Ireland.
| | - Glenna Swinand
- Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse St., Dublin, D02 R590, Ireland.
| | - Eoin M Scanlan
- Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse St., Dublin, D02 R590, Ireland.
| |
Collapse
|
14
|
Yang Z, Kulik HJ. Protein Dynamics and Substrate Protonation States Mediate the Catalytic Action of trans-4-Hydroxy-l-Proline Dehydratase. J Phys Chem B 2021; 125:7774-7784. [PMID: 34236200 DOI: 10.1021/acs.jpcb.1c05320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The enzyme trans-4-hydroxy-l-proline (Hyp) dehydratase (HypD) is among the most abundant glycyl radical enzymes (GREs) in the healthy human gut microbiome and is considered a promising antibiotic target for the prominent antibiotic-resistant pathogen Clostridium difficile. Although an enzymatic mechanism has been proposed, the role of the greater HypD protein environment in mediating radical reactivity is not well understood. To fill this gap in understanding, we investigate HypD across multiple time- and length-scales using electronic structure modeling and classical molecular dynamics. We observe that the Hyp substrate protonation state significantly alters both its enzyme-free reactivity and its dynamics within the enzyme active site. Accurate coupled-cluster modeling suggests the deprotonated form of Hyp to be the most reactive protonation state for C5-Hpro-S activation. In the protein environment, hydrophobic interactions modulate the positioning of the Cys434 radical to enhance the reactivity of C5-Hpro-S abstraction. Long-time dynamics reveal that changing Hyp protonation states triggers the switching of a Leu643-gated water tunnel, a functional feature that has not yet been observed for members of the GRE superfamily.
Collapse
Affiliation(s)
- Zhongyue Yang
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Heather J Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
15
|
Dawson CD, Irwin SM, Backman LRF, Le C, Wang JX, Vennelakanti V, Yang Z, Kulik HJ, Drennan CL, Balskus EP. Molecular basis of C-S bond cleavage in the glycyl radical enzyme isethionate sulfite-lyase. Cell Chem Biol 2021; 28:1333-1346.e7. [PMID: 33773110 PMCID: PMC8473560 DOI: 10.1016/j.chembiol.2021.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 02/04/2021] [Accepted: 03/03/2021] [Indexed: 01/07/2023]
Abstract
Desulfonation of isethionate by the bacterial glycyl radical enzyme (GRE) isethionate sulfite-lyase (IslA) generates sulfite, a substrate for respiration that in turn produces the disease-associated metabolite hydrogen sulfide. Here, we present a 2.7 Å resolution X-ray structure of wild-type IslA from Bilophila wadsworthia with isethionate bound. In comparison with other GREs, alternate positioning of the active site β strands allows for distinct residue positions to contribute to substrate binding. These structural differences, combined with sequence variations, create a highly tailored active site for the binding of the negatively charged isethionate substrate. Through the kinetic analysis of 14 IslA variants and computational analyses, we probe the mechanism by which radical chemistry is used for C-S bond cleavage. This work further elucidates the structural basis of chemistry within the GRE superfamily and will inform structure-based inhibitor design of IsIA and thus of microbial hydrogen sulfide production.
Collapse
Affiliation(s)
- Christopher D Dawson
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Stephania M Irwin
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA
| | - Lindsey R F Backman
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Chip Le
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA
| | - Jennifer X Wang
- Harvard Center for Mass Spectrometry, Faculty of Arts and Sciences Division of Science, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA
| | - Vyshnavi Vennelakanti
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Zhongyue Yang
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Heather J Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Catherine L Drennan
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Emily P Balskus
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA; Broad Institute, Cambridge, MA 02139, USA.
| |
Collapse
|