1
|
Dong HW, Weiss K, Baugh K, Meadows MJ, Niswender CM, Neul JL. Potentiation of the muscarinic acetylcholine receptor 1 modulates neurophysiological features in a mouse model of Rett syndrome. Neurotherapeutics 2024; 21:e00384. [PMID: 38880672 PMCID: PMC11284553 DOI: 10.1016/j.neurot.2024.e00384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/07/2024] [Accepted: 06/09/2024] [Indexed: 06/18/2024] Open
Abstract
Rett syndrome (RTT) is a neurodevelopmental disorder primarily caused by mutations in the X chromosome-linked gene Methyl-CpG Binding Protein 2 (MECP2). Restoring MeCP2 expression after disease onset in a mouse model of RTT reverses phenotypes, providing hope for development of treatments for RTT. Translatable biomarkers of improvement and treatment responses have the potential to accelerate both preclinical and clinical evaluation of targeted therapies in RTT. Studies in people with and mouse models of RTT have identified neurophysiological features, such as auditory event-related potentials, that correlate with disease severity, suggesting that they could be useful as biomarkers of disease improvement or early treatment response. We recently demonstrated that treatment of RTT mice with a positive allosteric modulator (PAM) of muscarinic acetylcholine subtype 1 receptor (M1) improved phenotypes, suggesting that modulation of M1 activity is a potential therapy in RTT. To evaluate whether neurophysiological features could be useful biomarkers to assess the effects of M1 PAM treatment, we acutely administered the M1 PAM VU0486846 (VU846) at doses of 1, 3, 10 and 30 mg/kg in wildtype and RTT mice. This resulted in an inverted U-shaped dose response with maximal improvement of AEP features at 3 mg/kg but with no marked effect on basal EEG power or epileptiform discharges in RTT mice and no significant changes in wildtype mice. These findings suggest that M1 potentiation can improve neural circuit synchrony to auditory stimuli in RTT mice and that neurophysiological features have potential as pharmacodynamic or treatment-responsive biomarkers for preclinical and clinical evaluation of putative therapies in RTT.
Collapse
Affiliation(s)
- Hong-Wei Dong
- Department of Pediatrics, Division of Neurology, Vanderbilt University Medical Center, USA; Vanderbilt University Kennedy Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kelly Weiss
- Department of Pharmacology, School of Medicine, Vanderbilt University, Nashville, TN, USA; Warren Center for Neuroscience Drug Discovery, School of Medicine, Vanderbilt University, Nashville, TN, USA
| | - Kathryn Baugh
- Department of Pediatrics, Division of Neurology, Vanderbilt University Medical Center, USA
| | - Mac J Meadows
- Department of Pharmacology, School of Medicine, Vanderbilt University, Nashville, TN, USA; Warren Center for Neuroscience Drug Discovery, School of Medicine, Vanderbilt University, Nashville, TN, USA
| | - Colleen M Niswender
- Vanderbilt University Kennedy Center, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Pharmacology, School of Medicine, Vanderbilt University, Nashville, TN, USA; Warren Center for Neuroscience Drug Discovery, School of Medicine, Vanderbilt University, Nashville, TN, USA; Vanderbilt Institute for Chemical Biology, Nashville, TN, USA; Vanderbilt Brain Institute, Nashville, TN, USA.
| | - Jeffrey L Neul
- Department of Pediatrics, Division of Neurology, Vanderbilt University Medical Center, USA; Vanderbilt University Kennedy Center, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Pharmacology, School of Medicine, Vanderbilt University, Nashville, TN, USA; Vanderbilt Brain Institute, Nashville, TN, USA.
| |
Collapse
|
2
|
Dinckol O, Wenger NH, Zachry JE, Kutlu MG. Nucleus accumbens core single cell ensembles bidirectionally respond to experienced versus observed aversive events. Sci Rep 2023; 13:22602. [PMID: 38114559 PMCID: PMC10730531 DOI: 10.1038/s41598-023-49686-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 12/11/2023] [Indexed: 12/21/2023] Open
Abstract
Fear learning is a critical feature of survival skills among mammals. In rodents, fear learning manifests itself through direct experience of the aversive event or social transmission of aversive stimuli such as observing and acting on conspecifics' distress. The neuronal network underlying the social transmission of information largely overlaps with the brain regions that mediate behavioral responses to aversive and rewarding stimuli. In this study, we recorded single cell activity patterns of nucleus accumbens (NAc) core neurons using in vivo optical imaging of calcium transients via miniature scopes. This cutting-edge imaging methodology not only allows us to record activity patterns of individual neurons but also lets us longitudinally follow these individual neurons across time and different behavioral states. Using this approach, we identified NAc core single cell ensembles that respond to experienced and/or observed aversive stimuli. Our results showed that experienced and observed aversive stimuli evoke NAc core ensemble activity that is largely positive, with a smaller subset of negative responses. The size of the NAc single cell ensemble response was greater for experienced aversive stimuli compared to observed aversive events. Our results also revealed sex differences in the NAc core single cell ensembles responses to experience aversive stimuli, where females showed a greater accumbal response. Importantly, we found a subpopulation within the NAc core single cell ensembles that show a bidirectional response to experienced aversive stimuli versus observed aversive stimuli (i.e., negative response to experienced and positive response to observed). Our results suggest that the NAc plays a role in differentiating somatosensory experience from social observation of aversion at a single cell level. These results have important implications for psychopathologies where social information processing is maladaptive, such as autism spectrum disorders.
Collapse
Affiliation(s)
- Oyku Dinckol
- Department of Cell Biology and Neuroscience, Rowan-Virtua School of Translational Biomedical Engineering and Sciences, Rowan University, Stratford, NJ, 08084, USA
- Rowan-Virtua School of Osteopathic Medicine, Rowan University, Stratford, NJ, 08084, USA
| | - Noah Harris Wenger
- Department of Cell Biology and Neuroscience, Rowan-Virtua School of Translational Biomedical Engineering and Sciences, Rowan University, Stratford, NJ, 08084, USA
- Rowan-Virtua School of Osteopathic Medicine, Rowan University, Stratford, NJ, 08084, USA
| | - Jennifer E Zachry
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA
| | - Munir Gunes Kutlu
- Department of Cell Biology and Neuroscience, Rowan-Virtua School of Translational Biomedical Engineering and Sciences, Rowan University, Stratford, NJ, 08084, USA.
- Rowan-Virtua School of Osteopathic Medicine, Rowan University, Stratford, NJ, 08084, USA.
| |
Collapse
|
3
|
Zhu Y, Xie SZ, Peng AB, Yu XD, Li CY, Fu JY, Shen CJ, Cao SX, Zhang Y, Chen J, Li XM. Distinct Circuits From the Central Lateral Amygdala to the Ventral Part of the Bed Nucleus of Stria Terminalis Regulate Different Fear Memory. Biol Psychiatry 2023:S0006-3223(23)01553-6. [PMID: 37678543 DOI: 10.1016/j.biopsych.2023.08.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 08/13/2023] [Accepted: 08/15/2023] [Indexed: 09/09/2023]
Abstract
BACKGROUND The ability to differentiate stimuli that predict fear is critical for survival; however, the underlying molecular and circuit mechanisms remain poorly understood. METHODS We combined transgenic mice, in vivo transsynaptic circuit-dissecting anatomical approaches, optogenetics, pharmacological methods, and electrophysiological recording to investigate the involvement of specific extended amygdala circuits in different fear memory. RESULTS We identified the projections from central lateral amygdala (CeL) protein kinase C δ (PKCδ)-positive neurons and somatostatin (SST)-positive neurons to GABAergic (gamma-aminobutyric acidergic) and glutamatergic neurons in the ventral part of the bed nucleus of stria terminalis (vBNST). Prolonged optogenetic activation or inhibition of the PKCδCeL-vBNST pathway specifically reduced context fear memory, whereas the SSTCeL-vBNST pathway mainly reduced tone fear memory. Intriguingly, optogenetic manipulation of vBNST neurons that received the projection from PKCδCeL neurons exerted bidirectional regulation of context fear, whereas manipulation of vBNST neurons that received the projection from SSTCeL neurons could bidirectionally regulate both context and tone fear memory. We subsequently demonstrated the presence of δ and κ opioid receptor protein expression within the CeL-vBNST circuits, potentially accounting for the discrepancy between prolonged activation of GABAergic circuits and inhibition of downstream vBNST neurons. Finally, administration of an opioid receptor antagonist cocktail on the PKCδCeL-vBNST or SSTCeL-vBNST pathway successfully restored context or tone fear memory reduction induced by prolonged activation of the circuits. CONCLUSIONS Together, these findings establish a functional role for distinct CeL-vBNST circuits in the differential regulation and appropriate maintenance of fear.
Collapse
Affiliation(s)
- Yi Zhu
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; National Health Commission and Chinese Academy of Medical Sciences Key Laboratory of Medical Neurobiology, Ministry of Education Frontier Center of Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Shi-Ze Xie
- National Health Commission and Chinese Academy of Medical Sciences Key Laboratory of Medical Neurobiology, Ministry of Education Frontier Center of Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Ai-Bing Peng
- National Health Commission and Chinese Academy of Medical Sciences Key Laboratory of Medical Neurobiology, Ministry of Education Frontier Center of Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Xiao-Dan Yu
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; National Health Commission and Chinese Academy of Medical Sciences Key Laboratory of Medical Neurobiology, Ministry of Education Frontier Center of Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Chun-Yue Li
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; National Health Commission and Chinese Academy of Medical Sciences Key Laboratory of Medical Neurobiology, Ministry of Education Frontier Center of Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Jia-Yu Fu
- National Health Commission and Chinese Academy of Medical Sciences Key Laboratory of Medical Neurobiology, Ministry of Education Frontier Center of Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Chen-Jie Shen
- National Health Commission and Chinese Academy of Medical Sciences Key Laboratory of Medical Neurobiology, Ministry of Education Frontier Center of Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Shu-Xia Cao
- Department of Neurology, Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ying Zhang
- National Health Commission and Chinese Academy of Medical Sciences Key Laboratory of Medical Neurobiology, Ministry of Education Frontier Center of Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Jiadong Chen
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; National Health Commission and Chinese Academy of Medical Sciences Key Laboratory of Medical Neurobiology, Ministry of Education Frontier Center of Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Xiao-Ming Li
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; National Health Commission and Chinese Academy of Medical Sciences Key Laboratory of Medical Neurobiology, Ministry of Education Frontier Center of Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China; Research Units for Emotion and Emotion Disorders, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
4
|
Dinckol O, Zachry JE, Kutlu MG. Nucleus accumbens core single cell ensembles bidirectionally respond to experienced versus observed aversive events. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.17.549364. [PMID: 37503203 PMCID: PMC10370069 DOI: 10.1101/2023.07.17.549364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Empathy is the ability to adopt others' sensory and emotional states and is an evolutionarily conserved trait among mammals. In rodents, empathy manifests itself as social modulation of aversive stimuli such as acknowledging and acting on conspecifics' distress. The neuronal network underlying social transmission of information is known to overlap with the brain regions that mediate behavioral responses to aversive and rewarding stimuli. In this study, we recorded single cell activity patterns of nucleus accumbens (NAc) core neurons using in vivo optical imaging of calcium transients via miniature scopes. This cutting-edge imaging methodology not only allows us to record activity patterns of individual neurons but also lets us longitudinally follow these individual neurons across time and different behavioral states. Using this approach, we identified NAc core single cell ensembles that respond to experienced and/or observed aversive stimuli. Our results showed that experienced and observed aversive stimuli evoke NAc core ensemble activity that is largely positive, with a smaller subset of negative responses. The size of the NAc single cell ensemble response was greater for experienced aversive stimuli compared to observed aversive events. Our results also revealed a subpopulation within the NAc core single cell ensembles that show a bidirectional response to experienced aversive stimuli versus observed aversive stimuli (i.e., negative response to experienced and positive response to observed). These results suggest that the NAc plays a role in differentiating somatosensory experience from social observation of aversion at a single cell level. This has important implications for psychopathologies where social information processing is maladaptive, such as autism spectrum disorders.
Collapse
Affiliation(s)
| | | | - Munir Gunes Kutlu
- Department of Cell Biology and Neuroscience, Rowan-Virtua School of Osteopathic Medicine, Stratford, NJ, USA
- Graduate School of Biomedical Sciences, Rowan-Virtua School of Osteopathic Medicine, Stratford, NJ, USA
| |
Collapse
|
5
|
Zhang M, Luo Y, Wang J, Sun Y, Xie B, Zhang L, Cong B, Ma C, Wen D. Roles of nucleus accumbens shell small-conductance calcium-activated potassium channels in the conditioned fear freezing. J Psychiatr Res 2023; 163:180-194. [PMID: 37216772 DOI: 10.1016/j.jpsychires.2023.05.057] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 04/27/2023] [Accepted: 05/15/2023] [Indexed: 05/24/2023]
Abstract
BACKGROUND Posttraumatic stress disorder (PTSD), a psychiatric disorder caused by stressful events, is characterized by long-lasting fear memory. The nucleus accumbens shell (NAcS) is a key brain region that regulates fear-associated behavior. Small-conductance calcium-activated potassium channels (SK channels) play a key role in regulating the excitability of NAcS medium spiny neurons (MSNs) but their mechanisms of action in fear freezing are unclear. METHOD We established an animal model of traumatic memory using conditioned fear freezing paradigm, and investigated the alterations in SK channels of NAc MSNs subsequent to fear conditioning in mice. We then utilized an adeno-associated virus (AAV) transfection system to overexpress the SK3 subunit and explore the function of the NAcS MSNs SK3 channel in conditioned fear freezing. RESULTS Fear conditioning activated NAcS MSNs with enhanced excitability and reduced the SK channel-mediated medium after-hyperpolarization (mAHP) amplitude. The expression of NAcS SK3 were also reduced time-dependently. The overexpression of NAcS SK3 impaired conditioned fear consolidation without affecting conditioned fear expression, and blocked fear conditioning-induced alterations in NAcS MSNs excitability and mAHP amplitude. Additionally, the amplitudes of mEPSC, AMPAR/NMDAR ratio, and membrane surface GluA1/A2 expression in NAcS MSNs was increased by fear conditioning and returned to normal levels upon SK3 overexpression, indicating that fear conditioning-induced decrease of SK3 expression caused postsynaptic excitation by facilitating AMPAR transmission to the membrane. CONCLUSION These findings show that the NAcS MSNs SK3 channel plays a critical role in conditioned fear consolidation and that it may influence PTSD pathogenesis, making it a potential therapeutic target against PTSD.
Collapse
Affiliation(s)
- Minglong Zhang
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Hebei Province, Shijiazhuang, 050017, PR China
| | - Yixiao Luo
- Hunan Province People's Hospital, The First-Affiliated Hospital of Hunan Normal University, Changsha, 410081, PR China
| | - Jian Wang
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Hebei Province, Shijiazhuang, 050017, PR China
| | - Yufei Sun
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Hebei Province, Shijiazhuang, 050017, PR China
| | - Bing Xie
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Hebei Province, Shijiazhuang, 050017, PR China
| | - Ludi Zhang
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Hebei Province, Shijiazhuang, 050017, PR China
| | - Bin Cong
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Hebei Province, Shijiazhuang, 050017, PR China
| | - Chunling Ma
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Hebei Province, Shijiazhuang, 050017, PR China.
| | - Di Wen
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Hebei Province, Shijiazhuang, 050017, PR China.
| |
Collapse
|
6
|
Konar-Nié M, Guzman-Castillo A, Armijo-Weingart L, Aguayo LG. Aging in nucleus accumbens and its impact on alcohol use disorders. Alcohol 2023; 107:73-90. [PMID: 36087859 DOI: 10.1016/j.alcohol.2022.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/01/2022] [Accepted: 08/04/2022] [Indexed: 02/06/2023]
Abstract
Ethanol is one of the most widely consumed drugs in the world and prolonged excessive ethanol intake might lead to alcohol use disorders (AUDs), which are characterized by neuroadaptations in different brain regions, such as in the reward circuitry. In addition, the global population is aging, and it appears that they are increasing their ethanol consumption. Although research involving the effects of alcohol in aging subjects is limited, differential effects have been described. For example, studies in human subjects show that older adults perform worse in tests assessing working memory, attention, and cognition as compared to younger adults. Interestingly, in the field of the neurobiological basis of ethanol actions, there is a significant dichotomy between what we know about the effects of ethanol on neurochemical targets in young animals and how it might affect them in the aging brain. To be able to understand the distinct effects of ethanol in the aging brain, the following questions need to be answered: (1) How does physiological aging impact the function of an ethanol-relevant region (e.g., the nucleus accumbens)? and (2) How does ethanol affect these neurobiological systems in the aged brain? This review discusses the available data to try to understand how aging affects the nucleus accumbens (nAc) and its neurochemical response to alcohol. The data show that there is little information on the effects of ethanol in aged mice and rats, and that many studies had considered 2-3-month-old mice as adults, which needs to be reconsidered since more recent literature defines 6 months as young adults and >18 months as an older mouse. Considering the actual relevance of an aged worldwide population and that this segment is drinking more frequently, it appears at least reasonable to explore how ethanol affects the brain in adult and aged models.
Collapse
Affiliation(s)
- Macarena Konar-Nié
- Laboratory of Neurophysiology, Department of Physiology, Universidad de Concepcion, Concepcion, Chile.
| | - Alejandra Guzman-Castillo
- Laboratory of Neurophysiology, Department of Physiology, Universidad de Concepcion, Concepcion, Chile; Programa en Neurociencia, Psiquiatría y Salud Mental, Universidad de Concepción, Concepcion, Chile.
| | - Lorena Armijo-Weingart
- Laboratory of Neurophysiology, Department of Physiology, Universidad de Concepcion, Concepcion, Chile; Programa en Neurociencia, Psiquiatría y Salud Mental, Universidad de Concepción, Concepcion, Chile.
| | - Luis Gerardo Aguayo
- Laboratory of Neurophysiology, Department of Physiology, Universidad de Concepcion, Concepcion, Chile; Programa en Neurociencia, Psiquiatría y Salud Mental, Universidad de Concepción, Concepcion, Chile.
| |
Collapse
|
7
|
Genes and pathways associated with fear discrimination identified by genome-wide DNA methylation and RNA-seq analyses in nucleus accumbens in mice. Prog Neuropsychopharmacol Biol Psychiatry 2023; 120:110643. [PMID: 36152737 DOI: 10.1016/j.pnpbp.2022.110643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 11/21/2022]
Abstract
Fear memory is critical for individual survival. However, the maladaptive fear response is one of the hallmarks of fear-related disorders, which is characterized by the failure to discriminate threatening signals from neutral or safe cues. The biological mechanisms of fear discrimination remain to be clarified. In this study, we found that the nucleus accumbens (NAc) was indispensable for the formation of cued fear memory in mice, during which the expression of DNA methyltransferase 3a gene (DNMT3a) increased. Injection of Zebularine, a nonspecific DNMT inhibitor, into NAc immediately after conditioning induced a maladaptive fear response to neutral cue (CS-). Using whole-genome bisulfite sequencing (WGBS), differentially methylated sites and methylated regions (DMRs) were investigated. 16,226 DMRs in the genenome were identified, in which, 214 genes with significant differences in their methylation levels and mRNA expression profiles were identified through correlation analysis. Notably, 15 genes were synaptic function-related and 8 genes were enriched in the cGMP-PKG signaling pathway. Moreover, inhibition of PKG impaired fear discrimination. Together, our results revealed the profile and role of genome-wide DNA methylation in NAc in the regulation of fear discrimination.
Collapse
|
8
|
Feng L, Lo H, You H, Wu W, Cheng X, Xin J, Ye Z, Chen X, Pan X. Loss of cannabinoid receptor 2 promotes α-Synuclein-induced microglial synaptic pruning in nucleus accumbens by modulating the pCREB-c-Fos signaling pathway and complement system. Exp Neurol 2023; 359:114230. [PMID: 36162511 DOI: 10.1016/j.expneurol.2022.114230] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/31/2022] [Accepted: 09/19/2022] [Indexed: 12/30/2022]
Abstract
The disruption of nucleus accumbens (NAc) function impacts mood and learning behavior in α-Synucleinopathy, in which microglial synaptic pruning plays a pivotal role in modulating the neuropathologic progression. Available literature documents that in microglia, the activation of cannabinoid receptor 2 (CB2R) decreases inflammation, but it remains obscured regarding the roles of CB2R in microglia-mediated synaptic pruning in the NAc during the neuropathological progression of α-Synucleinopathy. We adopted the fibrillar α-Synuclein (α-Syn) treatment to characterize the effect of genetic CB2R deletion on microglial function and the signaling pathway. CB2R knockout (CB2-/-) mice and wild-type (CB2+/+) mice were divided into the α-Syn or saline treatment groups. Biochemical and microscopy approaches, including immunofluorescence, real-time PCR, and western blotting, were employed to assess the changes in homeostasis of synaptic pruning in NAc under the α-Syn-induced microglia. Moreover, the underlying mechanisms of CB2R on α-Syn induced microglial activity was assessed in vitro. After the injection of α-Syn into the NAc, distinct microglial morphological changes and M1 phenotype transformation were observed between CB2-/- and CB2+/+ mice. Meanwhile, after the α-Syn treatment, CB2-/- mice showed an increased upregulation of CD68 protein and IL-1β mRNA but decreased brain-derived neurotrophic factor (BDNF) and TGF-β mRNA compared with CB2+/+ mice. Additionally, CB2-/- microglia after the treatment showed a highly enriched complement 3a receptor (C3aR) producing excessive pruning of cholinergic synapses but less engulfment of dopaminergic synapses. Mechanistically, the loss of CB2R function in the α-Syn stimulation triggered c-Fos activation in microglia, but not in neurons. Further inhibition of microglial CB2R functions under α-Syn stimulation activated the phosphorylated cAMP-response element-binding protein (pCREB)-c-Fos, which was closely related to the C3aR upregulation. Our results reveal a critical and mechanistic role of CB2R in altering the microglial function and its value in the homeostasis of synaptic circuits in the NAc under the α-Syn pathology.
Collapse
Affiliation(s)
- Linjuan Feng
- Department of Neurology, Center for Cognitive Neurology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou 350001, China; Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou 350001, China; Institute of Clinical Neurology, Fujian Medical University, 29 Xinquan Road, Fuzhou 350001, China; Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, 88 Jiaotong Road, Fuzhou 350001, China
| | - Hsuan Lo
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Hanlin You
- Department of Neurology, Center for Cognitive Neurology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou 350001, China; Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou 350001, China; Institute of Clinical Neurology, Fujian Medical University, 29 Xinquan Road, Fuzhou 350001, China; Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, 88 Jiaotong Road, Fuzhou 350001, China
| | - Wei Wu
- Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Medical University, 1 Xueyuan Road, Fuzhou 350001, China
| | - Xiaojuan Cheng
- Department of Neurology, Center for Cognitive Neurology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou 350001, China; Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou 350001, China; Institute of Clinical Neurology, Fujian Medical University, 29 Xinquan Road, Fuzhou 350001, China; Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, 88 Jiaotong Road, Fuzhou 350001, China
| | - Jiawei Xin
- Department of Neurology, Center for Cognitive Neurology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou 350001, China; Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou 350001, China; Institute of Clinical Neurology, Fujian Medical University, 29 Xinquan Road, Fuzhou 350001, China
| | - Zucheng Ye
- Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Medical University, 1 Xueyuan Road, Fuzhou 350001, China
| | - Xiaochun Chen
- Department of Neurology, Center for Cognitive Neurology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou 350001, China; Institute of Clinical Neurology, Fujian Medical University, 29 Xinquan Road, Fuzhou 350001, China; Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, 88 Jiaotong Road, Fuzhou 350001, China
| | - Xiaodong Pan
- Department of Neurology, Center for Cognitive Neurology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou 350001, China; Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou 350001, China; Institute of Clinical Neurology, Fujian Medical University, 29 Xinquan Road, Fuzhou 350001, China; Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, 88 Jiaotong Road, Fuzhou 350001, China; Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Medical University, 1 Xueyuan Road, Fuzhou 350001, China.
| |
Collapse
|
9
|
Social defeat drives hyperexcitation of the piriform cortex to induce learning and memory impairment but not mood-related disorders in mice. Transl Psychiatry 2022; 12:380. [PMID: 36088395 PMCID: PMC9464232 DOI: 10.1038/s41398-022-02151-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 08/27/2022] [Accepted: 09/02/2022] [Indexed: 12/05/2022] Open
Abstract
Clinical studies have shown that social defeat is an important cause of mood-related disorders, accompanied by learning and memory impairment in humans. The mechanism of mood-related disorders has been widely studied. However, the specific neural network involved in learning and memory impairment caused by social defeat remains unclear. In this study, behavioral test results showed that the mice induced both learning and memory impairments and mood-related disorders after exposure to chronic social defeat stress (CSDS). c-Fos immunofluorescence and fiber photometry recording confirmed that CaMKIIα expressing neurons of the piriform cortex (PC) were selectively activated by exposure to CSDS. Next, chemogenetics and optogenetics were performed to activate PC CaMKIIα expressing neurons, which showed learning and memory impairment but not mood-related disorders. Furthermore, chemogenetic inhibition of PC CaMKIIα expressing neurons significantly alleviated learning and memory impairment induced by exposure to CSDS but did not relieve mood-related disorders. Therefore, our data suggest that the overactivation of PC CaMKIIα expressing neurons mediates CSDS-induced learning and memory impairment, but not mood-related disorders, and provides a potential therapeutic target for learning and memory impairment induced by social defeat.
Collapse
|
10
|
Horvath PM, Piazza MK, Kavalali ET, Monteggia LM. MeCP2 loss-of-function dysregulates microRNAs regionally and disrupts excitatory/inhibitory synaptic transmission balance. Hippocampus 2022; 32:610-623. [PMID: 35851733 PMCID: PMC9344394 DOI: 10.1002/hipo.23455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 06/11/2022] [Accepted: 06/25/2022] [Indexed: 11/06/2022]
Abstract
Rett syndrome is a leading cause of intellectual disability in females primarily caused by loss of function mutations in the transcriptional regulator MeCP2. Loss of MeCP2 leads to a host of synaptic phenotypes that are believed to underlie Rett syndrome pathophysiology. Synaptic deficits vary by brain region upon MeCP2 loss, suggesting distinct molecular alterations leading to disparate synaptic outcomes. In this study, we examined the contribution of MeCP2's newly described role in miRNA regulation to regional molecular and synaptic impairments. Two miRNAs, miR-101a and miR-203, were identified and confirmed as upregulated in MeCP2 KO mice in the hippocampus and cortex, respectively. miR-101a overexpression in hippocampal cultures led to opposing effects at excitatory and inhibitory synapses and in spontaneous and evoked neurotransmission, revealing the potential for a single miRNA to broadly regulate synapse function in the hippocampus. These results highlight the importance of regional alterations in miRNA expression and the specific impact on synaptic function with potential implications for Rett syndrome.
Collapse
Affiliation(s)
- Patricia M. Horvath
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA,Department of Neuroscience, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Michelle K. Piazza
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee, USA,Neuroscience Program, Vanderbilt University, Nashville, Tennessee, USA
| | - Ege T. Kavalali
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA,Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee, USA
| | - Lisa M. Monteggia
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA,Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
11
|
Zhang Y, Roy DS, Zhu Y, Chen Y, Aida T, Hou Y, Shen C, Lea NE, Schroeder ME, Skaggs KM, Sullivan HA, Fischer KB, Callaway EM, Wickersham IR, Dai J, Li XM, Lu Z, Feng G. Targeting thalamic circuits rescues motor and mood deficits in PD mice. Nature 2022; 607:321-329. [PMID: 35676479 PMCID: PMC9403858 DOI: 10.1038/s41586-022-04806-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 04/26/2022] [Indexed: 01/03/2023]
Abstract
Although bradykinesia, tremor and rigidity are the hallmark motor defects in patients with Parkinson's disease (PD), patients also experience motor learning impairments and non-motor symptoms such as depression1. The neural circuit basis for these different symptoms of PD are not well understood. Although current treatments are effective for locomotion deficits in PD2,3, therapeutic strategies targeting motor learning deficits and non-motor symptoms are lacking4-6. Here we found that distinct parafascicular (PF) thalamic subpopulations project to caudate putamen (CPu), subthalamic nucleus (STN) and nucleus accumbens (NAc). Whereas PF→CPu and PF→STN circuits are critical for locomotion and motor learning, respectively, inhibition of the PF→NAc circuit induced a depression-like state. Whereas chemogenetically manipulating CPu-projecting PF neurons led to a long-term restoration of locomotion, optogenetic long-term potentiation (LTP) at PF→STN synapses restored motor learning behaviour in an acute mouse model of PD. Furthermore, activation of NAc-projecting PF neurons rescued depression-like phenotypes. Further, we identified nicotinic acetylcholine receptors capable of modulating PF circuits to rescue different PD phenotypes. Thus, targeting PF thalamic circuits may be an effective strategy for treating motor and non-motor deficits in PD.
Collapse
Affiliation(s)
- Ying Zhang
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Dheeraj S Roy
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Yi Zhu
- Center for Neuroscience and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yefei Chen
- Shenzhen Key Laboratory for Molecular Biology of Neural Development, The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen-Hong Kong Institute of Brain Science, Shenzhen, China
| | - Tomomi Aida
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yuanyuan Hou
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Chenjie Shen
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Nicholas E Lea
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Margaret E Schroeder
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Keith M Skaggs
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Heather A Sullivan
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kyle B Fischer
- Systems Neurobiology Laboratories, Salk Institute for Biological Studies, La Jolla, CA, USA
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Edward M Callaway
- Systems Neurobiology Laboratories, Salk Institute for Biological Studies, La Jolla, CA, USA
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Ian R Wickersham
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ji Dai
- Shenzhen Key Laboratory for Molecular Biology of Neural Development, The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen-Hong Kong Institute of Brain Science, Shenzhen, China
| | - Xiao-Ming Li
- Center for Neuroscience and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong-Macao Greater Bay Area, Zhejiang University, Hangzhou, China
- Joint Institute for Genetics and Genome Medicine between Zhejiang University and University of Toronto, Zhejiang University, Hangzhou, China
| | - Zhonghua Lu
- Shenzhen Key Laboratory for Molecular Biology of Neural Development, The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen-Hong Kong Institute of Brain Science, Shenzhen, China
| | - Guoping Feng
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
12
|
Smith M, Arthur B, Cikowski J, Holt C, Gonzalez S, Fisher NM, Vermudez SAD, Lindsley CW, Niswender CM, Gogliotti RG. Clinical and Preclinical Evidence for M 1 Muscarinic Acetylcholine Receptor Potentiation as a Therapeutic Approach for Rett Syndrome. Neurotherapeutics 2022; 19:1340-1352. [PMID: 35670902 PMCID: PMC9587166 DOI: 10.1007/s13311-022-01254-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2022] [Indexed: 12/04/2022] Open
Abstract
Rett syndrome (RTT) is a neurodevelopmental disorder that is characterized by developmental regression, loss of communicative ability, stereotyped hand wringing, cognitive impairment, and central apneas, among many other symptoms. RTT is caused by loss-of-function mutations in a methyl-reader known as methyl-CpG-binding protein 2 (MeCP2), a protein that links epigenetic changes on DNA to larger chromatin structure. Historically, target identification for RTT has relied heavily on Mecp2 knockout mice; however, we recently adopted the alternative approach of performing transcriptional profiling in autopsy samples from RTT patients. Through this mechanism, we identified muscarinic acetylcholine receptors (mAChRs) as potential therapeutic targets. Here, we characterized a cohort of 40 temporal cortex samples from individuals with RTT and quantified significantly decreased levels of the M1, M2, M3, and M5 mAChRs subtypes relative to neurotypical controls. Of these four subtypes, M1 expression demonstrated a linear relationship with MeCP2 expression, such that M1 levels were only diminished in contexts where MeCP2 was also significantly decreased. Further, we show that M1 potentiation with the positive allosteric modulator (PAM) VU0453595 (VU595) rescued social preference, spatial memory, and associative memory deficits, as well as decreased apneas in Mecp2+/- mice. VU595's efficacy on apneas in Mecp2+/- mice was mediated by the facilitation of the transition from inspiration to expiration. Molecular analysis correlated rescue with normalized global gene expression patterns in the brainstem and hippocampus, as well as increased Gsk3β inhibition and NMDA receptor trafficking. Together, these data suggest that M1 PAMs could represent a new class of RTT therapeutics.
Collapse
Affiliation(s)
- Mackenzie Smith
- Department of Molecular Pharmacology and Neuroscience, Loyola University Chicago, Maywood, IL, 60153, USA
- Edward Hines Jr. VA Hospital, Hines, IL, 60141, USA
| | - Bright Arthur
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, 37232, USA
- Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Jakub Cikowski
- Department of Molecular Pharmacology and Neuroscience, Loyola University Chicago, Maywood, IL, 60153, USA
- Edward Hines Jr. VA Hospital, Hines, IL, 60141, USA
| | - Calista Holt
- Department of Molecular Pharmacology and Neuroscience, Loyola University Chicago, Maywood, IL, 60153, USA
- Edward Hines Jr. VA Hospital, Hines, IL, 60141, USA
| | - Sonia Gonzalez
- Department of Molecular Pharmacology and Neuroscience, Loyola University Chicago, Maywood, IL, 60153, USA
- Edward Hines Jr. VA Hospital, Hines, IL, 60141, USA
| | - Nicole M Fisher
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, 37232, USA
- Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Sheryl Anne D Vermudez
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, 37232, USA
- Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Craig W Lindsley
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, 37232, USA
- Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, 37232, USA
- Department of Chemistry, Vanderbilt University, Nashville, TN, 37232, USA
| | - Colleen M Niswender
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, 37232, USA
- Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, 37232, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, 37232, USA
| | - Rocco G Gogliotti
- Department of Molecular Pharmacology and Neuroscience, Loyola University Chicago, Maywood, IL, 60153, USA.
- Edward Hines Jr. VA Hospital, Hines, IL, 60141, USA.
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA.
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, 37232, USA.
| |
Collapse
|
13
|
Cikowski J, Holt C, Arthur B, Smith M, Gonzalez S, Lindsley CW, Niswender CM, Gogliotti RG. Optimized Administration of the M 4 PAM VU0467154 Demonstrates Broad Efficacy, but Limited Effective Concentrations in Mecp2+/- Mice. ACS Chem Neurosci 2022; 13:1891-1901. [PMID: 35671352 PMCID: PMC9266622 DOI: 10.1021/acschemneuro.2c00113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Hypofunction of cholinergic circuits and diminished cholinergic tone have been associated with the neurodevelopmental disorder Rett syndrome (RTT). Specifically, deletion of Mecp2 in cholinergic neurons evokes the same social and cognitive phenotypes in mice seen with global Mecp2 knockout, and decreased choline acetyltransferase activity and vesamicol binding have been reported in RTT autopsy samples. Further, we recently identified significant decreases in muscarinic acetylcholine receptor subtype 4 (M4) expression in both the motor cortex and cerebellum of RTT patient autopsies and established proof of concept that an acute dose of the positive allosteric modulator (PAM) VU0467154 (VU154) rescued phenotypes in Mecp2+/- mice. Here, we expand the assessment of M4 PAMs in RTT to address clinically relevant questions of tolerance, scope of benefit, dose response, chronic treatment, and mechanism. We show that VU154 has efficacy on anxiety, social preference, cognitive, and respiratory phenotypes in Mecp2+/- mice; however, the therapeutic range is narrow, with benefits seen at 3 mg/kg concentrations, but not 1 or 10 mg/kg. Further, sociability was diminished in VU154-treated Mecp2+/- mice, suggestive of a potential adverse effect. Compound efficacy on social, cognitive, and respiratory phenotypes was conserved with a 44-day treatment paradigm, with the caveat that breath rate was moderately decreased with chronic treatment in Mecp2+/+ and Mecp2+/- mice. VU154 effects on respiratory function correlated with an increase in Gsk3β inhibition in the brainstem. These results identify the core symptom domains where efficacy and adverse effects may present with M4 administration in RTT model mice and advocate for the continued evaluation as potential RTT therapeutics.
Collapse
Affiliation(s)
- Jakub Cikowski
- Department
of Molecular Pharmacology and Neuroscience, Loyola University Chicago, Maywood, Illinois 60153, United States,Edward
Hines Jr. VA Hospital, Hines, Illinois 60141, United States
| | - Calista Holt
- Department
of Molecular Pharmacology and Neuroscience, Loyola University Chicago, Maywood, Illinois 60153, United States,Edward
Hines Jr. VA Hospital, Hines, Illinois 60141, United States
| | - Bright Arthur
- Department
of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States,Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States,Vanderbilt
Kennedy Center, Vanderbilt University Medical
Center, Nashville, Tennessee 37232, United States
| | - Mackenzie Smith
- Department
of Molecular Pharmacology and Neuroscience, Loyola University Chicago, Maywood, Illinois 60153, United States,Edward
Hines Jr. VA Hospital, Hines, Illinois 60141, United States
| | - Sonia Gonzalez
- Department
of Molecular Pharmacology and Neuroscience, Loyola University Chicago, Maywood, Illinois 60153, United States,Edward
Hines Jr. VA Hospital, Hines, Illinois 60141, United States
| | - Craig W. Lindsley
- Department
of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States,Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States,Vanderbilt
Kennedy Center, Vanderbilt University Medical
Center, Nashville, Tennessee 37232, United States,Vanderbilt
Institute of Chemical Biology, Vanderbilt
University, Nashville, Tennessee 37232, United States,Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Colleen M. Niswender
- Department
of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States,Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States,Vanderbilt
Kennedy Center, Vanderbilt University Medical
Center, Nashville, Tennessee 37232, United States,Vanderbilt
Institute of Chemical Biology, Vanderbilt
University, Nashville, Tennessee 37232, United States,Vanderbilt
Brain Institute, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Rocco G. Gogliotti
- Department
of Molecular Pharmacology and Neuroscience, Loyola University Chicago, Maywood, Illinois 60153, United States,Edward
Hines Jr. VA Hospital, Hines, Illinois 60141, United States,Department
of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States,Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States,. Phone: 708-216-9021. Fax: 708-216-8318
| |
Collapse
|
14
|
Fan BF, Hao B, Dai YD, Xue L, Shi YW, Liu L, Xuan SM, Yang N, Wang XG, Zhao H. Deficiency of Tet3 in nucleus accumbens enhances fear generalization and anxiety-like behaviors in mice. Brain Pathol 2022; 32:e13080. [PMID: 35612904 PMCID: PMC9616092 DOI: 10.1111/bpa.13080] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 05/02/2022] [Indexed: 11/30/2022] Open
Abstract
Stress‐induced neuroepigenetic programming gains growing more and more interest in the studies of the etiology of posttraumatic stress disorder (PTSD). However, seldom attention is focused on DNA demethylation in fear memory generalization, which is the core characteristic of PTSD. Here, we show that ten‐eleven translocation protein 3 (TET3), the most abundant DNA demethylation enzyme of the TET family in neurons, senses environmental stress and bridges neuroplasticity with behavioral adaptation during fear generalization. Foot shock strength dependently induces fear generalization and TET3 expression in nucleus accumbens (NAc) in mice. Inhibition of DNA demethylation by infusing demethyltransferase inhibitors or AAV‐Tet3‐shRNA virus in NAc enhances the fear generalization and anxiety‐like behavior. Furthermore, TET3 knockdown impairs the dendritic spine density, PSD length, and thickness of neurons, decreases DNA hydroxymethylation (5hmC), reduces the expression of synaptic plasticity‐related genes including Homer1, Cdkn1a, Cdh8, Vamp8, Reln, Bdnf, while surprisingly increases immune‐related genes Stat1, B2m, H2‐Q7, H2‐M2, C3, Cd68 shown by RNA‐seq. Notably, knockdown of TET3 in NAc activates microglia and CD39‐P2Y12R signaling pathway, and inhibition of CD39 reverses the effects of TET3 knockdown on the fear memory generalization and anxiety. Overexpression of TET3 by Crispr‐dSaCas9 virus delivery to activate endogenous Tet3 in NAc increases dendritic spine density of neurons in NAc and reverses fear memory generalization and anxiety‐like behavior in mice. These results suggest that TET3 modulates fear generalization and anxiety via regulating synaptic plasticity and CD39 signaling pathway.
Collapse
Affiliation(s)
- Bu-Fang Fan
- Faculty of Forensic Medicine, Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Bo Hao
- Faculty of Forensic Medicine, Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yun-Da Dai
- Faculty of Forensic Medicine, Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Li Xue
- Department of Psychology, School of Public Medicine, Southern Medical University, Guangzhou, China
| | - Yan-Wei Shi
- Faculty of Forensic Medicine, Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Lu Liu
- Faculty of Forensic Medicine, Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shou-Min Xuan
- Faculty of Forensic Medicine, Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ning Yang
- Faculty of Forensic Medicine, Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiao-Guang Wang
- Faculty of Forensic Medicine, Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hu Zhao
- Faculty of Forensic Medicine, Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
15
|
Chemogenetics as a neuromodulatory approach to treating neuropsychiatric diseases and disorders. Mol Ther 2022; 30:990-1005. [PMID: 34861415 PMCID: PMC8899595 DOI: 10.1016/j.ymthe.2021.11.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/12/2021] [Accepted: 11/29/2021] [Indexed: 01/01/2023] Open
Abstract
Chemogenetics enables precise, non-invasive, and reversible modulation of neural activity via the activation of engineered receptors that are pharmacologically selective to endogenous or exogenous ligands. With recent advances in therapeutic gene delivery, chemogenetics is poised to support novel interventions against neuropsychiatric diseases and disorders. To evaluate its translational potential, we performed a scoping review of applications of chemogenetics that led to the reversal of molecular and behavioral deficits in studies relevant to neuropsychiatric diseases and disorders. In this review, we present these findings and discuss the potential and challenges for using chemogenetics as a precision medicine-based neuromodulation strategy.
Collapse
|
16
|
Li W. Excitation and Inhibition Imbalance in Rett Syndrome. Front Neurosci 2022; 16:825063. [PMID: 35250460 PMCID: PMC8894599 DOI: 10.3389/fnins.2022.825063] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/31/2022] [Indexed: 12/12/2022] Open
Abstract
A loss of the excitation/inhibition (E/I) balance in the neural circuit has emerged as a common neuropathological feature in many neurodevelopmental disorders. Rett syndrome (RTT), a prevalent neurodevelopmental disorder that affects 1:10,000-15,000 women globally, is caused by loss-of-function mutations in the Methyl-CpG-binding Protein-2 (Mecp2) gene. E/I imbalance is recognized as the leading cellular and synaptic hallmark that is fundamental to diverse RTT neurological symptoms, including stereotypic hand movements, impaired motor coordination, breathing irregularities, seizures, and learning/memory dysfunctions. E/I balance in RTT is not homogeneously altered but demonstrates brain region and cell type specificity instead. In this review, I elaborate on the current understanding of the loss of E/I balance in a range of brain areas at molecular and cellular levels. I further describe how the underlying cellular mechanisms contribute to the disturbance of the proper E/I ratio. Last, I discuss current pharmacologic innervations for RTT and their role in modifying the E/I balance.
Collapse
Affiliation(s)
- Wei Li
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|