1
|
Škop V, Liu N, Xiao C, Stinson E, Chen KY, Hall KD, Piaggi P, Gavrilova O, Reitman ML. Beyond day and night: The importance of ultradian rhythms in mouse physiology. Mol Metab 2024; 84:101946. [PMID: 38657735 PMCID: PMC11070603 DOI: 10.1016/j.molmet.2024.101946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/11/2024] [Accepted: 04/18/2024] [Indexed: 04/26/2024] Open
Abstract
Our circadian world shapes much of metabolic physiology. In mice ∼40% of the light and ∼80% of the dark phase time is characterized by bouts of increased energy expenditure (EE). These ultradian bouts have a higher body temperature (Tb) and thermal conductance and contain virtually all of the physical activity and awake time. Bout status is a better classifier of mouse physiology than photoperiod, with ultradian bouts superimposed on top of the circadian light/dark cycle. We suggest that the primary driver of ultradian bouts is a brain-initiated transition to a higher defended Tb of the active/awake state. Increased energy expenditure from brown adipose tissue, physical activity, and cardiac work combine to raise Tb from the lower defended Tb of the resting/sleeping state. Thus, unlike humans, much of mouse metabolic physiology is episodic with large ultradian increases in EE and Tb that correlate with the active/awake state and are poorly aligned with circadian cycling.
Collapse
Affiliation(s)
- Vojtěch Škop
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA; Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic; Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Czech Republic.
| | - Naili Liu
- Mouse Metabolism Core, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Cuiying Xiao
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Emma Stinson
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Phoenix, AZ 85016, USA
| | - Kong Y Chen
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Kevin D Hall
- Laboratory of Biological Modeling, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Paolo Piaggi
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Phoenix, AZ 85016, USA; Department of Information Engineering, University of Pisa, Pisa 56122, Italy
| | - Oksana Gavrilova
- Mouse Metabolism Core, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Marc L Reitman
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
2
|
Vacca M, Kamzolas I, Harder LM, Oakley F, Trautwein C, Hatting M, Ross T, Bernardo B, Oldenburger A, Hjuler ST, Ksiazek I, Lindén D, Schuppan D, Rodriguez-Cuenca S, Tonini MM, Castañeda TR, Kannt A, Rodrigues CMP, Cockell S, Govaere O, Daly AK, Allison M, Honnens de Lichtenberg K, Kim YO, Lindblom A, Oldham S, Andréasson AC, Schlerman F, Marioneaux J, Sanyal A, Afonso MB, Younes R, Amano Y, Friedman SL, Wang S, Bhattacharya D, Simon E, Paradis V, Burt A, Grypari IM, Davies S, Driessen A, Yashiro H, Pors S, Worm Andersen M, Feigh M, Yunis C, Bedossa P, Stewart M, Cater HL, Wells S, Schattenberg JM, Anstee QM, Tiniakos D, Perfield JW, Petsalaki E, Davidsen P, Vidal-Puig A. An unbiased ranking of murine dietary models based on their proximity to human metabolic dysfunction-associated steatotic liver disease (MASLD). Nat Metab 2024; 6:1178-1196. [PMID: 38867022 PMCID: PMC11199145 DOI: 10.1038/s42255-024-01043-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 04/08/2024] [Indexed: 06/14/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), previously known as non-alcoholic fatty liver disease, encompasses steatosis and metabolic dysfunction-associated steatohepatitis (MASH), leading to cirrhosis and hepatocellular carcinoma. Preclinical MASLD research is mainly performed in rodents; however, the model that best recapitulates human disease is yet to be defined. We conducted a wide-ranging retrospective review (metabolic phenotype, liver histopathology, transcriptome benchmarked against humans) of murine models (mostly male) and ranked them using an unbiased MASLD 'human proximity score' to define their metabolic relevance and ability to induce MASH-fibrosis. Here, we show that Western diets align closely with human MASH; high cholesterol content, extended study duration and/or genetic manipulation of disease-promoting pathways are required to intensify liver damage and accelerate significant (F2+) fibrosis development. Choline-deficient models rapidly induce MASH-fibrosis while showing relatively poor translatability. Our ranking of commonly used MASLD models, based on their proximity to human MASLD, helps with the selection of appropriate in vivo models to accelerate preclinical research.
Collapse
Affiliation(s)
- Michele Vacca
- TVP Lab, WT/MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK.
- Interdisciplinary Department of Medicine, University of Bari "Aldo Moro", Bari, Italy.
- Laboratory of Liver Metabolism and MASLD, Roger Williams Institute of Hepatology, London, UK.
| | - Ioannis Kamzolas
- TVP Lab, WT/MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Lea Mørch Harder
- Research and Early Development, Novo Nordisk A/S, Måløv, Copenhagen, Denmark
| | - Fiona Oakley
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Christian Trautwein
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Maximilian Hatting
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Trenton Ross
- Internal Medicine research Research Unit, Pfizer Worldwide Research and Development, Cambridge, MA, USA
| | - Barbara Bernardo
- Internal Medicine research Research Unit, Pfizer Worldwide Research and Development, Cambridge, MA, USA
| | - Anouk Oldenburger
- CardioMetabolic Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | | | - Iwona Ksiazek
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Daniel Lindén
- Bioscience Metabolism, Research and Early Development Cardiovascular, Renal and Metabolism (CVRM), AstraZeneca BioPharmaceuticals R&D, Gothenburg, Sweden
- Division of Endocrinology, Department of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Detlef Schuppan
- Institute of Translational Immunology and Research Center for Immunotherapy, Johannes Gutenberg University Medical Center, Mainz, Germany
| | | | - Maria Manuela Tonini
- Luxembourg Institute of Health, Translational Medicine Operations Hub, Dudelange, Luxembourg
| | - Tamara R Castañeda
- R&D Diabetes & Portfolio Innovation and Excellence, Sanofi-Aventis Deutschland GmbH, Industriepark Hoechst, Frankfurt, Germany
| | - Aimo Kannt
- R&D Diabetes, Sanofi-Aventis Deutschland GmbH, Industriepark Hoechst, Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Fraunhofer Innovation Center TheraNova and Goethe University, Frankfurt, Germany
| | - Cecília M P Rodrigues
- Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Simon Cockell
- Bioinformatics Support Unit, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Olivier Govaere
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Ann K Daly
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Michael Allison
- Liver Unit, Cambridge University Hospitals NHS Foundation Trust & Cambridge NIHR Biomedical Research Centre, Cambridge, UK
| | | | - Yong Ook Kim
- Institute of Translational Immunology and Research Center for Immunotherapy, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Anna Lindblom
- Bioscience Metabolism, Research and Early Development Cardiovascular, Renal and Metabolism (CVRM), AstraZeneca BioPharmaceuticals R&D, Gothenburg, Sweden
| | - Stephanie Oldham
- Bioscience Metabolism, Research and Early Development Cardiovascular, Renal and Metabolism (CVRM), AstraZeneca BioPharmaceuticals R&D, Gaithersburg, MD, USA
| | - Anne-Christine Andréasson
- Bioscience Cardiovascular, Research and Early Development Cardiovascular, Renal and Metabolism (CVRM), AstraZeneca BioPharmaceuticals R&D, Gothenburg, Sweden
| | - Franklin Schlerman
- Inflammation and Immunology Research Unit, Pfizer Worldwide Research and Development, Cambridge, MA, USA
| | | | - Arun Sanyal
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Marta B Afonso
- Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Ramy Younes
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- Boehringer Ingelheim International GmbH, Ingelheim am Rhein, Germany
| | - Yuichiro Amano
- Research, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Scott L Friedman
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Shuang Wang
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dipankar Bhattacharya
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Eric Simon
- Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Valérie Paradis
- Department of Imaging and Pathology, Université Paris Diderot and Hôpital Beaujon, Paris, France
| | - Alastair Burt
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- Newcastle NIHR Biomedical Research Centre, Newcastle upon Tyne Hospitals NHS Trust, Newcastle upon Tyne, UK
| | - Ioanna Maria Grypari
- Department of Pathology, Aretaeion Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Susan Davies
- Department of Cellular Pathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Ann Driessen
- Department of Pathology, Antwerp University Hospital, Edegem, Belgium
- Department of Molecular Imaging, Pathology, Radiotherapy, Oncology. Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium
| | - Hiroaki Yashiro
- Research, Takeda Pharmaceuticals Company Limited, Cambridge, MA, USA
| | | | | | | | - Carla Yunis
- Pfizer, Inc.; Internal Medicine and Hospital, Pfizer Research and Development, Lake Mary, FL, USA
| | - Pierre Bedossa
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- LiverPat, Paris, France
| | | | | | - Sara Wells
- Mary Lyon Centre, MRC Harwell, Harwell Campus, Oxford, UK
| | - Jörn M Schattenberg
- Department of Internal Medicine II, Saarland University Medical Centre, Homburg, Germany
| | - Quentin M Anstee
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- Newcastle NIHR Biomedical Research Centre, Newcastle upon Tyne Hospitals NHS Trust, Newcastle upon Tyne, UK
| | - Dina Tiniakos
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.
- Department of Pathology, Aretaeion Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
| | - James W Perfield
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA.
| | - Evangelia Petsalaki
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, UK.
| | - Peter Davidsen
- Research and Early Development, Novo Nordisk A/S, Måløv, Copenhagen, Denmark.
- Ferring Pharmaceuticals A/S, International PharmaScience Center, Copenhagen, Denmark.
| | - Antonio Vidal-Puig
- TVP Lab, WT/MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK.
- Centro de Investigacion Principe Felipe, Valencia, Spain.
| |
Collapse
|
3
|
Wang S, Friedman SL. Found in translation-Fibrosis in metabolic dysfunction-associated steatohepatitis (MASH). Sci Transl Med 2023; 15:eadi0759. [PMID: 37792957 PMCID: PMC10671253 DOI: 10.1126/scitranslmed.adi0759] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 09/15/2023] [Indexed: 10/06/2023]
Abstract
Metabolic dysfunction-associated steatohepatitis (MASH) is a severe form of liver disease that poses a global health threat because of its potential to progress to advanced fibrosis, leading to cirrhosis and liver cancer. Recent advances in single-cell methodologies, refined disease models, and genetic and epigenetic insights have provided a nuanced understanding of MASH fibrogenesis, with substantial cellular heterogeneity in MASH livers providing potentially targetable cell-cell interactions and behavior. Unlike fibrogenesis, mechanisms underlying fibrosis regression in MASH are still inadequately understood, although antifibrotic targets have been recently identified. A refined antifibrotic treatment framework could lead to noninvasive assessment and targeted therapies that preserve hepatocellular function and restore the liver's architectural integrity.
Collapse
Affiliation(s)
- Shuang Wang
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Scott L. Friedman
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| |
Collapse
|
4
|
Chikamatsu M, Watanabe H, Shintani Y, Murata R, Miyahisa M, Nishinoiri A, Imafuku T, Takano M, Arimura N, Yamada K, Kamimura M, Mukai B, Satoh T, Maeda H, Maruyama T. Albumin-fused long-acting FGF21 analogue for the treatment of non-alcoholic fatty liver disease. J Control Release 2023; 355:42-53. [PMID: 36690035 DOI: 10.1016/j.jconrel.2023.01.039] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/03/2023] [Accepted: 01/14/2023] [Indexed: 01/25/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) currently affects about 25% of the world's population, and the numbers continue to rise as the number of obese patients increases. However, there are currently no approved treatments for NAFLD. This study reports on the evaluation of the therapeutic effect of a recombinant human serum albumin-fibroblast growth factor 21 analogue fusion protein (HSA-FGF21) on the pathology of NAFLD that was induced by using two high-fat diets (HFD), HFD-60 and STHD-01. The HFD-60-induced NAFLD model mice with obesity, insulin resistance, dyslipidemia and hepatic lipid accumulation were treated with HSA-FGF21 three times per week for 4 weeks starting at 12 weeks after the HFD-60 feeding. The administration of HSA-FGF21 suppressed the increased body weight, improved hyperglycemia, hyperinsulinemia, and showed a decreased accumulation of plasma lipid and hepatic lipid levels. The elevation of C16:0, C18:0 and C18:1 fatty acids in the liver that were observed in the HFD-60 group was recovered by the HSA-FGF21 administration. The increased expression levels of the hepatic fatty acid uptake receptor (CD36) and fatty acid synthase (SREBP-1c, FAS, SCD-1, Elovl6) were also suppressed. In adipose tissue, HSA-FGF21 caused an improved adipocyte hypertrophy, a decrease in the levels of inflammatory cytokines and induced the expression of adiponectin and thermogenic factors. The administration of HSA-FGF21 to the STHD-01-induced NAFLD model mice resulted in suppressed plasma ALT and AST levels, oxidative stress, inflammatory cell infiltration and fibrosis. Together, HSA-FGF21 has some potential for use as a therapeutic agent for the treatment of NAFLD.
Collapse
Affiliation(s)
- Mayuko Chikamatsu
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Hiroshi Watanabe
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan.
| | - Yuhi Shintani
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Ryota Murata
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Masako Miyahisa
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Ayano Nishinoiri
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Tadashi Imafuku
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Mei Takano
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Nanaka Arimura
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Kohichi Yamada
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Miya Kamimura
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Baki Mukai
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Takao Satoh
- Kumamoto Industrial Research Institute, Kumamoto, Japan
| | - Hitoshi Maeda
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Toru Maruyama
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| |
Collapse
|
5
|
Benegiamo G, von Alvensleben GV, Rodríguez-López S, Goeminne LJ, Bachmann AM, Morel JD, Broeckx E, Ma JY, Carreira V, Youssef SA, Azhar N, Reilly DF, D’Aquino K, Mullican S, Bou-Sleiman M, Auwerx J. The genetic background shapes the susceptibility to mitochondrial dysfunction and NASH progression. J Exp Med 2023; 220:213867. [PMID: 36787127 PMCID: PMC9960245 DOI: 10.1084/jem.20221738] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/21/2022] [Accepted: 01/30/2023] [Indexed: 02/15/2023] Open
Abstract
Non-alcoholic steatohepatitis (NASH) is a global health concern without treatment. The challenge in finding effective therapies is due to the lack of good mouse models and the complexity of the disease, characterized by gene-environment interactions. We tested the susceptibility of seven mouse strains to develop NASH. The severity of the clinical phenotypes observed varied widely across strains. PWK/PhJ mice were the most prone to develop hepatic inflammation and the only strain to progress to NASH with extensive fibrosis, while CAST/EiJ mice were completely resistant. Levels of mitochondrial transcripts and proteins as well as mitochondrial function were robustly reduced specifically in the liver of PWK/PhJ mice, suggesting a central role of mitochondrial dysfunction in NASH progression. Importantly, the NASH gene expression profile of PWK/PhJ mice had the highest overlap with the human NASH signature. Our study exposes the limitations of using a single mouse genetic background in metabolic studies and describes a novel NASH mouse model with features of the human NASH.
Collapse
Affiliation(s)
- Giorgia Benegiamo
- Laboratory of Integrative Systems Physiology, École polytechnique fédérale de Lausanne, Lausanne, Switzerland,Giorgia Benegiamo:
| | | | - Sandra Rodríguez-López
- Laboratory of Integrative Systems Physiology, École polytechnique fédérale de Lausanne, Lausanne, Switzerland
| | - Ludger J.E. Goeminne
- Laboratory of Integrative Systems Physiology, École polytechnique fédérale de Lausanne, Lausanne, Switzerland
| | - Alexis M. Bachmann
- Laboratory of Integrative Systems Physiology, École polytechnique fédérale de Lausanne, Lausanne, Switzerland
| | - Jean-David Morel
- Laboratory of Integrative Systems Physiology, École polytechnique fédérale de Lausanne, Lausanne, Switzerland
| | - Ellen Broeckx
- Janssen Research and Development, LLC, Raritan, NJ, USA
| | - Jing Ying Ma
- Janssen Research and Development, LLC, Raritan, NJ, USA
| | | | | | - Nabil Azhar
- Janssen Research and Development, LLC, Raritan, NJ, USA
| | | | | | | | - Maroun Bou-Sleiman
- Laboratory of Integrative Systems Physiology, École polytechnique fédérale de Lausanne, Lausanne, Switzerland
| | - Johan Auwerx
- Laboratory of Integrative Systems Physiology, École polytechnique fédérale de Lausanne, Lausanne, Switzerland,Correspondence to Johan Auwerx:
| |
Collapse
|
6
|
Jiang SY, Yang X, Yang Z, Li JW, Xu MQ, Qu YX, Tang JJ, Li YF, Wang L, Shao YW, Meng XY, Hu H, Song BL, Rao Y, Qi W. Discovery of an insulin-induced gene binding compound that ameliorates nonalcoholic steatohepatitis by inhibiting sterol regulatory element-binding protein-mediated lipogenesis. Hepatology 2022; 76:1466-1481. [PMID: 35102596 DOI: 10.1002/hep.32381] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/14/2022] [Accepted: 01/27/2022] [Indexed: 12/28/2022]
Abstract
BACKGROUND AND AIMS NASH is associated with high levels of cholesterol and triglyceride (TG) in the liver; however, there is still no approved pharmacological therapy. Synthesis of cholesterol and TG is controlled by sterol regulatory element-binding protein (SREBP), which is found to be abnormally activated in NASH patients. We aim to discover small molecules for treating NASH by inhibiting the SREBP pathway. APPROACH AND RESULTS Here, we identify a potent SREBP inhibitor, 25-hydroxylanosterol (25-HL). 25-HL binds to insulin-induced gene (INSIG) proteins, stimulates the interaction between INSIG and SCAP, and retains them in the endoplasmic reticulum, thereby suppressing SREBP activation and inhibiting lipogenesis. In NASH mouse models, 25-HL lowers levels of cholesterol and TG in serum and the liver, enhances energy expenditure to prevent obesity, and improves insulin sensitivity. 25-HL dramatically ameliorates hepatic steatosis, inflammation, ballooning, and fibrosis through down-regulating the expression of lipogenic genes. Furthermore, 25-HL exhibits both prophylactic and therapeutic efficacies of alleviating NASH and atherosclerosis in amylin liver NASH model diet-treated Ldlr-/- mice, and reduces the formation of cholesterol crystals and associated crown-like structures of Kupffer cells. Notably, 25-HL lowers lipid contents in serum and the liver to a greater extent than lovastatin or obeticholic acid. 25-HL shows a good safety and pharmacokinetics profile. CONCLUSIONS This study provides the proof of concept that inhibiting SREBP activation by targeting INSIG to lower lipids could be a promising strategy for treating NASH. It suggests the translational potential of 25-HL in human NASH and demonstrates the critical role of SREBP-controlled lipogenesis in the progression of NASH by pharmacological inhibition.
Collapse
Affiliation(s)
- Shi-You Jiang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China.,Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xinglin Yang
- MOE Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, China
| | - Zimo Yang
- MOE Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, China
| | - Jue-Wan Li
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Meng-Qiang Xu
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yu-Xiu Qu
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Jing-Jie Tang
- The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yun-Feng Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Liguo Wang
- MOE Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, China
| | - Yi-Wen Shao
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, Shandong University Cheeloo Medical College, School of Basic Medical Sciences, Jinan, China.,The Research Center of Stem Cell and Regenerative Medicine, Shandong University Cheeloo Medical College, School of Basic Medical Sciences, Jinan, China
| | - Xin-Yuan Meng
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, Shandong University Cheeloo Medical College, School of Basic Medical Sciences, Jinan, China.,The Research Center of Stem Cell and Regenerative Medicine, Shandong University Cheeloo Medical College, School of Basic Medical Sciences, Jinan, China
| | - Huili Hu
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, Shandong University Cheeloo Medical College, School of Basic Medical Sciences, Jinan, China.,The Research Center of Stem Cell and Regenerative Medicine, Shandong University Cheeloo Medical College, School of Basic Medical Sciences, Jinan, China
| | - Bao-Liang Song
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yu Rao
- MOE Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, China
| | - Wei Qi
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| |
Collapse
|
7
|
Im YR, Hunter H, de Gracia Hahn D, Duret A, Cheah Q, Dong J, Fairey M, Hjalmarsson C, Li A, Lim HK, McKeown L, Mitrofan CG, Rao R, Utukuri M, Rowe IA, Mann JP. A Systematic Review of Animal Models of NAFLD Finds High-Fat, High-Fructose Diets Most Closely Resemble Human NAFLD. Hepatology 2021; 74:1884-1901. [PMID: 33973269 DOI: 10.1002/hep.31897] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/29/2021] [Accepted: 05/04/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS Animal models of human disease are a key component of translational hepatology research, yet there is no consensus on which model is optimal for NAFLD. APPROACH AND RESULTS We generated a database of 3,920 rodent models of NAFLD. Study designs were highly heterogeneous, and therefore, few models had been cited more than once. Analysis of genetic models supported the current evidence for the role of adipose dysfunction and suggested a role for innate immunity in the progression of NAFLD. We identified that high-fat, high-fructose diets most closely recapitulate the human phenotype of NAFLD. There was substantial variability in the nomenclature of animal models: a consensus on terminology of specialist diets is needed. More broadly, this analysis demonstrates the variability in preclinical study design, which has wider implications for the reproducibility of in vivo experiments both in the field of hepatology and beyond. CONCLUSIONS This systematic analysis provides a framework for phenotypic assessment of NAFLD models and highlights the need for increased standardization and replication.
Collapse
Affiliation(s)
- Yu Ri Im
- School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Harriet Hunter
- School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Dana de Gracia Hahn
- School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Amedine Duret
- School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Qinrong Cheah
- School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Jiawen Dong
- School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Madison Fairey
- School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | | | - Alice Li
- School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Hong Kai Lim
- School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Lorcán McKeown
- School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | | | - Raunak Rao
- School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Mrudula Utukuri
- School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Ian A Rowe
- Leeds Institute for Medical Research and Leeds Institute for Data Analytics, University of Leeds, Leeds, United Kingdom
| | - Jake P Mann
- Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
8
|
Hunter H, de Gracia Hahn D, Duret A, Im YR, Cheah Q, Dong J, Fairey M, Hjalmarsson C, Li A, Lim HK, McKeown L, Mitrofan CG, Rao R, Utukuri M, Rowe IA, Mann JP. Weight loss, insulin resistance, and study design confound results in a meta-analysis of animal models of fatty liver. eLife 2020; 9:56573. [PMID: 33063664 PMCID: PMC7647398 DOI: 10.7554/elife.56573] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 10/15/2020] [Indexed: 12/30/2022] Open
Abstract
The classical drug development pipeline necessitates studies using animal models of human disease to gauge future efficacy in humans, however there is a low conversion rate from success in animals to humans. Non-alcoholic fatty liver disease (NAFLD) is a complex chronic disease without any established therapies and a major field of animal research. We performed a meta-analysis with meta-regression of 603 interventional rodent studies (10,364 animals) in NAFLD to assess which variables influenced treatment response. Weight loss and alleviation of insulin resistance were consistently associated with improvement in NAFLD. Multiple drug classes that do not affect weight in humans caused weight loss in animals. Other study design variables, such as age of animals and dietary composition, influenced the magnitude of treatment effect. Publication bias may have increased effect estimates by 37-79%. These findings help to explain the challenge of reproducibility and translation within the field of metabolism.
Collapse
Affiliation(s)
- Harriet Hunter
- School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Dana de Gracia Hahn
- School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Amedine Duret
- School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Yu Ri Im
- School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Qinrong Cheah
- School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Jiawen Dong
- School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Madison Fairey
- School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | | | - Alice Li
- School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Hong Kai Lim
- School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Lorcan McKeown
- School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | | | - Raunak Rao
- School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Mrudula Utukuri
- School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Ian A Rowe
- Leeds Institute for Medical Research & Leeds Institute for Data Analytics, University of Leeds, Leeds, United Kingdom
| | - Jake P Mann
- Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|