1
|
Ghosh K, Huang Y, Chen SR, Pan HL. Nerve injury augments Cacna2d1 transcription via CK2-mediated phosphorylation of the histone deacetylase HDAC2 in dorsal root ganglia. J Biol Chem 2024; 300:107848. [PMID: 39357831 PMCID: PMC11555424 DOI: 10.1016/j.jbc.2024.107848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/10/2024] [Accepted: 09/20/2024] [Indexed: 10/04/2024] Open
Abstract
The development of chronic neuropathic pain involves complex synaptic and epigenetic mechanisms. Nerve injury causes sustained upregulation of α2δ-1 (encoded by the Cacna2d1 gene) in the dorsal root ganglion (DRG), contributing to pain hypersensitivity by directly interacting with and augmenting presynaptic NMDA receptor activity in the spinal dorsal horn. Under normal conditions, histone deacetylase 2 (HDAC2) is highly enriched at the Cacna2d1 gene promoter in the DRG, which constitutively suppresses Cacna2d1 transcription. However, nerve injury leads to HDAC2 dissociation from the Cacna2d1 promoter, promoting the enrichment of active histone marks and Cacna2d1 transcription in primary sensory neurons. In this study, we determined the mechanism by which nerve injury diminishes HDAC2 occupancy at the Cacna2d1 promoter in the DRG. Spinal nerve injury in rats increased serine-394 phosphorylation of HDAC2 in the DRG. Coimmunoprecipitation showed that nerve injury enhanced the physical interaction between HDAC2 and casein kinase II (CK2) in the DRG. Furthermore, repeated intrathecal treatment with CX-4945, a potent and specific CK2 inhibitor, markedly reversed nerve injury-induced pain hypersensitivity, HDAC2 phosphorylation, and α2δ-1 expression levels in the DRG. In addition, treatment with CX-4945 largely restored HDAC2 enrichment at the Cacna2d1 promoter and reduced the elevated levels of acetylated H3 and H4 histones, particularly H3K9ac and H4K5ac, at the Cacna2d1 promoter in the injured DRG. These findings suggest that nerve injury increases CK2 activity and CK2-HDAC2 interactions, which enhance HDAC2 phosphorylation in the DRG. This, in turn, diminishes HDAC2 enrichment at the Cacna2d1 promoter, thereby promoting Cacna2d1 transcription.
Collapse
Affiliation(s)
- Krishna Ghosh
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yuying Huang
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Shao-Rui Chen
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Hui-Lin Pan
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
| |
Collapse
|
2
|
Lu Y, Sun J, Wang L, Wang M, Wu Y, Getachew A, Matthews RC, Li H, Peng WG, Zhang J, Lu R, Zhou Y. ELM2-SANT Domain-Containing Scaffolding Protein 1 Regulates Differentiation and Maturation of Cardiomyocytes Derived From Human-Induced Pluripotent Stem Cells. J Am Heart Assoc 2024; 13:e034816. [PMID: 38904247 PMCID: PMC11255699 DOI: 10.1161/jaha.124.034816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/23/2024] [Indexed: 06/22/2024]
Abstract
BACKGROUND ELMSAN1 (ELM2-SANT domain-containing scaffolding protein 1) is a newly identified scaffolding protein of the MiDAC (mitotic deacetylase complex), playing a pivotal role in early embryonic development. Studies on Elmsan1 knockout mice showed that its absence results in embryo lethality and heart malformation. However, the precise function of ELMSAN1 in heart development and formation remains elusive. To study its potential role in cardiac lineage, we employed human-induced pluripotent stem cells (hiPSCs) to model early cardiogenesis and investigated the function of ELMSAN1. METHODS AND RESULTS We generated ELMSAN1-deficient hiPSCs through knockdown and knockout techniques. During cardiac differentiation, ELMSAN1 depletion inhibited pluripotency deactivation, decreased the expression of cardiac-specific markers, and reduced differentiation efficiency. The impaired expression of genes associated with contractile sarcomere structure, calcium handling, and ion channels was also noted in ELMSAN1-deficient cardiomyocytes derived from hiPSCs. Additionally, through a series of structural and functional assessments, we found that ELMSAN1-null hiPSC cardiomyocytes are immature, exhibiting incomplete sarcomere Z-line structure, decreased calcium handling, and impaired electrophysiological properties. Of note, we found that the cardiac-specific role of ELMSAN1 is likely associated with histone H3K27 acetylation level. The transcriptome analysis provided additional insights, indicating maturation reduction with the energy metabolism switch and restored cell proliferation in ELMSAN1 knockout cardiomyocytes. CONCLUSIONS In this study, we address the significance of the direct involvement of ELMSAN1 in the differentiation and maturation of hiPSC cardiomyocytes. We first report the impact of ELMSAN1 on multiple aspects of hiPSC cardiomyocyte generation, including cardiac differentiation, sarcomere formation, calcium handling, electrophysiological maturation, and proliferation.
Collapse
Affiliation(s)
- Yu‐An Lu
- Department of Biomedical Engineering, Heersink School of Medicine, School of EngineeringUniversity of Alabama at BirminghamBirminghamAL
| | - Jiacheng Sun
- Department of Biomedical Engineering, Heersink School of Medicine, School of EngineeringUniversity of Alabama at BirminghamBirminghamAL
| | - Lu Wang
- Department of Biomedical Engineering, Heersink School of Medicine, School of EngineeringUniversity of Alabama at BirminghamBirminghamAL
| | - Meimei Wang
- Department of Biomedical Engineering, Heersink School of Medicine, School of EngineeringUniversity of Alabama at BirminghamBirminghamAL
| | - Yalin Wu
- Department of Biomedical Engineering, Heersink School of Medicine, School of EngineeringUniversity of Alabama at BirminghamBirminghamAL
| | - Anteneh Getachew
- Department of Biomedical Engineering, Heersink School of Medicine, School of EngineeringUniversity of Alabama at BirminghamBirminghamAL
| | - Rachel C. Matthews
- Department of Biomedical Engineering, Heersink School of Medicine, School of EngineeringUniversity of Alabama at BirminghamBirminghamAL
| | - Hui Li
- Department of Biomedical Engineering, Heersink School of Medicine, School of EngineeringUniversity of Alabama at BirminghamBirminghamAL
| | - William Gao Peng
- Department of Biomedical Engineering, Heersink School of Medicine, School of EngineeringUniversity of Alabama at BirminghamBirminghamAL
| | - Jianyi Zhang
- Department of Biomedical Engineering, Heersink School of Medicine, School of EngineeringUniversity of Alabama at BirminghamBirminghamAL
- Department of Medicine, Division of Cardiovascular Disease, Heersink School of MedicineUniversity of Alabama at BirminghamBirminghamAL
| | - Rui Lu
- Department of Medicine, Division of Hematology/Oncology, Heersink School of MedicineUniversity of Alabama at BirminghamBirminghamAL
- O’Neal Comprehensive Cancer CenterUniversity of Alabama at BirminghamBirminghamAL
| | - Yang Zhou
- Department of Biomedical Engineering, Heersink School of Medicine, School of EngineeringUniversity of Alabama at BirminghamBirminghamAL
| |
Collapse
|
3
|
Bao K, Ma Y, Li Y, Shen X, Zhao J, Tian S, Zhang C, Liang C, Zhao Z, Yang Y, Zhang K, Yang N, Meng FL, Hao J, Yang J, Liu T, Yao Z, Ai D, Shi L. A di-acetyl-decorated chromatin signature couples liquid condensation to suppress DNA end synapsis. Mol Cell 2024; 84:1206-1223.e15. [PMID: 38423014 DOI: 10.1016/j.molcel.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/27/2023] [Accepted: 02/02/2024] [Indexed: 03/02/2024]
Abstract
Appropriate DNA end synapsis, regulated by core components of the synaptic complex including KU70-KU80, LIG4, XRCC4, and XLF, is central to non-homologous end joining (NHEJ) repair of chromatinized DNA double-strand breaks (DSBs). However, it remains enigmatic whether chromatin modifications can influence the formation of NHEJ synaptic complex at DNA ends, and if so, how this is achieved. Here, we report that the mitotic deacetylase complex (MiDAC) serves as a key regulator of DNA end synapsis during NHEJ repair in mammalian cells. Mechanistically, MiDAC removes combinatorial acetyl marks on histone H2A (H2AK5acK9ac) around DSB-proximal chromatin, suppressing hyperaccumulation of bromodomain-containing protein BRD4 that would otherwise undergo liquid-liquid phase separation with KU80 and prevent the proper installation of LIG4-XRCC4-XLF onto DSB ends. This study provides mechanistic insight into the control of NHEJ synaptic complex assembly by a specific chromatin signature and highlights the critical role of H2A hypoacetylation in restraining unscheduled compartmentalization of DNA repair machinery.
Collapse
Affiliation(s)
- Kaiwen Bao
- Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Yanhui Ma
- Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Yuan Li
- Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Xilin Shen
- Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Jiao Zhao
- Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Shanshan Tian
- Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Chunyong Zhang
- Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Can Liang
- Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Ziyan Zhao
- Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Ying Yang
- Core Facilities Center, Capital Medical University, Beijing, China
| | - Kai Zhang
- Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Na Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, China
| | - Fei-Long Meng
- State Key Laboratory of Molecular Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Jihui Hao
- Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Jie Yang
- Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Tao Liu
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Zhi Yao
- Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Ding Ai
- Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China.
| | - Lei Shi
- Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
4
|
Fotouhi O, Nizamuddin S, Falk S, Schilling O, Knüchel-Clarke R, Biniossek ML, Timmers HTM. Alternative mRNA Splicing Controls the Functions of the Histone H3K27 Demethylase UTX/KDM6A. Cancers (Basel) 2023; 15:3117. [PMID: 37370727 DOI: 10.3390/cancers15123117] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/01/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
The UTX/KDM6A histone H3K27 demethylase plays an important role in development and is frequently mutated in cancers such as urothelial cancer. Despite many studies on UTX proteins, variations in mRNA splicing have been overlooked. Using Nanopore sequencing, we present a comprehensive analysis of UTX/KDM6A splicing events in human cell lines and in tissue samples from bladder cancer cases and normal epithelia. We found that the central region of UTX mRNAs encoded by exons 12 to 17 undergoes extensive alternative splicing. Up to half of all stable mRNAs (8-48% in bladder tissues and 18-58% in cell lines) are represented by the UTX canonical isoform lacking exon 14 encoding a nuclear localization sequence, and hence exon 14-containing UTX isoforms exclusively localize to the nucleus, unlike the cytonuclear localization of the canonical isoform. Chromatin association was also higher for exon-14-containing isoforms compared to the canonical UTX. Using quantitative mass spectrometry, we found that all UTX isoforms integrated into the MLL3 and MLL4, PR-DUB and MiDAC complexes. Interestingly, one of the novel UTX isoforms, which lacks exons 14 and 16, fails to interact with PR-DUB and MiDAC complex members. In conclusion, UTX mRNAs undergo extensive alternative splicing, which controls the subcellular localization of UTX and its interactions with other chromatin regulatory complexes.
Collapse
Affiliation(s)
- Omid Fotouhi
- Department of Urology, Medical Center-University of Freiburg, 79106 Freiburg, Germany
- German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Sheikh Nizamuddin
- Department of Urology, Medical Center-University of Freiburg, 79106 Freiburg, Germany
- German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Stephanie Falk
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Oliver Schilling
- German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Institute for Surgical Pathology, Faculty of Medicine, Medical Center-University of Freiburg, University of Freiburg, 79106 Freiburg, Germany
| | - Ruth Knüchel-Clarke
- Institute of Pathology, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Martin L Biniossek
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - H T Marc Timmers
- Department of Urology, Medical Center-University of Freiburg, 79106 Freiburg, Germany
- German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| |
Collapse
|
5
|
Lewis M, Terré B, Knobel PA, Cheng T, Lu H, Attolini CSO, Smak J, Coyaud E, Garcia-Cao I, Sharma S, Vineethakumari C, Querol J, Gil-Gómez G, Piergiovanni G, Costanzo V, Peiró S, Raught B, Zhao H, Salvatella X, Roy S, Mahjoub MR, Stracker TH. GEMC1 and MCIDAS interactions with SWI/SNF complexes regulate the multiciliated cell-specific transcriptional program. Cell Death Dis 2023; 14:201. [PMID: 36932059 PMCID: PMC10023806 DOI: 10.1038/s41419-023-05720-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/18/2023]
Abstract
Multiciliated cells (MCCs) project dozens to hundreds of motile cilia from their apical surface to promote the movement of fluids or gametes in the mammalian brain, airway or reproductive organs. Differentiation of MCCs requires the sequential action of the Geminin family transcriptional activators, GEMC1 and MCIDAS, that both interact with E2F4/5-DP1. How these factors activate transcription and the extent to which they play redundant functions remains poorly understood. Here, we demonstrate that the transcriptional targets and proximal proteomes of GEMC1 and MCIDAS are highly similar. However, we identified distinct interactions with SWI/SNF subcomplexes; GEMC1 interacts primarily with the ARID1A containing BAF complex while MCIDAS interacts primarily with BRD9 containing ncBAF complexes. Treatment with a BRD9 inhibitor impaired MCIDAS-mediated activation of several target genes and compromised the MCC differentiation program in multiple cell based models. Our data suggest that the differential engagement of distinct SWI/SNF subcomplexes by GEMC1 and MCIDAS is required for MCC-specific transcriptional regulation and mediated by their distinct C-terminal domains.
Collapse
Affiliation(s)
- Michael Lewis
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, C/ Baldiri Reixac 10, Barcelona, 08028, Spain
| | - Berta Terré
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, C/ Baldiri Reixac 10, Barcelona, 08028, Spain
- MRC Clinical Trials Unit at UCL, London, UK
| | - Philip A Knobel
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, C/ Baldiri Reixac 10, Barcelona, 08028, Spain
- CDR-Life AG, Zurich, 8592, Switzerland
| | - Tao Cheng
- Washington University in St Louis, Departments of Medicine (Nephrology), Cell Biology and Physiology, St. Louis, MO, 20814, USA
| | - Hao Lu
- Institute of Molecular and Cell Biology, Proteos, 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Camille Stephan-Otto Attolini
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, C/ Baldiri Reixac 10, Barcelona, 08028, Spain
| | - Jordann Smak
- National Cancer Institute, Radiation Oncology Branch, Bethesda, MD, 20892, USA
| | - Etienne Coyaud
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, M5G 1L7, Canada
- Univ. Lille, Inserm, CHU Lille, U1192 - Protéomique Réponse Inflammatoire Spectrométrie de Masse - PRISM, F-59000, Lille, France
| | - Isabel Garcia-Cao
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, C/ Baldiri Reixac 10, Barcelona, 08028, Spain
| | - Shalu Sharma
- National Cancer Institute, Radiation Oncology Branch, Bethesda, MD, 20892, USA
| | - Chithran Vineethakumari
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, C/ Baldiri Reixac 10, Barcelona, 08028, Spain
| | - Jessica Querol
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, 08035, Spain
| | - Gabriel Gil-Gómez
- Apoptosis Signalling Group, IMIM (Institut Hospital del Mar d'Investigacions Mediques), Barcelona, 08003, Spain
| | - Gabriele Piergiovanni
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milan, 20139, Italy
- Department of Oncology and Haematology-Oncology, University of Milan, Milan, 20139, Italy
| | - Vincenzo Costanzo
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milan, 20139, Italy
- Department of Oncology and Haematology-Oncology, University of Milan, Milan, 20139, Italy
| | - Sandra Peiró
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, 08035, Spain
| | - Brian Raught
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, M5G 1L7, Canada
| | - Haotian Zhao
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, NY, 11568, USA
| | - Xavier Salvatella
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, C/ Baldiri Reixac 10, Barcelona, 08028, Spain
- ICREA, Passeig Lluís Companys 23, 08010, Barcelona, Spain
| | - Sudipto Roy
- Institute of Molecular and Cell Biology, Proteos, 61 Biopolis Drive, Singapore, 138673, Singapore
- Department of Biological Sciences, National University of Singapore, 117543, Singapore, Singapore
- Department of Pediatrics, National University of Singapore, 119288, Singapore, Singapore
| | - Moe R Mahjoub
- Washington University in St Louis, Departments of Medicine (Nephrology), Cell Biology and Physiology, St. Louis, MO, 20814, USA
| | - Travis H Stracker
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, C/ Baldiri Reixac 10, Barcelona, 08028, Spain.
- National Cancer Institute, Radiation Oncology Branch, Bethesda, MD, 20892, USA.
| |
Collapse
|
6
|
Whole Genome Analysis of Dizygotic Twins With Autism Reveals Prevalent Transposon Insertion Within Neuronal Regulatory Elements: Potential Implications for Disease Etiology and Clinical Assessment. J Autism Dev Disord 2023; 53:1091-1106. [PMID: 35759154 DOI: 10.1007/s10803-022-05636-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2022] [Indexed: 10/17/2022]
Abstract
Transposable elements (TEs) have been implicated in autism spectrum disorder (ASD). However, our understanding of their roles is far from complete. Herein, we explored de novo TE insertions (dnTEIs) and de novo variants (DNVs) across the genomes of dizygotic twins with ASD and their parents. The neuronal regulatory elements had a tendency to harbor dnTEIs that were shared between twins, but ASD-risk genes had dnTEIs that were unique to each twin. The dnTEIs were 4.6-fold enriched in enhancers that are active in embryonic stem cell (ESC)-neurons (p < 0.001), but DNVs were 1.5-fold enriched in active enhancers of astrocytes (p = 0.0051). Our findings suggest that dnTEIs and DNVs play a role in ASD etiology by disrupting enhancers of neurons and astrocytes.
Collapse
|
7
|
Li Y, Meng R, Li S, Gu B, Xu X, Zhang H, Tan X, Shao T, Wang J, Xu D, Wang F. The ZFP541-KCTD19 complex is essential for pachytene progression by activating meiotic genes during mouse spermatogenesis. J Genet Genomics 2022; 49:1029-1041. [PMID: 35341968 DOI: 10.1016/j.jgg.2022.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/11/2022] [Accepted: 03/11/2022] [Indexed: 12/29/2022]
Abstract
Meiosis is essential for fertility in sexually reproducing species and this sophisticated process has been extensively studied. Notwithstanding these efforts, key factors involved in meiosis have not been fully characterized. In this study, we investigate the regulatory roles of zinc finger protein 541 (ZFP541) and its interacting protein potassium channel tetramerization domain containing 19 (KCTD19) in spermatogenesis. ZFP541 is expressed from leptotene to the round spermatid stage, while the expression of KCTD19 is initiated in pachytene. Depletion of Zfp541 or Kctd19 leads to infertility in male mice and delays progression from early to mid/late pachynema. In addition, Zfp541-/- spermatocytes show abnormal programmed DNA double-strand break repair, impaired crossover formation and resolution, and asynapsis of the XY chromosomes. ZFP541 interacts with KCTD19, histone deacetylase 1/2 (HDAC1/2), and deoxynucleotidyl transferase terminal-interacting protein 1 (DNTTIP1). Moreover, ZFP541 binds to and activates the expression of genes involved in meiosis and post-meiosis including Kctd19; in turn, KCTD19 promotes the transcriptional activation activity of ZFP541. Taken together, our studies reveal that the ZFP541/KCTD19 signaling complex, acting as a key transcription regulator, plays an indispensable role in male fertility by regulating pachytene progression.
Collapse
Affiliation(s)
- Yushan Li
- The School of Public Health, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Ranran Meng
- College of Life Sciences, Beijing Normal University, Beijing 100875, China; National Institute of Biological Sciences Beijing, Beijing 102206, China
| | - Shanze Li
- College of Life Sciences, Beijing Normal University, Beijing 100875, China; National Institute of Biological Sciences Beijing, Beijing 102206, China
| | - Bowen Gu
- National Institute of Biological Sciences Beijing, Beijing 102206, China
| | - Xiaotong Xu
- National Institute of Biological Sciences Beijing, Beijing 102206, China
| | - Haihang Zhang
- National Institute of Biological Sciences Beijing, Beijing 102206, China
| | - Xinshui Tan
- National Institute of Biological Sciences Beijing, Beijing 102206, China
| | - Tianyu Shao
- National Institute of Biological Sciences Beijing, Beijing 102206, China
| | - Jiawen Wang
- National Institute of Biological Sciences Beijing, Beijing 102206, China
| | - Dan Xu
- National Institute of Biological Sciences Beijing, Beijing 102206, China
| | - Fengchao Wang
- National Institute of Biological Sciences Beijing, Beijing 102206, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
8
|
Wang X, Rosikiewicz W, Sedkov Y, Mondal B, Martinez T, Kallappagoudar S, Tvardovskiy A, Bajpai R, Xu B, Pruett-Miller SM, Schneider R, Herz HM. The MLL3/4 complexes and MiDAC co-regulate H4K20ac to control a specific gene expression program. Life Sci Alliance 2022; 5:e202201572. [PMID: 35820704 PMCID: PMC9275676 DOI: 10.26508/lsa.202201572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 11/30/2022] Open
Abstract
The mitotic deacetylase complex MiDAC has recently been shown to play a vital physiological role in embryonic development and neurite outgrowth. However, how MiDAC functionally intersects with other chromatin-modifying regulators is poorly understood. Here, we describe a physical interaction between the histone H3K27 demethylase UTX, a complex-specific subunit of the enhancer-associated MLL3/4 complexes, and MiDAC. We demonstrate that UTX bridges the association of the MLL3/4 complexes and MiDAC by interacting with ELMSAN1, a scaffolding subunit of MiDAC. Our data suggest that MiDAC constitutes a negative genome-wide regulator of H4K20ac, an activity which is counteracted by the MLL3/4 complexes. MiDAC and the MLL3/4 complexes co-localize at many genomic regions, which are enriched for H4K20ac and the enhancer marks H3K4me1, H3K4me2, and H3K27ac. We find that MiDAC antagonizes the recruitment of UTX and MLL4 and negatively regulates H4K20ac, and to a lesser extent H3K4me2 and H3K27ac, resulting in transcriptional attenuation of associated genes. In summary, our findings provide a paradigm how the opposing roles of chromatin-modifying components, such as MiDAC and the MLL3/4 complexes, balance the transcriptional output of specific gene expression programs.
Collapse
Affiliation(s)
- Xiaokang Wang
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Institute of Functional Epigenetics (IFE), Helmholtz Zentrum München, Neuherberg, Germany
| | - Wojciech Rosikiewicz
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yurii Sedkov
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Baisakhi Mondal
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Tanner Martinez
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Satish Kallappagoudar
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Andrey Tvardovskiy
- Institute of Functional Epigenetics (IFE), Helmholtz Zentrum München, Neuherberg, Germany
| | - Richa Bajpai
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Beisi Xu
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Shondra M Pruett-Miller
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Robert Schneider
- Institute of Functional Epigenetics (IFE), Helmholtz Zentrum München, Neuherberg, Germany
| | - Hans-Martin Herz
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| |
Collapse
|
9
|
Lee K, Whedon SD, Wang ZA, Cole PA. Distinct biochemical properties of the class I histone deacetylase complexes. Curr Opin Chem Biol 2022; 70:102179. [PMID: 35803024 PMCID: PMC10786639 DOI: 10.1016/j.cbpa.2022.102179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/25/2022] [Accepted: 05/29/2022] [Indexed: 11/22/2022]
Abstract
Classical histone deacetylases (HDACs) are enzymes that can hydrolytically cleave acetyl-Lys in histones and other proteins and serve as established drug targets in some forms of cancer. Class I HDACs 1-3 typically exist in a range of multiprotein complexes inside cells and show distinct biological functions in modulating gene expression. In recent years, it has become possible to purify and analyze the structure and enzymatic properties of several of these HDAC complexes, including CoREST, MiDAC, NuRD, Sin3, SMRT, MIER, and RERE. Here, we summarize what is experimentally established and/or computationally predicted about the structure of these complexes to describe their particular catalytic activities and site-specificities with modified nucleosome substrates.
Collapse
Affiliation(s)
- Kwangwoon Lee
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Samuel D Whedon
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Zhipeng A Wang
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Philip A Cole
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
10
|
Park J, Lee K, Kim K, Yi SJ. The role of histone modifications: from neurodevelopment to neurodiseases. Signal Transduct Target Ther 2022; 7:217. [PMID: 35794091 PMCID: PMC9259618 DOI: 10.1038/s41392-022-01078-9] [Citation(s) in RCA: 103] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/11/2022] [Accepted: 06/21/2022] [Indexed: 12/24/2022] Open
Abstract
Epigenetic regulatory mechanisms, including DNA methylation, histone modification, chromatin remodeling, and microRNA expression, play critical roles in cell differentiation and organ development through spatial and temporal gene regulation. Neurogenesis is a sophisticated and complex process by which neural stem cells differentiate into specialized brain cell types at specific times and regions of the brain. A growing body of evidence suggests that epigenetic mechanisms, such as histone modifications, allow the fine-tuning and coordination of spatiotemporal gene expressions during neurogenesis. Aberrant histone modifications contribute to the development of neurodegenerative and neuropsychiatric diseases. Herein, recent progress in understanding histone modifications in regulating embryonic and adult neurogenesis is comprehensively reviewed. The histone modifications implicated in neurodegenerative and neuropsychiatric diseases are also covered, and future directions in this area are provided.
Collapse
Affiliation(s)
- Jisu Park
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Kyubin Lee
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Kyunghwan Kim
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea.
| | - Sun-Ju Yi
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea.
| |
Collapse
|
11
|
Ding S, Gao Y, Lv D, Tao Y, Liu S, Chen C, Huang Z, Zheng S, Hu Y, Chow LKY, Wei Y, Feng P, Dai W, Wang X, Xia Y. DNTTIP1 promotes nasopharyngeal carcinoma metastasis via recruiting HDAC1 to DUSP2 promoter and activating ERK signaling pathway. EBioMedicine 2022; 81:104100. [PMID: 35689852 PMCID: PMC9189780 DOI: 10.1016/j.ebiom.2022.104100] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 05/13/2022] [Accepted: 05/22/2022] [Indexed: 11/21/2022] Open
Abstract
Background Distant metastasis remains the leading cause of treatment failure in patients with nasopharyngeal carcinoma (NPC), making it critical to identify efficient therapeutic targets for metastatic NPC. Previous studies have demonstrated that deoxynucleotidyltransferase terminal-interacting protein 1 (DNTTIP1) is associated with the development of various types of cancer. However, its role and mechanism in NPC have not been explored. Methods RNA-seq profiling was performed for three pairs of NPC and normal nasopharynx tissues. DNTTIP1 expression in NPC specimens was detected by immunohistochemistry. In vitro and in vivo assays were used to investigate the function of DNTTIP1. The molecular mechanism was determined using RT-qPCR, western blotting, RNA-seq, luciferase reporter assays, ChIP assays, and co-IP assays. Findings DNTTIP1 was found to be significantly upregulated in NPC tissues. Furthermore, DNTTIP1 promoted NPC growth and metastasis in vitro and in vivo. Upregulation of DNTTIP1 in NPC indicated poor clinical outcomes. Mechanistically, DNTTIP1 suppressed DUSP2 gene expression via recruiting HDAC1 to its promoter and maintaining a deacetylated state of histone H3K27. The downregulation of DUSP2 resulted in aberrant activation of the ERK signaling and elevated MMP2 levels, promoting NPC metastasis. Chidamide, an HDAC inhibitor, was shown to suppress NPC metastasis by regulating the DNTTIP1/HDAC1-DUSP2 axis. Interpretation Our findings demonstrate that DNTTIP1 not only regulates NPC metastasis but also independently predicts NPC prognosis. Furthermore, targeting DNTTIP1/HDAC1 by Chidamide may benefit NPC patients with metastasis. Funding This work was supported by the National Natural Science Foundation of China (No. 81872464, 82073243).
Collapse
Affiliation(s)
- Shirong Ding
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China; Department of Radiation Oncology, Sun Yat-sen University Cancer Centre, Guangzhou, China
| | - Ying Gao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Dongming Lv
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yalan Tao
- Department of Radiation Oncology, Sun Yat-sen University Cancer Centre, Guangzhou, China
| | - Songran Liu
- Department of Pathology, Sun Yat-sen University Cancer Centre, Guangzhou, China
| | - Chen Chen
- Department of Radiation Oncology, Sun Yat-sen University Cancer Centre, Guangzhou, China
| | - Zilu Huang
- Department of Radiation Oncology, Sun Yat-sen University Cancer Centre, Guangzhou, China
| | - Shuohan Zheng
- Department of Radiation Oncology, Sun Yat-sen University Cancer Centre, Guangzhou, China
| | - Yujun Hu
- Department of Radiation Oncology, Sun Yat-sen University Cancer Centre, Guangzhou, China
| | - Larry Ka-Yue Chow
- Department of Clinical Oncology, University of Hong Kong, Hong Kong (SAR), China
| | - Yinghong Wei
- Department of Radiation Oncology, Sun Yat-sen University Cancer Centre, Guangzhou, China
| | - Ping Feng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China; Department of Radiation Oncology, Sun Yat-sen University Cancer Centre, Guangzhou, China
| | - Wei Dai
- Department of Clinical Oncology, University of Hong Kong, Hong Kong (SAR), China
| | - Xin Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China; Department of Liver Surgery, Sun Yat-sen University Cancer Centre, Guangzhou, China.
| | - Yunfei Xia
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China; Department of Radiation Oncology, Sun Yat-sen University Cancer Centre, Guangzhou, China.
| |
Collapse
|
12
|
Christensen LM, Hancock WW. Nuclear Coregulatory Complexes in Tregs as Targets to Promote Anticancer Immune Responses. Front Immunol 2022; 13:909816. [PMID: 35795673 PMCID: PMC9251111 DOI: 10.3389/fimmu.2022.909816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/18/2022] [Indexed: 12/17/2022] Open
Abstract
T-regulatory (Treg) cells display considerable heterogeneity in their responses to various cancers. The functional differences among this cell type are heavily influenced by multiprotein nuclear complexes that control their gene expression. Many such complexes act mechanistically by altering epigenetic profiles of genes important to Treg function, including the forkhead P3 (Foxp3) transcription factor. Complexes that form with certain members of the histone/protein deacetylase (HDAC) class of enzymes, like HDACs 1, 2, and 3, along with histone methyltransferase complexes, are important in the induction and stabilization of Foxp3 and Treg identity. The functional behavior of both circulating and intratumoral Tregs greatly impacts the antitumor immune response and can be predictive of patient outcome. Thus, targeting these regulatory complexes within Tregs may have therapeutic potential, especially in personalized immunotherapies.
Collapse
Affiliation(s)
- Lanette M. Christensen
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Wayne W. Hancock
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, United States
- *Correspondence: Wayne W. Hancock,
| |
Collapse
|
13
|
Holzer AK, Suciu I, Karreman C, Goj T, Leist M. Specific Attenuation of Purinergic Signaling during Bortezomib-Induced Peripheral Neuropathy In Vitro. Int J Mol Sci 2022; 23:ijms23073734. [PMID: 35409095 PMCID: PMC8998302 DOI: 10.3390/ijms23073734] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 12/18/2022] Open
Abstract
Human peripheral neuropathies are poorly understood, and the availability of experimental models limits further research. The PeriTox test uses immature dorsal root ganglia (DRG)-like neurons, derived from induced pluripotent stem cells (iPSC), to assess cell death and neurite damage. Here, we explored the suitability of matured peripheral neuron cultures for the detection of sub-cytotoxic endpoints, such as altered responses of pain-related P2X receptors. A two-step differentiation protocol, involving the transient expression of ectopic neurogenin-1 (NGN1) allowed for the generation of homogeneous cultures of sensory neurons. After >38 days of differentiation, they showed a robust response (Ca2+-signaling) to the P2X3 ligand α,β-methylene ATP. The clinical proteasome inhibitor bortezomib abolished the P2X3 signal at ≥5 nM, while 50−200 nM was required in the PeriTox test to identify neurite damage and cell death. A 24 h treatment with low nM concentrations of bortezomib led to moderate increases in resting cell intracellular Ca2+ concentration but signaling through transient receptor potential V1 (TRPV1) receptors or depolarization-triggered Ca2+ influx remained unaffected. We interpreted the specific attenuation of purinergic signaling as a functional cell stress response. A reorganization of tubulin to form dense structures around the cell somata confirmed a mild, non-cytotoxic stress triggered by low concentrations of bortezomib. The proteasome inhibitors carfilzomib, delanzomib, epoxomicin, and MG-132 showed similar stress responses. Thus, the model presented here may be used for the profiling of new proteasome inhibitors in regard to their side effect (neuropathy) potential, or for pharmacological studies on the attenuation of their neurotoxicity. P2X3 signaling proved useful as endpoint to assess potential neurotoxicants in peripheral neurons.
Collapse
Affiliation(s)
- Anna-Katharina Holzer
- In Vitro Toxicology and Biomedicine, Dept Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, 78457 Konstanz, Germany; (A.-K.H.); (I.S.); (C.K.); (T.G.)
| | - Ilinca Suciu
- In Vitro Toxicology and Biomedicine, Dept Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, 78457 Konstanz, Germany; (A.-K.H.); (I.S.); (C.K.); (T.G.)
- Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, 78457 Konstanz, Germany
| | - Christiaan Karreman
- In Vitro Toxicology and Biomedicine, Dept Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, 78457 Konstanz, Germany; (A.-K.H.); (I.S.); (C.K.); (T.G.)
| | - Thomas Goj
- In Vitro Toxicology and Biomedicine, Dept Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, 78457 Konstanz, Germany; (A.-K.H.); (I.S.); (C.K.); (T.G.)
| | - Marcel Leist
- In Vitro Toxicology and Biomedicine, Dept Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, 78457 Konstanz, Germany; (A.-K.H.); (I.S.); (C.K.); (T.G.)
- CAAT-Europe, University of Konstanz, 78457 Konstanz, Germany
- Correspondence: ; Tel.: +49-(0)-7531-88-5037
| |
Collapse
|
14
|
Liu Q, Xiong J, Xu D, Hao N, Zhang Y, Sang Y, Wang Z, Zheng X, Min J, Diao H, Raphael J, Vareki SM, Koropatnick J, Min W. TdIF1-LSD1 Axis Regulates Epithelial-Mesenchymal Transition and Metastasis via Histone Demethylation of E-Cadherin Promoter in Lung Cancer. Int J Mol Sci 2021; 23:250. [PMID: 35008676 PMCID: PMC8745707 DOI: 10.3390/ijms23010250] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/27/2021] [Accepted: 12/23/2021] [Indexed: 12/26/2022] Open
Abstract
We have previously found that TdT-interacting factor 1 (TdIF1) is a potential oncogene expressed in non-small cell lung cancer (NSCLC) and is associated with poor prognosis. However, its exact mechanism is still unclear. The lysine-specific demethylase 1 (LSD1) is a crucial mediator of the epithelial-mesenchymal transition (EMT), an important process triggered during cancer metastasis. Here, we confirm that TdIF1 is highly expressed in NSCLC and related to lymph node metastasis through The Cancer Genome Atlas (TCGA) analysis of clinical samples. Silencing TdIF1 can regulate the expression of EMT-related factors and impair the migration and invasion ability of cancer cells in vitro. An analysis of tumor xenografts in nude mice confirmed that silencing TdIF1 inhibits tumor growth. Furthermore, we determined the interaction between TdIF1 and LSD1 using immunoprecipitation. Chromatin immunoprecipitation (ChIP) revealed that TdIF1 was enriched in the E-cadherin promoter region. The knockdown of TdIF1 repressed the enrichment of LSD1 at the E-cadherin promoter region, thereby regulating the level of promoter histone methylation and modulating E-cadherin transcription activity, ultimately leading to changes in EMT factors and cancer cell migration and invasion ability. The LSD1 inhibitor and TdIF1 knockdown combination showed a synergistic effect in inhibiting the growth, migration, and invasion of NSCLC cells. Taken together, this is the first demonstration that TdIF1 regulates E-cadherin transcription by recruiting LSD1 to the promoter region, thereby promoting EMT and tumor metastasis and highlighting the potential of TdIF1 as a therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Qi Liu
- Institute of Immunotherapy, College of Basic Medicine, The First Affiliated Hospital of Nanchang University, Jiangxi Academy of Medical Sciences, Nanchang 330046, China; (Q.L.); (D.X.); (N.H.); (Y.Z.); (Y.S.); (Z.W.)
- Department of Pathology and Laboratory Medicine, University of Western Ontario, London, ON N6A 5A5, Canada; (X.Z.); (S.M.V.); (J.K.)
| | - Juan Xiong
- Department of Preventive Medicine, School of Medicine, Shenzhen University, Shenzhen 518054, China;
| | - Derong Xu
- Institute of Immunotherapy, College of Basic Medicine, The First Affiliated Hospital of Nanchang University, Jiangxi Academy of Medical Sciences, Nanchang 330046, China; (Q.L.); (D.X.); (N.H.); (Y.Z.); (Y.S.); (Z.W.)
| | - Nan Hao
- Institute of Immunotherapy, College of Basic Medicine, The First Affiliated Hospital of Nanchang University, Jiangxi Academy of Medical Sciences, Nanchang 330046, China; (Q.L.); (D.X.); (N.H.); (Y.Z.); (Y.S.); (Z.W.)
| | - Yujuan Zhang
- Institute of Immunotherapy, College of Basic Medicine, The First Affiliated Hospital of Nanchang University, Jiangxi Academy of Medical Sciences, Nanchang 330046, China; (Q.L.); (D.X.); (N.H.); (Y.Z.); (Y.S.); (Z.W.)
| | - Yi Sang
- Institute of Immunotherapy, College of Basic Medicine, The First Affiliated Hospital of Nanchang University, Jiangxi Academy of Medical Sciences, Nanchang 330046, China; (Q.L.); (D.X.); (N.H.); (Y.Z.); (Y.S.); (Z.W.)
| | - Zhigang Wang
- Institute of Immunotherapy, College of Basic Medicine, The First Affiliated Hospital of Nanchang University, Jiangxi Academy of Medical Sciences, Nanchang 330046, China; (Q.L.); (D.X.); (N.H.); (Y.Z.); (Y.S.); (Z.W.)
| | - Xiufen Zheng
- Department of Pathology and Laboratory Medicine, University of Western Ontario, London, ON N6A 5A5, Canada; (X.Z.); (S.M.V.); (J.K.)
- Department of Surgery, University of Western Ontario, London, ON N6A 5A5, Canada
- Department of Microbiology and Immunology, University of Western Ontario, London, ON N6A 5A5, Canada
- Department of Oncology, University of Western Ontario, London, ON N6A 5A5, Canada;
| | - Jeffrey Min
- London Regional Cancer Program, Matthew Mailing Centre for Translational Transplantation Studies, Lawson Health Research Institute, London, ON N6A 5A5, Canada; (J.M.); (H.D.)
| | - Hong Diao
- London Regional Cancer Program, Matthew Mailing Centre for Translational Transplantation Studies, Lawson Health Research Institute, London, ON N6A 5A5, Canada; (J.M.); (H.D.)
| | - Jacques Raphael
- Department of Oncology, University of Western Ontario, London, ON N6A 5A5, Canada;
- London Regional Cancer Program, Matthew Mailing Centre for Translational Transplantation Studies, Lawson Health Research Institute, London, ON N6A 5A5, Canada; (J.M.); (H.D.)
| | - Saman Maleki Vareki
- Department of Pathology and Laboratory Medicine, University of Western Ontario, London, ON N6A 5A5, Canada; (X.Z.); (S.M.V.); (J.K.)
- Department of Oncology, University of Western Ontario, London, ON N6A 5A5, Canada;
- London Regional Cancer Program, Matthew Mailing Centre for Translational Transplantation Studies, Lawson Health Research Institute, London, ON N6A 5A5, Canada; (J.M.); (H.D.)
| | - James Koropatnick
- Department of Pathology and Laboratory Medicine, University of Western Ontario, London, ON N6A 5A5, Canada; (X.Z.); (S.M.V.); (J.K.)
- Department of Microbiology and Immunology, University of Western Ontario, London, ON N6A 5A5, Canada
- Department of Oncology, University of Western Ontario, London, ON N6A 5A5, Canada;
- London Regional Cancer Program, Matthew Mailing Centre for Translational Transplantation Studies, Lawson Health Research Institute, London, ON N6A 5A5, Canada; (J.M.); (H.D.)
| | - Weiping Min
- Institute of Immunotherapy, College of Basic Medicine, The First Affiliated Hospital of Nanchang University, Jiangxi Academy of Medical Sciences, Nanchang 330046, China; (Q.L.); (D.X.); (N.H.); (Y.Z.); (Y.S.); (Z.W.)
- Department of Pathology and Laboratory Medicine, University of Western Ontario, London, ON N6A 5A5, Canada; (X.Z.); (S.M.V.); (J.K.)
- Department of Surgery, University of Western Ontario, London, ON N6A 5A5, Canada
- Department of Oncology, University of Western Ontario, London, ON N6A 5A5, Canada;
- London Regional Cancer Program, Matthew Mailing Centre for Translational Transplantation Studies, Lawson Health Research Institute, London, ON N6A 5A5, Canada; (J.M.); (H.D.)
| |
Collapse
|
15
|
Iuchi S, Paulo JA. RNAmetasome network for macromolecule biogenesis in human cells. Commun Biol 2021; 4:1399. [PMID: 34912035 PMCID: PMC8674265 DOI: 10.1038/s42003-021-02928-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 11/30/2021] [Indexed: 12/17/2022] Open
Abstract
RNA plays a central role in macromolecule biogenesis for various pathways, such as gene expression, ribosome biogenesis, and chromatin remodeling. However, RNA must be converted from its nascent to functional forms for that role. Here, we describe a large RNA metabolic network (RNAmetasome network) for macromolecule biogenesis in human cells. In HEK293T, the network consists of proteins responsible for gene expression, splicing, ribosome biogenesis, chromatin remodeling, and cell cycle. Reciprocal immunoprecipitations show that MKI67, GNL2, MDN1, and ELMSAN1 are core proteins of the network, and knockdown of either MKI67 or GNL2 affects the state of the other protein, MDN1, and some other network members. Furthermore, GNL2 knockdown retards cell proliferation. Several proteins of the RNAmetasome network are diminished in Hela.cl1, and this diminishment is associated with low expression of MDN1 and elevated MKI67 degradation. These results together suggest that the RNAmetasome network is present in human cells and associated with proliferation, and that MKI67, GNL2, and MDN1 play an important role in organizing the RNAmetasome network. Iuchi and Paulo identify a large metabolic complex for macromolecule biogenesis composed of numerous RNA processing proteins in HEK293T cells, which the authors term the RNAmetasome. The authors identify the complex by mass-spec using ELMSAN1 as bait and utilize reciprocal immunoprecipitation and immunocytochemistry for validation, and find that MKI67, GNL2, and MDN1 have important roles organizing the RNAmetasome network.
Collapse
Affiliation(s)
- Shiro Iuchi
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA, 20115, USA.
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA, 20115, USA
| |
Collapse
|
16
|
Wang X, Rosikiewicz W, Sedkov Y, Martinez T, Hansen BS, Schreiner P, Christensen J, Xu B, Pruett-Miller SM, Helin K, Herz HM. PROSER1 mediates TET2 O-GlcNAcylation to regulate DNA demethylation on UTX-dependent enhancers and CpG islands. Life Sci Alliance 2021; 5:5/1/e202101228. [PMID: 34667079 PMCID: PMC8548262 DOI: 10.26508/lsa.202101228] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/01/2021] [Accepted: 10/04/2021] [Indexed: 01/18/2023] Open
Abstract
PROSER1 promotes the interaction between TET2 and the glycosyltransferase OGT to regulate TET2 O-GlcNAcylation and stability on genomic elements that depend on the activity of the MLL3/4 complexes. DNA methylation at enhancers and CpG islands usually leads to gene repression, which is counteracted by DNA demethylation through the TET protein family. However, how TET enzymes are recruited and regulated at these genomic loci is not fully understood. Here, we identify TET2, the glycosyltransferase OGT and a previously undescribed proline and serine rich protein, PROSER1 as interactors of UTX, a component of the enhancer-associated MLL3/4 complexes. We find that PROSER1 mediates the interaction between OGT and TET2, thus promoting TET2 O-GlcNAcylation and protein stability. In addition, PROSER1, UTX, TET1/2, and OGT colocalize on many genomic elements genome-wide. Loss of PROSER1 results in lower enrichment of UTX, TET1/2, and OGT at enhancers and CpG islands, with a concomitant increase in DNA methylation and transcriptional down-regulation of associated target genes and increased DNA hypermethylation encroachment at H3K4me1-predisposed CpG islands. Furthermore, we provide evidence that PROSER1 acts as a more general regulator of OGT activity by controlling O-GlcNAcylation of multiple other chromatin signaling pathways. Taken together, this study describes for the first time a regulator of TET2 O-GlcNAcylation and its implications in mediating DNA demethylation at UTX-dependent enhancers and CpG islands and supports an important role for PROSER1 in regulating the function of various chromatin-associated proteins via OGT-mediated O-GlcNAcylation.
Collapse
Affiliation(s)
- Xiaokang Wang
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Wojciech Rosikiewicz
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yurii Sedkov
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Tanner Martinez
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Baranda S Hansen
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Patrick Schreiner
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jesper Christensen
- Biotech Research and Innovation Centre and The Novo Nordisk Foundation for Stem Cell Biology, University of Copenhagen, Copenhagen, Denmark
| | - Beisi Xu
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Shondra M Pruett-Miller
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Kristian Helin
- Biotech Research and Innovation Centre and The Novo Nordisk Foundation for Stem Cell Biology, University of Copenhagen, Copenhagen, Denmark.,Cell Biology Program and Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York City, New York, USA
| | - Hans-Martin Herz
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| |
Collapse
|
17
|
Luo Y, Li H. Structure-Based Inhibitor Discovery of Class I Histone Deacetylases (HDACs). Int J Mol Sci 2020; 21:E8828. [PMID: 33266366 PMCID: PMC7700698 DOI: 10.3390/ijms21228828] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/13/2020] [Accepted: 11/16/2020] [Indexed: 12/17/2022] Open
Abstract
Class I histone deacetylases (HDACs) are promising targets for epigenetic therapies for a range of diseases such as cancers, inflammations, infections and neurological diseases. Although six HDAC inhibitors are now licensed for clinical treatments, they are all pan-inhibitors with little or no HDAC isoform selectivity, exhibiting undesirable side effects. A major issue with the currently available HDAC inhibitors is that they have limited specificity and target multiple deacetylases. Except for HDAC8, Class I HDACs (1, 2 and 3) are recruited to large multiprotein complexes to function. Therefore, there are rising needs to develop new, hopefully, therapeutically efficacious HDAC inhibitors with isoform or complex selectivity. Here, upon the introduction of the structures of Class I HDACs and their complexes, we provide an up-to-date overview of the structure-based discovery of Class I HDAC inhibitors, including pan-, isoform-selective and complex-specific inhibitors, aiming to provide an insight into the discovery of additional HDAC inhibitors with greater selectivity, specificity and therapeutic utility.
Collapse
Affiliation(s)
- Yuxiang Luo
- School of Pharmaceutical Sciences, Sun Yat-sen University, No.132 Wai Huan Dong lu, Guangzhou Higher Education Mega Center, Guangzhou 510006, Guangdong, China;
| | - Huilin Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, No.132 Wai Huan Dong lu, Guangzhou Higher Education Mega Center, Guangzhou 510006, Guangdong, China;
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, Guangdong, China
| |
Collapse
|
18
|
Mondal B, Jin H, Kallappagoudar S, Sedkov Y, Martinez T, Sentmanat MF, Poet GJ, Li C, Fan Y, Pruett-Miller SM, Herz HM. The histone deacetylase complex MiDAC regulates a neurodevelopmental gene expression program to control neurite outgrowth. eLife 2020; 9:57519. [PMID: 32297854 PMCID: PMC7192582 DOI: 10.7554/elife.57519] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 04/07/2020] [Indexed: 12/14/2022] Open
Abstract
The mitotic deacetylase complex (MiDAC) is a recently identified histone deacetylase (HDAC) complex. While other HDAC complexes have been implicated in neurogenesis, the physiological role of MiDAC remains unknown. Here, we show that MiDAC constitutes an important regulator of neural differentiation. We demonstrate that MiDAC functions as a modulator of a neurodevelopmental gene expression program and binds to important regulators of neurite outgrowth. MiDAC upregulates gene expression of pro-neural genes such as those encoding the secreted ligands SLIT3 and NETRIN1 (NTN1) by a mechanism suggestive of H4K20ac removal on promoters and enhancers. Conversely, MiDAC inhibits gene expression by reducing H3K27ac on promoter-proximal and -distal elements of negative regulators of neurogenesis. Furthermore, loss of MiDAC results in neurite outgrowth defects that can be rescued by supplementation with SLIT3 and/or NTN1. These findings indicate a crucial role for MiDAC in regulating the ligands of the SLIT3 and NTN1 signaling axes to ensure the proper integrity of neurite development.
Collapse
Affiliation(s)
- Baisakhi Mondal
- Department of Cell & Molecular Biology, St. Jude Children's Research Hospital, Memphis, United States
| | - Hongjian Jin
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, United States
| | - Satish Kallappagoudar
- Department of Cell & Molecular Biology, St. Jude Children's Research Hospital, Memphis, United States
| | - Yurii Sedkov
- Department of Cell & Molecular Biology, St. Jude Children's Research Hospital, Memphis, United States
| | - Tanner Martinez
- Department of Cell & Molecular Biology, St. Jude Children's Research Hospital, Memphis, United States
| | - Monica F Sentmanat
- Genome Engineering & iPS Center, Department of Genetics, Washington University, St. Louis, United States
| | - Greg J Poet
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, United States
| | - Chunliang Li
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, United States
| | - Yiping Fan
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, United States
| | - Shondra M Pruett-Miller
- Department of Cell & Molecular Biology, St. Jude Children's Research Hospital, Memphis, United States
| | - Hans-Martin Herz
- Department of Cell & Molecular Biology, St. Jude Children's Research Hospital, Memphis, United States
| |
Collapse
|