1
|
Wang F, Liu T, Liao L, Chai Y, Qi J, Gao F, Liang M, Gao GF, Wu Y. Molecular insight into the neutralization mechanism of human-origin monoclonal antibody AH100 against Hantaan virus. J Virol 2024; 98:e0088324. [PMID: 39078157 PMCID: PMC11334459 DOI: 10.1128/jvi.00883-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 06/18/2024] [Indexed: 07/31/2024] Open
Abstract
Both Old World and New World hantaviruses are transmitted through rodents and can lead to hemorrhagic fever with renal syndrome or hantavirus cardiopulmonary syndrome in humans without the availability of specific therapeutics. The square-shaped surface spikes of hantaviruses consist of four Gn-Gc heterodimers that are pivotal for viral entry into host cells and serve as targets for the immune system. Previously, a human-derived neutralizing monoclonal antibody, AH100, demonstrated specific neutralization against the Old World hantavirus, Hantaan virus. However, the precise mode binding of this neutralizing monoclonal antibody remains unclear. In the present study, we determined the structure of the Hantaan virus Gn-AH100 antigen-binding fragment complex and identified its epitope. Crystallography revealed that AH100 targeted the epitopes on domain A and b-ribbon and E3-like domain. Epitope mapping onto a model of the higher order (Gn-Gc)4 spike revealed its localization between neighboring Gn protomers, distinguishing this epitope as a unique site compared to the previously reported monoclonal antibodies. This study provides crucial insights into the structural basis of hantavirus neutralizing antibody epitopes, thereby facilitating the development of therapeutic antibodies.IMPORTANCEHantaan virus (HTNV) poses a significant threat to humans by causing hemorrhagic fever with renal syndrome with high mortality rates. In the absence of FDA-approved drugs or vaccines, it is urgent to develop specific therapeutics. Here, we elucidated the epitope of a human-derived neutralizing antibody, AH100, by determining the HTNV glycoprotein Gn-AH100 antigen-binding fragment (Fab) complex structure. Our findings revealed that the epitopes situated on the domain A and b-ribbon and E3-like domain of the HTNV Gn head. By modeling the complex structure in the viral lattice, we propose that AH100 neutralizes the virus by impeding conformational changes of Gn protomer, which is crucial for viral entry. Additionally, sequence analysis of all reported natural isolates indicated the absence of mutations in epitope residues, suggesting the potential neutralization ability of AH100 in diverse isolates. Therefore, our results provide novel insights into the epitope and the molecular basis of AH100 neutralization.
Collapse
Affiliation(s)
- Feiran Wang
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Tiezhu Liu
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
| | - Liying Liao
- Department of Pathogen Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yan Chai
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Jianxun Qi
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Feng Gao
- Laboratory of Protein Engineering and Vaccines, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences (CAS), Tianjin, China
| | - Mifang Liang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
| | - George Fu Gao
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Yan Wu
- Department of Pathogen Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| |
Collapse
|
2
|
Meola A, Guardado-Calvo P. Production and Purification of Hantavirus Glycoproteins in Drosophila melanogaster S2 Cells. Methods Mol Biol 2024; 2762:3-16. [PMID: 38315356 DOI: 10.1007/978-1-0716-3666-4_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Hantaviruses, are rodent-borne viruses found worldwide that are transmitted to humans through inhalation of contaminated excreta. They can cause a renal or a pulmonary syndrome, depending on the virus, and no effective treatment is currently available for either of these diseases. Hantaviral particles are covered by a protein lattice composed of two glycoproteins (Gn and Gc) that mediate adsorption to target cells and fusion with endosomal membranes, making them prime targets for neutralizing antibodies. Here we present the methodology to produce soluble recombinant glycoproteins in different conformations, either alone or as a stabilized Gn/Gc complex, using stably transfected Drosophila S2 cells.
Collapse
Affiliation(s)
- Annalisa Meola
- G5 Structural Biology of Infectious Diseases, Institut Pasteur, Université Paris Cité, Paris, France
| | - Pablo Guardado-Calvo
- G5 Structural Biology of Infectious Diseases, Institut Pasteur, Université Paris Cité, Paris, France.
| |
Collapse
|
3
|
Fu D, Wu H, Wang Z, Huang S, Zheng Z. Effects of microplastics/nanoplastics on Vallisneria natans roots and sediment: Size effect, enzymology, and microbial communities. CHEMOSPHERE 2023; 341:140052. [PMID: 37660790 DOI: 10.1016/j.chemosphere.2023.140052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/15/2023] [Accepted: 09/01/2023] [Indexed: 09/05/2023]
Abstract
Microplastics/nanoplastics (MNPs) pollution in different environmental media and its adverse effects on organisms have received increasing attention from researchers. This paper compares the effects of natural concentrations of three different sizes (20 nm, 200 nm, and 2 μm) of MNPs on Vallisneria natans and sediments. MNPs with smaller sizes adhere more readily to V. natans roots, further promoting root elongation. In addition, the larger the particle size of MNPs, the higher the reactive oxygen species level in the roots, and the malondialdehyde level increased accordingly. In the sediment, 20 nm, and 200 nm MNPs increased the activity of related enzymes, including acid phosphatase, urease, and nitrate reductase. In addition, the dehydrogenase content in the treated sediments increased, and the content changes were positively correlated with the size of MNPs. Changes in microorganisms were only observed on the root surface. The addition of MNPs reduced the abundance of Proteobacteria and increased the abundance of Chloroflexi. In addition, at the class level of species composition on the root surface, the abundance of Gammaproteobacteria under the 20 nm, 200 nm, and 2 μm MNP treatments decreased by 21.19%, 16.14%, and 17.03%, respectively, compared with the control group, while the abundance of Anaerolineae increased by 44.63%, 26.31%, and 62.52%, respectively. These findings enhance the understanding of the size effects of MNPs on the roots of submerged plants and sediment.
Collapse
Affiliation(s)
- Danliang Fu
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, PR China
| | - Hanqi Wu
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, PR China
| | - Zhikai Wang
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, PR China
| | - Suzhen Huang
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, PR China.
| | - Zheng Zheng
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, PR China.
| |
Collapse
|
4
|
Plyusnin A, Kedari A, Rissanen I, Iheozor-Ejiofor RP, Lundkvist Å, Vapalahti O, Levanov L. Validation of an antigenic site targeted by monoclonal antibodies against Puumala virus. J Gen Virol 2023; 104. [PMID: 37801017 DOI: 10.1099/jgv.0.001901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023] Open
Abstract
Identification of B-cell epitopes facilitates the development of vaccines, therapeutic antibodies and diagnostic tools. Previously, the binding site of the bank vole monoclonal antibody (mAb) 4G2 against Puumala virus (PUUV, an orthohantavirus in the Hantaviridae family of the Bunyavirales order) was predicted using a combination of methods, including pepscan, phage-display, and site-directed mutagenesis of vesicular stomatitis virus (VSV) particles pseudotyped with Gn and Gc glycoproteins from PUUV. These techniques led to the identification of the neutralization escape mutation F915A. To our surprise, a recent crystal structure of PUUV Gc in complex with Fab 4G2 revealed that residue F915 is distal from epitope of mAb 4G2. To clarify this issue and explore potential explanations for the inconsistency, we designed a mutagenesis experiment to probe the 4G2 epitope, with three PUUV pseudoviruses carrying amino acid changes E725A, S944F, and S946F, located within the structure-based 4G2 epitope on the Gc. These amino acid changes were able to convey neutralization escape from 4G2, and S944F and S946F also conveyed escape from neutralization by human mAb 1C9. Furthermore, our mapping of all the known neutralization evasion sites from hantaviral Gcs onto PUUV Gc revealed that over 60 % of these sites reside within or close to the epitope of mAb 4G2, indicating that this region may represent a crucial area targeted by neutralizing antibodies against PUUV, and to a lesser extent, other hantaviruses. The identification of this site of vulnerability could guide the creation of subunit vaccines against PUUV and other hantaviruses in the future.
Collapse
Affiliation(s)
- Alexander Plyusnin
- Department of Virology, Medicum, University of Helsinki, Helsinki, Finland
| | - Ashwini Kedari
- Institute of Biotechnology, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland
| | - Ilona Rissanen
- Institute of Biotechnology, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland
| | | | - Åke Lundkvist
- Department of Medical Biochemistry and Microbiology, Microbiology-Immunology, Uppsala University, Uppsala, Sweden
| | - Olli Vapalahti
- Department of Virology, Medicum, University of Helsinki, Helsinki, Finland
- Department of Virology and Immunology, HUSLAB, Helsinki University Hospital, Helsinki, Finland
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| | - Lev Levanov
- Department of Virology, Medicum, University of Helsinki, Helsinki, Finland
| |
Collapse
|
5
|
Stass R, Engdahl TB, Chapman NS, Wolters RM, Handal LS, Diaz SM, Crowe JE, Bowden TA. Mechanistic basis for potent neutralization of Sin Nombre hantavirus by a human monoclonal antibody. Nat Microbiol 2023:10.1038/s41564-023-01413-y. [PMID: 37322112 DOI: 10.1038/s41564-023-01413-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 05/17/2023] [Indexed: 06/17/2023]
Abstract
Rodent-borne hantaviruses are prevalent worldwide and upon spillover to human populations, cause severe disease for which no specific treatment is available. A potent antibody response is key for recovery from hantavirus infection. Here we study a highly neutralizing human monoclonal antibody, termed SNV-42, which was derived from a memory B cell isolated from an individual with previous Sin Nombre virus (SNV) infection. Crystallographic analysis demonstrates that SNV-42 targets the Gn subcomponent of the tetrameric (Gn-Gc)4 glycoprotein assembly that is relevant for viral entry. Integration of our 1.8 Å structure with the (Gn-Gc)4 ultrastructure arrangement indicates that SNV-42 targets the membrane-distal region of the virus envelope. Comparison of the SNV-42 paratope encoding variable genes with inferred germline gene segments reveals high sequence conservation, suggesting that germline-encoded antibodies inhibit SNV. Furthermore, mechanistic assays reveal that SNV-42 interferes with both receptor recognition and fusion during host-cell entry. This work provides a molecular-level blueprint for understanding the human neutralizing antibody response to hantavirus infection.
Collapse
Affiliation(s)
- Robert Stass
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Taylor B Engdahl
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Nathaniel S Chapman
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Rachael M Wolters
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Laura S Handal
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Summer M Diaz
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - James E Crowe
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Thomas A Bowden
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK.
| |
Collapse
|
6
|
Mittler E, Serris A, Esterman ES, Florez C, Polanco LC, O’Brien CM, Slough MM, Tynell J, Gröning R, Sun Y, Abelson DM, Wec AZ, Haslwanter D, Keller M, Ye C, Bakken RR, Jangra RK, Dye JM, Ahlm C, Rappazzo CG, Ulrich RG, Zeitlin L, Geoghegan JC, Bradfute SB, Sidoli S, Forsell MN, Strandin T, Rey FA, Herbert AS, Walker LM, Chandran K, Guardado-Calvo P. Structural and mechanistic basis of neutralization by a pan-hantavirus protective antibody. Sci Transl Med 2023; 15:eadg1855. [PMID: 37315110 PMCID: PMC11721787 DOI: 10.1126/scitranslmed.adg1855] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 05/18/2023] [Indexed: 06/16/2023]
Abstract
Emerging rodent-borne hantaviruses cause severe diseases in humans with no approved vaccines or therapeutics. We recently isolated a monoclonal broadly neutralizing antibody (nAb) from a Puumala virus-experienced human donor. Here, we report its structure bound to its target, the Gn/Gc glycoprotein heterodimer comprising the viral fusion complex. The structure explains the broad activity of the nAb: It recognizes conserved Gc fusion loop sequences and the main chain of variable Gn sequences, thereby straddling the Gn/Gc heterodimer and locking it in its prefusion conformation. We show that the nAb's accelerated dissociation from the divergent Andes virus Gn/Gc at endosomal acidic pH limits its potency against this highly lethal virus and correct this liability by engineering an optimized variant that sets a benchmark as a candidate pan-hantavirus therapeutic.
Collapse
Affiliation(s)
- Eva Mittler
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Alexandra Serris
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Structural Virology Unit, F-75015 Paris, France
| | | | - Catalina Florez
- U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702, USA
- The Geneva Foundation, Tacoma, WA 98402, USA
| | - Laura C. Polanco
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Cecilia M. O’Brien
- U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702, USA
- The Geneva Foundation, Tacoma, WA 98402, USA
| | - Megan M. Slough
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Janne Tynell
- Department of Clinical Microbiology, Umeå University, 90187 Umeå, Sweden
- Zoonosis Unit, Department of Virology, Medical Faculty, University of Helsinki, 00290 Helsinki, Finland
| | - Remigius Gröning
- Department of Clinical Microbiology, Umeå University, 90187 Umeå, Sweden
| | - Yan Sun
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | - Denise Haslwanter
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Markus Keller
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany
| | - Chunyan Ye
- Center for Global Health, Department of Internal Medicine, University of New Mexico Health Science Center, Albuquerque, NM 87131, USA
| | - Russel R. Bakken
- U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702, USA
| | - Rohit K. Jangra
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - John M. Dye
- U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702, USA
| | - Clas Ahlm
- Department of Clinical Microbiology, Umeå University, 90187 Umeå, Sweden
| | | | - Rainer G. Ulrich
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany
- Partner site: Hamburg-Lübeck-Borstel-Riems, German Centre for Infection Research (DZIF), 17493 Greifswald-Insel Riems, Germany
| | - Larry Zeitlin
- Mapp Biopharmaceutical Inc., San Diego, CA 92121, USA
| | | | - Steven B. Bradfute
- Center for Global Health, Department of Internal Medicine, University of New Mexico Health Science Center, Albuquerque, NM 87131, USA
| | - Simone Sidoli
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | - Tomas Strandin
- Zoonosis Unit, Department of Virology, Medical Faculty, University of Helsinki, 00290 Helsinki, Finland
| | - Felix A. Rey
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Structural Virology Unit, F-75015 Paris, France
| | - Andrew S. Herbert
- U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702, USA
| | | | - Kartik Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Pablo Guardado-Calvo
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Structural Virology Unit, F-75015 Paris, France
| |
Collapse
|
7
|
Engdahl TB, Binshtein E, Brocato RL, Kuzmina NA, Principe LM, Kwilas SA, Kim RK, Chapman NS, Porter MS, Guardado-Calvo P, Rey FA, Handal LS, Diaz SM, Zagol-Ikapitte IA, Tran MH, McDonald WH, Meiler J, Reidy JX, Trivette A, Bukreyev A, Hooper JW, Crowe JE. Antigenic mapping and functional characterization of human New World hantavirus neutralizing antibodies. eLife 2023; 12:e81743. [PMID: 36971354 PMCID: PMC10115451 DOI: 10.7554/elife.81743] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 03/27/2023] [Indexed: 03/29/2023] Open
Abstract
Hantaviruses are high-priority emerging pathogens carried by rodents and transmitted to humans by aerosolized excreta or, in rare cases, person-to-person contact. While infections in humans are relatively rare, mortality rates range from 1 to 40% depending on the hantavirus species. There are currently no FDA-approved vaccines or therapeutics for hantaviruses, and the only treatment for infection is supportive care for respiratory or kidney failure. Additionally, the human humoral immune response to hantavirus infection is incompletely understood, especially the location of major antigenic sites on the viral glycoproteins and conserved neutralizing epitopes. Here, we report antigenic mapping and functional characterization for four neutralizing hantavirus antibodies. The broadly neutralizing antibody SNV-53 targets an interface between Gn/Gc, neutralizes through fusion inhibition and cross-protects against the Old World hantavirus species Hantaan virus when administered pre- or post-exposure. Another broad antibody, SNV-24, also neutralizes through fusion inhibition but targets domain I of Gc and demonstrates weak neutralizing activity to authentic hantaviruses. ANDV-specific, neutralizing antibodies (ANDV-5 and ANDV-34) neutralize through attachment blocking and protect against hantavirus cardiopulmonary syndrome (HCPS) in animals but target two different antigenic faces on the head domain of Gn. Determining the antigenic sites for neutralizing antibodies will contribute to further therapeutic development for hantavirus-related diseases and inform the design of new broadly protective hantavirus vaccines.
Collapse
Affiliation(s)
- Taylor B Engdahl
- Department of Pathology, Microbiology and Immunology, Vanderbilt UniversityNashvilleUnited States
| | - Elad Binshtein
- Vanderbilt Vaccine Center, Vanderbilt University Medical CenterNashvilleUnited States
| | - Rebecca L Brocato
- Virology Division, United States Army Medical Research Institute of Infectious DiseasesFt DetrickUnited States
| | - Natalia A Kuzmina
- Department of Pathology, The University of Texas Medical Branch at GalvestonGalvestonUnited States
- Galveston National LaboratoryGalvestonUnited States
| | - Lucia M Principe
- Virology Division, United States Army Medical Research Institute of Infectious DiseasesFt DetrickUnited States
| | - Steven A Kwilas
- Virology Division, United States Army Medical Research Institute of Infectious DiseasesFt DetrickUnited States
| | - Robert K Kim
- Virology Division, United States Army Medical Research Institute of Infectious DiseasesFt DetrickUnited States
| | - Nathaniel S Chapman
- Department of Pathology, Microbiology and Immunology, Vanderbilt UniversityNashvilleUnited States
| | - Monique S Porter
- Department of Pathology, Microbiology and Immunology, Vanderbilt UniversityNashvilleUnited States
| | | | - Félix A Rey
- Institut Pasteur, Université Paris CitéParisFrance
| | - Laura S Handal
- Vanderbilt Vaccine Center, Vanderbilt University Medical CenterNashvilleUnited States
| | - Summer M Diaz
- Vanderbilt Vaccine Center, Vanderbilt University Medical CenterNashvilleUnited States
| | - Irene A Zagol-Ikapitte
- Department of Biochemistry and Mass Spectrometry Research Center, Vanderbilt UniversityNashvilleUnited States
| | - Minh H Tran
- Department of Biochemistry and Mass Spectrometry Research Center, Vanderbilt UniversityNashvilleUnited States
| | - W Hayes McDonald
- Department of Biochemistry and Mass Spectrometry Research Center, Vanderbilt UniversityNashvilleUnited States
| | - Jens Meiler
- Department of Chemistry, Vanderbilt UniversityNashvilleUnited States
| | - Joseph X Reidy
- Vanderbilt Vaccine Center, Vanderbilt University Medical CenterNashvilleUnited States
| | - Andrew Trivette
- Vanderbilt Vaccine Center, Vanderbilt University Medical CenterNashvilleUnited States
| | - Alexander Bukreyev
- Department of Pathology, The University of Texas Medical Branch at GalvestonGalvestonUnited States
- Galveston National LaboratoryGalvestonUnited States
- Department of Microbiology and Immunology, University of Texas Medical BranchGalvestonUnited States
| | - Jay W Hooper
- Virology Division, United States Army Medical Research Institute of Infectious DiseasesFt DetrickUnited States
| | - James E Crowe
- Department of Pathology, Microbiology and Immunology, Vanderbilt UniversityNashvilleUnited States
- Vanderbilt Vaccine Center, Vanderbilt University Medical CenterNashvilleUnited States
- Department of Pediatrics, Vanderbilt University Medical CenterNashvilleUnited States
| |
Collapse
|
8
|
Hellert J, Aebischer A, Haouz A, Guardado-Calvo P, Reiche S, Beer M, Rey FA. Structure, function, and evolution of the Orthobunyavirus membrane fusion glycoprotein. Cell Rep 2023; 42:112142. [PMID: 36827185 DOI: 10.1016/j.celrep.2023.112142] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/29/2022] [Accepted: 02/07/2023] [Indexed: 02/24/2023] Open
Abstract
La Crosse virus, responsible for pediatric encephalitis in the United States, and Schmallenberg virus, a highly teratogenic veterinary virus in Europe, belong to the large Orthobunyavirus genus of zoonotic arthropod-borne pathogens distributed worldwide. Viruses in this under-studied genus cause CNS infections or fever with debilitating arthralgia/myalgia syndromes, with no effective treatment. The main surface antigen, glycoprotein Gc (∼1,000 residues), has a variable N-terminal half (GcS) targeted by the patients' antibody response and a conserved C-terminal moiety (GcF) responsible for membrane fusion during cell entry. Here, we report the X-ray structure of post-fusion La Crosse and Schmallenberg virus GcF, revealing the molecular determinants for hairpin formation and trimerization required to drive membrane fusion. We further experimentally confirm the role of residues in the fusion loops and in a vestigial endoplasmic reticulum (ER) translocation sequence at the GcS-GcF junction. The resulting knowledge provides essential molecular underpinnings for future development of potential therapeutic treatments and vaccines.
Collapse
Affiliation(s)
- Jan Hellert
- Structural Virology Unit, Institut Pasteur - Université Paris-Cité, CNRS UMR 3569, 25-28 rue du Dr. Roux, 75015 Paris, France; Centre for Structural Systems Biology (CSSB), Leibniz-Institut für Virologie (LIV), Notkestraße 85, 22607 Hamburg, Germany
| | - Andrea Aebischer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald, Germany; Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald, Germany
| | - Ahmed Haouz
- Crystallography Platform C2RT, Institut Pasteur, CNRS UMR 3528, 25-28 rue du Dr. Roux, 75015 Paris, France
| | - Pablo Guardado-Calvo
- Structural Virology Unit, Institut Pasteur - Université Paris-Cité, CNRS UMR 3569, 25-28 rue du Dr. Roux, 75015 Paris, France
| | - Sven Reiche
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald, Germany.
| | - Félix A Rey
- Structural Virology Unit, Institut Pasteur - Université Paris-Cité, CNRS UMR 3569, 25-28 rue du Dr. Roux, 75015 Paris, France.
| |
Collapse
|
9
|
Mittler E, Wec AZ, Tynell J, Guardado-Calvo P, Wigren-Byström J, Polanco LC, O’Brien CM, Slough MM, Abelson DM, Serris A, Sakharkar M, Pehau-Arnaudet G, Bakken RR, Geoghegan JC, Jangra RK, Keller M, Zeitlin L, Vapalahti O, Ulrich RG, Bornholdt ZA, Ahlm C, Rey FA, Dye JM, Bradfute SB, Strandin T, Herbert AS, Forsell MN, Walker LM, Chandran K. Human antibody recognizing a quaternary epitope in the Puumala virus glycoprotein provides broad protection against orthohantaviruses. Sci Transl Med 2022; 14:eabl5399. [PMID: 35294259 PMCID: PMC9805701 DOI: 10.1126/scitranslmed.abl5399] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The rodent-borne hantavirus Puumala virus (PUUV) and related agents cause hemorrhagic fever with renal syndrome (HFRS) in humans. Other hantaviruses, including Andes virus (ANDV) and Sin Nombre virus, cause a distinct zoonotic disease, hantavirus cardiopulmonary syndrome (HCPS). Although these infections are severe and have substantial case fatality rates, no FDA-approved hantavirus countermeasures are available. Recent work suggests that monoclonal antibodies may have therapeutic utility. We describe here the isolation of human neutralizing antibodies (nAbs) against tetrameric Gn/Gc glycoprotein spikes from PUUV-experienced donors. We define a dominant class of nAbs recognizing the "capping loop" of Gn that masks the hydrophobic fusion loops in Gc. A subset of nAbs in this class, including ADI-42898, bound Gn/Gc complexes but not Gn alone, strongly suggesting that they recognize a quaternary epitope encompassing both Gn and Gc. ADI-42898 blocked the cell entry of seven HCPS- and HFRS-associated hantaviruses, and single doses of this nAb could protect Syrian hamsters and bank voles challenged with the highly virulent HCPS-causing ANDV and HFRS-causing PUUV, respectively. ADI-42898 is a promising candidate for clinical development as a countermeasure for both HCPS and HFRS, and its mode of Gn/Gc recognition informs the development of broadly protective hantavirus vaccines.
Collapse
Affiliation(s)
- Eva Mittler
- Department of Microbiology and Immunology, Albert Einstein College of Medicine; Bronx, NY 10461, USA
| | | | - Janne Tynell
- Department of Clinical Microbiology, Umeå University; Umeå, Sweden.,Zoonosis Unit, Department of Virology, University of Helsinki; Helsinki, Finland
| | - Pablo Guardado-Calvo
- Structural Virology Unit, Department of Virology, Institut Pasteur; Paris 75724, France
| | | | - Laura C. Polanco
- Department of Microbiology and Immunology, Albert Einstein College of Medicine; Bronx, NY 10461, USA
| | - Cecilia M. O’Brien
- U.S. Army Medical Research Institute of Infectious Diseases; Fort Detrick, MD 21702, USA.,The Geneva Foundation; Tacoma, WA 98402, USA
| | - Megan M. Slough
- Department of Microbiology and Immunology, Albert Einstein College of Medicine; Bronx, NY 10461, USA
| | | | - Alexandra Serris
- Structural Virology Unit, Department of Virology, Institut Pasteur; Paris 75724, France
| | | | - Gerard Pehau-Arnaudet
- Structural Virology Unit, Department of Virology, Institut Pasteur; Paris 75724, France
| | - Russell R. Bakken
- U.S. Army Medical Research Institute of Infectious Diseases; Fort Detrick, MD 21702, USA
| | | | - Rohit K. Jangra
- Department of Microbiology and Immunology, Albert Einstein College of Medicine; Bronx, NY 10461, USA
| | - Markus Keller
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health; 17493 Greifswald-Insel Riems, Germany
| | - Larry Zeitlin
- Mapp Biopharmaceutical, Inc.; San Diego, CA 92121, USA
| | - Olli Vapalahti
- Zoonosis Unit, Department of Virology, University of Helsinki; Helsinki, Finland.,Veterinary Biosciences, Veterinary Faculty, University of Helsinki; Helsinki, Finland
| | - Rainer G. Ulrich
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health; 17493 Greifswald-Insel Riems, Germany.,Deutsches Zentrum für Infektionsforschung, Partner site Hamburg-Lübeck-Borstel-Riems; Greifswald-Insel Riems, Germany
| | | | - Clas Ahlm
- Department of Clinical Microbiology, Umeå University; Umeå, Sweden
| | - Felix A. Rey
- Structural Virology Unit, Department of Virology, Institut Pasteur; Paris 75724, France
| | - John M. Dye
- U.S. Army Medical Research Institute of Infectious Diseases; Fort Detrick, MD 21702, USA
| | - Steven B. Bradfute
- University of New Mexico Health Science Center, Center for Global Health, Department of Internal Medicine; Albuquerque, NM 87131, USA
| | - Tomas Strandin
- Zoonosis Unit, Department of Virology, University of Helsinki; Helsinki, Finland.,Correspondence: (T.S.), (A.S.H.), (M.N.E.F.), (L.M.W.), (K.C.)
| | - Andrew S. Herbert
- U.S. Army Medical Research Institute of Infectious Diseases; Fort Detrick, MD 21702, USA.,The Geneva Foundation; Tacoma, WA 98402, USA.,Correspondence: (T.S.), (A.S.H.), (M.N.E.F.), (L.M.W.), (K.C.)
| | - Mattias N.E. Forsell
- Department of Clinical Microbiology, Umeå University; Umeå, Sweden.,Correspondence: (T.S.), (A.S.H.), (M.N.E.F.), (L.M.W.), (K.C.)
| | - Laura M. Walker
- Adimab, LLC; Lebanon, NH 03766, USA.,Adagio Therapeutics, Inc.; Waltham, MA 02451, USA.,Correspondence: (T.S.), (A.S.H.), (M.N.E.F.), (L.M.W.), (K.C.)
| | - Kartik Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine; Bronx, NY 10461, USA.,Correspondence: (T.S.), (A.S.H.), (M.N.E.F.), (L.M.W.), (K.C.)
| |
Collapse
|
10
|
Mishra AK, Hellert J, Freitas N, Guardado-Calvo P, Haouz A, Fels JM, Maurer DP, Abelson DM, Bornholdt ZA, Walker LM, Chandran K, Cosset FL, McLellan JS, Rey FA. Structural basis of synergistic neutralization of Crimean-Congo hemorrhagic fever virus by human antibodies. Science 2022; 375:104-109. [PMID: 34793197 PMCID: PMC9771711 DOI: 10.1126/science.abl6502] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Crimean-Congo hemorrhagic fever virus (CCHFV) is the most widespread tick-borne zoonotic virus, with a 30% case fatality rate in humans. Structural information is lacking in regard to the CCHFV membrane fusion glycoprotein Gc—the main target of the host neutralizing antibody response—as well as antibody–mediated neutralization mechanisms. We describe the structure of prefusion Gc bound to the antigen-binding fragments (Fabs) of two neutralizing antibodies that display synergy when combined, as well as the structure of trimeric, postfusion Gc. The structures show the two Fabs acting in concert to block membrane fusion, with one targeting the fusion loops and the other blocking Gc trimer formation. The structures also revealed the neutralization mechanism of previously reported antibodies against CCHFV, providing the molecular underpinnings essential for developing CCHFV–specific medical countermeasures for epidemic preparedness.
Collapse
Affiliation(s)
- Akaash K. Mishra
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA 78712
| | - Jan Hellert
- Structural Virology Unit, Institut Pasteur, CNRS UMR 3569, 25-28 rue du Docteur Roux, Cedex 15, Paris, France 75724
| | - Natalia Freitas
- CIRI-Centre International de Recherche en Infectiologie, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, 46 allée d’Italie, Lyon, France 69007
| | - Pablo Guardado-Calvo
- Structural Virology Unit, Institut Pasteur, CNRS UMR 3569, 25-28 rue du Docteur Roux, Cedex 15, Paris, France 75724
| | - Ahmed Haouz
- Crystallography Platform C2RT, Institut Pasteur, CNRS UMR 3528, 25-28 rue du Docteur Roux, Cedex 15, Paris, France 75724
| | - J. Maximilian Fels
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA 10461
| | | | | | | | | | - Kartik Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA 10461
| | - François-Loïc Cosset
- CIRI-Centre International de Recherche en Infectiologie, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, 46 allée d’Italie, Lyon, France 69007
| | - Jason S. McLellan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA 78712,Correspondence: (J.S.M.); (F.A.R)
| | - Felix A. Rey
- Structural Virology Unit, Institut Pasteur, CNRS UMR 3569, 25-28 rue du Docteur Roux, Cedex 15, Paris, France 75724,Correspondence: (J.S.M.); (F.A.R)
| |
Collapse
|
11
|
The Input of Structural Vaccinology in the Search for Vaccines against Bunyaviruses. Viruses 2021; 13:v13091766. [PMID: 34578349 PMCID: PMC8473429 DOI: 10.3390/v13091766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/22/2021] [Accepted: 08/28/2021] [Indexed: 11/26/2022] Open
Abstract
A significant increase in the number of viruses causing unexpected illnesses and epidemics among humans, wildlife and livestock has been observed in recent years. These new or re-emerging viruses have often caught the scientific community off-guard, without sufficient knowledge to combat them, as shown by the current coronavirus pandemic. The bunyaviruses, together with the flaviviruses and filoviruses, are the major etiological agents of viral hemorrhagic fever, and several of them have been listed as priority pathogens by the World Health Organization for which insufficient countermeasures exist. Based on new techniques allowing rapid analysis of the repertoire of protective antibodies induced during infection, combined with atomic-level structural information on viral surface proteins, structural vaccinology is now instrumental in the combat against newly emerging threats, as it allows rapid rational design of novel vaccine antigens. Here, we discuss the contribution of structural vaccinology and the current challenges that remain in the search for an efficient vaccine against some of the deadliest bunyaviruses.
Collapse
|
12
|
Rissanen I, Krumm SA, Stass R, Whitaker A, Voss JE, Bruce EA, Rothenberger S, Kunz S, Burton DR, Huiskonen JT, Botten JW, Bowden TA, Doores KJ. Structural Basis for a Neutralizing Antibody Response Elicited by a Recombinant Hantaan Virus Gn Immunogen. mBio 2021; 12:e0253120. [PMID: 34225492 PMCID: PMC8406324 DOI: 10.1128/mbio.02531-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Hantaviruses are a group of emerging pathogens capable of causing severe disease upon zoonotic transmission to humans. The mature hantavirus surface presents higher-order tetrameric assemblies of two glycoproteins, Gn and Gc, which are responsible for negotiating host cell entry and constitute key therapeutic targets. Here, we demonstrate that recombinantly derived Gn from Hantaan virus (HTNV) elicits a neutralizing antibody response (serum dilution that inhibits 50% infection [ID50], 1:200 to 1:850) in an animal model. Using antigen-specific B cell sorting, we isolated monoclonal antibodies (mAbs) exhibiting neutralizing and non-neutralizing activity, termed mAb HTN-Gn1 and mAb nnHTN-Gn2, respectively. Crystallographic analysis reveals that these mAbs target spatially distinct epitopes at disparate sites of the N-terminal region of the HTNV Gn ectodomain. Epitope mapping onto a model of the higher order (Gn-Gc)4 spike supports the immune accessibility of the mAb HTN-Gn1 epitope, a hypothesis confirmed by electron cryo-tomography of the antibody with virus-like particles. These data define natively exposed regions of the hantaviral Gn that can be targeted in immunogen design. IMPORTANCE The spillover of pathogenic hantaviruses from rodent reservoirs into the human population poses a continued threat to human health. Here, we show that a recombinant form of the Hantaan virus (HTNV) surface-displayed glycoprotein, Gn, elicits a neutralizing antibody response in rabbits. We isolated a neutralizing (HTN-Gn1) and a non-neutralizing (nnHTN-Gn2) monoclonal antibody and provide the first molecular-level insights into how the Gn glycoprotein may be targeted by the antibody-mediated immune response. These findings may guide rational vaccine design approaches focused on targeting the hantavirus glycoprotein envelope.
Collapse
Affiliation(s)
- Ilona Rissanen
- Division of Structural Biology, Wellcome Centre for Human Genetics, grid.4991.5University of Oxford, Oxford, United Kingdom
- Institute of Biotechnology and Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Stefanie A. Krumm
- Department of Infectious Diseases, King's College London, London, United Kingdom
| | - Robert Stass
- Division of Structural Biology, Wellcome Centre for Human Genetics, grid.4991.5University of Oxford, Oxford, United Kingdom
| | - Annalis Whitaker
- Division of Immunobiology, Department of Medicine, Larner College of Medicine, grid.59062.38University of Vermont, Burlington, Vermont, USA
- Cellular, Molecular, and Biomedical Sciences Graduate Program, grid.59062.38University of Vermont, Burlington, Vermont, USA
| | - James E. Voss
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, USA
| | - Emily A. Bruce
- Division of Immunobiology, Department of Medicine, Larner College of Medicine, grid.59062.38University of Vermont, Burlington, Vermont, USA
- Department of Microbiology and Molecular Genetics, Larner College of Medicine, grid.59062.38University of Vermont, Burlington, Vermont, USA
| | - Sylvia Rothenberger
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Stefan Kunz
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Dennis R. Burton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, USA
- Ragon Institute of MGH, Harvard, and MIT, Cambridge, Massachusetts, USA
| | - Juha T. Huiskonen
- Division of Structural Biology, Wellcome Centre for Human Genetics, grid.4991.5University of Oxford, Oxford, United Kingdom
- Institute of Biotechnology and Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Jason W. Botten
- Division of Immunobiology, Department of Medicine, Larner College of Medicine, grid.59062.38University of Vermont, Burlington, Vermont, USA
- Department of Microbiology and Molecular Genetics, Larner College of Medicine, grid.59062.38University of Vermont, Burlington, Vermont, USA
| | - Thomas A. Bowden
- Division of Structural Biology, Wellcome Centre for Human Genetics, grid.4991.5University of Oxford, Oxford, United Kingdom
| | - Katie J. Doores
- Department of Infectious Diseases, King's College London, London, United Kingdom
| |
Collapse
|
13
|
Guardado-Calvo P, Rey FA. The surface glycoproteins of hantaviruses. Curr Opin Virol 2021; 50:87-94. [PMID: 34418649 DOI: 10.1016/j.coviro.2021.07.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 11/30/2022]
Abstract
Hantaviruses are rodent-borne viruses distributed worldwide, transmitted through the air and with the ability to spread from person to person. They maintain a non-symptomatic persistent infection in their rodent hosts, but their spillover to humans produces a renal or pulmonary syndrome associated with high fatality rates. Hantavirus particles are lipid-enveloped and display a characteristic surface lattice built up of tetragonal spikes composed of two glycoproteins, Gn and Gc. The pleomorphism of these particles has hindered cryo-EM efforts to obtain detailed structural information and only by using a combination of X-ray crystallography and cryo-electron tomography it was possible to build an atomic model of the surface lattice. Here we review these structural efforts and the unanticipated evolutionary relations between hantaviruses and alphaviruses highlighted by these studies.
Collapse
Affiliation(s)
| | - Félix A Rey
- Institut Pasteur, Structural Virology Unit, and CNRS UMR 3569, Paris, France
| |
Collapse
|
14
|
Engdahl TB, Kuzmina NA, Ronk AJ, Mire CE, Hyde MA, Kose N, Josleyn MD, Sutton RE, Mehta A, Wolters RM, Lloyd NM, Valdivieso FR, Ksiazek TG, Hooper JW, Bukreyev A, Crowe JE. Broad and potently neutralizing monoclonal antibodies isolated from human survivors of New World hantavirus infection. Cell Rep 2021; 35:109086. [PMID: 33951434 PMCID: PMC8142553 DOI: 10.1016/j.celrep.2021.109086] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 03/17/2021] [Accepted: 04/14/2021] [Indexed: 01/01/2023] Open
Abstract
New World hantaviruses (NWHs) are endemic in North and South America and cause hantavirus cardiopulmonary syndrome (HCPS), with a case fatality rate of up to 40%. Knowledge of the natural humoral immune response to NWH infection is limited. Here, we describe human monoclonal antibodies (mAbs) isolated from individuals previously infected with Sin Nombre virus (SNV) or Andes virus (ANDV). Most SNV-reactive antibodies show broad recognition and cross-neutralization of both New and Old World hantaviruses, while many ANDV-reactive antibodies show activity for ANDV only. mAbs ANDV-44 and SNV-53 compete for binding to a distinct site on the ANDV surface glycoprotein and show potently neutralizing activity to New and Old World hantaviruses. Four mAbs show therapeutic efficacy at clinically relevant doses in hamsters. These studies reveal a convergent and potently neutralizing human antibody response to NWHs and suggest therapeutic potential for human mAbs against HCPS. Engdahl et al. show that monoclonal antibodies isolated from human survivors of New World hantavirus infection display broad and potent neutralization across hantavirus species and recognize distinct sites on the glycoprotein spike. Multiple antibodies demonstrate potential therapeutic candidates for New World hantavirus infection. Some antibodies also neutralized Old World hantaviruses.
Collapse
Affiliation(s)
- Taylor B Engdahl
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Natalia A Kuzmina
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; Galveston National Laboratory, Galveston, TX 77550, USA
| | - Adam J Ronk
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; Galveston National Laboratory, Galveston, TX 77550, USA
| | - Chad E Mire
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; Galveston National Laboratory, Galveston, TX 77550, USA; Animal Resource Center, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Matthew A Hyde
- Animal Resource Center, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Nurgun Kose
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Matthew D Josleyn
- Virology Division, US Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
| | - Rachel E Sutton
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Apoorva Mehta
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Rachael M Wolters
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Nicole M Lloyd
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; Galveston National Laboratory, Galveston, TX 77550, USA
| | - Francisca R Valdivieso
- Programa Hantavirus, Instituto de Ciencias e Innovación en Medicina (ICIM), Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago 7590943, Chile
| | - Thomas G Ksiazek
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; Galveston National Laboratory, Galveston, TX 77550, USA
| | - Jay W Hooper
- Virology Division, US Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
| | - Alexander Bukreyev
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; Galveston National Laboratory, Galveston, TX 77550, USA.
| | - James E Crowe
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
15
|
Hulswit RJG, Paesen GC, Bowden TA, Shi X. Recent Advances in Bunyavirus Glycoprotein Research: Precursor Processing, Receptor Binding and Structure. Viruses 2021; 13:353. [PMID: 33672327 PMCID: PMC7926653 DOI: 10.3390/v13020353] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/13/2021] [Accepted: 02/15/2021] [Indexed: 01/04/2023] Open
Abstract
The Bunyavirales order accommodates related viruses (bunyaviruses) with segmented, linear, single-stranded, negative- or ambi-sense RNA genomes. Their glycoproteins form capsomeric projections or spikes on the virion surface and play a crucial role in virus entry, assembly, morphogenesis. Bunyavirus glycoproteins are encoded by a single RNA segment as a polyprotein precursor that is co- and post-translationally cleaved by host cell enzymes to yield two mature glycoproteins, Gn and Gc (or GP1 and GP2 in arenaviruses). These glycoproteins undergo extensive N-linked glycosylation and despite their cleavage, remain associated to the virion to form an integral transmembrane glycoprotein complex. This review summarizes recent advances in our understanding of the molecular biology of bunyavirus glycoproteins, including their processing, structure, and known interactions with host factors that facilitate cell entry.
Collapse
Affiliation(s)
- Ruben J. G. Hulswit
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK; (R.J.G.H.); (G.C.P.)
| | - Guido C. Paesen
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK; (R.J.G.H.); (G.C.P.)
| | - Thomas A. Bowden
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK; (R.J.G.H.); (G.C.P.)
| | - Xiaohong Shi
- MRC-University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G61 1QH, UK
| |
Collapse
|