1
|
Asma H, Tieke E, Deem KD, Rahmat J, Dong T, Huang X, Tomoyasu Y, Halfon MS. Regulatory genome annotation of 33 insect species. eLife 2024; 13:RP96738. [PMID: 39392676 PMCID: PMC11469670 DOI: 10.7554/elife.96738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024] Open
Abstract
Annotation of newly sequenced genomes frequently includes genes, but rarely covers important non-coding genomic features such as the cis-regulatory modules-e.g., enhancers and silencers-that regulate gene expression. Here, we begin to remedy this situation by developing a workflow for rapid initial annotation of insect regulatory sequences, and provide a searchable database resource with enhancer predictions for 33 genomes. Using our previously developed SCRMshaw computational enhancer prediction method, we predict over 2.8 million regulatory sequences along with the tissues where they are expected to be active, in a set of insect species ranging over 360 million years of evolution. Extensive analysis and validation of the data provides several lines of evidence suggesting that we achieve a high true-positive rate for enhancer prediction. One, we show that our predictions target specific loci, rather than random genomic locations. Two, we predict enhancers in orthologous loci across a diverged set of species to a significantly higher degree than random expectation would allow. Three, we demonstrate that our predictions are highly enriched for regions of accessible chromatin. Four, we achieve a validation rate in excess of 70% using in vivo reporter gene assays. As we continue to annotate both new tissues and new species, our regulatory annotation resource will provide a rich source of data for the research community and will have utility for both small-scale (single gene, single species) and large-scale (many genes, many species) studies of gene regulation. In particular, the ability to search for functionally related regulatory elements in orthologous loci should greatly facilitate studies of enhancer evolution even among distantly related species.
Collapse
Affiliation(s)
- Hasiba Asma
- Program in Genetics, Genomics, and Bioinformatics, University at Buffalo-State University of New YorkBuffaloUnited States
| | - Ellen Tieke
- Department of Biology, Miami UniversityOxfordUnited States
| | - Kevin D Deem
- Department of Biology, Miami UniversityOxfordUnited States
| | - Jabale Rahmat
- Department of Biology, Miami UniversityOxfordUnited States
| | - Tiffany Dong
- Department of Biochemistry, University at Buffalo-State University of New YorkBuffaloUnited States
| | - Xinbo Huang
- Department of Biochemistry, University at Buffalo-State University of New YorkBuffaloUnited States
| | | | - Marc S Halfon
- Program in Genetics, Genomics, and Bioinformatics, University at Buffalo-State University of New YorkBuffaloUnited States
- Department of Biochemistry, University at Buffalo-State University of New YorkBuffaloUnited States
- Department of Biomedical Informatics, University at Buffalo-State University of New YorkBuffaloUnited States
- Department of Biological Sciences, University at Buffalo-State University of New YorkBuffaloUnited States
| |
Collapse
|
2
|
Monastirioti M, Koltsaki I, Pitsidianaki I, Skafida E, Batsiotos N, Delidakis C. Notch-Dependent Expression of the Drosophila Hey Gene Is Supported by a Pair of Enhancers with Overlapping Activities. Genes (Basel) 2024; 15:1071. [PMID: 39202431 PMCID: PMC11353301 DOI: 10.3390/genes15081071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/09/2024] [Accepted: 08/10/2024] [Indexed: 09/03/2024] Open
Abstract
Drosophila Hey is a basic helix-loop-helix-orange (bHLH-O) protein with an important role in the establishment of distinct identities of postmitotic cells. We have previously identified Hey as a transcriptional target and effector of Notch signalling during the asymmetric division of neuronal progenitors, generating neurons of two types, and we have shown that Notch-dependent expression of Hey also marks a subpopulation of the newborn enteroendocrine (EE) cells in the midgut primordium of the embryo. Here, we investigate the transcriptional regulation of Hey in neuronal and intestinal tissues. We isolated two genomic regions upstream of the promoter (HeyUP) and in the second intron (HeyIN2) of the Hey gene, based on the presence of binding motifs for Su(H), the transcription factor that mediates Notch activity. We found that both regions can direct the overlapping expression patterns of reporter transgenes recapitulating endogenous Hey expression. Moreover, we showed that while HeyIN2 represents a Notch-dependent enhancer, HeyUP confers both Notch-dependent and independent transcriptional regulation. We induced mutations that removed the Su(H) binding motifs in either region and then studied the enhancer functionality in the respective Hey mutant lines. Our results provide direct evidence that although both enhancers support Notch-dependent regulation of the Hey gene, their role is redundant, as a Hey loss-of-function lethal phenotype is observed only after deletion of all their Su(H) binding motifs by CRISPR/Cas9.
Collapse
Affiliation(s)
- Maria Monastirioti
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology-Hellas (FORTH), 70013 Heraklion, Greece; (I.K.); (I.P.); (E.S.); (N.B.)
| | - Ioanna Koltsaki
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology-Hellas (FORTH), 70013 Heraklion, Greece; (I.K.); (I.P.); (E.S.); (N.B.)
- Department of Biology, University of Crete, 70013 Heraklion, Greece
- Division of Tumor Metabolism and Microenvironment, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Ioanna Pitsidianaki
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology-Hellas (FORTH), 70013 Heraklion, Greece; (I.K.); (I.P.); (E.S.); (N.B.)
- Department of Biology, University of Crete, 70013 Heraklion, Greece
- Department of Cell and Developmental Biology, University College London (UCL), London WC1E 6BT, UK
| | - Emilia Skafida
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology-Hellas (FORTH), 70013 Heraklion, Greece; (I.K.); (I.P.); (E.S.); (N.B.)
- Department of Biology, University of Crete, 70013 Heraklion, Greece
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Foundation Saint Lucia, Rome and School of Medicine and Surgery, University of Milano-Bicocca (UniMiB), 20900 Monza, Italy
| | - Nikolaos Batsiotos
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology-Hellas (FORTH), 70013 Heraklion, Greece; (I.K.); (I.P.); (E.S.); (N.B.)
- Department of Biology, University of Crete, 70013 Heraklion, Greece
- Evotec SE, 22419 Hamburg, Germany
| | - Christos Delidakis
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology-Hellas (FORTH), 70013 Heraklion, Greece; (I.K.); (I.P.); (E.S.); (N.B.)
- Department of Biology, University of Crete, 70013 Heraklion, Greece
| |
Collapse
|
3
|
Pal S, Dhar R. Living in a noisy world-origins of gene expression noise and its impact on cellular decision-making. FEBS Lett 2024; 598:1673-1691. [PMID: 38724715 DOI: 10.1002/1873-3468.14898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/23/2024] [Accepted: 03/27/2024] [Indexed: 07/23/2024]
Abstract
The expression level of a gene can vary between genetically identical cells under the same environmental condition-a phenomenon referred to as gene expression noise. Several studies have now elucidated a central role of transcription factors in the generation of expression noise. Transcription factors, as the key components of gene regulatory networks, drive many important cellular decisions in response to cellular and environmental signals. Therefore, a very relevant question is how expression noise impacts gene regulation and influences cellular decision-making. In this Review, we summarize the current understanding of the molecular origins of expression noise, highlighting the role of transcription factors in this process, and discuss the ways in which noise can influence cellular decision-making. As advances in single-cell technologies open new avenues for studying expression noise as well as gene regulatory circuits, a better understanding of the influence of noise on cellular decisions will have important implications for many biological processes.
Collapse
Affiliation(s)
- Sampriti Pal
- Department of Bioscience and Biotechnology, IIT Kharagpur, India
| | - Riddhiman Dhar
- Department of Bioscience and Biotechnology, IIT Kharagpur, India
| |
Collapse
|
4
|
Pina C. Contributions of transcriptional noise to leukaemia evolution: KAT2A as a case-study. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230052. [PMID: 38432321 PMCID: PMC10909511 DOI: 10.1098/rstb.2023.0052] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 12/04/2023] [Indexed: 03/05/2024] Open
Abstract
Transcriptional noise is proposed to participate in cell fate changes, but contributions to mammalian cell differentiation systems, including cancer, remain associative. Cancer evolution is driven by genetic variability, with modulatory or contributory participation of epigenetic variants. Accumulation of epigenetic variants enhances transcriptional noise, which can facilitate cancer cell fate transitions. Acute myeloid leukaemia (AML) is an aggressive cancer with strong epigenetic dependencies, characterized by blocked differentiation. It constitutes an attractive model to probe links between transcriptional noise and malignant cell fate regulation. Gcn5/KAT2A is a classical epigenetic transcriptional noise regulator. Its loss increases transcriptional noise and modifies cell fates in stem and AML cells. By reviewing the analysis of KAT2A-depleted pre-leukaemia and leukaemia models, I discuss that the net result of transcriptional noise is diversification of cell fates secondary to alternative transcriptional programmes. Cellular diversification can enable or hinder AML progression, respectively, by differentiation of cell types responsive to mutations, or by maladaptation of leukaemia stem cells. KAT2A-dependent noise-responsive genes participate in ribosome biogenesis and KAT2A loss destabilizes translational activity. I discuss putative contributions of perturbed translation to AML biology, and propose KAT2A loss as a model for mechanistic integration of transcriptional and translational control of noise and fate decisions. This article is part of a discussion meeting issue 'Causes and consequences of stochastic processes in development and disease'.
Collapse
Affiliation(s)
- Cristina Pina
- College of Health, Medicine and Life Sciences, Brunel University London, Kingston Lane, Uxbridge, London, UB8 3PH, United Kingdom
- CenGEM – Centre for Genome Engineering and Maintenance, Brunel University London, Kingston Lane, Uxbridge, London, UB8 3PH, United Kingdom
| |
Collapse
|
5
|
Uchida Y, Tsutsumi M, Ichii S, Irie N, Furusawa C. Deciphering the origin of developmental stability: The role of intracellular expression variability in evolutionary conservation. Evol Dev 2024; 26:e12473. [PMID: 38414112 DOI: 10.1111/ede.12473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/01/2023] [Accepted: 02/14/2024] [Indexed: 02/29/2024]
Abstract
Progress in evolutionary developmental biology (evo-devo) has deepened our understanding of how intrinsic properties of embryogenesis, along with natural selection and population genetics, shape phenotypic diversity. A focal point of recent empirical and theoretical research is the idea that highly developmentally stable phenotypes are more conserved in evolution. Previously, we demonstrated that in Japanese medaka (Oryzias latipes), embryonic stages and genes with high stability, estimated through whole-embryo RNA-seq, are highly conserved in subsequent generations. However, the precise origin of the stability of gene expression levels evaluated at the whole-embryo level remained unclear. Such stability could be attributed to two distinct sources: stable intracellular expression levels or spatially stable expression patterns. Here we demonstrate that stability observed in whole-embryo RNA-seq can be attributed to stability at the cellular level (low variability in gene expression at the cellular levels). We quantified the intercellular variations in expression levels and spatial gene expression patterns for seven key genes involved in patterning dorsoventral and rostrocaudal regions during early development in medaka. We evaluated intracellular variability by counting transcripts and found its significant correlation with variation observed in whole-embryo RNA-seq data. Conversely, variation in spatial gene expression patterns, assessed through intraindividual left-right asymmetry, showed no correlation. Given the previously reported correlation between stability and conservation of expression levels throughout embryogenesis, our findings suggest a potential general trend: the stability or instability of developmental systems-and the consequent evolutionary diversity-may be primarily anchored in intrinsic fundamental elements such as the variability of intracellular states.
Collapse
Affiliation(s)
- Yui Uchida
- Center for Biosystems Dynamics Research, RIKEN, Osaka, Japan
| | - Masato Tsutsumi
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Shunsuke Ichii
- Center for Biosystems Dynamics Research, RIKEN, Osaka, Japan
- Department of Physics, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Naoki Irie
- Research Center for Integrative Evolutionary Science, SOKENDAI, Kanagawa, Japan
| | - Chikara Furusawa
- Center for Biosystems Dynamics Research, RIKEN, Osaka, Japan
- Department of Physics, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- Universal Biology Institute, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
6
|
Duarte P, Brattig Correia R, Nóvoa A, Mallo M. Regulatory changes associated with the head to trunk developmental transition. BMC Biol 2023; 21:170. [PMID: 37553620 PMCID: PMC10408190 DOI: 10.1186/s12915-023-01675-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 08/03/2023] [Indexed: 08/10/2023] Open
Abstract
BACKGROUND Development of vertebrate embryos is characterized by early formation of the anterior tissues followed by the sequential extension of the axis at their posterior end to build the trunk and tail structures, first by the activity of the primitive streak and then of the tail bud. Embryological, molecular and genetic data indicate that head and trunk development are significantly different, suggesting that the transition into the trunk formation stage involves major changes in regulatory gene networks. RESULTS We explored those regulatory changes by generating differential interaction networks and chromatin accessibility profiles from the posterior epiblast region of mouse embryos at embryonic day (E)7.5 and E8.5. We observed changes in various cell processes, including several signaling pathways, ubiquitination machinery, ion dynamics and metabolic processes involving lipids that could contribute to the functional switch in the progenitor region of the embryo. We further explored the functional impact of changes observed in Wnt signaling associated processes, revealing a switch in the functional relevance of Wnt molecule palmitoleoylation, essential during gastrulation but becoming differentially required for the control of axial extension and progenitor differentiation processes during trunk formation. We also found substantial changes in chromatin accessibility at the two developmental stages, mostly mapping to intergenic regions and presenting differential footprinting profiles to several key transcription factors, indicating a significant switch in the regulatory elements controlling head or trunk development. Those chromatin changes are largely independent of retinoic acid, despite the key role of this factor in the transition to trunk development. We also tested the functional relevance of potential enhancers identified in the accessibility assays that reproduced the expression profiles of genes involved in the transition. Deletion of these regions by genome editing had limited effect on the expression of those genes, suggesting the existence of redundant enhancers that guarantee robust expression patterns. CONCLUSIONS This work provides a global view of the regulatory changes controlling the switch into the axial extension phase of vertebrate embryonic development. It also revealed mechanisms by which the cellular context influences the activity of regulatory factors, channeling them to implement one of several possible biological outputs.
Collapse
Affiliation(s)
- Patrícia Duarte
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156, Oeiras, Portugal
| | - Rion Brattig Correia
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156, Oeiras, Portugal
| | - Ana Nóvoa
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156, Oeiras, Portugal
| | - Moisés Mallo
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156, Oeiras, Portugal.
| |
Collapse
|
7
|
Ziyani C, Delaneau O, Ribeiro DM. Multimodal single cell analysis infers widespread enhancer co-activity in a lymphoblastoid cell line. Commun Biol 2023; 6:563. [PMID: 37237005 PMCID: PMC10219981 DOI: 10.1038/s42003-023-04954-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Non-coding regulatory elements such as enhancers are key in controlling the cell-type specificity and spatio-temporal expression of genes. To drive stable and precise gene transcription robust to genetic variation and environmental stress, genes are often targeted by multiple enhancers with redundant action. However, it is unknown whether enhancers targeting the same gene display simultaneous activity or whether some enhancer combinations are more often co-active than others. Here, we take advantage of recent developments in single cell technology that permit assessing chromatin status (scATAC-seq) and gene expression (scRNA-seq) in the same single cells to correlate gene expression to the activity of multiple enhancers. Measuring activity patterns across 24,844 human lymphoblastoid single cells, we find that the majority of enhancers associated with the same gene display significant correlation in their chromatin profiles. For 6944 expressed genes associated with enhancers, we predict 89,885 significant enhancer-enhancer associations between nearby enhancers. We find that associated enhancers share similar transcription factor binding profiles and that gene essentiality is linked with higher enhancer co-activity. We provide a set of predicted enhancer-enhancer associations based on correlation derived from a single cell line, which can be further investigated for functional relevance.
Collapse
Affiliation(s)
- Chaymae Ziyani
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Olivier Delaneau
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Diogo M Ribeiro
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland.
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland.
| |
Collapse
|
8
|
Fletcher A, Wunderlich Z, Enciso G. Shadow enhancers mediate trade-offs between transcriptional noise and fidelity. PLoS Comput Biol 2023; 19:e1011071. [PMID: 37205714 DOI: 10.1371/journal.pcbi.1011071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 04/03/2023] [Indexed: 05/21/2023] Open
Abstract
Enhancers are stretches of regulatory DNA that bind transcription factors (TFs) and regulate the expression of a target gene. Shadow enhancers are two or more enhancers that regulate the same target gene in space and time and are associated with most animal developmental genes. These multi-enhancer systems can drive more consistent transcription than single enhancer systems. Nevertheless, it remains unclear why shadow enhancer TF binding sites are distributed across multiple enhancers rather than within a single large enhancer. Here, we use a computational approach to study systems with varying numbers of TF binding sites and enhancers. We employ chemical reaction networks with stochastic dynamics to determine the trends in transcriptional noise and fidelity, two key performance objectives of enhancers. This reveals that while additive shadow enhancers do not differ in noise and fidelity from their single enhancer counterparts, sub- and superadditive shadow enhancers have noise and fidelity trade-offs not available to single enhancers. We also use our computational approach to compare the duplication and splitting of a single enhancer as mechanisms for the generation of shadow enhancers and find that the duplication of enhancers can decrease noise and increase fidelity, although at the metabolic cost of increased RNA production. A saturation mechanism for enhancer interactions similarly improves on both of these metrics. Taken together, this work highlights that shadow enhancer systems may exist for several reasons: genetic drift or the tuning of key functions of enhancers, including transcription fidelity, noise and output.
Collapse
Affiliation(s)
- Alvaro Fletcher
- Mathematical, Computational, and Systems Biology, University of California, Irvine, Irvine, CA, United States of America
| | - Zeba Wunderlich
- Department of Biology, Boston University, Boston, MA, United States of America
- Biological Design Center, Boston University, Boston, MA, United States of America
| | - German Enciso
- Department of Mathematics, University of California, Irvine, Irvine, CA, United States of America
| |
Collapse
|
9
|
Smith GD, Ching WH, Cornejo-Páramo P, Wong ES. Decoding enhancer complexity with machine learning and high-throughput discovery. Genome Biol 2023; 24:116. [PMID: 37173718 PMCID: PMC10176946 DOI: 10.1186/s13059-023-02955-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
Enhancers are genomic DNA elements controlling spatiotemporal gene expression. Their flexible organization and functional redundancies make deciphering their sequence-function relationships challenging. This article provides an overview of the current understanding of enhancer organization and evolution, with an emphasis on factors that influence these relationships. Technological advancements, particularly in machine learning and synthetic biology, are discussed in light of how they provide new ways to understand this complexity. Exciting opportunities lie ahead as we continue to unravel the intricacies of enhancer function.
Collapse
Affiliation(s)
- Gabrielle D Smith
- Victor Chang Cardiac Research Institute, 405 Liverpool Street, Darlinghurst, NSW, Australia
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Kensington, NSW, Australia
| | - Wan Hern Ching
- Victor Chang Cardiac Research Institute, 405 Liverpool Street, Darlinghurst, NSW, Australia
| | - Paola Cornejo-Páramo
- Victor Chang Cardiac Research Institute, 405 Liverpool Street, Darlinghurst, NSW, Australia
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Kensington, NSW, Australia
| | - Emily S Wong
- Victor Chang Cardiac Research Institute, 405 Liverpool Street, Darlinghurst, NSW, Australia.
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Kensington, NSW, Australia.
| |
Collapse
|
10
|
Uyehara CM, Apostolou E. 3D enhancer-promoter interactions and multi-connected hubs: Organizational principles and functional roles. Cell Rep 2023; 42:112068. [PMID: 37059094 PMCID: PMC10556201 DOI: 10.1016/j.celrep.2023.112068] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/25/2022] [Accepted: 01/20/2023] [Indexed: 04/16/2023] Open
Abstract
The spatiotemporal control of gene expression is dependent on the activity of cis-acting regulatory sequences, called enhancers, which regulate target genes over variable genomic distances and, often, by skipping intermediate promoters, suggesting mechanisms that control enhancer-promoter communication. Recent genomics and imaging technologies have revealed highly complex enhancer-promoter interaction networks, whereas advanced functional studies have started interrogating the forces behind the physical and functional communication among multiple enhancers and promoters. In this review, we first summarize our current understanding of the factors involved in enhancer-promoter communication, with a particular focus on recent papers that have revealed new layers of complexities to old questions. In the second part of the review, we focus on a subset of highly connected enhancer-promoter "hubs" and discuss their potential functions in signal integration and gene regulation, as well as the putative factors that might determine their dynamics and assembly.
Collapse
Affiliation(s)
- Christopher M Uyehara
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
| | - Effie Apostolou
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA.
| |
Collapse
|
11
|
Kim S, Wysocka J. Deciphering the multi-scale, quantitative cis-regulatory code. Mol Cell 2023; 83:373-392. [PMID: 36693380 PMCID: PMC9898153 DOI: 10.1016/j.molcel.2022.12.032] [Citation(s) in RCA: 69] [Impact Index Per Article: 69.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/24/2023]
Abstract
Uncovering the cis-regulatory code that governs when and how much each gene is transcribed in a given genome and cellular state remains a central goal of biology. Here, we discuss major layers of regulation that influence how transcriptional outputs are encoded by DNA sequence and cellular context. We first discuss how transcription factors bind specific DNA sequences in a dosage-dependent and cooperative manner and then proceed to the cofactors that facilitate transcription factor function and mediate the activity of modular cis-regulatory elements such as enhancers, silencers, and promoters. We then consider the complex and poorly understood interplay of these diverse elements within regulatory landscapes and its relationships with chromatin states and nuclear organization. We propose that a mechanistically informed, quantitative model of transcriptional regulation that integrates these multiple regulatory layers will be the key to ultimately cracking the cis-regulatory code.
Collapse
Affiliation(s)
- Seungsoo Kim
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Joanna Wysocka
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
12
|
Loell K, Wu Y, Staller MV, Cohen B. Activation domains can decouple the mean and noise of gene expression. Cell Rep 2022; 40:111118. [PMID: 35858548 PMCID: PMC9912357 DOI: 10.1016/j.celrep.2022.111118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 01/18/2022] [Accepted: 06/28/2022] [Indexed: 11/03/2022] Open
Abstract
Regulatory mechanisms set a gene's average level of expression, but a gene's expression constantly fluctuates around that average. These stochastic fluctuations, or expression noise, play a role in cell-fate transitions, bet hedging in microbes, and the development of chemotherapeutic resistance in cancer. An outstanding question is what regulatory mechanisms contribute to noise. Here, we demonstrate that, for a fixed mean level of expression, strong activation domains (ADs) at low abundance produce high expression noise, while weak ADs at high abundance generate lower expression noise. We conclude that differences in noise can be explained by the interplay between a TF's nuclear concentration and the strength of its AD's effect on mean expression, without invoking differences between classes of ADs. These results raise the possibility of engineering gene expression noise independently of mean levels in synthetic biology contexts and provide a potential mechanism for natural selection to tune the noisiness of gene expression.
Collapse
Affiliation(s)
- Kaiser Loell
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO 63108, USA,The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63108, USA
| | - Yawei Wu
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO 63108, USA,The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63108, USA
| | - Max V. Staller
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Barak Cohen
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO 63108, USA; The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63108, USA.
| |
Collapse
|
13
|
Deng H, Lim B. Shared Transcriptional Machinery at Homologous Alleles Leads to Reduced Transcription in Early Drosophila Embryos. Front Cell Dev Biol 2022; 10:912838. [PMID: 35898395 PMCID: PMC9311490 DOI: 10.3389/fcell.2022.912838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/21/2022] [Indexed: 02/05/2023] Open
Abstract
The mechanism by which transcriptional machinery is recruited to enhancers and promoters to regulate gene expression is one of the most challenging and extensively studied questions in modern biology. We explored the possibility that interallelic interactions between two homologous alleles might affect gene regulation. Using an MS2- and PP7-based, allele-specific live imaging assay, we visualized de novo transcripts of a reporter gene in hemizygous and homozygous Drosophila embryos. Surprisingly, each homozygous allele produced fewer RNAs than the corresponding hemizygous allele, suggesting the possibility of allelic competition in homozygotes. However, the competition was not observed when the enhancer-promoter interaction was weakened by placing the reporter construct in a different chromosome location or by moving the enhancer further away from the promoter. Moreover, the reporter gene showed reduced transcriptional activity when a partial transcription unit (either an enhancer or reporter gene only) was in the homologous position. We propose that the transcriptional machinery that binds both the enhancer and promoter regions, such as RNA Pol II or preinitiation complexes, may be responsible for the allelic competition. We showed that the degree of allelic interference increased over developmental time as more Pol II was needed to activate zygotic genes. Such allelic competition was observed for an endogenous gene as well. Our study provides new insights into the role of 3D interallelic interactions in gene regulation.
Collapse
|
14
|
Mulero Hernández J, Fernández-Breis JT. Analysis of the landscape of human enhancer sequences in biological databases. Comput Struct Biotechnol J 2022; 20:2728-2744. [PMID: 35685360 PMCID: PMC9168495 DOI: 10.1016/j.csbj.2022.05.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/20/2022] [Accepted: 05/21/2022] [Indexed: 12/01/2022] Open
Abstract
The process of gene regulation extends as a network in which both genetic sequences and proteins are involved. The levels of regulation and the mechanisms involved are multiple. Transcription is the main control mechanism for most genes, being the downstream steps responsible for refining the transcription patterns. In turn, gene transcription is mainly controlled by regulatory events that occur at promoters and enhancers. Several studies are focused on analyzing the contribution of enhancers in the development of diseases and their possible use as therapeutic targets. The study of regulatory elements has advanced rapidly in recent years with the development and use of next generation sequencing techniques. All this information has generated a large volume of information that has been transferred to a growing number of public repositories that store this information. In this article, we analyze the content of those public repositories that contain information about human enhancers with the aim of detecting whether the knowledge generated by scientific research is contained in those databases in a way that could be computationally exploited. The analysis will be based on three main aspects identified in the literature: types of enhancers, type of evidence about the enhancers, and methods for detecting enhancer-promoter interactions. Our results show that no single database facilitates the optimal exploitation of enhancer data, most types of enhancers are not represented in the databases and there is need for a standardized model for enhancers. We have identified major gaps and challenges for the computational exploitation of enhancer data.
Collapse
Affiliation(s)
- Juan Mulero Hernández
- Dept. Informática y Sistemas, Universidad de Murcia, CEIR Campus Mare Nostrum, IMIB-Arrixaca, Spain
| | | |
Collapse
|
15
|
Wang J, Zhang S, Lu H, Xu H. Differential regulation of alternative promoters emerges from unified kinetics of enhancer-promoter interaction. Nat Commun 2022; 13:2714. [PMID: 35581264 PMCID: PMC9114328 DOI: 10.1038/s41467-022-30315-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 04/25/2022] [Indexed: 11/25/2022] Open
Abstract
Many eukaryotic genes contain alternative promoters with distinct expression patterns. How these promoters are differentially regulated remains elusive. Here, we apply single-molecule imaging to quantify the transcriptional regulation of two alternative promoters (P1 and P2) of the Bicoid (Bcd) target gene hunchback in syncytial blastoderm Drosophila embryos. Contrary to the previous notion that Bcd only activates P2, we find that Bcd activates both promoters via the same two enhancers. P1 activation is less frequent and requires binding of more Bcd molecules than P2 activation. Using a theoretical model to relate promoter activity to enhancer states, we show that the two promoters follow common transcription kinetics driven by sequential Bcd binding at the two enhancers. Bcd binding at either enhancer primarily activates P2, while P1 activation relies more on Bcd binding at both enhancers. These results provide a quantitative framework for understanding the kinetic mechanisms of complex eukaryotic gene regulation. Alternative promoters differ in their expression patterns, whose mechanisms are not well understood. Here the authors show that alternative promoters of a Drosophila embryonic gene hunchback are regulated by different action modes of two enhancers.
Collapse
Affiliation(s)
- Jingyao Wang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200240, Shanghai, China.,Institute of Natural Sciences, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Shihe Zhang
- Institute of Natural Sciences, Shanghai Jiao Tong University, 200240, Shanghai, China. .,School of Physics and Astronomy, Shanghai Jiao Tong University, 200240, Shanghai, China.
| | - Hongfang Lu
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200240, Shanghai, China.,Institute of Natural Sciences, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Heng Xu
- Institute of Natural Sciences, Shanghai Jiao Tong University, 200240, Shanghai, China. .,School of Physics and Astronomy, Shanghai Jiao Tong University, 200240, Shanghai, China.
| |
Collapse
|
16
|
Transcriptional Regulation and Implications for Controlling Hox Gene Expression. J Dev Biol 2022; 10:jdb10010004. [PMID: 35076545 PMCID: PMC8788451 DOI: 10.3390/jdb10010004] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/04/2022] [Accepted: 01/06/2022] [Indexed: 02/06/2023] Open
Abstract
Hox genes play key roles in axial patterning and regulating the regional identity of cells and tissues in a wide variety of animals from invertebrates to vertebrates. Nested domains of Hox expression generate a combinatorial code that provides a molecular framework for specifying the properties of tissues along the A–P axis. Hence, it is important to understand the regulatory mechanisms that coordinately control the precise patterns of the transcription of clustered Hox genes required for their roles in development. New insights are emerging about the dynamics and molecular mechanisms governing transcriptional regulation, and there is interest in understanding how these may play a role in contributing to the regulation of the expression of the clustered Hox genes. In this review, we summarize some of the recent findings, ideas and emerging mechanisms underlying the regulation of transcription in general and consider how they may be relevant to understanding the transcriptional regulation of Hox genes.
Collapse
|
17
|
Li L, Waymack R, Gad M, Wunderlich Z. Two promoters integrate multiple enhancer inputs to drive wild-type knirps expression in the Drosophila melanogaster embryo. Genetics 2021; 219:iyab154. [PMID: 34849867 PMCID: PMC8664596 DOI: 10.1093/genetics/iyab154] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/12/2021] [Indexed: 11/13/2022] Open
Abstract
Proper development depends on precise spatiotemporal gene expression patterns. Most developmental genes are regulated by multiple enhancers and often by multiple core promoters that generate similar transcripts. We hypothesize that multiple promoters may be required either because enhancers prefer a specific promoter or because multiple promoters serve as a redundancy mechanism. To test these hypotheses, we studied the expression of the knirps locus in the early Drosophila melanogaster embryo, which is mediated by multiple enhancers and core promoters. We found that one of these promoters resembles a typical "sharp" developmental promoter, while the other resembles a "broad" promoter usually associated with housekeeping genes. Using synthetic reporter constructs, we found that some, but not all, enhancers in the locus show a preference for one promoter, indicating that promoters provide both redundancy and specificity. By analyzing the reporter dynamics, we identified specific burst properties during the transcription process, namely burst size and frequency, that are most strongly tuned by the combination of promoter and enhancer. Using locus-sized reporters, we discovered that enhancers with no promoter preference in a synthetic setting have a preference in the locus context. Our results suggest that the presence of multiple promoters in a locus is due both to enhancer preference and a need for redundancy and that "broad" promoters with dispersed transcription start sites are common among developmental genes. They also imply that it can be difficult to extrapolate expression measurements from synthetic reporters to the locus context, where other variables shape a gene's overall expression pattern.
Collapse
Affiliation(s)
- Lily Li
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Rachel Waymack
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Mario Gad
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Zeba Wunderlich
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
- Department of Biology, Boston University, Boston, MA 02215, USA
| |
Collapse
|
18
|
Sousa E, Flames N. Transcriptional regulation of neuronal identity. Eur J Neurosci 2021; 55:645-660. [PMID: 34862697 PMCID: PMC9306894 DOI: 10.1111/ejn.15551] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 11/29/2022]
Abstract
Neuronal diversity is an intrinsic feature of the nervous system. Transcription factors (TFs) are key regulators in the establishment of different neuronal identities; how are the actions of different TFs coordinated to orchestrate this diversity? Are there common features shared among the different neuron types of an organism or even among different animal groups? In this review, we provide a brief overview on common traits emerging on the transcriptional regulation of neuron type diversification with a special focus on the comparison between mouse and Caenorhabditis elegans model systems. In the first part, we describe general concepts on neuronal identity and transcriptional regulation of gene expression. In the second part of the review, TFs are classified in different categories according to their key roles at specific steps along the protracted process of neuronal specification and differentiation. The same TF categories can be identified both in mammals and nematodes. Importantly, TFs are very pleiotropic: Depending on the neuron type or the time in development, the same TF can fulfil functions belonging to different categories. Finally, we describe the key role of transcriptional repression at all steps controlling neuronal diversity and propose that acquisition of neuronal identities could be considered a metastable process.
Collapse
Affiliation(s)
- Erick Sousa
- Developmental Neurobiology Unit, Instituto de Biomedicina de Valencia IBV-CSIC, Valencia, Spain
| | - Nuria Flames
- Developmental Neurobiology Unit, Instituto de Biomedicina de Valencia IBV-CSIC, Valencia, Spain
| |
Collapse
|
19
|
Prazak L, Iwasaki Y, Kim AR, Kozlov K, King K, Gergen JP. A dual role for DNA binding by Runt in activation and repression of sloppy paired transcription. Mol Biol Cell 2021; 32:ar26. [PMID: 34432496 PMCID: PMC8693977 DOI: 10.1091/mbc.e20-08-0509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
This work investigates the role of DNA binding by Runt in regulating the sloppy paired 1 (slp1) gene and in particular two distinct cis-regulatory elements that mediate regulation by Runt and other pair-rule transcription factors during Drosophila segmentation. We find that a DNA-binding-defective form of Runt is ineffective at repressing both the distal (DESE) and proximal (PESE) early stripe elements of slp1 and is also compromised for DESE-dependent activation. The function of Runt-binding sites in DESE is further investigated using site-specific transgenesis and quantitative imaging techniques. When DESE is tested as an autonomous enhancer, mutagenesis of the Runt sites results in a clear loss of Runt-dependent repression but has little to no effect on Runt-dependent activation. Notably, mutagenesis of these same sites in the context of a reporter gene construct that also contains the PESE enhancer results in a significant reduction of DESE-dependent activation as well as the loss of repression observed for the autonomous mutant DESE enhancer. These results provide strong evidence that DNA binding by Runt directly contributes to the regulatory interplay of interactions between these two enhancers in the early embryo.
Collapse
Affiliation(s)
- Lisa Prazak
- Department of Biology, Farmingdale State College, Farmingdale, NY 11735-1021.,Department of Biochemistry and Cell Biology and Center for Developmental Genetics.,Graduate Program in Molecular and Cellular Biology, Stony Brook University, Stony Brook, NY 11794-5215
| | - Yasuno Iwasaki
- Department of Biochemistry and Cell Biology and Center for Developmental Genetics
| | - Ah-Ram Kim
- Graduate Program in Biochemistry and Structural Biology, and
| | - Konstantin Kozlov
- Department of Applied Mathematics, St. Petersburg State Polytechnical University, St. Petersburg, Russia 195251
| | - Kevin King
- Department of Biochemistry and Cell Biology and Center for Developmental Genetics.,Graduate Program in Molecular and Cellular Biology, Stony Brook University, Stony Brook, NY 11794-5215
| | - J Peter Gergen
- Department of Biochemistry and Cell Biology and Center for Developmental Genetics
| |
Collapse
|
20
|
No Need to Stick Together to Be Connected: Multiple Types of Enhancers' Networking. Cancers (Basel) 2021; 13:cancers13205201. [PMID: 34680347 PMCID: PMC8533737 DOI: 10.3390/cancers13205201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 12/30/2022] Open
Abstract
Simple Summary Transcription regulation programs require the functional interaction of distal and proximal regulatory regions, interacting by specific 3D chromatin configurations. Enhancers are cis-acting regulatory elements able to promote gene expression regardless their orientation and distance from the transcription starting site. Their systematic mapping by genome-wide chromatin profiling and chromosome conformation analysis, combined with the development of gene-editing approaches to modulate their function, revealed that many enhancers work together to fine-tune the expression of their target genes. This review aim to describe the functions of different types of enhancers and the modalities of enhancers’ interaction, focusing on their role in the regulation of complex biological processes like cancer development. Abstract The control of gene expression at a transcriptional level requires a widespread landscape of regulatory elements. Central to these regulatory circuits are enhancers (ENHs), which are defined as cis-acting DNA elements able to increase the transcription of a target gene in a distance- and orientation-independent manner. ENHs are not independent functional elements but work in a complex and dynamic cooperative network, constituting the building blocks of multimodular domains of gene expression regulation. The information from each of these elements converges on the target promoter, contributing to improving the precision and sharpness of gene modulation. ENHs’ interplay varies in its nature and extent, ranging from an additive to redundant effect depending on contexts. Moving from super-enhancers that drive the high expression levels of identity genes, to shadow-enhancers, whose redundant functions contribute to buffering the variation in gene expression, this review aims to describe the different modalities of ENHs’ interaction and their role in the regulation of complex biological processes like cancer development.
Collapse
|
21
|
Waymack R, Gad M, Wunderlich Z. Molecular competition can shape enhancer activity in the Drosophila embryo. iScience 2021; 24:103034. [PMID: 34568782 PMCID: PMC8449247 DOI: 10.1016/j.isci.2021.103034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/27/2021] [Accepted: 08/20/2021] [Indexed: 01/12/2023] Open
Abstract
Transgenic reporters allow the measurement of regulatory DNA activity in vivo and consequently have long been useful tools for studying enhancers. Despite their utility, few studies have investigated the effects these reporters may have on the expression of other genes. Understanding these effects is required to accurately interpret reporter data and characterize gene regulatory mechanisms. By measuring the expression of Kruppel (Kr) enhancer reporters in live Drosophila embryos, we find reporters inhibit one another's expression and that of a nearby endogenous gene. Using synthetic transcription factor (TF) binding site arrays, we present evidence that competition for TFs is partially responsible for the observed transcriptional inhibition. We develop a simple thermodynamic model that predicts competition of the measured magnitude specifically when TF binding is restricted to distinct nuclear subregions. Our findings underline an unexpected role of the non-homogenous nature of the nucleus in regulating gene expression.
Collapse
Affiliation(s)
- Rachel Waymack
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA
| | - Mario Gad
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA
| | - Zeba Wunderlich
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA
- Department of Biology, Boston University, 610 Commonwealth Ave., Boston, MA 02215, USA
- Biological Design Center, Boston University, 610 Commonwealth Avenue, Boston, MA 02215, USA
| |
Collapse
|
22
|
Waymack R, Wunderlich Z. Embryonic development across space and time. NATURE COMPUTATIONAL SCIENCE 2021; 1:507-508. [PMID: 38217246 DOI: 10.1038/s43588-021-00117-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2024]
Affiliation(s)
- Rachel Waymack
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA
| | - Zeba Wunderlich
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA.
- Department of Biology, Boston University, Boston, MA, USA.
| |
Collapse
|
23
|
Pintus SS, Akberdin IR, Yevshin I, Makhnovskii P, Tyapkina O, Nigmetzyanov I, Nurullin L, Devyatiyarov R, Shagimardanova E, Popov D, Kolpakov FA, Gusev O, Gazizova GR. Genome-Wide Atlas of Promoter Expression Reveals Contribution of Transcribed Regulatory Elements to Genetic Control of Disuse-Mediated Atrophy of Skeletal Muscle. BIOLOGY 2021; 10:biology10060557. [PMID: 34203013 PMCID: PMC8235325 DOI: 10.3390/biology10060557] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 06/10/2021] [Accepted: 06/15/2021] [Indexed: 12/05/2022]
Abstract
Simple Summary The genetic process underlying the control of skeletal muscle homeostasis is a key factor in methods that develop technologies to prevent age and immobility-driven atrophy. In the current paper, using advanced methods for the whole-genome profiling of transcription starting sites in fast and slow muscle in rats, we developed an integrative database of transcribed regulatory elements. Employing methods of comparative transcriptomics, we demonstrate that cis-regulatory elements are actively involved in the control of atrophy and recovery, and that the differential use of promoters and enhancers is the one of the key mechanisms that distinguishes between specific processes in slow and fast skeletal muscles. Abstract The prevention of muscle atrophy carries with it clinical significance for the control of increased morbidity and mortality following physical inactivity. While major transcriptional events associated with muscle atrophy-recovery processes are the subject of active research on the gene level, the contribution of non-coding regulatory elements and alternative promoter usage is a major source for both the production of alternative protein products and new insights into the activity of transcription factors. We used the cap-analysis of gene expression (CAGE) to create a genome-wide atlas of promoter-level transcription in fast (m. EDL) and slow (m. soleus) muscles in rats that were subjected to hindlimb unloading and subsequent recovery. We found that the genetic regulation of the atrophy-recovery cycle in two types of muscle is mediated by different pathways, including a unique set of non-coding transcribed regulatory elements. We showed that the activation of “shadow” enhancers is tightly linked to specific stages of atrophy and recovery dynamics, with the largest number of specific regulatory elements being transcriptionally active in the muscles on the first day of recovery after a week of disuse. The developed comprehensive database of transcription of regulatory elements will further stimulate research on the gene regulation of muscle homeostasis in mammals.
Collapse
Affiliation(s)
- Sergey S. Pintus
- Laboratory of Bioinformatics, Federal Research Center for Information and Computational Technologies, 630090 Novosibirsk, Russia
- Department of Computational Biology, Scientific Center for Information Technologies and Artificial Intelligence, Sirius University of Science and Technology, 354340 Sochi, Russia
- BIOSOFT.RU LLC, 630058 Novosibirsk, Russia; (S.S.P.); (I.R.A.); (I.Y.)
| | - Ilya R. Akberdin
- Laboratory of Bioinformatics, Federal Research Center for Information and Computational Technologies, 630090 Novosibirsk, Russia
- BIOSOFT.RU LLC, 630058 Novosibirsk, Russia; (S.S.P.); (I.R.A.); (I.Y.)
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Ivan Yevshin
- Laboratory of Bioinformatics, Federal Research Center for Information and Computational Technologies, 630090 Novosibirsk, Russia
- Department of Computational Biology, Scientific Center for Information Technologies and Artificial Intelligence, Sirius University of Science and Technology, 354340 Sochi, Russia
- BIOSOFT.RU LLC, 630058 Novosibirsk, Russia; (S.S.P.); (I.R.A.); (I.Y.)
| | - Pavel Makhnovskii
- Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow 123007, Russia; (P.M.); (D.P.)
| | - Oksana Tyapkina
- Kazan Institute of Biochemistry and Biophysics FRC Kazan Scientific Center of RAS, 420007 Kazan, Russia; (O.T.); (L.N.)
- Department of Biology, Kazan State Medical University, 420012 Kazan, Russia
| | - Islam Nigmetzyanov
- Extreme Biology Laboratory, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420009 Kazan, Russia; (I.N.); (R.D.); (E.S.)
| | - Leniz Nurullin
- Kazan Institute of Biochemistry and Biophysics FRC Kazan Scientific Center of RAS, 420007 Kazan, Russia; (O.T.); (L.N.)
- Department of Biology, Kazan State Medical University, 420012 Kazan, Russia
| | - Ruslan Devyatiyarov
- Extreme Biology Laboratory, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420009 Kazan, Russia; (I.N.); (R.D.); (E.S.)
| | - Elena Shagimardanova
- Extreme Biology Laboratory, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420009 Kazan, Russia; (I.N.); (R.D.); (E.S.)
| | - Daniil Popov
- Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow 123007, Russia; (P.M.); (D.P.)
| | - Fedor A. Kolpakov
- Laboratory of Bioinformatics, Federal Research Center for Information and Computational Technologies, 630090 Novosibirsk, Russia
- Department of Computational Biology, Scientific Center for Information Technologies and Artificial Intelligence, Sirius University of Science and Technology, 354340 Sochi, Russia
- BIOSOFT.RU LLC, 630058 Novosibirsk, Russia; (S.S.P.); (I.R.A.); (I.Y.)
- Correspondence: or (F.A.K.); (O.G.); (G.R.G.)
| | - Oleg Gusev
- Extreme Biology Laboratory, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420009 Kazan, Russia; (I.N.); (R.D.); (E.S.)
- RIKEN Center for Integrative Medical Sciences, RIKEN, Yokohama, Kanagawa 230-0045, Japan
- Department of Functional Transcriptomics for Medical Genetic Diagnostics, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
- Correspondence: or (F.A.K.); (O.G.); (G.R.G.)
| | - Guzel R. Gazizova
- Extreme Biology Laboratory, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420009 Kazan, Russia; (I.N.); (R.D.); (E.S.)
- Correspondence: or (F.A.K.); (O.G.); (G.R.G.)
| |
Collapse
|
24
|
Abstract
Shadow enhancers are seemingly redundant transcriptional cis-regulatory elements that regulate the same gene and drive overlapping expression patterns. Recent studies have shown that shadow enhancers are remarkably abundant and control most developmental gene expression in both invertebrates and vertebrates, including mammals. Shadow enhancers might provide an important mechanism for buffering gene expression against mutations in non-coding regulatory regions of genes implicated in human disease. Technological advances in genome editing and live imaging have shed light on how shadow enhancers establish precise gene expression patterns and confer phenotypic robustness. Shadow enhancers can interact in complex ways and may also help to drive the formation of transcriptional hubs within the nucleus. Despite their apparent redundancy, the prevalence and evolutionary conservation of shadow enhancers underscore their key role in emerging metazoan gene regulatory networks.
Collapse
|
25
|
Singh D, Yi SV. Enhancer pleiotropy, gene expression, and the architecture of human enhancer-gene interactions. Mol Biol Evol 2021; 38:3898-3909. [PMID: 33749795 PMCID: PMC8383896 DOI: 10.1093/molbev/msab085] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 02/10/2021] [Accepted: 03/18/2021] [Indexed: 12/30/2022] Open
Abstract
Enhancers are often studied as noncoding regulatory elements that modulate the precise spatiotemporal expression of genes in a highly tissue-specific manner. This paradigm has been challenged by recent evidence of individual enhancers acting in multiple tissues or developmental contexts. However, the frequency of these enhancers with high degrees of “pleiotropy” out of all putative enhancers is not well understood. Consequently, it is unclear how the variation of enhancer pleiotropy corresponds to the variation in expression breadth of target genes. Here, we use multi-tissue chromatin maps from diverse human tissues to investigate the enhancer–gene interaction architecture while accounting for 1) the distribution of enhancer pleiotropy, 2) the variations of regulatory links from enhancers to target genes, and 3) the expression breadth of target genes. We show that most enhancers are tissue-specific and that highly pleiotropy enhancers account for <1% of all putative regulatory sequences in the human genome. Notably, several genomic features are indicative of increasing enhancer pleiotropy, including longer sequence length, greater number of links to genes, increasing abundance and diversity of encoded transcription factor motifs, and stronger evolutionary conservation. Intriguingly, the number of enhancers per gene remains remarkably consistent for all genes (∼14). However, enhancer pleiotropy does not directly translate to the expression breadth of target genes. We further present a series of Gaussian Mixture Models to represent this organization architecture. Consequently, we demonstrate that a modest trend of more pleiotropic enhancers targeting more broadly expressed genes can generate the observed diversity of expression breadths in the human genome.
Collapse
Affiliation(s)
- Devika Singh
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Soojin V Yi
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
26
|
Cajigas I, Chakraborty A, Lynam M, Swyter KR, Bastidas M, Collens L, Luo H, Ay F, Kohtz JD. Sox2- Evf2 lncRNA-mediated mechanisms of chromosome topological control in developing forebrain. Development 2021; 148:dev197202. [PMID: 33593819 PMCID: PMC7990859 DOI: 10.1242/dev.197202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 02/07/2021] [Indexed: 12/13/2022]
Abstract
The Evf2 long non-coding RNA directs Dlx5/6 ultraconserved enhancer(UCE)-intrachromosomal interactions, regulating genes across a 27 Mb region on chromosome 6 in mouse developing forebrain. Here, we show that Evf2 long-range gene repression occurs through multi-step mechanisms involving the transcription factor Sox2. Evf2 directly interacts with Sox2, antagonizing Sox2 activation of Dlx5/6UCE, and recruits Sox2 to the Dlx5/6eii shadow enhancer and key Dlx5/6UCE interaction sites. Sox2 directly interacts with Dlx1 and Smarca4, as part of the Evf2 ribonucleoprotein complex, forming spherical subnuclear domains (protein pools, PPs). Evf2 targets Sox2 PPs to one long-range repressed target gene (Rbm28), at the expense of another (Akr1b8). Evf2 and Sox2 shift Dlx5/6UCE interactions towards Rbm28, linking Evf2/Sox2 co-regulated topological control and gene repression. We propose a model that distinguishes Evf2 gene repression mechanisms at Rbm28 (Dlx5/6UCE position) and Akr1b8 (limited Sox2 availability). Genome-wide control of RNPs (Sox2, Dlx and Smarca4) shows that co-recruitment influences Sox2 DNA binding. Together, these data suggest that Evf2 organizes a Sox2 PP subnuclear domain and, through Sox2-RNP sequestration and recruitment, regulates chromosome 6 long-range UCE targeting and activity with genome-wide consequences.
Collapse
Affiliation(s)
- Ivelisse Cajigas
- Department of Pediatrics, Northwestern University, Feinberg School of Medicine, Department of Human Molecular Genetics, Stanley Manne Children's Research Institute 2430 N Halsted, Chicago, IL 60614, USA
| | - Abhijit Chakraborty
- Centers for Autoimmunity and Cancer Immunotherapy, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA, 92037, USA
| | - Madison Lynam
- Department of Pediatrics, Northwestern University, Feinberg School of Medicine, Department of Human Molecular Genetics, Stanley Manne Children's Research Institute 2430 N Halsted, Chicago, IL 60614, USA
| | - Kelsey R Swyter
- Department of Pediatrics, Northwestern University, Feinberg School of Medicine, Department of Human Molecular Genetics, Stanley Manne Children's Research Institute 2430 N Halsted, Chicago, IL 60614, USA
| | - Monique Bastidas
- Department of Pediatrics, Northwestern University, Feinberg School of Medicine, Department of Human Molecular Genetics, Stanley Manne Children's Research Institute 2430 N Halsted, Chicago, IL 60614, USA
| | - Linden Collens
- Department of Pediatrics, Northwestern University, Feinberg School of Medicine, Department of Human Molecular Genetics, Stanley Manne Children's Research Institute 2430 N Halsted, Chicago, IL 60614, USA
| | - Hao Luo
- Department of Pediatrics, Northwestern University, Feinberg School of Medicine, Department of Human Molecular Genetics, Stanley Manne Children's Research Institute 2430 N Halsted, Chicago, IL 60614, USA
| | - Ferhat Ay
- Centers for Autoimmunity and Cancer Immunotherapy, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA, 92037, USA
- School of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Jhumku D Kohtz
- Department of Pediatrics, Northwestern University, Feinberg School of Medicine, Department of Human Molecular Genetics, Stanley Manne Children's Research Institute 2430 N Halsted, Chicago, IL 60614, USA
| |
Collapse
|
27
|
Floc'hlay S, Wong ES, Zhao B, Viales RR, Thomas-Chollier M, Thieffry D, Garfield DA, Furlong EEM. Cis-acting variation is common across regulatory layers but is often buffered during embryonic development. Genome Res 2021; 31:211-224. [PMID: 33310749 PMCID: PMC7849415 DOI: 10.1101/gr.266338.120] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 12/09/2020] [Indexed: 12/14/2022]
Abstract
Precise patterns of gene expression are driven by interactions between transcription factors, regulatory DNA sequences, and chromatin. How DNA mutations affecting any one of these regulatory "layers" are buffered or propagated to gene expression remains unclear. To address this, we quantified allele-specific changes in chromatin accessibility, histone modifications, and gene expression in F1 embryos generated from eight Drosophila crosses at three embryonic stages, yielding a comprehensive data set of 240 samples spanning multiple regulatory layers. Genetic variation (allelic imbalance) impacts gene expression more frequently than chromatin features, with metabolic and environmental response genes being most often affected. Allelic imbalance in cis-regulatory elements (enhancers) is common and highly heritable, yet its functional impact does not generally propagate to gene expression. When it does, genetic variation impacts RNA levels through two alternative mechanisms involving either H3K4me3 or chromatin accessibility and H3K27ac. Changes in RNA are more predictive of variation in H3K4me3 than vice versa, suggesting a role for H3K4me3 downstream from transcription. The impact of a substantial proportion of genetic variation is consistent across embryonic stages, with 50% of allelic imbalanced features at one stage being also imbalanced at subsequent developmental stages. Crucially, buffering, as well as the magnitude and evolutionary impact of genetic variants, is influenced by regulatory complexity (i.e., number of enhancers regulating a gene), with transcription factors being most robust to cis-acting, but most influenced by trans-acting, variation.
Collapse
Affiliation(s)
- Swann Floc'hlay
- Institut de Biologie de l'ENS (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Emily S Wong
- Molecular, Structural and Computational Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales 2010, Australia
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Kensington, New South Wales 2052, Australia
| | - Bingqing Zhao
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, D-69117 Heidelberg, Germany
| | - Rebecca R Viales
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, D-69117 Heidelberg, Germany
| | - Morgane Thomas-Chollier
- Institut de Biologie de l'ENS (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
- Institut Universitaire de France (IUF), 75005 Paris, France
| | - Denis Thieffry
- Institut de Biologie de l'ENS (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - David A Garfield
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, D-69117 Heidelberg, Germany
| | - Eileen E M Furlong
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, D-69117 Heidelberg, Germany
| |
Collapse
|