1
|
Wu CH, Liao WH, Chu YC, Hsiao MY, Kung Y, Wang JL, Chen WS. Very Low-Intensity Ultrasound Facilitates Glymphatic Influx and Clearance via Modulation of the TRPV4-AQP4 Pathway. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401039. [PMID: 39494466 DOI: 10.1002/advs.202401039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 10/18/2024] [Indexed: 11/05/2024]
Abstract
Recently, the glymphatic system has been proposed as a mechanism for waste clearance from the brain parenchyma. Glymphatic dysfunction has previously been shown to be associated with several neurological diseases, including Alzheimer's disease, traumatic brain injury, and stroke. As such, it may serve as an important target for therapeutic interventions. In the present study, very low-intensity ultrasound (VLIUS) (center frequency, 1 MHz; pulse repetition frequency, 1 kHz; duty factor, 1%; spatial peak temporal average intensity [Ispta] = 3.68 mW cm2; and duration, 5 min) is found to significantly enhance the influx of cerebrospinal fluid tracers into the paravascular spaces of the brain, and further facilitate interstitial substance clearance from the brain parenchyma, including exogenous β-amyloid. Notably, no evidence of brain damage is observed following VLIUS stimulation. VLIUS may enhance glymphatic influx via the transient receptor potential vanilloid-4-aquaporin-4 pathway in astrocytes. This mechanism may provide insights into VLIUS-regulated glymphatic function that modifies the natural course of central nervous system disorders related to waste clearance dysfunction.
Collapse
Affiliation(s)
- Chueh-Hung Wu
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, 100, Taiwan
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu, 300, Taiwan
| | - Wei-Hao Liao
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, 100, Taiwan
| | - Ya-Cherng Chu
- Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, 106, Taiwan
| | - Ming-Yen Hsiao
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, 100, Taiwan
| | - Yi Kung
- Department of Biomechatronic Engineering, National Chiayi University, Chiayi, 600, Taiwan
| | - Jaw-Lin Wang
- Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, 106, Taiwan
| | - Wen-Shiang Chen
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, 100, Taiwan
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli, 350, Taiwan
| |
Collapse
|
2
|
Olaitan GO, Lynch WJ, Venton BJ. The therapeutic potential of low-intensity focused ultrasound for treating substance use disorder. Front Psychiatry 2024; 15:1466506. [PMID: 39628494 PMCID: PMC11612502 DOI: 10.3389/fpsyt.2024.1466506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 10/07/2024] [Indexed: 12/06/2024] Open
Abstract
Substance use disorder (SUD) is a persistent public health issue that necessitates the exploration of novel therapeutic interventions. Low-intensity focused ultrasound (LIFU) is a promising modality for precise and invasive modulation of brain activity, capable of redefining the landscape of SUD treatment. The review overviews effective LIFU neuromodulatory parameters and molecular mechanisms, focusing on the modulation of reward pathways in key brain regions in animal and human models. Integration of LIFU with established therapeutics holds promise for augmenting treatment outcomes in SUD. The current research examines LIFU's efficacy in reducing cravings and withdrawal symptoms. LIFU shows promise for reducing cravings, modulating reward circuitry, and addressing interoceptive dysregulation and emotional distress. Selecting optimal parameters, encompassing frequency, burst patterns, and intensity, is pivotal for balancing therapeutic efficacy and safety. However, inconsistencies in empirical findings warrant further research on optimal treatment parameters, physiological action mechanisms, and long-term effects. Collaborative interdisciplinary investigations are imperative to fully realize LIFU's potential in revolutionizing SUD treatment paradigms and enhancing patient outcomes.
Collapse
Affiliation(s)
- Greatness O. Olaitan
- Department of Chemistry, University of Virginia, Charlottesville, VA, United States
| | - Wendy J. Lynch
- Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, VA, United States
| | - B. Jill Venton
- Department of Chemistry, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
3
|
He C, Zhou Y, Chen J, Vinokur R, Kiessling F, Herrmann A. Ultrasonic Control of Protein Splicing by Split Inteins. J Am Chem Soc 2024; 146:26947-26956. [PMID: 39293002 DOI: 10.1021/jacs.4c08207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
Utilizing ultrasound as an external stimulus to remotely modulate the activity of proteins is an important aspect of sonopharmacology and establishes the basis for the emerging field of sonogenetics. Here, we describe an ultrasound-responsive protein splicing system that enables spatiotemporal control of split-intein-mediated protein ligation. The system utilizes engineered split inteins that are caged and can be activated by thrombin released from a high molar mass DNA-based carrier under focused ultrasound sonication. This approach represents a general method for controlling the functions of proteins of interest by ultrasound, as demonstrated here by the controlled synthesis of the superfolder green fluorescence protein (GFP) and calcitonin. Furthermore, calcitonin receptor-mediated signal transduction in cells was triggered by this system in vitro without harming cell viability. By expanding the sonogenetic toolbox with protein splicing technologies, this study provides a possible pathway to deploy ultrasound for remotely controlling a variety of protein functions in deep tissue in the future.
Collapse
Affiliation(s)
- Chuanjiang He
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52074 Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| | - Yu Zhou
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52074 Aachen, Germany
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AGGroningen, The Netherlands
| | - Junlin Chen
- Institute for Experimental Molecular Imaging, University Hospital Aachen, Forckenbeckstr.55, 52074 Aachen, Germany
| | - Rostislav Vinokur
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52074 Aachen, Germany
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging, University Hospital Aachen, Forckenbeckstr.55, 52074 Aachen, Germany
| | - Andreas Herrmann
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52074 Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| |
Collapse
|
4
|
Legault LM, Dupas T, Breton-Larrivée M, Filion-Bienvenue F, Lemieux A, Langford-Avelar A, McGraw S. Sex-specific DNA methylation and gene expression changes in mouse placentas after early preimplantation alcohol exposure. ENVIRONMENT INTERNATIONAL 2024; 192:109014. [PMID: 39321537 DOI: 10.1016/j.envint.2024.109014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 09/13/2024] [Accepted: 09/14/2024] [Indexed: 09/27/2024]
Abstract
During pregnancy, exposure to alcohol represents an environmental insult capable of negatively impacting embryonic development. This influence can stem from disruption of molecular profiles, ultimately leading to manifestation of fetal alcohol spectrum disorder. Despite the central role of the placenta in proper embryonic development and successful pregnancy, studies on the placenta in a prenatal alcohol exposure and fetal alcohol spectrum disorder context are markedly lacking. Here, we employed a well-established model for preimplantation alcohol exposure, specifically targeting embryonic day 2.5, corresponding to the 8-cell stage. The exposure was administered to pregnant C57BL/6 female mice through subcutaneous injection, involving two doses of either 2.5 g/kg 50 % ethanol or an equivalent volume of saline at 2-hour intervals. Morphology, DNA methylation and gene expression patterns were assessed in male and female late-gestation (E18.5) placentas. While overall placental morphology was not altered, we found a significant decrease in male ethanol-exposed embryo weights. When looking at molecular profiles, we uncovered numerous differentially methylated regions (DMRs; 991 in males; 1309 in females) and differentially expressed genes (DEGs; 1046 in males; 340 in females) in the placentas. Remarkably, only 21 DMRs and 54 DEGs were common to both sexes, which were enriched for genes involved in growth factor response pathways. Preimplantation alcohol exposure had a greater impact on imprinted genes expression in male placentas (imprinted DEGs: 18 in males; 1 in females). Finally, by using machine learning model (L1 regularization), we were able to precisely discriminate control and ethanol-exposed placentas based on their specific DNA methylation patterns. This is the first study demonstrating that preimplantation alcohol exposure alters the DNA methylation and transcriptomic profiles of late-gestation placentas in a sex-specific manner. Our findings highlight that the DNA methylation profiles of the placenta could serve as a potent predictive molecular signature for early preimplantation alcohol exposure.
Collapse
Affiliation(s)
- Lisa-Marie Legault
- CHU Ste-Justine Azrieli Research Center, 3175 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1C5, Canada; Department of Biochemistry and Molecular Medicine, Université de Montréal, 2900 Boulevard Edouard‑Montpetit, Montréal, QC H3T 1J4, Canada.
| | - Thomas Dupas
- CHU Ste-Justine Azrieli Research Center, 3175 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1C5, Canada; Department of Obstetrics and Gynecology, Université de Montréal, 2900 Boulevard Edouard‑Montpetit, Montréal, QC H3T 1J4, Canada.
| | - Mélanie Breton-Larrivée
- CHU Ste-Justine Azrieli Research Center, 3175 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1C5, Canada; Department of Biochemistry and Molecular Medicine, Université de Montréal, 2900 Boulevard Edouard‑Montpetit, Montréal, QC H3T 1J4, Canada.
| | - Fannie Filion-Bienvenue
- CHU Ste-Justine Azrieli Research Center, 3175 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1C5, Canada; Department of Biochemistry and Molecular Medicine, Université de Montréal, 2900 Boulevard Edouard‑Montpetit, Montréal, QC H3T 1J4, Canada.
| | - Anthony Lemieux
- CHU Ste-Justine Azrieli Research Center, 3175 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1C5, Canada.
| | - Alexandra Langford-Avelar
- CHU Ste-Justine Azrieli Research Center, 3175 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1C5, Canada; Department of Biochemistry and Molecular Medicine, Université de Montréal, 2900 Boulevard Edouard‑Montpetit, Montréal, QC H3T 1J4, Canada.
| | - Serge McGraw
- CHU Ste-Justine Azrieli Research Center, 3175 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1C5, Canada; Department of Biochemistry and Molecular Medicine, Université de Montréal, 2900 Boulevard Edouard‑Montpetit, Montréal, QC H3T 1J4, Canada; Department of Obstetrics and Gynecology, Université de Montréal, 2900 Boulevard Edouard‑Montpetit, Montréal, QC H3T 1J4, Canada.
| |
Collapse
|
5
|
Fan WY, Chen YM, Wang YF, Wang YQ, Hu JQ, Tang WX, Feng Y, Cheng Q, Xue L. L-Type Calcium Channel Modulates Low-Intensity Pulsed Ultrasound-Induced Excitation in Cultured Hippocampal Neurons. Neurosci Bull 2024; 40:921-936. [PMID: 38498092 PMCID: PMC11250733 DOI: 10.1007/s12264-024-01186-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 12/06/2023] [Indexed: 03/19/2024] Open
Abstract
As a noninvasive technique, ultrasound stimulation is known to modulate neuronal activity both in vitro and in vivo. The latest explanation of this phenomenon is that the acoustic wave can activate the ion channels and further impact the electrophysiological properties of targeted neurons. However, the underlying mechanism of low-intensity pulsed ultrasound (LIPUS)-induced neuro-modulation effects is still unclear. Here, we characterize the excitatory effects of LIPUS on spontaneous activity and the intracellular Ca2+ homeostasis in cultured hippocampal neurons. By whole-cell patch clamp recording, we found that 15 min of 1-MHz LIPUS boosts the frequency of both spontaneous action potentials and spontaneous excitatory synaptic currents (sEPSCs) and also increases the amplitude of sEPSCs in hippocampal neurons. This phenomenon lasts for > 10 min after LIPUS exposure. Together with Ca2+ imaging, we clarified that LIPUS increases the [Ca2+]cyto level by facilitating L-type Ca2+ channels (LTCCs). In addition, due to the [Ca2+]cyto elevation by LIPUS exposure, the Ca2+-dependent CaMKII-CREB pathway can be activated within 30 min to further regulate the gene transcription and protein expression. Our work suggests that LIPUS regulates neuronal activity in a Ca2+-dependent manner via LTCCs. This may also explain the multi-activation effects of LIPUS beyond neurons. LIPUS stimulation potentiates spontaneous neuronal activity by increasing Ca2+ influx.
Collapse
Affiliation(s)
- Wen-Yong Fan
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200433, China
- Department of Physiology and Neurobiology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Yi-Ming Chen
- Institute of Acoustics, School of Physics Science and Engineering, Tongji University, Shanghai, 200092, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Tongji University, Shanghai, 200070, China
| | - Yi-Fan Wang
- Institute of Acoustics, School of Physics Science and Engineering, Tongji University, Shanghai, 200092, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Tongji University, Shanghai, 200070, China
| | - Yu-Qi Wang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200433, China
- Department of Physiology and Neurobiology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Jia-Qi Hu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200433, China
- Department of Physiology and Neurobiology, School of Life Sciences, Fudan University, Shanghai, 200438, China
- Center for Rehabilitation Medicine, Department of Pain Management, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China
| | - Wen-Xu Tang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200433, China
- Department of Physiology and Neurobiology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Yi Feng
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, China
| | - Qian Cheng
- Institute of Acoustics, School of Physics Science and Engineering, Tongji University, Shanghai, 200092, China.
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Tongji University, Shanghai, 200070, China.
- Shanghai Research Institute for Intelligent Autonomous Systems, Tongji University, Shanghai, 201210, China.
| | - Lei Xue
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200433, China.
- Department of Physiology and Neurobiology, School of Life Sciences, Fudan University, Shanghai, 200438, China.
- Research Institute of Intelligent Complex Systems, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
6
|
Olaitan GO, Ganesana M, Strohman A, Lynch WJ, Legon W, Jill Venton B. Focused Ultrasound Modulates Dopamine in a Mesolimbic Reward Circuit. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.13.580202. [PMID: 38979318 PMCID: PMC11230179 DOI: 10.1101/2024.02.13.580202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Dopamine is a neurotransmitter that plays a significant role in reward and motivation. Dysfunction in the mesolimbic dopamine pathway has been linked to a variety of psychiatric disorders, including addiction. Low-intensity focused ultrasound (LIFU) has demonstrated effects on brain activity, but how LIFU affects dopamine neurotransmission is not known. Here, we applied three different intensities (6.5, 13, and 26 W/cm 2 I sppa ) of 2-minute LIFU to the prelimbic region (PLC) and measured dopamine in the nucleus accumbens (NAc) core using fast-scan cyclic voltammetry. Two minutes of LIFU sonication at 13 W/cm 2 to the PLC significantly reduced dopamine release by ∼ 50% for up to 2 hours. However, double the intensity (26 W/cm 2 ) resulted in less inhibition (∼30%), and half the intensity (6.5 W/cm 2 ) did not result in any inhibition of dopamine. Anatomical controls applying LIFU to the primary somatosensory cortex did not change NAc core dopamine, and applying LIFU to the PLC did not affect dopamine release in the caudate or NAc shell. Histological evaluations showed no evidence of cell damage or death. Modeling of temperature rise demonstrates a maximum temperature change of 0.5°C with 13 W/cm 2 , suggesting that modulation is not due to thermal mechanisms. These studies show that LIFU at a moderate intensity provides a noninvasive, high spatial resolution means to modulate specific mesolimbic circuits that could be used in future studies to target and repair pathways that are dysfunctional in addiction and other psychiatric diseases.
Collapse
|
7
|
Li B, Zhao A, Tian T, Yang X. Mechanobiological insight into brain diseases based on mechanosensitive channels: Common mechanisms and clinical potential. CNS Neurosci Ther 2024; 30:e14809. [PMID: 38923822 PMCID: PMC11197048 DOI: 10.1111/cns.14809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/15/2024] [Accepted: 06/02/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND As physical signals, mechanical cues regulate the neural cells in the brain. The mechanosensitive channels (MSCs) perceive the mechanical cues and transduce them by permeating specific ions or molecules across the plasma membrane, and finally trigger a series of intracellular bioelectrical and biochemical signals. Emerging evidence supports that wide-distributed, high-expressed MSCs like Piezo1 play important roles in several neurophysiological processes and neurological disorders. AIMS To systematically conclude the functions of MSCs in the brain and provide a novel mechanobiological perspective for brain diseases. METHOD We summarized the mechanical cues and MSCs detected in the brain and the research progress on the functional roles of MSCs in physiological conditions. We then concluded the pathological activation and downstream pathways triggered by MSCs in two categories of brain diseases, neurodegenerative diseases and place-occupying damages. Finally, we outlined the methods for manipulating MSCs and discussed their medical potential with some crucial outstanding issues. RESULTS The MSCs present underlying common mechanisms in different brain diseases by acting as the "transportation hubs" to transduce the distinct signal patterns: the upstream mechanical cues and the downstream intracellular pathways. Manipulating the MSCs is feasible to alter the complicated downstream processes, providing them promising targets for clinical treatment. CONCLUSIONS Recent research on MSCs provides a novel insight into brain diseases. The common mechanisms mediated by MSCs inspire a wide range of therapeutic potentials targeted on MSCs in different brain diseases.
Collapse
Affiliation(s)
- Bolong Li
- Shenzhen Key Laboratory of Translational Research for Brain Diseases, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenGuangdongChina
- College of Life SciencesUniversity of Chinese Academy of ScienceBeijingChina
| | - An‐ran Zhao
- Shenzhen Key Laboratory of Translational Research for Brain Diseases, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenGuangdongChina
- College of Life SciencesUniversity of Chinese Academy of ScienceBeijingChina
- Faculty of Life and Health SciencesShenzhen University of Advanced TechnologyShenzhenGuangdongChina
| | - Tian Tian
- Shenzhen Key Laboratory of Translational Research for Brain Diseases, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenGuangdongChina
- Faculty of Life and Health SciencesShenzhen University of Advanced TechnologyShenzhenGuangdongChina
| | - Xin Yang
- Shenzhen Key Laboratory of Translational Research for Brain Diseases, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenGuangdongChina
- Faculty of Life and Health SciencesShenzhen University of Advanced TechnologyShenzhenGuangdongChina
| |
Collapse
|
8
|
Ma X, Wang X, Zhu K, Ma R, Chu F, Liu X, Zhang S, Yin T, Zhou X, Liu Z. Study on the Role of Physical Fields in TMAS to Modulate Synaptic Plasticity in Mice. IEEE Trans Biomed Eng 2024; 71:1531-1541. [PMID: 38117631 DOI: 10.1109/tbme.2023.3342012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
OBJECTIVE Transcranial magneto-acoustic stimulation (TMAS) is a composite technique combining static magnetic and coupled electric fields with transcranial ultrasound stimulation (TUS) and has shown advantages in neuromodulation. However, the role of these physical fields in neuromodulation is unclear. Synaptic plasticity is the cellular basis for learning and memory. In this paper, we varied the intensity of static magnetic, electric and ultrasonic fields respectively to investigate the modulation of synaptic plasticity by these physical fields. METHODS There are control, static magnetic field (0.1 T/0.2 T), TUS (0.15/0.3 MPa), and TMAS (0.15 MPa + 0.2 V/m, 0.3 MPa + 0.2 V/m, 0.3 MPa + 0.4 V/m) groups. Hippocampal areas were stimulated at 5 min daily for 7 days and in vivo electrophysiological experiments were performed. RESULTS TMAS induced greater LTP, LTD, and paired-pulse ratio (PPR) than TUS, reflecting that TMAS has a more significant modulation in both long- and short- term synaptic plasticity. In TMAS, a doubling of the electric field amplitude increases LTP, LTD and PPR to a greater extent than a doubling of the acoustic pressure. Increasing the static magnetic field intensity has no significant effect on the modulation of synaptic plasticity. CONCLUSION This paper argues that electric fields should be the main reason for the difference in modulation between TMAS and TUS and that changing the amplitude of the electric field affected the modulation of TMAS more than changing the acoustic pressure. SIGNIFICANCE This study elucidates the roles of the physical fields in TMAS and provides a parameterisation way to guide TMAS applications based on the dominant roles of the physical fields.
Collapse
|
9
|
Mishima T, Komano K, Tabaru M, Kofuji T, Saito A, Ugawa Y, Terao Y. Repetitive pulsed-wave ultrasound stimulation suppresses neural activity by modulating ambient GABA levels via effects on astrocytes. Front Cell Neurosci 2024; 18:1361242. [PMID: 38601023 PMCID: PMC11004293 DOI: 10.3389/fncel.2024.1361242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 03/18/2024] [Indexed: 04/12/2024] Open
Abstract
Ultrasound is highly biopermeable and can non-invasively penetrate deep into the brain. Stimulation with patterned low-intensity ultrasound can induce sustained inhibition of neural activity in humans and animals, with potential implications for research and therapeutics. Although mechanosensitive channels are involved, the cellular and molecular mechanisms underlying neuromodulation by ultrasound remain unknown. To investigate the mechanism of action of ultrasound stimulation, we studied the effects of two types of patterned ultrasound on synaptic transmission and neural network activity using whole-cell recordings in primary cultured hippocampal cells. Single-shot pulsed-wave (PW) or continuous-wave (CW) ultrasound had no effect on neural activity. By contrast, although repetitive CW stimulation also had no effect, repetitive PW stimulation persistently reduced spontaneous recurrent burst firing. This inhibitory effect was dependent on extrasynaptic-but not synaptic-GABAA receptors, and the effect was abolished under astrocyte-free conditions. Pharmacological activation of astrocytic TRPA1 channels mimicked the effects of ultrasound by increasing the tonic GABAA current induced by ambient GABA. Pharmacological blockade of TRPA1 channels abolished the inhibitory effect of ultrasound. These findings suggest that the repetitive PW low-intensity ultrasound used in our study does not have a direct effect on neural function but instead exerts its sustained neuromodulatory effect through modulation of ambient GABA levels via channels with characteristics of TRPA1, which is expressed in astrocytes.
Collapse
Affiliation(s)
- Tatsuya Mishima
- Department of Medical Physiology, Kyorin University School of Medicine, Mitaka, Japan
| | - Kenta Komano
- Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Marie Tabaru
- Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Takefumi Kofuji
- Department of Medical Physiology, Kyorin University School of Medicine, Mitaka, Japan
- Radioisotope Laboratory, Kyorin University School of Medicine, Mitaka, Japan
| | - Ayako Saito
- Department of Medical Physiology, Kyorin University School of Medicine, Mitaka, Japan
| | - Yoshikazu Ugawa
- Department of Human Neurophysiology, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Yasuo Terao
- Department of Medical Physiology, Kyorin University School of Medicine, Mitaka, Japan
| |
Collapse
|
10
|
Wang L, Wang S, Mo W, Li Y, Yang Q, Tian Y, Zheng C, Yang J, Ming D. Ultrasound Stimulation Attenuates CRS-Induced Depressive Behavior by Modulating Dopamine Release in the Prefrontal Cortex. IEEE Trans Neural Syst Rehabil Eng 2024; 32:1314-1323. [PMID: 38498742 DOI: 10.1109/tnsre.2024.3378976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Depression is one of the most serious mental disorders affecting modern human life and is often caused by chronic stress. Dopamine system dysfunction is proposed to contribute to the pathophysiology of chronic stress, especially the ventral tegmental area (VTA) which mainly consists of dopaminergic neurons. Focused ultrasound stimulation (FUS) is a promising neuromodulation modality and multiple studies have demonstrated effective ultrasonic activation of cortical, subcortical, and related networks. However, the effects of FUS on the dopamine system and the potential link to chronic stress-induced depressive behaviors are relatively unknown. Here, we measured the effects of FUS targeting VTA on the improvement of depression-like behavior and evaluated the dopamine concentration in the downstream region - medial prefrontal cortex (mPFC). We found that targeting VTA FUS treatment alleviated chronic restraint stress (CRS) -induced anhedonia and despair behavior. Using an in vivo photometry approach, we analyzed the dopamine signal of mPFC and revealed a significant increase following the FUS, positively associated with the improvement of anhedonia behavior. FUS also protected the dopaminergic neurons in VTA from the damage caused by CRS exposure. Thus, these results demonstrated that targeting VTA FUS treatment significantly rescued the depressive-like behavior and declined dopamine level of mPFC induced by CRS. These beneficial effects of FUS might be due to protection in the DA neuron of VTA. Our findings suggest that FUS treatment could serve as a new therapeutic strategy for the treatment of stress-related disorders.
Collapse
|
11
|
Hahmann J, Ishaqat A, Lammers T, Herrmann A. Sonogenetics for Monitoring and Modulating Biomolecular Function by Ultrasound. Angew Chem Int Ed Engl 2024; 63:e202317112. [PMID: 38197549 DOI: 10.1002/anie.202317112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/01/2024] [Accepted: 01/08/2024] [Indexed: 01/11/2024]
Abstract
Ultrasound technology, synergistically harnessed with genetic engineering and chemistry concepts, has started to open the gateway to the remarkable realm of sonogenetics-a pioneering paradigm for remotely orchestrating cellular functions at the molecular level. This fusion not only enables precisely targeted imaging and therapeutic interventions, but also advances our comprehension of mechanobiology to unparalleled depths. Sonogenetic tools harness mechanical force within small tissue volumes while preserving the integrity of the surrounding physiological environment, reaching depths of up to tens of centimeters with high spatiotemporal precision. These capabilities circumvent the inherent physical limitations of alternative in vivo control methods such as optogenetics and magnetogenetics. In this review, we first discuss mechanosensitive ion channels, the most commonly utilized sonogenetic mediators, in both mammalian and non-mammalian systems. Subsequently, we provide a comprehensive overview of state-of-the-art sonogenetic approaches that leverage thermal or mechanical features of ultrasonic waves. Additionally, we explore strategies centered around the design of mechanochemically reactive macromolecular systems. Furthermore, we delve into the realm of ultrasound imaging of biomolecular function, encompassing the utilization of gas vesicles and acoustic reporter genes. Finally, we shed light on limitations and challenges of sonogenetics and present a perspective on the future of this promising technology.
Collapse
Affiliation(s)
- Johannes Hahmann
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52074, Aachen, Germany
- Max Planck School Matter to Life, Jahnstr. 29, 69120, Heidelberg, Germany
| | - Aman Ishaqat
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52074, Aachen, Germany
| | - Twan Lammers
- Institute for Experimental Molecular Imaging (ExMI), Center for Biohybrid Medical Systems (CBMS), RWTH Aachen University Clinic, Forckenbeckstr. 55, 52074, Aachen, Germany
| | - Andreas Herrmann
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52074, Aachen, Germany
- Max Planck School Matter to Life, Jahnstr. 29, 69120, Heidelberg, Germany
| |
Collapse
|
12
|
Lin Y, Lee C, Sung J, Chen C. Genetic exploration of roles of acid-sensing ion channel subtypes in neurosensory mechanotransduction including proprioception. Exp Physiol 2024; 109:66-80. [PMID: 37489658 PMCID: PMC10988671 DOI: 10.1113/ep090762] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 07/03/2023] [Indexed: 07/26/2023]
Abstract
Although acid-sensing ion channels (ASICs) are proton-gated ion channels responsible for sensing tissue acidosis, accumulating evidence has shown that ASICs are also involved in neurosensory mechanotransduction. However, in contrast to Piezo ion channels, evidence of ASICs as mechanically gated ion channels has not been found using conventional mechanoclamp approaches. Instead, ASICs are involved in the tether model of mechanotransduction, with the channels gated via tethering elements of extracellular matrix and intracellular cytoskeletons. Methods using substrate deformation-driven neurite stretch and micropipette-guided ultrasound were developed to reveal the roles of ASIC3 and ASIC1a, respectively. Here we summarize the evidence supporting the roles of ASICs in neurosensory mechanotransduction in knockout mouse models of ASIC subtypes and provide insight to further probe their roles in proprioception.
Collapse
Affiliation(s)
- Yi‐Chen Lin
- Department of Neurology, Wan Fang HospitalTaipei Medical UniversityTaipeiTaiwan
- The Ph.D. Program for Translational MedicineTaipei Medical University and Academia SinicaNew Taipei CityTaiwan
- Taipei Neuroscience InstituteTaipei Medical UniversityNew Taipei CityTaiwan
- Institute of Biomedical SciencesAcademia SinicaTaipeiTaiwan
| | - Cheng‐Han Lee
- Institute of Biomedical SciencesAcademia SinicaTaipeiTaiwan
- Neuroscience Program of Academia SinicaAcademia SinicaTaipeiTaiwan
| | - Jia‐Ying Sung
- Department of Neurology, Wan Fang HospitalTaipei Medical UniversityTaipeiTaiwan
- Taipei Neuroscience InstituteTaipei Medical UniversityNew Taipei CityTaiwan
- Department of Neurology, School of Medicine, College of MedicineTaipei Medical UniversityTaipeiTaiwan
| | - Chih‐Cheng Chen
- The Ph.D. Program for Translational MedicineTaipei Medical University and Academia SinicaNew Taipei CityTaiwan
- Institute of Biomedical SciencesAcademia SinicaTaipeiTaiwan
- Neuroscience Program of Academia SinicaAcademia SinicaTaipeiTaiwan
- Taiwan Mouse Clinic – National Comprehensive Mouse Phenotyping and Drug Testing CenterAcademia SinicaTaipeiTaiwan
- TMU Neuroscience Research Center, Taipei Medical UniversityNew Taipei CityTaiwan
| |
Collapse
|
13
|
Han DS, Lee CH, Shieh YD, Chang KV, Lin SH, Chu YC, Wang JL, Chen CC. Involvement of ASIC3 and Substance P in Therapeutic Ultrasound-Mediated Analgesia in Mouse Models of Fibromyalgia. THE JOURNAL OF PAIN 2023; 24:1493-1505. [PMID: 37054767 DOI: 10.1016/j.jpain.2023.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/10/2023] [Accepted: 04/04/2023] [Indexed: 04/15/2023]
Abstract
Therapeutic ultrasound (tUS) is widely used in chronic muscle pain control. However, its analgesic molecular mechanism is still not known. Our objective is to reveal the mechanism of the tUS-induced analgesia in mouse models of fibromyalgia. We applied tUS in mice that have developed chronic hyperalgesia induced by intramuscular acidification and determined the tUS frequency at 3 MHz, dosage at 1 W/cm2 (measured output as 6.3 mW/cm2) and 100% duty cycle for 3 minutes having the best analgesic effect. Pharmacological and genetic approaches were used to probe the molecular determinants involved in tUS-mediated analgesia. A second mouse model of fibromyalgia induced by intermittent cold stress was further used to validate the mechanism underlying the tUS-mediated analgesia. The tUS-mediated analgesia was abolished by a pretreatment of NK1 receptor antagonist-RP-67580 or knockout of substance P (Tac1-/-). Besides, the tUS-mediated analgesia was abolished by ASIC3-selective antagonist APETx2 but not TRPV1-selective antagonist capsazepine, suggesting a role for ASIC3. Moreover, the tUS-mediated analgesia was attenuated by ASIC3-selective nonsteroid anti-inflammation drugs (NSAIDs)-aspirin and diclofenac but not by ASIC1a-selective ibuprofen. We next validated the antinociceptive role of substance P signaling in the model induced by intermittent cold stress, in which tUS-mediated analgesia was abolished in mice lacking substance P, NK1R, Asic1a, Asic2b, or Asic3 gene. tUS treatment could activate ASIC3-containing channels in muscle afferents to release substance P intramuscularly and exert an analgesic effect in mouse models of fibromyalgia. NSAIDs should be cautiously used or avoided in the tUS treatment. PERSPECTIVE: Therapeutic ultrasound showed analgesic effects against chronic mechanical hyperalgesia in the mouse model of fibromyalgia through the signaling pathways involving substance P and ASIC3-containing ion channels in muscle afferents. NSAIDs should be cautiously used during tUS treatment.
Collapse
Affiliation(s)
- Der-Sheng Han
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital, Beihu Branch, Taipei, Taiwan; Department of Physical Medicine and Rehabilitation, National Taiwan University College of Medicine, Taipei, Taiwan; Health Science and Wellness Center, National Taiwan University, Taipei, Taiwan
| | - Cheng-Han Lee
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yih-Dar Shieh
- Department of Physical Medicine and Rehabilitation, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ke-Vin Chang
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital, Beihu Branch, Taipei, Taiwan; Department of Physical Medicine and Rehabilitation, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Shing-Hong Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Ya-Cherng Chu
- Department of Biomedical Engineering, National Taiwan University, Taipei, Taiwan
| | - Jaw-Lin Wang
- Department of Biomedical Engineering, National Taiwan University, Taipei, Taiwan
| | - Chih-Cheng Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan; Taiwan Mouse Clinic, Biomedical Translational Research Center, Academia Sinica, Taipei, Taiwan; Neuroscience Program of Academia Sinica, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
14
|
Liu X, Zou D, Hu Y, He Y, Lu J. Research Progress of Low-Intensity Pulsed Ultrasound in the Repair of Peripheral Nerve Injury. TISSUE ENGINEERING. PART B, REVIEWS 2023; 29:414-428. [PMID: 36785967 DOI: 10.1089/ten.teb.2022.0194] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Peripheral nerve injury (PNI) is a common disease that has profound impact on the health of patients, but has poor prognosis. The gold standard for the treatment of peripheral nerve defects is autologous nerve grafting; notwithstanding, due to the extremely high requirement for surgeons and medical facilities, there is great interest in developing better treatment strategies for PNI. Low-intensity pulsed ultrasound (LIPUS) is a noninterventional stimulation method characterized by low-intensity pulsed waves. It has good therapeutic effect on fractures, inflammation, soft tissue regeneration, and nerve regulation, and can participate in PNI repair from multiple perspectives. This review concentrates on the effects and mechanisms of LIPUS in the repair of PNI from the perspective of LIPUS stimulation of neural cells and stem cells, modulation of neurotrophic factors, signaling pathways, proinflammatory cytokines, and nerve-related molecules. In addition, the effects of LIPUS on nerve conduits are reviewed, as nerve conduits are expected to be a successful alternative treatment for PNI with the development of tissue engineering. Overall, the application advantages and prospects of LIPUS in the repair of PNI are highlighted by summarizing the effects of LIPUS on seed cells, neurotrophic factors, and nerve conduits for neural tissue engineering.
Collapse
Affiliation(s)
- Xuling Liu
- Department of Stomatology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Derong Zou
- Department of Stomatology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Yinghan Hu
- Department of Stomatology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Yushi He
- Shanghai Electrochemical Energy Devices Research Center, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Jiayu Lu
- Department of Stomatology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
15
|
Chu YC, Ho CY, Chuo Y, Wu HH, Wang JL. On minimal focal distance of a focused ultrasound probe for neuromodulation. JASA EXPRESS LETTERS 2023; 3:024002. [PMID: 36858995 DOI: 10.1121/10.0017106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Focal distance is a key parameter for a focused ultrasound probe, especially in mouse brain stimulation where targets are right below the skull. A closed-form solution for the minimal focal distance with a given transducer size was derived in this study to facilitate precise focal spot alignment with targets in the mouse brain. The spherical profile corresponding to the minimal focal distance does not produce accurate focusing. An iterative algorithm based on Snell's law was introduced for lens profile calculation. With a suitable step size, an accurate lens profile can be obtained for the minimal focal distance.
Collapse
Affiliation(s)
- Ya-Cherng Chu
- Department of Biomedical Engineering, National Taiwan University, Taipei, Taiwan , , , ,
| | - Chien-Ying Ho
- Department of Biomedical Engineering, National Taiwan University, Taipei, Taiwan , , , ,
| | - Yue Chuo
- Department of Biomedical Engineering, National Taiwan University, Taipei, Taiwan , , , ,
| | - Hao-Hsuan Wu
- Department of Biomedical Engineering, National Taiwan University, Taipei, Taiwan , , , ,
| | - Jaw-Lin Wang
- Department of Biomedical Engineering, National Taiwan University, Taipei, Taiwan , , , ,
| |
Collapse
|
16
|
Weak Ultrasound Contributes to Neuromodulatory Effects in the Rat Motor Cortex. Int J Mol Sci 2023; 24:ijms24032578. [PMID: 36768901 PMCID: PMC9917173 DOI: 10.3390/ijms24032578] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
Transcranial focused ultrasound (tFUS) is a novel neuromodulating technique. It has been demonstrated that the neuromodulatory effects can be induced by weak ultrasound exposure levels (spatial-peak temporal average intensity, ISPTA < 10 mW/cm2) in vitro. However, fewer studies have examined the use of weak tFUS to potentially induce long-lasting neuromodulatory responses in vivo. The purpose of this study was to determine the lower-bound threshold of tFUS stimulation for inducing neuromodulation in the motor cortex of rats. A total of 94 Sprague-Dawley rats were used. The sonication region aimed at the motor cortex under weak tFUS exposure (ISPTA of 0.338-12.15 mW/cm2). The neuromodulatory effects of tFUS on the motor cortex were evaluated by the changes in motor-evoked potentials (MEPs) elicited by transcranial magnetic stimulation (TMS). In addition to histology analysis, the in vitro cell culture was used to confirm the neuromodulatory mechanisms following tFUS stimulation. In the results, the dose-dependent inhibitory effects of tFUS were found, showing increased intensities of tFUS suppressed MEPs and lasted for 30 min. Weak tFUS significantly decreased the expression of excitatory neurons and increased the expression of inhibitory GABAergic neurons. The PIEZO-1 proteins of GABAergic neurons were found to involve in the inhibitory neuromodulation. In conclusion, we show the use of weak ultrasound to induce long-lasting neuromodulatory effects and explore the potential use of weak ultrasound for future clinical neuromodulatory applications.
Collapse
|
17
|
Falconieri A, De Vincentiis S, Cappello V, Convertino D, Das R, Ghignoli S, Figoli S, Luin S, Català-Castro F, Marchetti L, Borello U, Krieg M, Raffa V. Axonal plasticity in response to active forces generated through magnetic nano-pulling. Cell Rep 2022; 42:111912. [PMID: 36640304 PMCID: PMC9902337 DOI: 10.1016/j.celrep.2022.111912] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 11/16/2022] [Accepted: 12/12/2022] [Indexed: 12/30/2022] Open
Abstract
Mechanical force is crucial in guiding axon outgrowth before and after synapse formation. This process is referred to as "stretch growth." However, how neurons transduce mechanical input into signaling pathways remains poorly understood. Another open question is how stretch growth is coupled in time with the intercalated addition of new mass along the entire axon. Here, we demonstrate that active mechanical force generated by magnetic nano-pulling induces remodeling of the axonal cytoskeleton. Specifically, the increase in the axonal density of microtubules induced by nano-pulling leads to an accumulation of organelles and signaling vesicles, which, in turn, promotes local translation by increasing the probability of assembly of the "translation factories." Modulation of axonal transport and local translation sustains enhanced axon outgrowth and synapse maturation.
Collapse
Affiliation(s)
| | - Sara De Vincentiis
- Department of Biology, Università di Pisa, 56127 Pisa, Italy,The Barcelona Institute of Science and Technology, Institut de Ciències Fotòniques, ICFO, 08860 Castelldefels, Spain
| | - Valentina Cappello
- Center for Materials Interfaces, Istituto Italiano di Tecnologia, 56025 Pontedera, Italy
| | - Domenica Convertino
- Center for Nanotechnology Innovation @NEST, Istituto Italiano di Tecnologia, 56127 Pisa, Italy
| | - Ravi Das
- The Barcelona Institute of Science and Technology, Institut de Ciències Fotòniques, ICFO, 08860 Castelldefels, Spain
| | | | - Sofia Figoli
- Department of Biology, Università di Pisa, 56127 Pisa, Italy
| | - Stefano Luin
- National Enterprise for NanoScience and NanoTechnology (NEST) Laboratory, Scuola Normale Superiore, 56127 Pisa, Italy
| | - Frederic Català-Castro
- The Barcelona Institute of Science and Technology, Institut de Ciències Fotòniques, ICFO, 08860 Castelldefels, Spain
| | - Laura Marchetti
- Center for Nanotechnology Innovation @NEST, Istituto Italiano di Tecnologia, 56127 Pisa, Italy,Department of Pharmacy, Università di Pisa, 56126 Pisa, Italy
| | - Ugo Borello
- Department of Biology, Università di Pisa, 56127 Pisa, Italy
| | - Michael Krieg
- The Barcelona Institute of Science and Technology, Institut de Ciències Fotòniques, ICFO, 08860 Castelldefels, Spain
| | - Vittoria Raffa
- Department of Biology, Università di Pisa, 56127 Pisa, Italy.
| |
Collapse
|
18
|
Chu YC, Lim J, Chien A, Chen CC, Wang JL. Activation of Mechanosensitive Ion Channels by Ultrasound. ULTRASOUND IN MEDICINE & BIOLOGY 2022; 48:1981-1994. [PMID: 35945063 DOI: 10.1016/j.ultrasmedbio.2022.06.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Mechanosensitive channels (MSCs) play an important role in how cells transduce mechanical stimuli into electrical or chemical signals, which provides an interventional possibility through the manipulation of ion channel activation using different mechanical stimulation conditions. With good spatial resolution and depth of penetration, ultrasound is often proposed as the tool of choice for such therapeutic applications. Despite the identification of many ion channels as mechanosensitive in recent years, only a limited number of MSCs have been reported to be activated by ultrasound with substantial evidence. Furthermore, although many therapeutic implications using ultrasound have been explored, few offered insights into the molecular basis and the biological effects induced by ultrasound in relieving pain and accelerate tissue healing. In this review, we examined the literature, in particular studies that provided evidence of cellular responses to ultrasound, with and without the target ion channels. The ultrasound activation conditions were then summarized for these ion channels, and these conditions were related to their mode of activation based on the current biological concepts. The overall goal is to bridge the results relating to the activation of MSCs that is specific for ultrasound with the current knowledge in molecular structure and the available physiological evidence that may have facilitated such phenomena. We discussed how collating the information revealed by available scientific investigations helps in the design of a more effective stimulus device for the proposed translational purposes. Traditionally, studies on the effects of ultrasound have focused largely on its mechanical and physical interaction with the targeted tissue through thermal-based therapies as well as non-thermal mechanisms including ultrasonic cavitation; gas body activation; the direct action of the compressional, tensile and shear stresses; radiation force; and acoustic streaming. However, the current review explores and attempts to establish whether the application of low-intensity ultrasound may be associated with the activation of specific MSCs, which in turn triggers relevant cell signaling as its molecular mechanism in achieving the desired therapeutic effects. Non-invasive brain stimulation has recently become an area of intense research interest for rehabilitation, and the implication of low-intensity ultrasound is particularly critical given the need to minimize heat generation to preserve tissue integrity for such applications.
Collapse
Affiliation(s)
- Ya-Cherng Chu
- Department of Biomedical Engineering, National Taiwan University, Taipei, Taiwan
| | - Jormay Lim
- Department of Biomedical Engineering, National Taiwan University, Taipei, Taiwan
| | - Andy Chien
- Department of Biomedical Engineering, National Taiwan University, Taipei, Taiwan
| | - Chih-Cheng Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Jaw-Lin Wang
- Department of Biomedical Engineering, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
19
|
Truong TT, Chiu WT, Lai YS, Huang H, Jiang X, Huang CC. Ca 2+ signaling-mediated low-intensity pulsed ultrasound-induced proliferation and activation of motor neuron cells. ULTRASONICS 2022; 124:106739. [PMID: 35367809 DOI: 10.1016/j.ultras.2022.106739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/24/2022] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
Motor neuron diseases (MND) including amyotrophic lateral sclerosis and Parkinson disease are commonly neurodegenerative, causing a gradual loss of nerve cells and affecting the mechanisms underlying changes in calcium (Ca2+)-regulated dendritic growth. In this study, the NSC-34 cell line, a population of hybridomas generated using mouse spinal cord cells with neuroblastoma, was used to investigate the effect of low-intensity pulsed ultrasound (LIPUS) as part of an MND treatment model. After NSC-34 cells were seeded for 24 h, LIPUS stimulation was performed on the cells at days 1 and 3 using a non-focused transducer at 1.15 MHz for 8 min. NSC-34 cell proliferation and morphological changes were observed at various LIPUS intensities and different combinations of Ca2+ channel blockers. The nuclear translocation of Ca2+-dependent transcription factors was also examined. We observed that the neurite outgrowth and cell number of NSC-34 significantly increased with LIPUS stimulation at days 2 and 4, which may be associated with the treatment's positive effect on the activation of Ca2+-dependent transcription factors, such as nuclear factor of activated T cells and nuclear factor-kappa B. Our findings suggest that the LIPUS-induced Ca2+ signaling and transcription factor activation facilitate the morphological maturation and proliferation of NSC-34 cells, presenting a promising noninvasive method to improve stimulation therapy for MNDs in the future.
Collapse
Affiliation(s)
- Thi-Thuyet Truong
- Department of Biomedical Engineering, National Cheng Kung University, Taiwan
| | - Wen-Tai Chiu
- Department of Biomedical Engineering, National Cheng Kung University, Taiwan
| | - Yi-Shyun Lai
- Department of Biomedical Engineering, National Cheng Kung University, Taiwan
| | - Hsien Huang
- Department of Biomedical Engineering, National Cheng Kung University, Taiwan
| | - Xiaoning Jiang
- Department of Mechanical and Aerospace Engineering, North Carolina State University, USA
| | - Chih-Chung Huang
- Department of Biomedical Engineering, National Cheng Kung University, Taiwan; Department of Mechanical and Aerospace Engineering, North Carolina State University, USA; Medical Device Innovation Center, National Cheng Kung University, Taiwan.
| |
Collapse
|
20
|
Chen H, Felix C, Folloni D, Verhagen L, Sallet J, Jerusalem A. Modelling transcranial ultrasound neuromodulation: an energy-based multiscale framework. Acta Biomater 2022; 151:317-332. [PMID: 35902037 DOI: 10.1016/j.actbio.2022.07.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 11/26/2022]
Abstract
Several animal and human studies have now established the potential of low intensity, low frequency transcranial ultrasound (TUS) for non-invasive neuromodulation. Paradoxically, the underlying mechanisms through which TUS neuromodulation operates are still unclear, and a consensus on the identification of optimal sonication parameters still remains elusive. One emerging hypothesis based on thermodynamical considerations attributes the acoustic-induced nerve activity alterations to the mechanical energy and/or entropy conversions occurring during TUS action. Here, we propose a multiscale modelling framework to examine the energy states of neuromodulation under TUS. First, macroscopic tissue-level acoustic simulations of the sonication of a whole monkey brain are conducted under different sonication protocols. For each one of them, mechanical loading conditions of the received waves in the anterior cingulate cortex region are recorded and exported into a microscopic cell-level 3D viscoelastic finite element model of neuronal axon embedded extracellular medium. Pulse-averaged elastically stored and viscously dissipated energy rate densities during axon deformation are finally computed under different sonication incident angles and are mapped against distinct combinations of sonication parameters of the TUS. The proposed multiscale framework allows for the analysis of vibrational patterns of the axons and its comparison against the spectrograms of stimulating ultrasound. The results are in agreement with literature data on neuromodulation, demonstrating the potential of this framework to identify optimised acoustic parameters in TUS neuromodulation. The proposed approach is finally discussed in the context of multiphysics energetic considerations, argued here to be a promising avenue towards a scalable framework for TUS in silico predictions. STATEMENT OF SIGNIFICANCE: Low-intensity transcranial ultrasound (TUS) is poised to become a leading neuromodulation technique for the treatment of neurological disorders. Paradoxically, how it operates at the cellular scale remains unknown, hampering progress in personalised treatment. To this end, models of the multiphysics of neurons able to upscale results to the organ scale are required. We propose here to achieve this by considering an axon submitted to an ultrasound wave extracted from a simulation at the organ scale. Doing so, information pertaining to both stored and dissipated axonal energies can be extracted for a given head/brain morphology. This two-scale multiphysics energetic approach is a promising scalable framework for in silico predictions in the context of personalised TUS treatment.
Collapse
Affiliation(s)
- Haoyu Chen
- Department of Engineering Science, University of Oxford, Oxford, UK
| | - Ciara Felix
- Department of Engineering Science, University of Oxford, Oxford, UK
| | - Davide Folloni
- Wellcome Centre for Integrative Neuroimaging (WIN), Department of Experimental Psychology, University of Oxford, Oxford, UK; Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lennart Verhagen
- Wellcome Centre for Integrative Neuroimaging (WIN), Department of Experimental Psychology, University of Oxford, Oxford, UK; Donders Institute, Radboud University, Nijmegen, Netherlands
| | - Jérôme Sallet
- Wellcome Centre for Integrative Neuroimaging (WIN), Department of Experimental Psychology, University of Oxford, Oxford, UK; Inserm, Stem Cell and Brain Research Institute, Université Lyon 1, Bron, France
| | - Antoine Jerusalem
- Department of Engineering Science, University of Oxford, Oxford, UK.
| |
Collapse
|
21
|
Chuang YC, Chen CC. Force From Filaments: The Role of the Cytoskeleton and Extracellular Matrix in the Gating of Mechanosensitive Channels. Front Cell Dev Biol 2022; 10:886048. [PMID: 35586339 PMCID: PMC9108448 DOI: 10.3389/fcell.2022.886048] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/19/2022] [Indexed: 01/16/2023] Open
Abstract
The senses of proprioception, touch, hearing, and blood pressure on mechanosensitive ion channels that transduce mechanical stimuli with high sensitivity and speed. This conversion process is usually called mechanotransduction. From nematode MEC-4/10 to mammalian PIEZO1/2, mechanosensitive ion channels have evolved into several protein families that use variant gating models to convert different forms of mechanical force into electrical signals. In addition to the model of channel gating by stretching from lipid bilayers, another potent model is the opening of channels by force tethering: a membrane-bound channel is elastically tethered directly or indirectly between the cytoskeleton and the extracellular molecules, and the tethering molecules convey force to change the channel structure into an activation form. In general, the mechanical stimulation forces the extracellular structure to move relative to the cytoskeleton, deforming the most compliant component in the system that serves as a gating spring. Here we review recent studies focusing on the ion channel mechanically activated by a tethering force, the mechanotransduction-involved cytoskeletal protein, and the extracellular matrix. The mechanosensitive channel PIEZO2, DEG/ENaC family proteins such as acid-sensing ion channels, and transient receptor potential family members such as NompC are discussed. State-of-the-art techniques, such as polydimethylsiloxane indentation, the pillar array, and micropipette-guided ultrasound stimulation, which are beneficial tools for exploring the tether model, are also discussed.
Collapse
Affiliation(s)
- Yu-Chia Chuang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Chih-Cheng Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Neuroscience Program of Academia Sinica, Academia Sinica, Taipei, Taiwan
- Taiwan Mouse Clinic, BioTReC, Academia Sinica, Taipei, Taiwan
- *Correspondence: Chih-Cheng Chen,
| |
Collapse
|
22
|
Lim J, Chu YC, Tai HH, Chien A, Huang SS, Chen CC, Wang JL. Auditory independent low-intensity ultrasound stimulation of mouse brain is associated with neuronal ERK phosphorylation and an increase of Tbr2 marked neuroprogenitors. Biochem Biophys Res Commun 2022; 613:113-119. [PMID: 35550197 DOI: 10.1016/j.bbrc.2022.04.123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 11/02/2022]
Abstract
Transcranial ultrasound stimulation is an emerging technique for the development of a non-invasive neuromodulation device for the treatment of various types of neurodegenerations and brain damages. However, there are very few studies that have quantified the optimal ultrasound dosage and the long-term associated effects of transcranial ultrasound treatments of brain diseases. In this study, we used a simple ex vivo hippocampal tissues stimulated by different dosages of ultrasound in combination with different chemical treatments to quantify the required energy for a measurable effect. After determining the most desirable ex vivo stimulation conditions, it was then replicated for the in vivo mouse brains. It was discovered that transcranial ultrasound promoted the increase of Tbr2-expressing neural progenitors in an ASIC1a-dependent manner. Furthermore, such effect was observable at least a week after the initial ultrasound treatments and was not abolished by auditory toxicity.
Collapse
Affiliation(s)
- Jormay Lim
- Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taiwan
| | - Ya-Cherng Chu
- Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taiwan
| | - Hsiao-Hsin Tai
- Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taiwan
| | - Andy Chien
- Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taiwan
| | - Shao-Shiang Huang
- Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taiwan
| | - Chih-Cheng Chen
- Research Fellow and Deputy Director, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Jaw-Lin Wang
- Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taiwan.
| |
Collapse
|