1
|
Muhammednazaar S, Yao J, Necelis MR, Park YC, Shen Z, Bridges MD, Guo R, Swope N, Rhee MS, Kim M, Kim KH, Hubbell WL, Fleming KG, Columbus L, Kang SG, Hong H. Lipid bilayer strengthens the cooperative network of membrane proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.30.542905. [PMID: 37398072 PMCID: PMC10312574 DOI: 10.1101/2023.05.30.542905] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Although membrane proteins fold and function in a lipid bilayer constituting cell membranes, their structure and functionality can be recapitulated in diverse amphiphilic assemblies whose compositions deviate from native membranes. It remains unclear how various hydrophobic environments can stabilize membrane proteins and whether lipids play any role therein. Here, using the evolutionary unrelated α-helical and β-barrel membrane proteins of Escherichia coli , we find that the hydrophobic thickness and the strength of amphiphile- amphiphile packing are critical environmental determinants of membrane protein stability. Lipid solvation enhances stability by facilitating residue burial in the protein interior and strengthens the cooperative network by promoting the propagation of local structural perturbations. This study demonstrates that lipids not only modulate membrane proteins' stability but also their response to external stimuli.
Collapse
|
2
|
Ernst M, Mahoney-Kruszka R, Zelt NB, Robertson JL. A roadmap to cysteine specific labeling of membrane proteins for single-molecule photobleaching studies. Methods 2024; 234:21-35. [PMID: 39586432 DOI: 10.1016/j.ymeth.2024.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 10/21/2024] [Accepted: 10/24/2024] [Indexed: 11/27/2024] Open
Abstract
Single-molecule photobleaching analysis is a useful approach for quantifying reactive membrane protein oligomerization in membranes. It provides a binary readout of a fluorophore attached to a protein subunit at dilute conditions. However, quantification of protein stoichiometry from this data requires information about the subunit labeling yields and whether there is non-specific background labeling. Any increases in subunit-specific labeling improves the ability to determine oligomeric states with confidence. A common strategy for site-specific labeling is by conjugation of a fluorophore bearing a thiol-reactive maleimide group to a substituted cysteine. Yet, cysteine reactivity can be difficult to predict as it depends on many factors such as solvent accessibility and electrostatics from the surrounding protein structure. Here we report a general methodology for screening potential cysteine labeling sites on purified membrane proteins. We present the results of two example systems for which the dimerization reactions in membranes have been characterized: (1) the CLC-ec1 Cl-/H+ antiporter, an Escherichia coli homologue of voltage-gated chloride ion channels in humans and (2) a mutant form of a member of the family of fluoride channels Fluc from Bordetella pertussis (Fluc-Bpe-N43S). To demonstrate how we identify such sites, we first discuss considerations of residue positions hypothesized to be suitable and then describe the specific steps to rigorously assess site-specific labeling while maintaining functional activity and robust single-molecule fluorescence signals. We find that our initial, well rationalized choices are not strong predictors of success, as rigorous testing of the labeling sites shows that only ≈ 30 % of sites end up being useful for single-molecule photobleaching studies.
Collapse
Affiliation(s)
- Melanie Ernst
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
| | - Robyn Mahoney-Kruszka
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
| | - Nathan B Zelt
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
| | - Janice L Robertson
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
3
|
Giangregorio N, Tonazzi A, Pierri CL, Indiveri C. Insights into Transient Dimerisation of Carnitine/Acylcarnitine Carrier (SLC25A20) from Sarkosyl/PAGE, Cross-Linking Reagents, and Comparative Modelling Analysis. Biomolecules 2024; 14:1158. [PMID: 39334924 PMCID: PMC11430254 DOI: 10.3390/biom14091158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
The carnitine/acylcarnitine carrier (CAC) is a crucial protein for cellular energy metabolism, facilitating the exchange of acylcarnitines and free carnitine across the mitochondrial membrane, thereby enabling fatty acid β-oxidation and oxidative phosphorylation (OXPHOS). Although CAC has not been crystallised, structural insights are derived from the mitochondrial ADP/ATP carrier (AAC) structures in both cytosolic and matrix conformations. These structures underpin a single binding centre-gated pore mechanism, a common feature among mitochondrial carrier (MC) family members. The functional implications of this mechanism are well-supported, yet the structural organization of the CAC, particularly the formation of dimeric or oligomeric assemblies, remains contentious. Recent investigations employing biochemical techniques on purified and reconstituted CAC, alongside molecular modelling based on crystallographic AAC dimeric structures, suggest that CAC can indeed form dimers. Importantly, this dimerization does not alter the transport mechanism, a phenomenon observed in various other membrane transporters across different protein families. This observation aligns with the ping-pong kinetic model, where the dimeric form potentially facilitates efficient substrate translocation without necessitating mechanistic alterations. The presented findings thus contribute to a deeper understanding of CAC's functional dynamics and its structural parallels with other MC family members.
Collapse
Affiliation(s)
- Nicola Giangregorio
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), Via Amendola 122/O, 70126 Bari, Italy
| | - Annamaria Tonazzi
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), Via Amendola 122/O, 70126 Bari, Italy
| | - Ciro Leonardo Pierri
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari, Via E. Orabona, 4, 70125 Bari, Italy
| | - Cesare Indiveri
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), Via Amendola 122/O, 70126 Bari, Italy
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Via Bucci 4C, 87036 Arcavacata di Rende, Italy
| |
Collapse
|
4
|
Pedersen KB, Borges-Araújo L, Stange AD, Souza PCT, Marrink SJ, Schiøtt B. OLIVES: A Go̅-like Model for Stabilizing Protein Structure via Hydrogen Bonding Native Contacts in the Martini 3 Coarse-Grained Force Field. J Chem Theory Comput 2024. [PMID: 39235392 DOI: 10.1021/acs.jctc.4c00553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Coarse-grained molecular dynamics simulations enable the modeling of increasingly complex systems at millisecond timescales. The transferable coarse-grained force field Martini 3 has shown great promise in modeling a wide range of biochemical processes, yet folded proteins in Martini 3 are not stable without the application of external bias potentials, such as elastic networks or Go̅-like models. We herein develop an algorithm, called OLIVES, which identifies native contacts with hydrogen bond capabilities in coarse-grained proteins and use it to implement a novel Go̅-like model for Martini 3. We show that the protein structure instability originates in part from the lack of hydrogen bond energy in the coarse-grained force field representation. By using realistic hydrogen bond energies obtained from literature ab initio calculations, it is demonstrated that protein stability can be recovered by the reintroduction of a coarse-grained hydrogen bond network and that OLIVES removes the need for secondary structure restraints. OLIVES is validated against known protein complexes and at the same time addresses the open question of whether there is a need for protein quaternary structure bias in Martini 3 simulations. It is shown that OLIVES can reduce the number of bias terms, hereby speeding up Martini 3 simulations of proteins by up to ≈30% on a GPU architecture compared to the established Go̅MARTINI Go̅-like model.
Collapse
Affiliation(s)
- Kasper B Pedersen
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | - Luís Borges-Araújo
- Laboratoire de Biologie et Modélisation de la Cellule, CNRS, UMR 5239, Inserm, U1293, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, 69364 Lyon, France
- Centre Blaise Pascal de Simulation et de Modélisation Numérique, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, 69364 Lyon, France
| | - Amanda D Stange
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | - Paulo C T Souza
- Laboratoire de Biologie et Modélisation de la Cellule, CNRS, UMR 5239, Inserm, U1293, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, 69364 Lyon, France
- Centre Blaise Pascal de Simulation et de Modélisation Numérique, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, 69364 Lyon, France
| | - Siewert J Marrink
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Birgit Schiøtt
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| |
Collapse
|
5
|
Yao J, Hong H. Steric trapping strategy for studying the folding of helical membrane proteins. Methods 2024; 225:1-12. [PMID: 38428472 PMCID: PMC11107808 DOI: 10.1016/j.ymeth.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/11/2024] [Accepted: 02/18/2024] [Indexed: 03/03/2024] Open
Abstract
Elucidating the folding energy landscape of membrane proteins is essential to the understanding of the proteins' stabilizing forces, folding mechanisms, biogenesis, and quality control. This is not a trivial task because the reversible control of folding is inherently difficult in a lipid bilayer environment. Recently, novel methods have been developed, each of which has a unique strength in investigating specific aspects of membrane protein folding. Among such methods, steric trapping is a versatile strategy allowing a reversible control of membrane protein folding with minimal perturbation of native protein-water and protein-lipid interactions. In a nutshell, steric trapping exploits the coupling of spontaneous denaturation of a doubly biotinylated protein to the simultaneous binding of bulky monovalent streptavidin molecules. This strategy has been evolved to investigate key elements of membrane protein folding such as thermodynamic stability, spontaneous denaturation rates, conformational features of the denatured states, and cooperativity of stabilizing interactions. In this review, we describe the critical methodological advancement, limitation, and outlook of the steric trapping strategy.
Collapse
Affiliation(s)
- Jiaqi Yao
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Heedeok Hong
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA; Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
6
|
Stuebler M, Manzer ZA, Liu HY, Miller J, Richter A, Krishnan S, Selivanovitch E, Banuna B, Jander G, Reimhult E, Zipfel WR, Roeder AHK, Piñeros MA, Daniel S. Plant Membrane-On-A-Chip: A Platform for Studying Plant Membrane Proteins and Lipids. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38593404 DOI: 10.1021/acsami.3c18562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
The cell plasma membrane is a two-dimensional, fluid mosaic material composed of lipids and proteins that create a semipermeable barrier defining the cell from its environment. Compared with soluble proteins, the methodologies for the structural and functional characterization of membrane proteins are challenging. An emerging tool for studies of membrane proteins in mammalian systems is a "plasma membrane on a chip," also known as a supported lipid bilayer. Here, we create the "plant-membrane-on-a-chip,″ a supported bilayer made from the plant plasma membranes of Arabidopsis thaliana, Nicotiana benthamiana, or Zea mays. Membrane vesicles from protoplasts containing transgenic membrane proteins and their native lipids were incorporated into supported membranes in a defined orientation. Membrane vesicles fuse and orient systematically, where the cytoplasmic side of the membrane proteins faces the chip surface and constituents maintain mobility within the membrane plane. We use plant-membrane-on-a-chip to perform fluorescent imaging to examine protein-protein interactions and determine the protein subunit stoichiometry of FLOTILLINs. We report here that like the mammalian FLOTILLINs, FLOTILLINs expressed in Arabidopsis form a tetrameric complex in the plasma membrane. This plant-membrane-on-a-chip approach opens avenues to studies of membrane properties of plants, transport phenomena, biophysical processes, and protein-protein and protein-lipid interactions in a convenient, cell-free platform.
Collapse
Affiliation(s)
- Martin Stuebler
- RF Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
- University of Natural Resources and Life Sciences, Vienna 1180, Austria
| | - Zachary A Manzer
- RF Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Han-Yuan Liu
- RF Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Julia Miller
- School of Integrative Plant Science, Cornell University, Ithaca, New York 14853, United States
| | - Annett Richter
- Boyce Thompson Institute, Ithaca, New York 14853, United States
| | | | - Ekaterina Selivanovitch
- RF Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Barituziga Banuna
- RF Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Georg Jander
- Boyce Thompson Institute, Ithaca, New York 14853, United States
| | - Erik Reimhult
- University of Natural Resources and Life Sciences, Vienna 1180, Austria
| | - Warren R Zipfel
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Adrienne H K Roeder
- School of Integrative Plant Science, Cornell University, Ithaca, New York 14853, United States
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14853, United States
| | - Miguel A Piñeros
- School of Integrative Plant Science, Cornell University, Ithaca, New York 14853, United States
- Robert W. Holley Center for Agriculture & Health, ARS-USDA, Ithaca, New York 14853, United States
| | - Susan Daniel
- RF Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
7
|
Drew D, Boudker O. Ion and lipid orchestration of secondary active transport. Nature 2024; 626:963-974. [PMID: 38418916 DOI: 10.1038/s41586-024-07062-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 01/12/2024] [Indexed: 03/02/2024]
Abstract
Transporting small molecules across cell membranes is an essential process in cell physiology. Many structurally diverse, secondary active transporters harness transmembrane electrochemical gradients of ions to power the uptake or efflux of nutrients, signalling molecules, drugs and other ions across cell membranes. Transporters reside in lipid bilayers on the interface between two aqueous compartments, where they are energized and regulated by symported, antiported and allosteric ions on both sides of the membrane and the membrane bilayer itself. Here we outline the mechanisms by which transporters couple ion and solute fluxes and discuss how structural and mechanistic variations enable them to meet specific physiological needs and adapt to environmental conditions. We then consider how general bilayer properties and specific lipid binding modulate transporter activity. Together, ion gradients and lipid properties ensure the effective transport, regulation and distribution of small molecules across cell membranes.
Collapse
Affiliation(s)
- David Drew
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden.
| | - Olga Boudker
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA.
- Howard Hughes Medical Institute, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
8
|
Blazhynska M, Gumbart JC, Chen H, Tajkhorshid E, Roux B, Chipot C. A Rigorous Framework for Calculating Protein-Protein Binding Affinities in Membranes. J Chem Theory Comput 2023; 19:9077-9092. [PMID: 38091976 PMCID: PMC11145395 DOI: 10.1021/acs.jctc.3c00941] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Calculating the binding free energy of integral transmembrane (TM) proteins is crucial for understanding the mechanisms by which they recognize one another and reversibly associate. The glycophorin A (GpA) homodimer, composed of two α-helical segments, has long served as a model system for studying TM protein reversible association. The present work establishes a methodological framework for calculating the binding affinity of the GpA homodimer in the heterogeneous environment of a membrane. Our investigation carefully considered a variety of protocols, including the appropriate choice of the force field, rigorous standardization reflecting the experimental conditions, sampling algorithm, anisotropic environment, and collective variables, to accurately describe GpA dimerization via molecular dynamics-based approaches. Specifically, two strategies were explored: (i) an unrestrained potential mean force (PMF) calculation, which merely enhances sampling along the separation of the two binding partners without any restraint, and (ii) a so-called "geometrical route", whereby the α-helices are progressively separated with imposed restraints on their orientational, positional, and conformational degrees of freedom to accelerate convergence. Our simulations reveal that the simplified, unrestrained PMF approach is inadequate for the description of GpA dimerization. Instead, the geometrical route, tailored specifically to GpA in a membrane environment, yields excellent agreement with experimental data within a reasonable computational time. A dimerization free energy of -10.7 kcal/mol is obtained, in fairly good agreement with available experimental data. The geometrical route further helps elucidate how environmental forces drive association before helical interactions stabilize it. Our simulations also brought to light a distinct, long-lived spatial arrangement that potentially serves as an intermediate state during dimer formation. The methodological advances in the generalized geometrical route provide a powerful tool for accurate and efficient binding-affinity calculations of intricate TM protein complexes in inhomogeneous environments.
Collapse
Affiliation(s)
- Marharyta Blazhynska
- Laboratoire International Associé Centre National de la Recherche Scientifique et University of Illinois at Urbana-Champaign, Unité Mixte de Recherche n°7019, Université de Lorraine, B.P. 70239, Vandœuvre-lès-Nancy cedex 54506, France
| | - James C Gumbart
- School of Physics, Georgia Institute of Technology, 837 State Street, Atlanta, Georgia 30332, United States
| | - Haochuan Chen
- Laboratoire International Associé Centre National de la Recherche Scientifique et University of Illinois at Urbana-Champaign, Unité Mixte de Recherche n°7019, Université de Lorraine, B.P. 70239, Vandœuvre-lès-Nancy cedex 54506, France
| | - Emad Tajkhorshid
- Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N. Mathews Avenue, Urbana, Illinois 61801, United States
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Benoît Roux
- Department of Biochemistry and Molecular Biology, The University of Chicago, 929 E. 57th Street W225, Chicago, Illinois 60637, United States
- Department of Chemistry, The University of Chicago, 5735 S. Ellis Avenue, Chicago, Illinois 60637, United States
| | - Christophe Chipot
- Laboratoire International Associé Centre National de la Recherche Scientifique et University of Illinois at Urbana-Champaign, Unité Mixte de Recherche n°7019, Université de Lorraine, B.P. 70239, Vandœuvre-lès-Nancy cedex 54506, France
- Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N. Mathews Avenue, Urbana, Illinois 61801, United States
- Department of Biochemistry and Molecular Biology, The University of Chicago, 929 E. 57th Street W225, Chicago, Illinois 60637, United States
- Department of Chemistry, The University of Hawai'i at Ma̅noa, 2545 McCarthy Mall, Honolulu, Hawaii 96822, United States
| |
Collapse
|
9
|
Venkatraman K, Lee CT, Garcia GC, Mahapatra A, Milshteyn D, Perkins G, Kim K, Pasolli HA, Phan S, Lippincott‐Schwartz J, Ellisman MH, Rangamani P, Budin I. Cristae formation is a mechanical buckling event controlled by the inner mitochondrial membrane lipidome. EMBO J 2023; 42:e114054. [PMID: 37933600 PMCID: PMC10711667 DOI: 10.15252/embj.2023114054] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 11/08/2023] Open
Abstract
Cristae are high-curvature structures in the inner mitochondrial membrane (IMM) that are crucial for ATP production. While cristae-shaping proteins have been defined, analogous lipid-based mechanisms have yet to be elucidated. Here, we combine experimental lipidome dissection with multi-scale modeling to investigate how lipid interactions dictate IMM morphology and ATP generation. When modulating phospholipid (PL) saturation in engineered yeast strains, we observed a surprisingly abrupt breakpoint in IMM topology driven by a continuous loss of ATP synthase organization at cristae ridges. We found that cardiolipin (CL) specifically buffers the inner mitochondrial membrane against curvature loss, an effect that is independent of ATP synthase dimerization. To explain this interaction, we developed a continuum model for cristae tubule formation that integrates both lipid and protein-mediated curvatures. This model highlighted a snapthrough instability, which drives IMM collapse upon small changes in membrane properties. We also showed that cardiolipin is essential in low-oxygen conditions that promote PL saturation. These results demonstrate that the mechanical function of cardiolipin is dependent on the surrounding lipid and protein components of the IMM.
Collapse
Affiliation(s)
- Kailash Venkatraman
- Department of Chemistry and BiochemistryUniversity of California San DiegoLa JollaCAUSA
| | - Christopher T Lee
- Department of Mechanical and Aerospace EngineeringUniversity of California San DiegoLa JollaCAUSA
| | - Guadalupe C Garcia
- Computational Neurobiology LaboratorySalk Institute for Biological StudiesLa JollaCAUSA
| | - Arijit Mahapatra
- Department of Mechanical and Aerospace EngineeringUniversity of California San DiegoLa JollaCAUSA
- Present address:
Applied Physical SciencesUniversity of North Carolina Chapel HillChapel HillNCUSA
| | - Daniel Milshteyn
- Department of Chemistry and BiochemistryUniversity of California San DiegoLa JollaCAUSA
| | - Guy Perkins
- National Center for Microscopy and Imaging Research, Center for Research in Biological SystemsUniversity of California San DiegoLa JollaCAUSA
| | - Keun‐Young Kim
- National Center for Microscopy and Imaging Research, Center for Research in Biological SystemsUniversity of California San DiegoLa JollaCAUSA
| | - H Amalia Pasolli
- Howard Hughes Medical InstituteAshburnVAUSA
- Present address:
Electron Microscopy Resource CenterThe Rockefeller UniversityNew YorkNYUSA
| | - Sebastien Phan
- National Center for Microscopy and Imaging Research, Center for Research in Biological SystemsUniversity of California San DiegoLa JollaCAUSA
| | | | - Mark H Ellisman
- National Center for Microscopy and Imaging Research, Center for Research in Biological SystemsUniversity of California San DiegoLa JollaCAUSA
| | - Padmini Rangamani
- Department of Mechanical and Aerospace EngineeringUniversity of California San DiegoLa JollaCAUSA
| | - Itay Budin
- Department of Chemistry and BiochemistryUniversity of California San DiegoLa JollaCAUSA
| |
Collapse
|
10
|
Jahn H, Bartoš L, Dearden GI, Dittman JS, Holthuis JCM, Vácha R, Menon AK. Phospholipids are imported into mitochondria by VDAC, a dimeric beta barrel scramblase. Nat Commun 2023; 14:8115. [PMID: 38065946 PMCID: PMC10709637 DOI: 10.1038/s41467-023-43570-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/13/2023] [Indexed: 12/17/2023] Open
Abstract
Mitochondria are double-membrane-bounded organelles that depend critically on phospholipids supplied by the endoplasmic reticulum. These lipids must cross the outer membrane to support mitochondrial function, but how they do this is unclear. We identify the Voltage Dependent Anion Channel (VDAC), an abundant outer membrane protein, as a scramblase-type lipid transporter that catalyzes lipid entry. On reconstitution into membrane vesicles, dimers of human VDAC1 and VDAC2 catalyze rapid transbilayer translocation of phospholipids by a mechanism that is unrelated to their channel activity. Coarse-grained molecular dynamics simulations of VDAC1 reveal that lipid scrambling occurs at a specific dimer interface where polar residues induce large water defects and bilayer thinning. The rate of phospholipid import into yeast mitochondria is an order of magnitude lower in the absence of VDAC homologs, indicating that VDACs provide the main pathway for lipid entry. Thus, VDAC isoforms, members of a superfamily of beta barrel proteins, moonlight as a class of phospholipid scramblases - distinct from alpha-helical scramblase proteins - that act to import lipids into mitochondria.
Collapse
Affiliation(s)
- Helene Jahn
- Department of Biochemistry, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Ladislav Bartoš
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | - Grace I Dearden
- Department of Biochemistry, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Jeremy S Dittman
- Department of Biochemistry, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Joost C M Holthuis
- Department of Molecular Cell Biology, University of Osnabrück, Osnabrück, 49076, Germany
| | - Robert Vácha
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic.
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic.
| | - Anant K Menon
- Department of Biochemistry, Weill Cornell Medical College, New York, NY, 10065, USA.
| |
Collapse
|
11
|
Stankunas E, Köhler A. The interplay of nuclear pores and lipids. Curr Opin Cell Biol 2023; 85:102251. [PMID: 37804774 DOI: 10.1016/j.ceb.2023.102251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/24/2023] [Accepted: 09/07/2023] [Indexed: 10/09/2023]
Abstract
Nuclear pore complexes (NPCs) mediate the bidirectional transport of cargo across the nuclear envelope (NE). NPCs are also membrane remodeling machines with a capacity to curve and fuse the membranes of the NE. However, little is known about the interplay of NPCs and lipids at a mechanistic level. A full understanding of NPC structure and function needs to encompass how the NPC shapes membranes and is itself shaped by lipids. Here we attempt to connect recent findings in NPC research with the broader field of membrane biochemistry to illustrate how an interplay between NPCs and lipids may facilitate the conformational plasticity of NPCs and the generation of a unique pore membrane topology. We highlight the need to better understand the NPC's lipid environment and outline experimental avenues towards that goal.
Collapse
Affiliation(s)
- Edvinas Stankunas
- Max Perutz Labs, University of Vienna and Medical University of Vienna, Vienna Biocenter Campus (VBC), Dr. Bohr-Gasse 9/3, 1030 Vienna, Austria; Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, A-1030 Vienna, Austria
| | - Alwin Köhler
- Max Perutz Labs, University of Vienna and Medical University of Vienna, Vienna Biocenter Campus (VBC), Dr. Bohr-Gasse 9/3, 1030 Vienna, Austria.
| |
Collapse
|
12
|
Ernst M, Orabi EA, Stockbridge RB, Faraldo-Gómez JD, Robertson JL. Dimerization mechanism of an inverted-topology ion channel in membranes. Proc Natl Acad Sci U S A 2023; 120:e2308454120. [PMID: 37956279 PMCID: PMC10666096 DOI: 10.1073/pnas.2308454120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 09/28/2023] [Indexed: 11/15/2023] Open
Abstract
Many ion channels are multisubunit complexes where oligomerization is an obligatory requirement for function as the binding axis forms the charged permeation pathway. However, the mechanisms of in-membrane assembly of thermodynamically stable channels are largely unknown. Here, we demonstrate a key advance by reporting the dimerization equilibrium reaction of an inverted-topology, homodimeric fluoride channel Fluc in lipid bilayers. While the wild-type channel is a long-lived dimer, we leverage a known mutation, N43S, that weakens Na+ binding in a buried site at the interface, thereby unlocking the complex for reversible association in lipid bilayers. Single-channel recordings show that Na+ binding is required for fluoride conduction while single-molecule microscopy experiments demonstrate that N43S Fluc exists in a dynamic monomer-dimer equilibrium in the membrane, even following removal of Na+. Quantifying the thermodynamic stability while titrating Na+ indicates that dimerization occurs first, providing a membrane-embedded binding site where Na+ binding weakly stabilizes the complex. To understand how these subunits form stable assemblies while presenting charged surfaces to the membrane, we carried out molecular dynamics simulations, which show the formation of a thinned membrane defect around the exposed dimerization interface. In simulations where subunits are permitted to encounter each other while preventing protein contacts, we observe spontaneous and selective association at the native interface, where stability is achieved by mitigation of the membrane defect. These results suggest a model wherein membrane-associated forces drive channel assembly in the native orientation while subsequent factors, such as Na+ binding, result in channel activation.
Collapse
Affiliation(s)
- Melanie Ernst
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO63110
| | - Esam A. Orabi
- Theoretical Molecular Biophysics Section, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD20894
| | - Randy B. Stockbridge
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI48109
| | - José D. Faraldo-Gómez
- Theoretical Molecular Biophysics Section, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD20894
| | - Janice L. Robertson
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO63110
| |
Collapse
|
13
|
Fleming KG. Membrane defects as a generalized driving force for membrane protein interactions. Proc Natl Acad Sci U S A 2023; 120:e2315655120. [PMID: 37851703 PMCID: PMC10622890 DOI: 10.1073/pnas.2315655120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023] Open
Affiliation(s)
- Karen G. Fleming
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD21218
| |
Collapse
|
14
|
Chadda R, Lee T, Mahoney-Kruszka R, Kelley EG, Bernhardt N, Sandal P, Robertson JL. A thermodynamic analysis of CLC transporter dimerization in lipid bilayers. Proc Natl Acad Sci U S A 2023; 120:e2305100120. [PMID: 37788312 PMCID: PMC10576108 DOI: 10.1073/pnas.2305100120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 08/17/2023] [Indexed: 10/05/2023] Open
Abstract
The CLC-ec1 chloride/proton antiporter is a membrane-embedded homodimer with subunits that can dissociate and associate, but the thermodynamic driving forces favor the assembled dimer at biological densities. Yet, the physical reasons for this stability are confounding as dimerization occurs via the burial of hydrophobic interfaces away from the lipid solvent. For binding of nonpolar surfaces in aqueous solution, the driving force is often attributed to the hydrophobic effect, but this should not apply in the membrane since there is very little water. To investigate this further, we quantified the thermodynamic changes associated with CLC dimerization in membranes by carrying out a van 't Hoff analysis of the temperature dependency of the free energy of dimerization, ΔG°. To ensure that the reaction reached equilibrium at different temperatures, we utilized a Förster resonance energy transfer assay to report on relaxation kinetics of subunit exchange as a function of temperature. Equilibration times were then applied to measure CLC-ec1 dimerization isotherms at different temperatures using the single-molecule subunit-capture photobleaching analysis approach. The results demonstrate that the dimerization free energy of CLC in Escherichia coli-like membranes exhibits a nonlinear temperature dependency corresponding to a large, negative change in heat capacity, a signature of solvent ordering effects such as the hydrophobic effect. Consolidating this with our previous molecular analyses suggests that the nonbilayer defect required to solvate the monomeric state is one source of the observed change in heat capacity and indicates the existence of a generalizable driving force for protein association in membranes.
Collapse
Affiliation(s)
- Rahul Chadda
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO63110
| | - Taeho Lee
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO63110
- Department of Physics, Washington University, St. Louis, MO63130
| | - Robyn Mahoney-Kruszka
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO63110
| | - Elizabeth G. Kelley
- Center for Neutron Research, National Institute for Standards and Technology, Gaithersburg, MD20899
| | - Nathan Bernhardt
- Theoretical Molecular Biophysics Laboratory, National Heart, Lung and Blood Institute, NIH, Bethesda, MD20894
| | - Priyanka Sandal
- Department of Molecular Physiology and Biophysics, The University of Iowa, Iowa City, IA52242
| | - Janice L. Robertson
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO63110
| |
Collapse
|
15
|
Venkatraman K, Lee CT, Garcia GC, Mahapatra A, Milshteyn D, Perkins G, Kim KY, Pasolli HA, Phan S, Lippincott-Schwartz J, Ellisman MH, Rangamani P, Budin I. Cristae formation is a mechanical buckling event controlled by the inner membrane lipidome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.13.532310. [PMID: 36993370 PMCID: PMC10054968 DOI: 10.1101/2023.03.13.532310] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Cristae are high curvature structures in the inner mitochondrial membrane (IMM) that are crucial for ATP production. While cristae-shaping proteins have been defined, analogous mechanisms for lipids have yet to be elucidated. Here we combine experimental lipidome dissection with multi-scale modeling to investigate how lipid interactions dictate IMM morphology and ATP generation. When modulating phospholipid (PL) saturation in engineered yeast strains, we observed a surprisingly abrupt breakpoint in IMM topology driven by a continuous loss of ATP synthase organization at cristae ridges. We found that cardiolipin (CL) specifically buffers the IMM against curvature loss, an effect that is independent of ATP synthase dimerization. To explain this interaction, we developed a continuum model for cristae tubule formation that integrates both lipid and protein-mediated curvatures. The model highlighted a snapthrough instability, which drives IMM collapse upon small changes in membrane properties. We also showed that CL is essential in low oxygen conditions that promote PL saturation. These results demonstrate that the mechanical function of CL is dependent on the surrounding lipid and protein components of the IMM.
Collapse
Affiliation(s)
- Kailash Venkatraman
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093
| | - Christopher T Lee
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA 92093
| | - Guadalupe C Garcia
- Computational Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla CA 92097
| | - Arijit Mahapatra
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA 92093
| | - Daniel Milshteyn
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093
| | - Guy Perkins
- National Center for Microscopy and Imaging Research, Center for Research in Biological Systems, University of California San Diego, La Jolla, CA 92093
| | - Keun-Young Kim
- National Center for Microscopy and Imaging Research, Center for Research in Biological Systems, University of California San Diego, La Jolla, CA 92093
| | - H Amalia Pasolli
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn VA 20147
| | - Sebastien Phan
- National Center for Microscopy and Imaging Research, Center for Research in Biological Systems, University of California San Diego, La Jolla, CA 92093
| | | | - Mark H Ellisman
- National Center for Microscopy and Imaging Research, Center for Research in Biological Systems, University of California San Diego, La Jolla, CA 92093
| | - Padmini Rangamani
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA 92093
| | - Itay Budin
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093
- Lead contact
| |
Collapse
|
16
|
Real Hernandez LM, Levental I. Lipid packing is disrupted in copolymeric nanodiscs compared with intact membranes. Biophys J 2023; 122:2256-2266. [PMID: 36641625 PMCID: PMC10257115 DOI: 10.1016/j.bpj.2023.01.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/02/2022] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
Discoidal lipid-protein nanoparticles known as nanodiscs are widely used tools in structural and membrane biology. Amphipathic, synthetic copolymers have recently become an attractive alternative to membrane scaffold proteins for the formation of nanodiscs. Such copolymers can directly intercalate into, and form nanodiscs from, intact membranes without detergents. Although these copolymer nanodiscs can extract native membrane lipids, it remains unclear whether native membrane properties are also retained. To determine the extent to which bilayer lipid packing is retained in nanodiscs, we measured the behavior of packing-sensitive fluorescent dyes in various nanodisc preparations compared with intact lipid bilayers. We analyzed styrene-maleic acid (SMA), diisobutylene-maleic acid (DIBMA), and polymethacrylate (PMA) as nanodisc scaffolds at various copolymer-to-lipid ratios and temperatures. Measurements of Laurdan spectral shifts revealed that dimyristoyl-phosphatidylcholine (DMPC) nanodiscs had increased lipid headgroup packing compared with large unilamellar vesicles (LUVs) above the lipid melting temperature for all three copolymers. Similar effects were observed for DMPC nanodiscs stabilized by membrane scaffolding protein MSP1E1. Increased lipid headgroup packing was also observed when comparing nanodiscs with intact membranes composed of binary mixtures of 1-palmitoyl-2-oleoyl-phosphocholine (POPC) and di-palmitoyl-phosphocholine (DPPC), which show fluid-gel-phase coexistence. Similarly, Laurdan reported increased headgroup packing in nanodiscs for biomimetic mixtures containing cholesterol, most notable for relatively disordered membranes. The magnitudes of these ordering effects were not identical for the various copolymers, with SMA being the most and DIBMA being the least perturbing. Finally, nanodiscs derived from mammalian cell membranes showed similarly increased lipid headgroup packing. We conclude that nanodiscs generally do not completely retain the physical properties of intact membranes.
Collapse
Affiliation(s)
- Luis M Real Hernandez
- Department of Molecular Physiology and Biological Physics, Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, Virginia
| | - Ilya Levental
- Department of Molecular Physiology and Biological Physics, Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, Virginia.
| |
Collapse
|
17
|
Panda A, Giska F, Duncan AL, Welch AJ, Brown C, McAllister R, Hariharan P, Goder JND, Coleman J, Ramakrishnan S, Pincet F, Guan L, Krishnakumar S, Rothman JE, Gupta K. Direct determination of oligomeric organization of integral membrane proteins and lipids from intact customizable bilayer. Nat Methods 2023; 20:891-897. [PMID: 37106230 PMCID: PMC10932606 DOI: 10.1038/s41592-023-01864-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 03/23/2023] [Indexed: 04/29/2023]
Abstract
Hierarchical organization of integral membrane proteins (IMP) and lipids at the membrane is essential for regulating myriad downstream signaling. A quantitative understanding of these processes requires both detections of oligomeric organization of IMPs and lipids directly from intact membranes and determination of key membrane components and properties that regulate them. Addressing this, we have developed a platform that enables native mass spectrometry (nMS) analysis of IMP-lipid complexes directly from intact and customizable lipid membranes. Both the lipid composition and membrane properties (such as curvature, tension, and fluidity) of these bilayers can be precisely customized to a target membrane. Subsequent direct nMS analysis of these intact proteolipid vesicles can yield the oligomeric states of the embedded IMPs, identify bound lipids, and determine the membrane properties that can regulate the observed IMP-lipid organization. Applying this method, we show how lipid binding regulates neurotransmitter release and how membrane composition regulates the functional oligomeric state of a transporter.
Collapse
Affiliation(s)
- Aniruddha Panda
- Nanobiology Institute, Yale University, West Haven, CT, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Fabian Giska
- Nanobiology Institute, Yale University, West Haven, CT, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Anna L Duncan
- Department of Biochemistry, University of Oxford, Oxford, UK
- Department of Chemistry, Aarhus University, Aarhus C, Denmark
| | | | - Caroline Brown
- Nanobiology Institute, Yale University, West Haven, CT, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Rachel McAllister
- Nanobiology Institute, Yale University, West Haven, CT, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Parameswaran Hariharan
- Department of Cell Physiology and Molecular Biophysics, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Jean N D Goder
- Nanobiology Institute, Yale University, West Haven, CT, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Jeff Coleman
- Nanobiology Institute, Yale University, West Haven, CT, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Sathish Ramakrishnan
- Nanobiology Institute, Yale University, West Haven, CT, USA
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Frédéric Pincet
- Nanobiology Institute, Yale University, West Haven, CT, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
- Laboratoire de Physique de l'Ecole Normale Supérieure, ENS, CNRS, Université PSL, Sorbonne Université, Université Paris-Cité, Paris, France
| | - Lan Guan
- Department of Cell Physiology and Molecular Biophysics, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Shyam Krishnakumar
- Nanobiology Institute, Yale University, West Haven, CT, USA
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - James E Rothman
- Nanobiology Institute, Yale University, West Haven, CT, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Kallol Gupta
- Nanobiology Institute, Yale University, West Haven, CT, USA.
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
18
|
Chadda R, Lee T, Sandal P, Mahoney-Kruszka R, Robertson JL. A thermodynamic analysis of CLC transporter dimerization in lipid bilayers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.14.532678. [PMID: 36993257 PMCID: PMC10055089 DOI: 10.1101/2023.03.14.532678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The CLC-ec1 chloride/proton antiporter is a membrane embedded homodimer where subunits can dissociate and associate, but the thermodynamic driving forces favor the assembled form at biological densities. Yet, the physical reasons for this stability are confounding since binding occurs via the burial of hydrophobic protein interfaces yet the hydrophobic effect should not apply since there is little water within the membrane. To investigate this further, we quantified the thermodynamic changes associated with CLC dimerization in membranes by carrying out a van 't Hoff analysis of the temperature dependency of the free energy of dimerization, ΔG° . To ensure that the reaction reached equilibrium under changing conditions, we utilized a Förster Resonance Energy Transfer based assay to report on the relaxation kinetics of subunit exchange as a function of temperature. These equilibration times were then applied to measure CLC-ec1 dimerization isotherms as a function of temperature using the single-molecule subunit-capture photobleaching analysis approach. The results demonstrate that the dimerization free energy of CLC in E. coli membranes exhibits a non-linear temperature dependency corresponding to a large, negative change in heat capacity, a signature of solvent ordering effects including the hydrophobic effect. Consolidating this with our previous molecular analyses suggests that the non-bilayer defect required to solvate the monomeric state is the molecular source of this large change in heat capacity and is a major and generalizable driving force for protein association in membranes.
Collapse
|
19
|
Sullivan MR, McGowen K, Liu Q, Akusobi C, Young DC, Mayfield JA, Raman S, Wolf ID, Moody DB, Aldrich CC, Muir A, Rubin EJ. Biotin-dependent cell envelope remodelling is required for Mycobacterium abscessus survival in lung infection. Nat Microbiol 2023; 8:481-497. [PMID: 36658396 PMCID: PMC9992005 DOI: 10.1038/s41564-022-01307-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 12/14/2022] [Indexed: 01/21/2023]
Abstract
Mycobacterium abscessus is an emerging pathogen causing lung infection predominantly in patients with underlying structural abnormalities or lung disease and is resistant to most frontline antibiotics. As the pathogenic mechanisms of M. abscessus in the context of the lung are not well-understood, we developed an infection model using air-liquid interface culture and performed a transposon mutagenesis and sequencing screen to identify genes differentially required for bacterial survival in the lung. Biotin cofactor synthesis was required for M. abscessus growth due to increased intracellular biotin demand, while pharmacological inhibition of biotin synthesis prevented bacterial proliferation. Biotin was required for fatty acid remodelling, which increased cell envelope fluidity and promoted M. abscessus survival in the alkaline lung environment. Together, these results indicate that biotin-dependent fatty acid remodelling plays a critical role in pathogenic adaptation to the lung niche, suggesting that biotin synthesis and fatty acid metabolism might provide therapeutic targets for treatment of M. abscessus infection.
Collapse
Affiliation(s)
- Mark R Sullivan
- Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Kerry McGowen
- Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Qiang Liu
- Department of Medicinal Chemistry, University of Minnesota College of Pharmacy, Minneapolis, MN, USA
| | - Chidiebere Akusobi
- Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - David C Young
- Division of Rheumatology, Immunity and Inflammation, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jacob A Mayfield
- Division of Rheumatology, Immunity and Inflammation, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Sahadevan Raman
- Division of Rheumatology, Immunity and Inflammation, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ian D Wolf
- Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - D Branch Moody
- Division of Rheumatology, Immunity and Inflammation, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Courtney C Aldrich
- Department of Medicinal Chemistry, University of Minnesota College of Pharmacy, Minneapolis, MN, USA
| | - Alexander Muir
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA
| | - Eric J Rubin
- Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
20
|
Levental I, Lyman E. Regulation of membrane protein structure and function by their lipid nano-environment. Nat Rev Mol Cell Biol 2023; 24:107-122. [PMID: 36056103 PMCID: PMC9892264 DOI: 10.1038/s41580-022-00524-4] [Citation(s) in RCA: 173] [Impact Index Per Article: 86.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2022] [Indexed: 02/04/2023]
Abstract
Transmembrane proteins comprise ~30% of the mammalian proteome, mediating metabolism, signalling, transport and many other functions required for cellular life. The microenvironment of integral membrane proteins (IMPs) is intrinsically different from that of cytoplasmic proteins, with IMPs solvated by a compositionally and biophysically complex lipid matrix. These solvating lipids affect protein structure and function in a variety of ways, from stereospecific, high-affinity protein-lipid interactions to modulation by bulk membrane properties. Specific examples of functional modulation of IMPs by their solvating membranes have been reported for various transporters, channels and signal receptors; however, generalizable mechanistic principles governing IMP regulation by lipid environments are neither widely appreciated nor completely understood. Here, we review recent insights into the inter-relationships between complex lipidomes of mammalian membranes, the membrane physicochemical properties resulting from such lipid collectives, and the regulation of IMPs by either or both. The recent proliferation of high-resolution methods to study such lipid-protein interactions has led to generalizable insights, which we synthesize into a general framework termed the 'functional paralipidome' to understand the mutual regulation between membrane proteins and their surrounding lipid microenvironments.
Collapse
Affiliation(s)
- Ilya Levental
- Department of Molecular Physiology and Biological Physics, Center for Molecular and Cell Physiology, University of Virginia, Charlottesville, VA, USA.
| | - Ed Lyman
- Department of Physics and Astronomy, Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, USA.
| |
Collapse
|
21
|
Ernst M, Orabi EA, Stockbridge RB, Faraldo-Gómez JD, Robertson JL. Dimerization mechanism of an inverted-topology ion channel in membranes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.27.525942. [PMID: 36789410 PMCID: PMC9928038 DOI: 10.1101/2023.01.27.525942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Many ion channels are multi-subunit complexes with a polar permeation pathway at the oligomeric interface, but their mechanisms of assembly into functional, thermodynamically stable units within the membrane are largely unknown. Here we characterize the assembly of the inverted-topology, homodimeric fluoride channel Fluc, leveraging a known mutation, N43S, that weakens Na + binding to the dimer interface, thereby unlocking the complex. While single-channel recordings show Na + is required for activation, single-molecule photobleaching and bulk Förster Resonance Energy Transfer experiments in lipid bilayers demonstrate that N43S Fluc monomers and dimers exist in dynamic equilibrium, even without Na + . Molecular dynamics simulations indicate this equilibrium is dominated by a differential in the lipid-solvation energetics of monomer and dimer, which stems from hydrophobic exposure of the polar ion pathway in the monomer. These results suggest a model wherein membrane-associated forces induce channel assembly while subsequent factors, in this case Na + binding, result in channel activation. Teaser Membrane morphology energetics foster inverted-topology Fluc channels to form dimers, which then become active upon Na + binding.
Collapse
|
22
|
Ozturk TN, Coumoundouros C, Culham DE, Wood JM. Structural Determinants and Functional Significance of Dimerization for Osmosensing Transporter ProP in Escherichia coli. Biochemistry 2023; 62:118-133. [PMID: 36516499 DOI: 10.1021/acs.biochem.2c00393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Osmosensing transporter ProP forestalls cellular dehydration by detecting environments with high osmotic pressure and mediating the accumulation of organic osmolytes by bacterial cells. It is composed of 12 transmembrane helices with cytoplasmic N- and C-termini. In Escherichia coli, dimers form when the C-terminal domains of ProP molecules form homodimeric, antiparallel, α-helical coiled coils. No dominant negative effect was detected when inactive and active ProP molecules formed heterodimers in vivo. Purification of ProP in detergent dodecylmaltoside yielded monomers, which were functional after reconstitution in proteoliposomes. With other evidence, this suggests that ProP monomers function independently whether in the monomeric or dimeric state. Amino acid replacements that disrupted or reversed the coiled coil did not prevent in vivo dimerization of ProP detected with a bacterial two-hybrid system. Maleimide labeling detected no osmolality-dependent variation in the reactivities of cysteine residues introduced to transmembrane helix (TM) XII. In contrast, coarse-grained molecular dynamic simulations detected deformation of the lipid around TMs III and VI, on the lipid-exposed protein surface opposite to TM XII. This suggests that the dimer interface of ProP includes the surfaces of TMs III and VI, not of TM XII as previously suggested by crosslinking data. Homology modeling suggested that coiled-coil formation and dimerization via such an interface are not mutually exclusive. In previous work, alterations to the C-terminal coiled coil blocked co-localization of ProP with phospholipid cardiolipin at E. coli cell poles. Thus, dimerization may contribute to ProP targeting, adjust its lipid environment, and hence indirectly modify its osmotic stress response.
Collapse
Affiliation(s)
- Tugba N Ozturk
- Department of Biochemistry and Molecular Biophysics, Washington University in Saint Louis, Saint Louis, Missouri63110, United States.,Theoretical Molecular Biophysics Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland20814, United States
| | - Chelsea Coumoundouros
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, CanadaN1G 2 W1
| | - Doreen E Culham
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, CanadaN1G 2 W1
| | - Janet M Wood
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, CanadaN1G 2 W1
| |
Collapse
|
23
|
Díaz Vázquez G, Cui Q, Senes A. Thermodynamic analysis of the GAS right transmembrane motif supports energetic model of dimerization. Biophys J 2023; 122:143-155. [PMID: 36371634 PMCID: PMC9822795 DOI: 10.1016/j.bpj.2022.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/12/2022] [Accepted: 11/09/2022] [Indexed: 11/13/2022] Open
Abstract
The GASright motif, best known as the fold of the glycophorin A transmembrane dimer, is one of the most common dimerization motifs in membrane proteins, characterized by its hallmark GxxxG-like sequence motifs (GxxxG, AxxxG, GxxxS, and similar). Structurally, GASright displays a right-handed crossing angle and short interhelical distance. Contact between the helical backbones favors the formation of networks of weak hydrogen bonds between Cα-H carbon donors and carbonyl acceptors on opposing helices (Cα-H···O=C). To understand the factors that modulate the stability of GASright, we previously presented a computational and experimental structure-based analysis of 26 predicted dimers. We found that the contributions of van der Waals packing and Cα-H hydrogen bonding to stability, as inferred from the structural models, correlated well with relative dimerization propensities estimated experimentally with the in vivo assay TOXCAT. Here we test this model with a quantitative thermodynamic analysis. We used Förster resonance energy transfer (FRET) to determine the free energy of dimerization of a representative subset of seven of the 26 original TOXCAT dimers using FRET. To overcome the technical issue arising from limited sampling of the dimerization isotherm, we introduced a globally fitting strategy across a set of constructs comprising a wide range of stabilities. This strategy yielded precise thermodynamic data that show strikingly good agreement between the original propensities and ΔG° of association in detergent, suggesting that TOXCAT is a thermodynamically driven process. From the correlation between TOXCAT and thermodynamic stability, the predicted free energy for all the 26 GASright dimers was calculated. These energies correlate with the in silico ΔE scores of dimerization that were computed on the basis of their predicted structure. These findings corroborate our original model with quantitative thermodynamic evidence, strengthening the hypothesis that van der Waals and Cα-H hydrogen bond interactions are the key modulators of GASright stability.
Collapse
Affiliation(s)
- Gladys Díaz Vázquez
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin; Biophysics Graduate Program, University of Wisconsin-Madison, Madison, Wisconsin
| | - Qiang Cui
- Department of Chemistry, Boston University, Boston, Massachusetts
| | - Alessandro Senes
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin.
| |
Collapse
|
24
|
Zhang B, Peng Y, Wang Y, Wang X. Exploring the trimerization process of a transmembrane helix with an ionizable residue by molecular dynamics simulations: a case study of transmembrane domain 5 of LMP-1. Phys Chem Chem Phys 2022; 24:7084-7092. [PMID: 35262149 DOI: 10.1039/d2cp00102k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The oligomerization of membrane proteins is an important biological process that plays a critical role in the initialization of membrane protein receptor signaling. Unveiling how transmembrane segments oligomerize is critical for understanding the mechanism of membrane receptor signaling activation. Owing to the complicated membrane environment and the extraordinary dynamic properties of the ionizable residues in the transmembrane segment, it is extremely challenging to thoroughly understand the oligomerization process of the transmembrane domain. In this study, transmembrane domain 5 (TMD5) of latent membrane protein-1 from Epstein-Barr virus was used as a prototype model to investigate the trimerization process of the transmembrane segment with ionizable residues. The trimerization process of TMD5 was rebuilt and investigated via conventional molecular dynamics simulations and constant-pH molecular dynamics simulations. When TMD5s approached each other, the tilting angles of the TMD5 monomer decreased. TMD5s formed stable trimers until two interacting sites (D150s and Q139s) along each transmembrane helix were created to lock the TMD5s. The pKa values of D150 shifted toward neutral states in the membrane environment. When TMD5s were monomers, the pKa shift of D150 was mainly influenced by its microenvironment in the lipid bilayer. When TMD5s were moving close to each other, protein-protein interactions became the main contributing factor for the pKa shift of D150s. Overall, this work elucidates the behavior of the TMD5 helix and the pKa shift of ionizable residue D150 in the process of TMD5 oligomerization. This study may provide insight into the development of agents for targeting the oligomerization of membrane proteins.
Collapse
Affiliation(s)
- Bo Zhang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China. .,Department of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yinghua Peng
- State Key Laboratory for Molecular Biology of Special Economic Animal, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, Jilin, 130112, China
| | - Yibo Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China.
| | - Xiaohui Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China. .,Department of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China.,Beijing National Laboratory for Molecular Sciences, Beijing, 100190, China
| |
Collapse
|
25
|
Corin K, Bowie JU. How physical forces drive the process of helical membrane protein folding. EMBO Rep 2022; 23:e53025. [PMID: 35133709 PMCID: PMC8892262 DOI: 10.15252/embr.202153025] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/17/2021] [Accepted: 11/24/2021] [Indexed: 11/09/2022] Open
Abstract
Protein folding is a fundamental process of life with important implications throughout biology. Indeed, tens of thousands of mutations have been associated with diseases, and most of these mutations are believed to affect protein folding rather than function. Correct folding is also a key element of design. These factors have motivated decades of research on protein folding. Unfortunately, knowledge of membrane protein folding lags that of soluble proteins. This gap is partly caused by the greater technical challenges associated with membrane protein studies, but also because of additional complexities. While soluble proteins fold in a homogenous water environment, membrane proteins fold in a setting that ranges from bulk water to highly charged to apolar. Thus, the forces that drive folding vary in different regions of the protein, and this complexity needs to be incorporated into our understanding of the folding process. Here, we review our understanding of membrane protein folding biophysics. Despite the greater challenge, better model systems and new experimental techniques are starting to unravel the forces and pathways in membrane protein folding.
Collapse
Affiliation(s)
- Karolina Corin
- Department of Chemistry and BiochemistryMolecular Biology InstituteUCLA‐DOE InstituteUniversity of CaliforniaLos AngelesCAUSA
| | - James U Bowie
- Department of Chemistry and BiochemistryMolecular Biology InstituteUCLA‐DOE InstituteUniversity of CaliforniaLos AngelesCAUSA
| |
Collapse
|
26
|
Gaffney KA, Guo R, Bridges MD, Muhammednazaar S, Chen D, Kim M, Yang Z, Schilmiller AL, Faruk NF, Peng X, Jones AD, Kim KH, Sun L, Hubbell WL, Sosnick TR, Hong H. Lipid bilayer induces contraction of the denatured state ensemble of a helical-bundle membrane protein. Proc Natl Acad Sci U S A 2022; 119:e2109169119. [PMID: 34969836 PMCID: PMC8740594 DOI: 10.1073/pnas.2109169119] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2021] [Indexed: 12/19/2022] Open
Abstract
Defining the denatured state ensemble (DSE) and disordered proteins is essential to understanding folding, chaperone action, degradation, and translocation. As compared with water-soluble proteins, the DSE of membrane proteins is much less characterized. Here, we measure the DSE of the helical membrane protein GlpG of Escherichia coli (E. coli) in native-like lipid bilayers. The DSE was obtained using our steric trapping method, which couples denaturation of doubly biotinylated GlpG to binding of two streptavidin molecules. The helices and loops are probed using limited proteolysis and mass spectrometry, while the dimensions are determined using our paramagnetic biotin derivative and double electron-electron resonance spectroscopy. These data, along with our Upside simulations, identify the DSE as being highly dynamic, involving the topology changes and unfolding of some of the transmembrane (TM) helices. The DSE is expanded relative to the native state but only to 15 to 75% of the fully expanded condition. The degree of expansion depends on the local protein packing and the lipid composition. E. coli's lipid bilayer promotes the association of TM helices in the DSE and, probably in general, facilitates interhelical interactions. This tendency may be the outcome of a general lipophobic effect of proteins within the cell membranes.
Collapse
Affiliation(s)
- Kristen A Gaffney
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824
| | - Ruiqiong Guo
- Department of Chemistry, Michigan State University, East Lansing, MI 48824
| | - Michael D Bridges
- Jules Stein Eye Institute, University of California, Los Angeles, CA 90095
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
| | | | - Daoyang Chen
- Department of Chemistry, Michigan State University, East Lansing, MI 48824
| | - Miyeon Kim
- Department of Chemistry, Michigan State University, East Lansing, MI 48824
| | - Zhongyu Yang
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND 58108
| | - Anthony L Schilmiller
- Research Technology Support Facility Mass Spectrometry and Metabolomics Core, Michigan State University, East Lansing, MI 48824
| | - Nabil F Faruk
- Graduate Program in Biophysical Sciences, The University of Chicago, Chicago, IL 60637
| | - Xiangda Peng
- Department of Biochemistry & Molecular Biology, The University of Chicago, Chicago, IL 60637
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637
| | - A Daniel Jones
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824
- Research Technology Support Facility Mass Spectrometry and Metabolomics Core, Michigan State University, East Lansing, MI 48824
| | - Kelly H Kim
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824
| | - Liangliang Sun
- Department of Chemistry, Michigan State University, East Lansing, MI 48824
| | - Wayne L Hubbell
- Jules Stein Eye Institute, University of California, Los Angeles, CA 90095
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
| | - Tobin R Sosnick
- Department of Biochemistry & Molecular Biology, The University of Chicago, Chicago, IL 60637;
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637
| | - Heedeok Hong
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824;
- Department of Chemistry, Michigan State University, East Lansing, MI 48824
| |
Collapse
|
27
|
Hong H, Choi HK, Yoon TY. Untangling the complexity of membrane protein folding. Curr Opin Struct Biol 2022; 72:237-247. [PMID: 34995926 DOI: 10.1016/j.sbi.2021.11.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 11/15/2022]
Abstract
Delineating the folding steps of helical-bundle membrane proteins has been a challenging task. Many questions remain unanswered, including the conformation and stability of the states populated during folding, the shape of the energy barriers between the states, and the role of lipids as a solvent in mediating the folding. Recently, theoretical frames have matured to a point that permits detailed dissection of the folding steps, and advances in experimental techniques at both single-molecule and ensemble levels enable selective modulation of specific steps for quantitative determination of the folding energy landscapes. We also discuss how lipid molecules would play an active role in shaping the folding energy landscape of membrane proteins, and how folding of multi-domain membrane proteins can be understood based on our current knowledge. We conclude this review by offering an outlook for emerging questions in the study of membrane protein folding.
Collapse
Affiliation(s)
- Heedeok Hong
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA.
| | - Hyun-Kyu Choi
- Wallace H. Coulter Department of Biomedical Engineering and Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
| | - Tae-Young Yoon
- School of Biological Sciences and Institute for Molecular Biology and Genetics, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
28
|
Song KC, Molina AV, Chen R, Gagnon IA, Koh YH, Roux B, Sosnick TR. Folding and misfolding of potassium channel monomers during assembly and tetramerization. Proc Natl Acad Sci U S A 2021; 118:e2103674118. [PMID: 34413192 PMCID: PMC8403937 DOI: 10.1073/pnas.2103674118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The dynamics and folding of potassium channel pore domain monomers are connected to the kinetics of tetramer assembly. In all-atom molecular dynamics simulations of Kv1.2 and KcsA channels, monomers adopt multiple nonnative conformations while the three helices remain folded. Consistent with this picture, NMR studies also find the monomers to be dynamic and structurally heterogeneous. However, a KcsA construct with a disulfide bridge engineered between the two transmembrane helices has an NMR spectrum with well-dispersed peaks, suggesting that the monomer can be locked into a native-like conformation that is similar to that observed in the folded tetramer. During tetramerization, fluoresence resonance energy transfer (FRET) data indicate that monomers rapidly oligomerize upon insertion into liposomes, likely forming a protein-dense region. Folding within this region occurs along separate fast and slow routes, with τfold ∼40 and 1,500 s, respectively. In contrast, constructs bearing the disulfide bond mainly fold via the faster pathway, suggesting that maintaining the transmembrane helices in their native orientation reduces misfolding. Interestingly, folding is concentration independent despite the tetrameric nature of the channel, indicating that the rate-limiting step is unimolecular and occurs after monomer association in the protein-dense region. We propose that the rapid formation of protein-dense regions may help with the assembly of multimeric membrane proteins by bringing together the nascent components prior to assembly. Finally, despite its name, the addition of KcsA's C-terminal "tetramerization" domain does not hasten the kinetics of tetramerization.
Collapse
Affiliation(s)
- Kevin C Song
- Graduate Program in the Biophysical Sciences, The University of Chicago, Chicago, IL 60637
| | - Andrew V Molina
- Graduate Program in the Biophysical Sciences, The University of Chicago, Chicago, IL 60637
- Medical Scientist Training Program, The University of Chicago, Chicago, IL 60637
| | - Ruofan Chen
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL 60637
| | - Isabelle A Gagnon
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637
| | - Young Hoon Koh
- Graduate Program in the Biophysical Sciences, The University of Chicago, Chicago, IL 60637
| | - Benoît Roux
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637;
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637
- Department of Chemistry, The University of Chicago, Chicago, IL 60637
| | - Tobin R Sosnick
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL 60637;
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637
| |
Collapse
|
29
|
Ernst M, Robertson JL. The Role of the Membrane in Transporter Folding and Activity. J Mol Biol 2021; 433:167103. [PMID: 34139219 PMCID: PMC8756397 DOI: 10.1016/j.jmb.2021.167103] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 12/23/2022]
Abstract
The synthesis, folding, and function of membrane transport proteins are critical factors for defining cellular physiology. Since the stability of these proteins evolved amidst the lipid bilayer, it is no surprise that we are finding that many of these membrane proteins demonstrate coupling of their structure or activity in some way to the membrane. More and more transporter structures are being determined with some information about the surrounding membrane, and computational modeling is providing further molecular details about these solvation structures. Thus, the field is moving towards identifying which molecular mechanisms - lipid interactions, membrane perturbations, differential solvation, and bulk membrane effects - are involved in linking membrane energetics to transporter stability and function. In this review, we present an overview of these mechanisms and the growing evidence that the lipid bilayer is a major determinant of the fold, form, and function of membrane transport proteins in membranes.
Collapse
Affiliation(s)
- Melanie Ernst
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine in St. Louis, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Janice L Robertson
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine in St. Louis, 660 South Euclid Avenue, St. Louis, MO 63110, USA.
| |
Collapse
|
30
|
Single-molecule fluorescence vistas of how lipids regulate membrane proteins. Biochem Soc Trans 2021; 49:1685-1694. [PMID: 34346484 DOI: 10.1042/bst20201074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/15/2021] [Accepted: 07/19/2021] [Indexed: 12/17/2022]
Abstract
The study of membrane proteins is undergoing a golden era, and we are gaining unprecedented knowledge on how this key group of proteins works. However, we still have only a basic understanding of how the chemical composition and the physical properties of lipid bilayers control the activity of membrane proteins. Single-molecule (SM) fluorescence methods can resolve sample heterogeneity, allowing to discriminate between the different molecular populations that biological systems often adopt. This short review highlights relevant examples of how SM fluorescence methodologies can illuminate the different ways in which lipids regulate the activity of membrane proteins. These studies are not limited to lipid molecules acting as ligands, but also consider how the physical properties of the bilayer can be determining factors on how membrane proteins function.
Collapse
|
31
|
Principles and Methods in Computational Membrane Protein Design. J Mol Biol 2021; 433:167154. [PMID: 34271008 DOI: 10.1016/j.jmb.2021.167154] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 07/03/2021] [Accepted: 07/06/2021] [Indexed: 01/13/2023]
Abstract
After decades of progress in computational protein design, the design of proteins folding and functioning in lipid membranes appears today as the next frontier. Some notable successes in the de novo design of simplified model membrane protein systems have helped articulate fundamental principles of protein folding, architecture and interaction in the hydrophobic lipid environment. These principles are reviewed here, together with the computational methods and approaches that were used to identify them. We provide an overview of the methodological innovations in the generation of new protein structures and functions and in the development of membrane-specific energy functions. We highlight the opportunities offered by new machine learning approaches applied to protein design, and by new experimental characterization techniques applied to membrane proteins. Although membrane protein design is in its infancy, it appears more reachable than previously thought.
Collapse
|
32
|
Jiang W, Lin YC, Luo YL. Mechanical properties of anionic asymmetric bilayers from atomistic simulations. J Chem Phys 2021; 154:224701. [PMID: 34241213 PMCID: PMC8189722 DOI: 10.1063/5.0048232] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 05/12/2021] [Indexed: 11/14/2022] Open
Abstract
Mechanotransduction, the biological response to mechanical stress, is often initiated by activation of mechanosensitive (MS) proteins upon mechanically induced deformations of the cell membrane. A current challenge in fully understanding this process is in predicting how lipid bilayers deform upon the application of mechanical stress. In this context, it is now well established that anionic lipids influence the function of many proteins. Here, we test the hypothesis that anionic lipids could indirectly modulate MS proteins by alteration of the lipid bilayer mechanical properties. Using all-atom molecular dynamics simulations, we computed the bilayer bending rigidity (KC), the area compressibility (KA), and the surface shear viscosity (ηm) of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (PC) lipid bilayers with and without phosphatidylserine (PS) or phosphatidylinositol bisphosphate (PIP2) at physiological concentrations in the lower leaflet. Tensionless leaflets were first checked for each asymmetric bilayer model, and a formula for embedding an asymmetric channel in an asymmetric bilayer is proposed. Results from two different sized bilayers show consistently that the addition of 20% surface charge in the lower leaflet of the PC bilayer with PIP2 has minimal impact on its mechanical properties, while PS reduced the bilayer bending rigidity by 22%. As a comparison, supplementing the PIP2-enriched PC membrane with 30% cholesterol, a known rigidifying steroid lipid, produces a significant increase in all three mechanical constants. Analysis of pairwise splay moduli suggests that the effect of anionic lipids on bilayer bending rigidity largely depends on the number of anionic lipid pairs formed during simulations. The potential implication of bilayer bending rigidity is discussed in the framework of MS piezo channels.
Collapse
Affiliation(s)
- Wenjuan Jiang
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, California 91766, USA
| | - Yi-Chun Lin
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, California 91766, USA
| | - Yun Lyna Luo
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, California 91766, USA
| |
Collapse
|