1
|
Mesas C, Moreno J, Doello K, Peña M, López-Romero JM, Prados J, Melguizo C. Cannabidiol effects in stem cells: A systematic review. Biofactors 2025; 51:e2148. [PMID: 39653426 DOI: 10.1002/biof.2148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 11/22/2024] [Indexed: 12/29/2024]
Abstract
Stem cells play a critical role in human tissue regeneration and repair. In addition, cancer stem cells (CSCs), subpopulations of cancer cells sharing similar characteristics as normal stem cells, are responsible for tumor metastasis and resistance to chemo- and radiotherapy and to tumor relapse. Interestingly, all stem cells have cannabinoid receptors, such as cannabidiol (CBD), that perform biological functions. The aim of this systematic review was to analyze the effect of CBD on both somatic stem cells (SSCs) and CSCs. Of the 276 articles analyzed, 38 were selected according to the inclusion and exclusion criteria. A total of 27 studied the effect of CBD on SSCs, finding that 44% focused on CBD differentiation effect and 56% on its protective activity. On the other hand, 11 articles looked at the effect of CBD on CSCs, including glioblastoma (64%), lung cancer (27%), and breast cancer (only one article). Our results showed that CBD exerted a differentiating and protective effect on SCCs. In addition, this molecule demonstrated an antiproliferative effect on some CSCs, although most of the analyses were performed in vitro. Therefore, although in vivo studies should be necessary to justify its clinical use, CBD and its receptors could be a specific target to act on both SSCs and CSCs.
Collapse
Affiliation(s)
- Cristina Mesas
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada, (ibs.GRANADA), Granada, Spain
| | - Javier Moreno
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada, Spain
| | - Kevin Doello
- Instituto de Investigación Biosanitaria de Granada, (ibs.GRANADA), Granada, Spain
- Service of Medical Oncology, Hospital Virgen de las Nieves, Granada, Spain
| | - Mercedes Peña
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada, (ibs.GRANADA), Granada, Spain
| | - Juan M López-Romero
- Department of Organic Chemistry, Faculty of Sciences, University of Malaga, Málaga, Spain
| | - Jose Prados
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada, (ibs.GRANADA), Granada, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, Spain
| | - Consolación Melguizo
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, Spain
| |
Collapse
|
2
|
Hu Y, Hou Z, Liu Z, Wang X, Zhong J, Li J, Guo X, Ruan C, Sang H, Zhu B. Oyster mantle-derived exosomes alleviate osteoporosis by regulating bone homeostasis. Biomaterials 2024; 311:122648. [PMID: 38833761 DOI: 10.1016/j.biomaterials.2024.122648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 04/20/2024] [Accepted: 05/31/2024] [Indexed: 06/06/2024]
Abstract
Osteoporosis is a major public health problem with an urgent need for safe and effective therapeutic interventions. The process of shell formation in oysters is similar to that of bone formation in mammals, and oyster extracts have been proven to exert osteoprotective effects. Oyster mantle is the most crucial organ regulating shell formation, in which exosomes play an important role. However, the effects of oyster mantle-derived exosomes (OMEs) on mammalian osteoporosis and the underlying mechanisms remain unknown. The OMEs investigated herein was found to carry abundant osteogenic cargos. They could also survive hostile gastrointestinal conditions and accumulate in the bones following oral administration. Moreover, they promoted osteoblastic differentiation and inhibited osteoclastic differentiation simultaneously. Further mechanistic examination revealed that OMEs likely promoted osteogenic activity by activating PI3K/Akt/β-catenin pathway in osteoblasts and blunted osteoclastic activity by inhibiting NF-κB pathway in osteoclasts. These favorable pro-osteogenic effects of OMEs were also corroborated in a rat femur defect model. Importantly, oral administration of OMEs effectively attenuated bone loss and improved the bone microstructure in ovariectomy-induced osteoporotic mice, and demonstrating excellent biosafety. The mechanistic insights from our data support that OMEs possess promising therapeutic potential against osteoporosis.
Collapse
Affiliation(s)
- Yuanyuan Hu
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, 518060, China; SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, China; College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Zuoxu Hou
- Department of Orthopedics, Shenzhen Hospital, Southern Medical University, Shenzhen, 518101, China
| | - Zhengqi Liu
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, 518060, China; SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, China
| | - Xiao Wang
- Department of Orthopedics, Shenzhen Hospital, Southern Medical University, Shenzhen, 518101, China
| | - Jintao Zhong
- Department of Orthopedics, Shenzhen Hospital, Southern Medical University, Shenzhen, 518101, China
| | - Jinjin Li
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, 518060, China
| | - Xiaoming Guo
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, 518060, China
| | - Changshun Ruan
- Research Center for Human Tissue and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Hongxun Sang
- Department of Orthopedics, Shenzhen Hospital, Southern Medical University, Shenzhen, 518101, China.
| | - Beiwei Zhu
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, 518060, China; SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, China.
| |
Collapse
|
3
|
Li H, Hu W, Wu Z, Tian B, Ren Y, Zou X. Esketamine improves cognitive function in sepsis-associated encephalopathy by inhibiting microglia-mediated neuroinflammation. Eur J Pharmacol 2024; 983:177014. [PMID: 39312992 DOI: 10.1016/j.ejphar.2024.177014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 09/14/2024] [Accepted: 09/20/2024] [Indexed: 09/25/2024]
Abstract
Microglia-mediated neuroinflammation is critical in the pathogenesis of sepsis-associated encephalopathy(SAE). Identifying the key factors that inhibit microglia-mediated neuroinflammation holds promise as a potential target for preventing and treating SAE. Esketamine, a non-competitive N-methyl-D-aspartate (NMDA) receptor antagonist, has been proposed to possess protective and therapeutic properties against neuroinflammatory disorders. This study provides evidence that the administration of Esketamine in SAE mice improves cognitive impairments and alleviates neuronal damage by inhibiting the microglia-mediated neuroinflammation. The BDNF receptor antagonist K252a was employed in both vivo and in vitro experiments. The findings indicate that K252a successfully counteracted the beneficial effects of Esketamine on microglia and cognitive behavior in mice with SAE. Consequently, these results suggest that Esketamine inhibits microglia-mediated neuroinflammation by activating the BDNF pathway, and mitigating neuronal damage and cognitive dysfunction associated with SAE.
Collapse
Affiliation(s)
- Hui Li
- College of Anesthesia, Guizhou Medical University, Guizhou Province, Guiyang 550004, China; Department of Anesthesiology, The Affiliated Hospital of Guizhou Medical University, Guizhou Province, Guiyang 550004, China; Guizhou Medical University Key Laboratory of Anesthesia and Pain Mechanism Research, Guizhou Province, Guiyang, 550004, China
| | - Wen Hu
- College of Anesthesia, Guizhou Medical University, Guizhou Province, Guiyang 550004, China; Guizhou Medical University Key Laboratory of Anesthesia and Pain Mechanism Research, Guizhou Province, Guiyang, 550004, China
| | - Zhen Wu
- College of Anesthesia, Guizhou Medical University, Guizhou Province, Guiyang 550004, China; Guizhou Medical University Key Laboratory of Anesthesia and Pain Mechanism Research, Guizhou Province, Guiyang, 550004, China
| | - Bin Tian
- Department of Radiology, The Second People's Hospital of Guiyang, Guizhou Province, Guiyang, 550023, China
| | - Yimin Ren
- College of Anesthesia, Guizhou Medical University, Guizhou Province, Guiyang 550004, China; Department of Anesthesiology, The Affiliated Hospital of Guizhou Medical University, Guizhou Province, Guiyang 550004, China; Guizhou Medical University Key Laboratory of Anesthesia and Pain Mechanism Research, Guizhou Province, Guiyang, 550004, China.
| | - Xiaohua Zou
- College of Anesthesia, Guizhou Medical University, Guizhou Province, Guiyang 550004, China; Department of Anesthesiology, The Affiliated Hospital of Guizhou Medical University, Guizhou Province, Guiyang 550004, China; Guizhou Medical University Key Laboratory of Anesthesia and Pain Mechanism Research, Guizhou Province, Guiyang, 550004, China.
| |
Collapse
|
4
|
Mehrvar A, Akbari M, Khosroshahi EM, Nekavand M, Mokhtari K, Baniasadi M, Aghababaian M, Karimi M, Amiri S, Moazen A, Maghsoudloo M, Alimohammadi M, Rahimzadeh P, Farahani N, Vaghar ME, Entezari M, Hashemi M. The impact of exosomes on bone health: A focus on osteoporosis. Pathol Res Pract 2024; 263:155618. [PMID: 39362132 DOI: 10.1016/j.prp.2024.155618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/05/2024]
Abstract
Osteoporosis is a widespread chronic condition. Although standard treatments are generally effective, they are frequently constrained by side effects and the risk of developing drug resistance. A promising area of research is the investigation of extracellular vesicles (EVs), including exosomes, microvesicles, and apoptotic bodies, which play a crucial role in bone metabolism. Exosomes, in particular, have shown significant potential in both the diagnosis and treatment of osteoporosis. EVs derived from osteoclasts, osteoblasts, mesenchymal stem cells, and other sources can influence bone metabolism, while exosomes from inflammatory and tumor cells may exacerbate bone loss, highlighting their dual role in osteoporosis pathology. This review offers a comprehensive overview of EV biogenesis, composition, and function in osteoporosis, focusing on their diagnostic and therapeutic potential. We examine the roles of various types of EVs and their cargo-proteins, RNAs, and lipids-in bone metabolism. Additionally, we explore the emerging applications of EVs as biomarkers and therapeutic agents, emphasizing the need for further research to address current challenges and enhance EV-based strategies for managing osteoporosis.
Collapse
Affiliation(s)
- Amir Mehrvar
- Assistant Professor, Department of Orthopedics, Taleghani Hospital Research Development Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammadarian Akbari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Elaheh Mohandesi Khosroshahi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehrandokht Nekavand
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Midwifery, Faculty of nursing and midwifery, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Khatere Mokhtari
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Mojtaba Baniasadi
- Department of Orthopedic Surgery, Isfahan University of Medical Sciences, Isfahan, Iran; MD, Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, Department of Orthopedic, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Aghababaian
- Department of Orthopedic Surgery, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mansour Karimi
- MD, Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, Department of Orthopedic, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shayan Amiri
- MD, Assistant Professor of Orthopaedic Surgery, Shohadaye Haftom-e-Tir Hospital, Department of Orthopedic, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Moazen
- Department of Orthopedics, Bone and Joint Reconstruction Research Center, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mazaher Maghsoudloo
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan 646000, PR China
| | - Mina Alimohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Payman Rahimzadeh
- Surgical Research Society (SRS), Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Najma Farahani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mohammad Eslami Vaghar
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of gynecology, Faculty of Medicine, Tehran Medical sciences, Islamic Azad University, Tehran, Iran.
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
5
|
Li D, Zhao Z, Zhu L, Feng H, Song J, Fu J, Li J, Chen Z, Fu H. 7,8-DHF inhibits BMSC oxidative stress via the TRKB/PI3K/AKT/NRF2 pathway to improve symptoms of postmenopausal osteoporosis. Free Radic Biol Med 2024; 223:413-429. [PMID: 39155025 DOI: 10.1016/j.freeradbiomed.2024.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/08/2024] [Accepted: 08/12/2024] [Indexed: 08/20/2024]
Abstract
Postmenopausal osteoporosis (PMO) is characterized by bone loss and microstructural damage, and it is most common in older adult women. Currently, there is no cure for PMO. The flavonoid chemical 7,8-dihydroxyflavone (7,8-DHF) specifically activates tropomyosin receptor kinase B (TRKB). Furthermore, 7,8-DHF has various biological characteristics, including anti-inflammatory and antioxidant effects. However, the specific implications and fundamental mechanisms of 7,8-DHF in PMO remain unclear. We used protein imprinting, flow cytometry, tissue staining, and other methods to estimate the preventive mechanisms of 7,8-DHF against hydrogen peroxide (H2O2)-induced apoptosis in primary mouse bone marrow mesenchymal stem cells (BMSCs), osteogenic differentiation ability, and bone mass in ovariectomized (OVX) mice. We found that 7,8-DHF effectively prevented H2O2-induced reductions in the viability and osteogenic differentiation capacity of primary BMSCs. Mechanistically, 7,8-DHF induced the TRKB to activate the PI3K/AKT/NRF2 pathway. In vivo experiments with the OVX mouse model confirmed that 7,8-DHF can inhibit oxidative stress and promote bone formation, indicating that 7,8-DHF improves the viability and osteogenic differentiation ability of BMSCs stimulated via H2O2 by activating the TRKB/PI3K/AKT and NRF2 pathways, thereby improving PMO.
Collapse
Affiliation(s)
- Dailuo Li
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Zihang Zhao
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Liyu Zhu
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Haoran Feng
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Junlong Song
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Jiawei Fu
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Jincheng Li
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Zhanzhi Chen
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Hailiang Fu
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China.
| |
Collapse
|
6
|
Otte ED, Roper RJ. Skeletal health in DYRK1A syndrome. Front Neurosci 2024; 18:1462893. [PMID: 39308945 PMCID: PMC11413744 DOI: 10.3389/fnins.2024.1462893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 08/21/2024] [Indexed: 09/25/2024] Open
Abstract
DYRK1A syndrome results from a reduction in copy number of the DYRK1A gene, which resides on human chromosome 21 (Hsa21). DYRK1A has been implicated in the development of cognitive phenotypes associated with many genetic disorders, including Down syndrome (DS) and Alzheimer's disease (AD). Additionally, overexpression of DYRK1A in DS has been implicated in the development of abnormal skeletal phenotypes in these individuals. Analyses of mouse models with Dyrk1a dosage imbalance (overexpression and underexpression) show skeletal deficits and abnormalities. Normalization of Dyrk1a copy number in an otherwise trisomic animal rescues some skeletal health parameters, and reduction of Dyrk1a copy number in an otherwise euploid (control) animal results in altered skeletal health measurements, including reduced bone mineral density (BMD) in the femur, mandible, and skull. However, little research has been conducted thus far on the implications of DYRK1A reduction on human skeletal health, specifically in individuals with DYRK1A syndrome. This review highlights the skeletal phenotypes of individuals with DYRK1A syndrome, as well as in murine models with reduced Dyrk1a copy number, and provides potential pathways altered by a reduction of DYRK1A copy number, which may impact skeletal health and phenotypes in these individuals. Understanding how decreased expression of DYRK1A in individuals with DYRK1A syndrome impacts bone health may increase awareness of skeletal traits and assist in the development of therapies to improve quality of life for these individuals.
Collapse
Affiliation(s)
- Elysabeth D Otte
- Department of Biology, Indiana University Indianapolis, Indianapolis, IN, United States
| | - Randall J Roper
- Department of Biology, Indiana University Indianapolis, Indianapolis, IN, United States
| |
Collapse
|
7
|
Liu J, Wang B, Chen H, Yu X, Cao X, Zhang H. Osteoclast-derived exosomes influence osteoblast differentiation in osteoporosis progression via the lncRNA AW011738/ miR-24-2-5p/ TREM1 axis. Biomed Pharmacother 2024; 178:117231. [PMID: 39094542 DOI: 10.1016/j.biopha.2024.117231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024] Open
Abstract
AIMS To investigate the molecular mechanism of osteoclast-derived exosomes in osteoporosis. MAIN METHODS RANKL induced osteoclast model was screened for significantly differentially expressed lncRNAs and mRNAs by whole RNA sequencing. Exosomes were characterized using electron microscopy, western blotting and nanosight. Overexpression or knockdown of AW011738 was performed to explore its function. The degree of osteoporosis in an osteoporosis model was assessed by mirco-CT. The osteoclast model, osteoblast differentiation ability and the molecular mechanism of lncRNA AW011738/miR-24-2-5p/TREM1 axis in osteoporosis were assessed by dual luciferase reporter gene assay, Western blotting (WB), immunofluorescence and ALP staining. Bioinformatics was used to predict interactions of key osteoporosis-related genes with miRNAs, transcription factors, and potential drugs after upregulation of AW011738. To predict the protein-protein interaction (PPI) network associated with key genes, GO and KEGG analyses were performed on the key genes. The ssGSVA was used to predict changes in the immune microenvironment. KEY FINDINGS Osteoclast-derived exosomes containing lncRNA AW011738 decreased the osteogenesis-related markers and accelerated bone loss in OVX mice. Osteoclast (si-AW011738)-derived exosomes showed a significant increase in biomarkers of osteoblast differentiation in vitro compared to the si-NC group. As analyzed by mirco-CT, tail vein injected si-AW011738 OVX mice were less osteoporotic than the control group. AW011738 inhibited osteoblast differentiation by regulating TREM1 expression through microRNA. Meanwhile, overexpression of miR-24-2-5p inhibited TREM1 expression to promote osteoblast differentiation. SIGNIFICANCE Osteoclast-derived exosomes containing lncRNA AW011738 inhibit osteogenesis in MC3T3-E1 cells through the lncRNA AW011738/miR-24-2-5p/TREM1 axis and exacerbate osteoporosis in OVX mice.
Collapse
Affiliation(s)
- Jingcheng Liu
- Department of Orthopedics, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu 210029, China.
| | - Binyu Wang
- Department of Orthopedics, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu 210029, China.
| | - Hongtao Chen
- Department Of Orthopedics, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, China.
| | - Xiao Yu
- Department of Orthopedics, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu 210029, China.
| | - Xiaojian Cao
- Department of Orthopedics, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu 210029, China.
| | - Hongxiu Zhang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu 210029, China.
| |
Collapse
|
8
|
Zhaoyu L, Xiaomeng Y, Na L, Jiamin S, Guanhua D, Xiuying Y. Roles of natural products on myokine expression and secretion in skeletal muscle atrophy. Gen Comp Endocrinol 2024; 355:114550. [PMID: 38768928 DOI: 10.1016/j.ygcen.2024.114550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/15/2024] [Accepted: 05/15/2024] [Indexed: 05/22/2024]
Abstract
Skeletal muscles serve both in movement and as endocrine organs. Myokines secreted by skeletal muscles activate biological functions within muscles and throughout the body via autocrine, paracrine, and/or endocrine pathways. Skeletal muscle atrophy can influence myokine expression and secretion, while myokines can impact the structure and function of skeletal muscles. Regulating the expression and secretion of myokines through the pharmacological approach is a strategy for alleviating skeletal muscle atrophy. Natural products possess complex structures and chemical properties. Previous studies have demonstrated that various natural products exert beneficial effects on skeletal muscle atrophy. This article reviewed the regulatory effects of natural products on myokines and summarized the research progress on skeletal muscle atrophy associated with myokine regulation. The focus is on how small-molecule natural products affect the regulation of interleukin 6 (IL-6), irisin, myostatin, IGF-1, and FGF-21 expression. We contend that the development of small-molecule natural products targeting the regulation of myokines holds promise in combating skeletal muscle atrophy.
Collapse
Affiliation(s)
- Liu Zhaoyu
- Beijing Key Laboratory of Drug Target Identification and New Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Ye Xiaomeng
- Beijing Key Laboratory of Drug Target Identification and New Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Li Na
- Beijing Key Laboratory of Drug Target Identification and New Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Shang Jiamin
- Beijing Key Laboratory of Drug Target Identification and New Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Du Guanhua
- Beijing Key Laboratory of Drug Target Identification and New Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China.
| | - Yang Xiuying
- Beijing Key Laboratory of Drug Target Identification and New Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China.
| |
Collapse
|
9
|
Liu X, Ding Y, Jiang C, Xin Y, Ma X, Xu M, Wang Q, Hou B, Li Y, Zhang S, Shao B. Astragaloside IV mediates radiation-induced neuronal damage through activation of BDNF-TrkB signaling. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155803. [PMID: 38876008 DOI: 10.1016/j.phymed.2024.155803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/06/2024] [Accepted: 06/02/2024] [Indexed: 06/16/2024]
Abstract
BACKGROUND Electromagnetic radiation is relevant to human life, and radiation can trigger neurodegenerative diseases by altering the function of the central nervous system through oxidative stress, mitochondrial dysfunction, and protein degradation. Astragaloside IV (AS-IV) is anti-oxidative, anti-apoptotic, activates the BDNF-TrkB pathway and enhances synaptic plasticity in radiated mice, which can exert its neuroprotection. However, the exact molecular mechanisms are still unclear. PURPOSE This study investigated whether AS-IV could play a neuroprotective role by regulating BDNF-TrkB pathway in radiation damage and its underlying molecular mechanisms. METHODS Transgenic mice (Thy1-YFP line H) were injected with AS-IV (40 mg/kg/day body weight) by intraperitoneal injection daily for 4 weeks, followed by X-rays. PC12 cells and primary cortical neurons were also exposed to UVA after 24 h of AS-IV treatment (25 μg/ml and 50 μg/ml) in vitro. The impact of radiation on learning and cognitive functions was visualized in the Morris water maze assay. Subsequently, Immunofluorescence and Golgi-Cox staining analyses were utilized to investigate the structural damage of neuronal dendrites and the density of dendritic spines. Transmission electron microscopy was performed to examine how the radiation affected the ultrastructure of neurons. Finally, western blotting analysis and Quantitative RT-PCR were used to evaluate the expression levels and locations of proteins in vitro and in vivo. RESULTS Radiation induced BDNF-TrkB signaling dysregulation and decreased the levels of neuron-related functional genes (Ngf, Bdnf, Gap-43, Ras, Psd-95, Arc, Creb, c-Fos), PSD-95 and F-actin, which subsequently led to damage of neuronal ultrastructure and dendrites, loss of dendritic spines, and decreased dendritic complexity index, contributing to spatial learning and memory deficits. These abnormalities were prevented by AS-IV treatment. In addition, TrkB receptor antagonists antagonized these neuroprotective actions of AS-IV. 7,8-dihydroxyflavone and AS-IV had neuroprotective effects after radiation. CONCLUSION AS-IV inhibits morphological damage of neurons and cognitive dysfunction in mice after radiation exposure, resulting in a neuroprotective effect, which were mediated by activating the BDNF-TrkB pathway.
Collapse
Affiliation(s)
- Xin Liu
- School of Life Sciences, Lanzhou University, Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou 730000, Gansu Province, PR China
| | - Yanping Ding
- School of Life Sciences, Northwest Normal University, Lanzhou 730070, Gansu Province, PR China
| | - Chenxin Jiang
- School of Life Sciences, Lanzhou University, Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou 730000, Gansu Province, PR China
| | - Yuanyuan Xin
- School of Life Sciences, Lanzhou University, Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou 730000, Gansu Province, PR China
| | - Xin Ma
- School of Life Sciences, Lanzhou University, Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou 730000, Gansu Province, PR China
| | - Min Xu
- School of Life Sciences, Lanzhou University, Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou 730000, Gansu Province, PR China
| | - Qianhao Wang
- School of Life Sciences, Lanzhou University, Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou 730000, Gansu Province, PR China
| | - Boru Hou
- Department of Neurosurgery, Second Hospital of Lanzhou University, Lanzhou 730030, Gansu Province, PR China
| | - Yingdong Li
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, PR China
| | - Shengxiang Zhang
- School of Life Sciences, Lanzhou University, Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou 730000, Gansu Province, PR China
| | - Baoping Shao
- School of Life Sciences, Lanzhou University, Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou 730000, Gansu Province, PR China.
| |
Collapse
|
10
|
Chen Z, Xu W, Luo J, Liu L, Peng X. Lonicera japonica Fermented by Lactobacillus plantarum Improve Multiple Patterns Driven Osteoporosis. Foods 2024; 13:2649. [PMID: 39272415 PMCID: PMC11393950 DOI: 10.3390/foods13172649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/08/2024] [Accepted: 08/19/2024] [Indexed: 09/15/2024] Open
Abstract
Osteoporosis (OP) represents a global health challenge. Certain functional food has the potential to mitigate OP. Honeysuckle (Lonicera japonica) solution has medicinal effects, such as anti-inflammatory and immune enhancement, and can be used in functional foods such as health drinks and functional snacks. The composition of honeysuckle changed significantly after fermentation, and 376 metabolites were enriched. In this study, we used dexamethasone to induce OP in the rat model. Research has confirmed the ability of FS (fermented Lonicera japonica solution) to enhance bone mineral density (BMD), repair bone microarchitectural damage, and increase blood calcium levels. Markers such as tartrate-resistant acid phosphatase-5b (TRACP-5b) and pro-inflammatory cytokines (TNF-α and IL-6) were notably decreased, whereas osteocalcin (OCN) levels increased after FS treatment. FS intervention in OP rats restored the abundance of 6 bacterial genera and the contents of 17 serum metabolites. The results of the Spearman correlation analysis showed that FS may alleviate OP by restoring the abundance of 6 bacterial genera and the contents of 17 serum metabolites, reducing osteoclast differentiation, promoting osteoblast differentiation, and reducing the inflammatory response. This study revealed that Lactobacillus plantarum-fermented honeysuckle alleviated OP through intestinal bacteria and serum metabolites and provided a theoretical basis for the development of related functional foods.
Collapse
Affiliation(s)
- Zimin Chen
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Weiye Xu
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Jianming Luo
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Liu Liu
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Xichun Peng
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| |
Collapse
|
11
|
Yu Z, Yuan J, Yu Y. Heraclenin promotes the osteogenic differentiation of bone marrow stromal cells by activating the RhoA/ROCK pathway. Histol Histopathol 2024; 39:1065-1077. [PMID: 38258549 DOI: 10.14670/hh-18-702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
BACKGROUND Osteoporosis is a devastating skeletal disease, the pathogenesis of which is related to abnormal bone metabolism, featured by the imbalance between osteoblastic bone formation and osteoclastic bone resorption. Stem cell-based therapies have been demonstrated to improve osteoporosis treatment. Previously, the linear furanocoumarin heraclenin was reported to enhance osteoblast differentiation and mineralization in mouse mesenchymal stem cells (MSCs), suggesting its potential for osteogenic differentiation and bone regeneration. Our study was designed to confirm the promotive role of heraclenin on osteogenic differentiation of human bone MSCs (BMSCs) and explore the underlying mechanisms. METHODS Human BMSCs were treated for 24, 48, and 72h with heraclenin (5, 10, 20, 40, and 80 μM), and cell viability was determined by Cell Counting Kit-8 (CCK-8) assay. To further evaluate the cytotoxicity of heraclenin, cell suspension obtained from BMSCs treated with heraclenin (5, 10, and 20 μM) for 72h was subjected to a MUSE™ cell analyzer for cell viability and count assay. BMSCs were incubated in osteogenic induction medium for 7 days. Then, osteogenic differentiation and mineralization of BMSCs were assessed through alkaline phosphatase (ALP) and Alizarin Red S staining. The expression of osteogenesis markers including ALP, osteocalcin (OCN), osterix (OSX), and runt-related transcription factor 2 (RUNX2) was detected via reverse transcription quantitative polymerase chain reaction (RT-qPCR) and western blotting. The effects of heraclenin on the RhoA/ROCK pathway were estimated through western blotting. Y-27632, the ROCK inhibitor, was used to confirm the role of the RhoA/ROCK pathway in heraclenin-mediated osteogenic differentiation of BMSCs. RESULTS Heraclenin (5-80 μM) was non-toxic on human BMSCs. Heraclenin treatment (5-20 μM) dose-dependently enhanced ALP activity and calcium deposition. Furthermore, heraclenin promoted ALP, OCN, OSX, and RUNX2 mRNA and protein expression. Mechanically, heraclenin treatment increased RhoA and ROCK1 mRNA expression, stimulated the translocation of ROCK from the cytosolic to the membrane fraction, and elevated the protein levels of phosphorylated cofilin (p-cofilin) and active RhoA. Additionally, treatment with Y-27632 overturned the promotion of heraclenin on ALP activity, calcium deposition, the expression of osteogenesis markers, and the RhoA/ROCK signaling pathway. CONCLUSION Heraclenin facilitates the osteogenic differentiation of human BMSCs through the activation of the RhoA/ROCK pathway.
Collapse
Affiliation(s)
- Zuguang Yu
- Department of Orthopedics, Wuhan Hospital of Traditional Chinese Medicine, Wuhan, China
| | - Jun Yuan
- Department of Orthopedics 3, Wuhan Hospital of Traditional Chinese Medicine, Wuhan, China
| | - Yuanyuan Yu
- Department of Geriatrics, Wuhan Hospital of Traditional Chinese Medicine, Wuhan, China.
| |
Collapse
|
12
|
Li D, Liu C, Wang H, Li Y, Wang Y, An S, Sun S. The Role of Neuromodulation and Potential Mechanism in Regulating Heterotopic Ossification. Neurochem Res 2024; 49:1628-1642. [PMID: 38416374 DOI: 10.1007/s11064-024-04118-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/17/2024] [Accepted: 01/28/2024] [Indexed: 02/29/2024]
Abstract
Heterotopic ossification (HO) is a pathological process characterized by the aberrant formation of bone in muscles and soft tissues. It is commonly triggered by traumatic brain injury, spinal cord injury, and burns. Despite a wide range of evidence underscoring the significance of neurogenic signals in proper bone remodeling, a clear understanding of HO induced by nerve injury remains rudimentary. Recent studies suggest that injury to the nervous system can activate various signaling pathways, such as TGF-β, leading to neurogenic HO through the release of neurotrophins. These pathophysiological changes lay a robust groundwork for the prevention and treatment of HO. In this review, we collected evidence to elucidate the mechanisms underlying the pathogenesis of HO related to nerve injury, aiming to enhance our understanding of how neurological repair processes can culminate in HO.
Collapse
Affiliation(s)
- Dengju Li
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Shandong First Medical University, Jinan, Shandong, China
| | - Changxing Liu
- Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Haojue Wang
- Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Yunfeng Li
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yaqi Wang
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Senbo An
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
- Shandong First Medical University, Jinan, Shandong, China.
| | - Shui Sun
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
- Shandong First Medical University, Jinan, Shandong, China.
- Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
13
|
Zhang J, Hu W, Zou Z, Li Y, Kang F, Li J, Dong S. The role of lipid metabolism in osteoporosis: Clinical implication and cellular mechanism. Genes Dis 2024; 11:101122. [PMID: 38523674 PMCID: PMC10958717 DOI: 10.1016/j.gendis.2023.101122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 08/02/2023] [Accepted: 08/13/2023] [Indexed: 03/26/2024] Open
Abstract
In recent years, researchers have become focused on the relationship between lipids and bone metabolism balance. Moreover, many diseases related to lipid metabolism disorders, such as nonalcoholic fatty liver disease, atherosclerosis, obesity, and menopause, are associated with osteoporotic phenotypes. It has been clinically observed in humans that these lipid metabolism disorders promote changes in osteoporosis-related indicators bone mineral density and bone mass. Furthermore, similar osteoporotic phenotype changes were observed in high-fat and high-cholesterol-induced animal models. Abnormal lipid metabolism (such as increased oxidized lipids and elevated plasma cholesterol) affects bone microenvironment homeostasis via cross-organ communication, promoting differentiation of mesenchymal stem cells to adipocytes, and inhibiting commitment towards osteoblasts. Moreover, disturbances in lipid metabolism affect the bone metabolism balance by promoting the secretion of cytokines such as receptor activator of nuclear factor-kappa B ligand by osteoblasts and stimulating the differentiation of osteoclasts. Conclusively, this review addresses the possible link between lipid metabolism disorders and osteoporosis and elucidates the potential modulatory mechanisms and signaling pathways by which lipid metabolism affects bone metabolism balance. We also summarize the possible approaches and prospects of intervening lipid metabolism for osteoporosis treatment.
Collapse
Affiliation(s)
- Jing Zhang
- College of Bioengineering, Chongqing University, Chongqing 400044, China
- Department of Biomedical Materials Science, College of Biomedical Engineering, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Wenhui Hu
- Department of Biomedical Materials Science, College of Biomedical Engineering, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Zhi Zou
- College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Yuheng Li
- Department of Biomedical Materials Science, College of Biomedical Engineering, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Fei Kang
- Department of Biomedical Materials Science, College of Biomedical Engineering, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Jianmei Li
- Department of Biomedical Materials Science, College of Biomedical Engineering, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Shiwu Dong
- Department of Biomedical Materials Science, College of Biomedical Engineering, Army Medical University (Third Military Medical University), Chongqing 400038, China
- State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing 400038, China
| |
Collapse
|
14
|
Malange KF, de Souza DM, Lemes JBP, Fagundes CC, Oliveira ALL, Pagliusi MO, Carvalho NS, Nishijima CM, da Silva CRR, Consonni SR, Sartori CR, Tambeli CH, Parada CA. The Implications of Brain-Derived Neurotrophic Factor in the Biological Activities of Platelet-Rich Plasma. Inflammation 2024:10.1007/s10753-024-02072-9. [PMID: 38904872 DOI: 10.1007/s10753-024-02072-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/16/2024] [Accepted: 05/31/2024] [Indexed: 06/22/2024]
Abstract
Platelet-rich plasma (PRP) is a biological blood-derived therapeutic obtained from whole blood that contains higher levels of platelets. PRP has been primarily used to mitigate joint degeneration and chronic pain in osteoarthritis (OA). This clinical applicability is based mechanistically on the release of several proteins by platelets that can restore joint homeostasis. Platelets are the primary source of brain-derived neurotrophic factor (BDNF) outside the central nervous system. Interestingly, BDNF and PRP share key biological activities with clinical applicability for OA management, such as anti-inflammatory, anti-apoptotic, and antioxidant. However, the role of BDNF in PRP therapeutic activities is still unknown. Thus, this work aimed to investigate the implications of BDNF in therapeutic outcomes provided by PRP therapy in vitro and in-vivo, using the MIA-OA animal model in male Wistar rats. Initially, the PRP was characterized, obtaining a leukocyte-poor-platelet-rich plasma (LP-PRP). Our assays indicated that platelets activated by Calcium release BDNF, and suppression of M1 macrophage polarization induced by LP-PRP depends on BDNF full-length receptor, Tropomyosin Kinase-B (TrkB). OA animals were given LP-PRP intra-articular and showed functional recovery in gait, joint pain, inflammation, and tissue damage caused by MIA. Immunohistochemistry for activating transcriptional factor-3 (ATF-3) on L4/L5 dorsal root ganglia showed the LP-PRP decreased the nerve injury induced by MIA. All these LP-PRP therapeutic activities were reversed in the presence of TrkB receptor antagonist. Our results suggest that the therapeutic effects of LP-PRP in alleviating OA symptoms in rats depend on BDNF/TrkB activity.
Collapse
Affiliation(s)
- Kaue Franco Malange
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Carl Von Linnaeus, Cidade Universitária Zeferino Vaz, Campinas, São Paulo, 13083-864, Brazil
| | - Douglas Menezes de Souza
- Department of Pharmacology, School of Medical Sciences, University of Campinas (UNICAMP), Rua Tessália Vieira de Camargo, 126, Cidade Universitária Zeferino Vaz, Campinas, São Paulo, 13083-887, Brazil
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, 255, Cidade Universitária Zeferino Vaz, Campinas, São Paulo, CEP 13083-862, Brazil
| | - Julia Borges Paes Lemes
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Carl Von Linnaeus, Cidade Universitária Zeferino Vaz, Campinas, São Paulo, 13083-864, Brazil
| | - Cecilia Costa Fagundes
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Carl Von Linnaeus, Cidade Universitária Zeferino Vaz, Campinas, São Paulo, 13083-864, Brazil
| | - Anna Lethicia Lima Oliveira
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Carl Von Linnaeus, Cidade Universitária Zeferino Vaz, Campinas, São Paulo, 13083-864, Brazil
| | - Marco Oreste Pagliusi
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Carl Von Linnaeus, Cidade Universitária Zeferino Vaz, Campinas, São Paulo, 13083-864, Brazil
| | - Nathalia Santos Carvalho
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Carl Von Linnaeus, Cidade Universitária Zeferino Vaz, Campinas, São Paulo, 13083-864, Brazil
| | - Catarine Massucato Nishijima
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Carl Von Linnaeus, Cidade Universitária Zeferino Vaz, Campinas, São Paulo, 13083-864, Brazil
| | - Cintia Rizoli Ruiz da Silva
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, 255, Cidade Universitária Zeferino Vaz, Campinas, São Paulo, CEP 13083-862, Brazil
| | - Silvio Roberto Consonni
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, 255, Cidade Universitária Zeferino Vaz, Campinas, São Paulo, CEP 13083-862, Brazil
| | - Cesar Renato Sartori
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Carl Von Linnaeus, Cidade Universitária Zeferino Vaz, Campinas, São Paulo, 13083-864, Brazil
| | - Claudia Herrera Tambeli
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Carl Von Linnaeus, Cidade Universitária Zeferino Vaz, Campinas, São Paulo, 13083-864, Brazil
| | - Carlos Amilcar Parada
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Carl Von Linnaeus, Cidade Universitária Zeferino Vaz, Campinas, São Paulo, 13083-864, Brazil.
| |
Collapse
|
15
|
Mao Y, Xie X, Sun G, Yu S, Ma M, Chao R, Wan T, Xu W, Chen X, Sun L, Zhang S. Multifunctional Prosthesis Surface: Modification of Titanium with Cinnamaldehyde-Loaded Hierarchical Titanium Dioxide Nanotubes. Adv Healthc Mater 2024; 13:e2303374. [PMID: 38366905 DOI: 10.1002/adhm.202303374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 02/14/2024] [Indexed: 02/18/2024]
Abstract
Orthopedic prostheses are the ultimate therapeutic solution for various end-stage orthopedic conditions. However, aseptic loosening and pyogenic infections remain as primary complications associated with these devices. In this study, a hierarchical titanium dioxide (TiO2) nanotube drug delivery system loaded with cinnamaldehyde for the surface modification of titanium implants, is constructed. These specially designed dual-layer TiO2 nanotubes enhance material reactivity and provide an extensive drug-loading platform within a short time. The introduction of cinnamaldehyde enhances the bone integration performance of the scaffold (simultaneously promoting bone formation and inhibiting bone resorption), anti-inflammatory capacity, and antibacterial properties. In vitro experiments have demonstrated that this system promoted osteogenesis by upregulating both Wnt/β-catenin and MAPK signaling pathways. Furthermore, it inhibits osteoclast formation, suppresses macrophage-mediated inflammatory responses, and impedes the proliferation of Staphylococcus aureus and Escherichia coli. In vivo experiments shows that this material enhances bone integration in a rat model of femoral defects. In addition, it effectively enhances the antibacterial and anti-inflammatory properties in a subcutaneous implant in a rat model. This study provides a straightforward and highly effective surface modification strategy for orthopedic Ti implants.
Collapse
Affiliation(s)
- Yi Mao
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Xinru Xie
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Guangxin Sun
- Department of Oral and Maxillofacial Surgery, China Medical University School and Hospital of Stomatology, Shenyang, Liaoning, 110002, China
| | - Shiqi Yu
- Department of Nursing, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Mingqi Ma
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Rui Chao
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Tianhao Wan
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Weifeng Xu
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Xuzhuo Chen
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Lei Sun
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, China
- Department of Stomatology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, China
| | - Shanyong Zhang
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| |
Collapse
|
16
|
Chen C, Huang L, Chen Y, Jin J, Xu Z, Liu F, Li K, Sun Y. Hydrolyzed egg yolk peptide prevented osteoporosis by regulating Wnt/β-catenin signaling pathway in ovariectomized rats. Sci Rep 2024; 14:10227. [PMID: 38702443 PMCID: PMC11068896 DOI: 10.1038/s41598-024-60514-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 04/24/2024] [Indexed: 05/06/2024] Open
Abstract
Hydrolyzed egg yolk peptide (YPEP) was shown to increase bone mineral density in ovariectomized rats. However, the underlying mechanism of YPEP on osteoporosis has not been explored. Recent studies have shown that Wnt/β-catenin signaling pathway and gut microbiota may be involved in the regulation of bone metabolism and the progression of osteoporosis. The present study aimed to explore the preventive effect of the YPEP supplementation on osteoporosis in ovariectomized (OVX) rats and to verify whether YPEP can improve osteoporosis by regulating Wnt/β-catenin signaling pathway and gut microbiota. The experiment included five groups: sham surgery group (SHAM), ovariectomy group (OVX), 17-β estradiol group (E2: 25 µg /kg/d 17β-estradiol), OVX with low-dose YPEP group (LYPEP: 10 mg /kg/d YPEP) and OVX with high-dose YPEP group (HYPEP: 40 mg /kg/d YPEP). In this study, all the bone samples used were femurs. Micro-CT analysis revealed improvements in both bone mineral density (BMD) and microstructure by YPEP treatment. The three-point mechanical bending test indicated an enhancement in the biomechanical properties of the YPEP groups. The serum levels of bone alkaline phosphatase (BALP), bone gla protein (BGP), calcium (Ca), and phosphorus (P) were markedly higher in the YPEP groups than in the OVX group. The LYPEP group had markedly lower levels of alkaline phosphatase (ALP), tartrate-resistant acid phosphatase (TRAP) and C-terminal telopeptide of type I collagen (CTX-I) than the OVX group. The YPEP groups had significantly higher protein levels of the Wnt3a, β-catenin, LRP5, RUNX2 and OPG of the Wnt/β-catenin signaling pathway compared with the OVX group. Compared to the OVX group, the ratio of OPG/RANKL was markedly higher in the LYPEP group. At the genus level, there was a significantly increase in relative abundance of Lachnospiraceae_NK4A136_group and a decrease in Escherichia_Shigella in YPEP groups, compared with the OVX group. However, in the correlation analysis, there was no correlation between these two bacteria and bone metabolism and microstructure indexes. These findings demonstrate that YPEP has the potential to improve osteoporosis, and the mechanism may be associated with its modulating effect on Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Chuanjing Chen
- School of Public Health, Qingdao University, Qingdao, China
| | - Ludi Huang
- School of Public Health, Qingdao University, Qingdao, China
| | | | - Jin Jin
- School of Public Health, Qingdao University, Qingdao, China
| | - Ze Xu
- School of Public Health, Qingdao University, Qingdao, China
| | - Fei Liu
- Fine Biotechnological R&D Center, Guangzhou, China
| | - Kelei Li
- School of Public Health, Qingdao University, Qingdao, China.
- Institute of Nutrition and Health, School of Public Health, Qingdao University, Qingdao, China.
| | - Yongye Sun
- School of Public Health, Qingdao University, Qingdao, China.
| |
Collapse
|
17
|
Zhang F, Liu C, Chen Z, Zhao C. A novel PDIA3/FTO/USP20 positive feedback regulatory loop induces osteogenic differentiation of preosteoblast in osteoporosis. Cell Biol Int 2024; 48:541-550. [PMID: 38321831 DOI: 10.1002/cbin.12134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/05/2023] [Accepted: 01/01/2024] [Indexed: 02/08/2024]
Abstract
Osteoporosis is a chronic skeletal disease and the major source of risk for fractures in aged people. It is urgent to investigate the mechanism regulating osteoporosis for developing potential treatment and prevention strategies. Osteogenic differentiation of preosteoblast enhances bone formation, which might be a promising strategy for treatment and prevention of osteoporosis. Protein disulfide isomerase family A, member 3 (PDIA3) could induce bone formation, yet the role of PDIA3 in osteogenic differentiation of preosteoblast remains unknown. In this study, m6 A RNA methylation was detected by methylated RNA immunoprecipitation (MeRIP), while mRNA stability was identified by RNA decay assay. Besides, protein-protein interaction and protein phosphorylation were determined using co-immunoprecipitation (Co-IP). Herein, results revealed that PDIA3 promoted osteogenic differentiation of preosteoblast MC3T3-E1. Besides, PDIA3 mRNA methylation was suppressed by FTO alpha-ketoglutarate dependent dioxygenase (FTO) as RNA methylation reduced PDIA3 mRNA stability during osteogenic differentiation of MC3T3-E1 cells. Moreover, ubiquitin specific peptidase 20 (USP20) improved FTO level through inhibiting FTO degradation while PDIA3 increased FTO level by enhancing USP20 phosphorylation during osteogenic differentiation of MC3T3-E1 cells, suggesting a positive feedback regulatory loop between PDIA3 and FTO. In summary, these findings indicated the mechanism of PDIA3 regulating osteogenic differentiation of preosteoblast and provided potential therapeutic targets for osteoporosis.
Collapse
Affiliation(s)
- Fei Zhang
- First Department of Orthopaedics, Zhongshan City People's Hospital, Zhongshan, Guangdong, China
| | - Chen Liu
- Surgery Department, Zhongshan Port Hospital, Zhongshan, Guangdong, China
| | - Zhiyong Chen
- Department of Neurosurgery, The Affiliated Hospital of Jinan University, Guangzhou, China
- Minimally Invasive Treatment Center for Pituitary Adenoma of Jinan University, Guangzhou, China
| | - Chengyi Zhao
- Second Department of Orthopaedics, Zhongshan City People's Hospital, Zhongshan, Guangdong, China
| |
Collapse
|
18
|
Park EJ, Truong VL, Jeong WS, Min WK. Brain-Derived Neurotrophic Factor (BDNF) Enhances Osteogenesis and May Improve Bone Microarchitecture in an Ovariectomized Rat Model. Cells 2024; 13:518. [PMID: 38534361 DOI: 10.3390/cells13060518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/09/2024] [Accepted: 03/14/2024] [Indexed: 03/28/2024] Open
Abstract
BACKGROUND Brain-derived neurotrophic factor (BDNF) has gained attention as a therapeutic agent due to its potential biological activities, including osteogenesis. However, the molecular mechanisms involved in the osteogenic activity of BDNF have not been fully understood. This study aimed to investigate the action of BDNF on the osteoblast differentiation in bone marrow stromal cells, and its influence on signaling pathways. In addition, to evaluate the clinical efficacy, an in vivo animal study was performed. METHODS Preosteoblast cells (MC3T3-E1), bone marrow-derived stromal cells (ST2), and a direct 2D co-culture system were treated with BDNF. The effect of BDNF on cell proliferation was determined using the CCK-8 assay. Osteoblast differentiation was assessed based on alkaline phosphatase (ALP) activity and staining and the protein expression of multiple osteoblast markers. Calcium accumulation was examined by Alizarin red S staining. For the animal study, we used ovariectomized Sprague-Dawley rats and divided them into BDNF and normal saline injection groups. MicroCT, hematoxylin and eosin (H&E), and tartrate-resistant acid phosphatase (TRAP) stain were performed for analysis. RESULTS BDNF significantly increased ALP activity, calcium deposition, and the expression of osteoblast differentiation-related proteins, such as ALP, osteopontin, etc., in both ST-2 and the MC3T3-E1 and ST-2 co-culture systems. Moreover, the effect of BDNF on osteogenic differentiation was diminished by blocking tropomyosin receptor kinase B, as well as inhibiting c-Jun N-terminal kinase and p38 MAPK signals. Although the animal study results including bone density and histology showed increased osteoblastic and decreased osteoclastic activity, only a portion of parameters reached statistical significance. CONCLUSIONS Our study results showed that BDNF affects osteoblast differentiation through TrkB receptor, and JNK and p38 MAPK signal pathways. Although not statistically significant, the trend of such effects was observed in the animal experiment.
Collapse
Affiliation(s)
- Eugene J Park
- Department of Orthopedic Surgery, Kyungpook National University Hospital, College of Medicine, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Van-Long Truong
- Food and Bio-Industry Research Institute, School of Food Science & Biotechnology, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Woo-Sik Jeong
- Food and Bio-Industry Research Institute, School of Food Science & Biotechnology, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Woo-Kie Min
- Department of Orthopedic Surgery, Kyungpook National University Hospital, College of Medicine, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
19
|
Fang F, Yang J, Wang J, Li T, Wang E, Zhang D, Liu X, Zhou C. The role and applications of extracellular vesicles in osteoporosis. Bone Res 2024; 12:4. [PMID: 38263267 PMCID: PMC10806231 DOI: 10.1038/s41413-023-00313-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/13/2023] [Accepted: 11/28/2023] [Indexed: 01/25/2024] Open
Abstract
Osteoporosis is a widely observed condition characterized by the systemic deterioration of bone mass and microarchitecture, which increases patient susceptibility to fragile fractures. The intricate mechanisms governing bone homeostasis are substantially impacted by extracellular vesicles (EVs), which play crucial roles in both pathological and physiological contexts. EVs derived from various sources exert distinct effects on osteoporosis. Specifically, EVs released by osteoblasts, endothelial cells, myocytes, and mesenchymal stem cells contribute to bone formation due to their unique cargo of proteins, miRNAs, and cytokines. Conversely, EVs secreted by osteoclasts and immune cells promote bone resorption and inhibit bone formation. Furthermore, the use of EVs as therapeutic modalities or biomaterials for diagnosing and managing osteoporosis is promising. Here, we review the current understanding of the impact of EVs on bone homeostasis, including the classification and biogenesis of EVs and the intricate regulatory mechanisms of EVs in osteoporosis. Furthermore, we present an overview of the latest research progress on diagnosing and treating osteoporosis by using EVs. Finally, we discuss the challenges and prospects of translational research on the use of EVs in osteoporosis.
Collapse
Affiliation(s)
- Fei Fang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Jie Yang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Jiahe Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Tiantian Li
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Erxiang Wang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Demao Zhang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Xiaoheng Liu
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China.
| | - Chenchen Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
20
|
Liu F, Chen S, Ming X, Li H, Zeng Z, Lv Y. Sortilin-induced lipid accumulation and atherogenesis are suppressed by HNF1b SUMOylation promoted by flavone of Polygonatum odoratum. J Zhejiang Univ Sci B 2023; 24:998-1013. [PMID: 37961802 PMCID: PMC10646395 DOI: 10.1631/jzus.b2200682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 05/17/2023] [Indexed: 11/15/2023]
Abstract
This study aims to investigate the impact of hepatocyte nuclear factor 1β (HNF1b) on macrophage sortilin-mediated lipid metabolism and aortic atherosclerosis and explore the role of the flavone of Polygonatum odoratum (PAOA-flavone)-promoted small ubiquitin-related modifier (SUMO) modification in the atheroprotective efficacy of HNF1b. HNF1b was predicted to be a transcriptional regulator of sortilin expression via bioinformatics, dual-luciferase reporter gene assay, and chromatin immunoprecipitation. HNF1b overexpression decreased sortilin expression and cellular lipid contents in THP-1 macrophages, leading to a depression in atherosclerotic plaque formation in low-density lipoprotein (LDL) receptor-deficient (LDLR-/-) mice. Multiple SUMO1-modified sites were identified on the HNF1b protein and co-immunoprecipitation confirmed its SUMO1 modification. The SUMOylation of HNF1b protein enhanced the HNF1b-inhibited effect on sortilin expression and reduced lipid contents in macrophages. PAOA-flavone treatment promoted SUMO-activating enzyme subunit 1 (SAE1) expression and SAE1-catalyzed SUMOylation of the HNF1b protein, which prevented sortilin-mediated lipid accumulation in macrophages and the formation of atherosclerotic plaques in apolipoprotein E-deficient (ApoE-/-) mice. Interference with SAE1 abrogated the improvement in lipid metabolism in macrophage cells and atheroprotective efficacy in vivo upon PAOA-flavone administration. In summary, HNF1b transcriptionally suppressed sortilin expression and macrophage lipid accumulation to inhibit aortic lipid deposition and the development of atherosclerosis. This anti-atherosclerotic effect was enhanced by PAOA-flavone-facilitated, SAE1-catalyzed SUMOylation of the HNF1b protein.
Collapse
Affiliation(s)
- Fang Liu
- Guangxi Key Laboratory of Diabetic Systems Medicine & Institute of Basic Medical Sciences, Faculty of Basic Medical Sciences, Guilin Medical University, Guilin 541199, China
| | - Shirui Chen
- Guangxi Key Laboratory of Diabetic Systems Medicine & Institute of Basic Medical Sciences, Faculty of Basic Medical Sciences, Guilin Medical University, Guilin 541199, China
| | - Xinyue Ming
- Guangxi Key Laboratory of Diabetic Systems Medicine & Institute of Basic Medical Sciences, Faculty of Basic Medical Sciences, Guilin Medical University, Guilin 541199, China
| | - Huijuan Li
- Guangxi Key Laboratory of Diabetic Systems Medicine & Institute of Basic Medical Sciences, Faculty of Basic Medical Sciences, Guilin Medical University, Guilin 541199, China
| | - Zhaoming Zeng
- Hunan Mingshun Pharmaceutical Co., Ltd., Shaodong 422800, China. ,
| | - Yuncheng Lv
- Guangxi Key Laboratory of Diabetic Systems Medicine & Institute of Basic Medical Sciences, Faculty of Basic Medical Sciences, Guilin Medical University, Guilin 541199, China.
| |
Collapse
|
21
|
Wang J, Yang J, Tang Z, Yu Y, Chen H, Yu Q, Zhang D, Yan C. Curculigo orchioides polysaccharide COP70-1 stimulates osteogenic differentiation of MC3T3-E1 cells by activating the BMP and Wnt signaling pathways. Int J Biol Macromol 2023; 248:125879. [PMID: 37473884 DOI: 10.1016/j.ijbiomac.2023.125879] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 06/26/2023] [Accepted: 07/16/2023] [Indexed: 07/22/2023]
Abstract
The crude polysaccharide CO70 isolated from Curculigo orchioides could alleviate ovariectomy-induced osteoporosis in rats. To clarify the bioactive components, a new heteropolysaccharide (COP70-1) was purified from CO70 in this study, which was consisted of β-D-Manp-(1→, →4)-α-D-Glcp-(1→, →4)-β-D-Manp-(1→, →3,4)-β-D-Manp-(1→, →4,6)-β-D-Manp-(1→, and →4,6)-α-D-Galp-(1→. COP70-1 significantly promoted the osteoblastic differentiation of MC3T3-E1 cells through improving alkaline phosphatase activity, the deposition of calcium as well as up-regulating the expression of osteogenic markers (RUNX2, OSX, BSP, OCN, and OPN). Furthermore, COP70-1 stimulated the expression of critical transcription factors of the BMP and Wnt pathways, including BMP2, p-SMAD1, active-β-catenin, p-GSK-3β, and LEF-1. In addition, LDN (BMP pathway inhibitor) and DKK-1 (Wnt pathway inhibitor) suppressed the COP70-1-induced osteogenic differentiation of MC3T3-E1 cells. Therefore, COP70-1 was one of the bioactive constituents of C. orchioides for targeting osteoblasts to treat osteoporosis by triggering BMP/Smad and Wnt/β-catenin pathways.
Collapse
Affiliation(s)
- Jing Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Junqiang Yang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zonggui Tang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yongbo Yu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Haiyun Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Qian Yu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Dawei Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Chunyan Yan
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
22
|
Ma L, Chen R, Zhang Y, Dai Z, Huang G, Yang R, Yang H. The tree shrew as a new animal model for the study of periodontitis. J Clin Periodontol 2023; 50:1075-1088. [PMID: 37353986 DOI: 10.1111/jcpe.13842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 06/02/2023] [Accepted: 06/09/2023] [Indexed: 06/25/2023]
Abstract
AIM Periodontitis is an inflammatory, infectious disease of polymicrobial origin that can damage tooth-supporting bone and tissue. Tree shrews, evolutionarily closer to humans than commonly used rodent models, have been increasingly used as biomedical models. However, a tree shrew periodontitis model has not yet been established. MATERIALS AND METHODS Periodontitis was induced in male tree shrews/Sprague-Dawley rats by nylon thread ligature placement around the lower first molars. Thereafter, morphometric and histological analyses were performed. The distance from the cemento-enamel junction to the alveolar bone crest was measured using micro-computed tomography. Periodontal pathological tissue damage, inflammation and osteoclastogenesis were assessed using haematoxylin and eosin staining and quantitative immunohistochemistry, respectively. RESULTS Post-operatively, gingival swelling, redness and spontaneous bleeding were observed in tree shrews but not in rats. After peaking, bone resorption decreased gradually until plateauing in tree shrews. Contrastingly, rapid and near-complete bone loss was observed in rats. Inflammatory infiltrates were observed 1 week post operation in both models. However, only the tree shrew model transitioned from acute to chronic inflammation. CONCLUSIONS Our study revealed that a ligature-induced tree shrew model of periodontitis partly reproduced the pathological features of human periodontitis and provided theoretical support for using tree shrews as a potential model for human periodontitis.
Collapse
Affiliation(s)
- Liya Ma
- Yunnan Key Laboratory of Stomatology and Department of Dental Research, The Affiliated Stomatology Hospital of Kunming Medical University, Kunming, People's Republic of China
- Department of Orthodontics, The Affiliated Stomatology Hospital of Kunming Medical University, Kunming, People's Republic of China
| | - Rui Chen
- Yunnan Key Laboratory of Stomatology and Department of Dental Research, The Affiliated Stomatology Hospital of Kunming Medical University, Kunming, People's Republic of China
| | - Yelin Zhang
- Yunnan Key Laboratory of Stomatology and Department of Dental Research, The Affiliated Stomatology Hospital of Kunming Medical University, Kunming, People's Republic of China
| | - Zichao Dai
- Yunnan Key Laboratory of Stomatology and Department of Dental Research, The Affiliated Stomatology Hospital of Kunming Medical University, Kunming, People's Republic of China
| | - Guobin Huang
- Yunnan Key Laboratory of Stomatology and Department of Dental Research, The Affiliated Stomatology Hospital of Kunming Medical University, Kunming, People's Republic of China
| | - Rongqiang Yang
- Yunnan Key Laboratory of Stomatology and Department of Dental Research, The Affiliated Stomatology Hospital of Kunming Medical University, Kunming, People's Republic of China
| | - Hefeng Yang
- Yunnan Key Laboratory of Stomatology and Department of Dental Research, The Affiliated Stomatology Hospital of Kunming Medical University, Kunming, People's Republic of China
| |
Collapse
|
23
|
Lv X, Lin Y, Zhang Z, Li B, Zeng Z, Jiang X, Zhao Q, Li W, Wang Z, Yang C, Yan H, Wang Q, Huang R, Hu X, Gao L. Investigating the association between serum ADAM/ADAMTS levels and bone mineral density by mendelian randomization study. BMC Genomics 2023; 24:406. [PMID: 37468870 DOI: 10.1186/s12864-023-09449-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 06/14/2023] [Indexed: 07/21/2023] Open
Abstract
PURPOSE A Disintegrin and Metalloproteinase (ADAM) and A Disintegrin and Metalloproteinase with Thrombospondin Motif (ADAMTS) have been reported potentially involved in bone metabolism and related to bone mineral density. This Mendelian Randomization (MR) analysis was performed to determine whether there are causal associations of serum ADAM/ADAMTS with BMD in rid of confounders. METHODS The genome-wide summary statistics of four site-specific BMD measurements were obtained from studies in individuals of European ancestry, including forearm (n = 8,143), femoral neck (n = 32,735), lumbar spine (n = 28,498) and heel (n = 426,824). The genetic instrumental variables for circulating levels of ADAM12, ADAM19, ADAM23, ADAMTS5 and ADAMTS6 were retrieved from the latest genome-wide association study of European ancestry (n = 5336 ~ 5367). The estimated causal effect was given by the Wald ratio for each variant, the inverse-variance weighted model was used as the primary approach to combine estimates from multiple instruments, and sensitivity analyses were conducted to assess the robustness of MR results. The Bonferroni-corrected significance was set at P < 0.0025 to account for multiple testing, and a lenient threshold P < 0.05 was considered to suggest a causal relationship. RESULTS The causal effects of genetically predicted serum ADAM/ADAMTS levels on BMD measurements at forearm, femoral neck and lumbar spine were not statistically supported by MR analyses. Although causal effect of ADAMTS5 on heel BMD given by the primary MR analysis (β = -0.006, -0.010 to 0.002, P = 0.004) failed to reach Bonferroni-corrected significance, additional MR approaches and sensitivity analyses indicated a robust causal relationship. CONCLUSION Our study provided suggestive evidence for the causal effect of higher serum levels of ADAMTS5 on decreased heel BMD, while there was no supportive evidence for the associations of ADAM12, ADAM19, ADAM23, and ADAMTS6 with BMD at forearm, femoral neck and lumbar spine in Europeans.
Collapse
Affiliation(s)
- Xin Lv
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou, 510120, China
| | - Yuhong Lin
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Zhilei Zhang
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou, 510120, China
| | - Bo Li
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou, 510120, China
| | - Ziliang Zeng
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou, 510120, China
| | - Xu Jiang
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou, 510120, China
| | - Qiancheng Zhao
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou, 510120, China
| | - Wenpeng Li
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou, 510120, China
| | - Zheyu Wang
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou, 510120, China
| | - Canchun Yang
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou, 510120, China
| | - Haolin Yan
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou, 510120, China
| | - Qiwei Wang
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou, 510120, China
| | - Renyuan Huang
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou, 510120, China
| | - Xumin Hu
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou, 510120, China.
| | - Liangbin Gao
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou, 510120, China.
| |
Collapse
|
24
|
Zhang YW, Cao MM, Li YJ, Sheng RW, Zhang RL, Wu MT, Chi JY, Zhou RX, Rui YF. The Preventive Effects of Probiotic Prevotella histicola on the Bone Loss of Mice with Ovariectomy-Mediated Osteoporosis. Microorganisms 2023; 11:microorganisms11040950. [PMID: 37110373 PMCID: PMC10146713 DOI: 10.3390/microorganisms11040950] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 04/29/2023] Open
Abstract
It has been demonstrated that the disturbance of gut microbiota (GM) is closely related to the reduction of bone mass and incidence of osteoporosis (OP). The aim of this study is to investigate whether the supplementation of Prevotella histicola (Ph) can prevent the bone loss in mice with ovariectomy (OVX)-mediated OP, and further explore relevant mechanisms. Regular (once a day for 8 consecutive weeks) and quantitative (200 µL/d) perfusion of Ph (the bacteria that orally gavaged) was conducted starting from 1 week after the construction of mice models. Bone mass and bone microstructure were detected by Micro-computed tomography (Micro-CT). Expressions of intestinal permeability, pro-inflammatory cytokines, and osteogenic and osteoclastic activities of mice were analyzed by histological staining and immunohistochemistry (IHC). 16S rRNA high throughput sequencing technique was applied to analyze the alterations of composition, abundance, and diversity of collected feces. Regular and quantitative perfusion of Ph mitigated the bone loss in mice with OVX-mediated OP. Compared with OVX + PBS group, perfusion of Ph repressed osteoclastogenesis and promoted osteogenesis, reduced release of pro-inflammatory cytokine cytokines (interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α)), and reversed expressions of tight junction proteins (zonula occludens protein 1 (ZO-1) and Occludin). Besides, the perfusion of Ph improved the composition, abundance, and diversity of GM. Collectively, this study revealed that regular and quantitative perfusion of Ph can improve the bone loss in mice with OVX-mediated OP by repairing intestinal mucosal barrier damage, optimizing intestinal permeability, inhibiting release of pro-osteoclastogenic cytokines, and improving disturbance of GM.
Collapse
Affiliation(s)
- Yuan-Wei Zhang
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
- School of Medicine, Southeast University, Nanjing 210009, China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing 210009, China
- Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Mu-Min Cao
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
- School of Medicine, Southeast University, Nanjing 210009, China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing 210009, China
- Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Ying-Juan Li
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
- Department of Geriatrics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Ren-Wang Sheng
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
- School of Medicine, Southeast University, Nanjing 210009, China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing 210009, China
- Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Ruo-Lan Zhang
- School of Medicine, Southeast University, Nanjing 210009, China
| | - Meng-Ting Wu
- School of Medicine, Southeast University, Nanjing 210009, China
| | - Jia-Yu Chi
- School of Medicine, Southeast University, Nanjing 210009, China
| | - Rui-Xin Zhou
- School of Medicine, Southeast University, Nanjing 210009, China
| | - Yun-Feng Rui
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
- School of Medicine, Southeast University, Nanjing 210009, China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing 210009, China
- Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| |
Collapse
|
25
|
Wang T, Luo E, Zhou Z, Yang J, Wang J, Zhong J, Zhang J, Yao B, Li X, Dong H. Lyophilized powder of velvet antler blood improves osteoporosis in OVX-induced mouse model and regulates proliferation and differentiation of primary osteoblasts via Wnt/β-catenin pathway. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023] Open
|
26
|
Sun Q, Liu Z, Xie C, Hu L, Li H, Ge Y, Lin L, Tang B. The development of novel multifunctional drug system 7,8-DHF@ZIF-8 and its potential application in bone defect healing. Colloids Surf B Biointerfaces 2023; 222:113102. [PMID: 36584450 DOI: 10.1016/j.colsurfb.2022.113102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/08/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
Physical exercise has long been considered an essential regulator of bone formation. Recent studies have shown that brain-derived neurotrophic factor (BDNF) is an important cytokine released during physical exercise to promote osteogenic differentiation and facilitate the bone defect healing process. In this study, we developed a multifunctional system 7,8-DHF@ZIF-8, which combines the superior osteogenesis and angiogenesis properties of ZIF-8 and the unique capability of 7,8-DHF to mimic the function of BDNF to compensate for the routine physical exercise missed during the bone defect period. Various material characterizations were performed to confirm the successful synthesis of 7,8-DHF@ZIF-8. Drug release experiments suggested that 7,8-DHF@ZIF-8 could achieve slow diffusive release under physiological conditions within seven days. In vitro cell experiments indicated that low concentrations of ZIF-8 and 7,8-DHF@ZIF-8 could significantly promote the proliferation of MC3T3-E1 cells. Moreover, as proved by RT-QPCR analysis, incorporating 7,8-DHF into ZIF-8 could further enhance osteogenesis and angiogenesis-related gene expression. Therefore, we believe that the multifunctional drug system 7,8-DHF@ZIF-8 should have promising applications to facilitate bone defect healing.
Collapse
Affiliation(s)
- Qili Sun
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, PR China
| | - Zhanpeng Liu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, PR China
| | - Chao Xie
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, PR China; Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Liqiu Hu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, PR China
| | - Huili Li
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, PR China
| | - Yongmei Ge
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, PR China.
| | - Lijun Lin
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China.
| | - Bin Tang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, PR China; Guangdong Provincial Key Laboratory of Advanced Biomaterials, PR China.
| |
Collapse
|
27
|
Zhu F, Li W, Wang L, Dai B, Liu Z, Wu H, Deng T. Study on the treatment of postmenopausal osteoporosis with quercetin in Liuwei Dihuang Pill based on network pharmacology. J Orthop Surg Res 2023; 18:21. [PMID: 36624462 PMCID: PMC9827666 DOI: 10.1186/s13018-022-03470-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/22/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Liuwei Dihuang Pill (LP) was verified to alleviate postmenopausal osteoporosis (PMOP) development. Nevertheless, the major constituent of LP and the related network pharmacology study remain unexplored. METHODS Protein-protein interaction was established to identify the downstream target of LP in PMOP, and the related signaling pathway was investigated by bioinformatics analysis. MC3T3-E1 cells were added to ferric ammonium citrate (FAC) to mimic osteoporosis in vitro. The osteoblasts were identified by Alizarin red staining. Western blot was applied to evaluate protein levels. In addition, Cell Counting Kit-8 (CCK8) assay was applied to assess cell viability, and cell apoptosis was assessed by flow cytometry. RESULTS Quercetin was the major constituent of LP. In addition, quercetin significantly reversed FAC-induced inhibition of osteogenic differentiation in MC3T3-E1 cells. In addition, quercetin notably abolished the FAC-induced upregulation of Bax, Caspase-3, FOS, JUN, TGFB1 and PPARD. In contrast, Bcl-2, p-mTOR/mTOR, p-AKT/AKT and p-PI3K/PI3K levels in MC3T3-E1 cells were reduced by FAC, which was restored by quercetin. Meanwhile, FAC notably inhibited the viability of MC3T3-E1 cells via inducing apoptosis, but this impact was abolished by quercetin. Furthermore, quercetin could reverse pcDNA3.1-FOS-mediated growth of FAC-treated osteoblasts by mediating PI3K/AKT/mTOR signaling. CONCLUSION Quercetin alleviated the progression of PMOP via activation of PI3K/AKT/mTOR signaling. Hence, this study would shed novel insights into discovering new methods against PMOP.
Collapse
Affiliation(s)
- Fuping Zhu
- grid.477978.2Department of Foot and Ankle Orthopedics, The First Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha, China
| | - Wuping Li
- grid.477978.2Department of Foot and Ankle Orthopedics, The First Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha, China
| | - Linhua Wang
- grid.477978.2Department of Extremities and Arthrosis, The First Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha, China
| | - Bing Dai
- grid.477978.2Department of Pharmacy, The First Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha, China
| | - Zongyi Liu
- grid.477978.2Department of Foot and Ankle Orthopedics, The First Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha, China
| | - Hang Wu
- grid.477978.2Department of Foot and Ankle Orthopedics, The First Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha, China
| | - Ting Deng
- grid.452708.c0000 0004 1803 0208Clinical Nursing Teaching and Research Section, The Second Xiangya Hospital of Central South University, No. 139, Renmin Road, Furong District, Changsha, Hunan China
| |
Collapse
|
28
|
Jie L, Ma Z, Gao Y, Shi X, Yu L, Mao J, Wang P. The mechanism of palmatine-mediated intestinal flora and host metabolism intervention in OA-OP comorbidity rats. Front Med (Lausanne) 2023; 10:1153360. [PMID: 37153081 PMCID: PMC10159182 DOI: 10.3389/fmed.2023.1153360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 03/28/2023] [Indexed: 05/09/2023] Open
Abstract
Background ErXian decoction is a Chinese herbal compound that can prevent and control the course of osteoarthritis (OA) and osteoporosis (OP). OP and OA are two age-related diseases that often coexist in elderly individuals, and both are associated with dysregulation of the gut microbiome. In the initial study, Palmatine (PAL) was obtained by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and network pharmacological screening techniques, followed by 16S rRNA sequencing and serum metabolomics of intestinal contents, to explore the mechanism of PAL in the treatment of OA and OP. Methods The rats selected for this study were randomly divided into three groups: a sham group, an OA-OP group and a PAL group. The sham group was intragastrically administered normal saline solution, and the PLA group was treated with PAL for 56 days. Through microcomputed tomography (micro-CT), ELISA, 16S rRNA gene sequencing and non-targeted metabonomics research, we explored the potential mechanism of intestinal microbiota and serum metabolites in PAL treatment of OA-OP rats. Results Palmatine significantly repair bone microarchitecture of rat femur in OA-OP rats and improved cartilage damage. The analysis of intestinal microflora showed that PAL could also improve the intestinal microflora disorder of OA-OP rats. For example, the abundance of Firmicutes, Bacteroidota, Actinobacteria, Lactobacillus, unclassified_f_Lachnospiraceae, norank_f_Muribaculaceae, Lactobacillaceae, Lachnospiraceae and Muribaculaceae increased after PAL intervention. In addition, the results of metabolomics data analysis showed that PAL also change the metabolic status of OA-OP rats. After PAL intervention, metabolites such as 5-methoxytryptophol, 2-methoxy acetaminophen sulfate, beta-tyrosine, indole-3-carboxylic acid-O-sulfate and cyclodopa glucoside increased. Association analysis of metabolomics and gut microbiota (GM) showed that the communication of multiple flora and different metabolites played an important role in OP and OA. Conclusion Palmatine can improve cartilage degeneration and bone loss in OA-OP rats. The evidence we provided supports the idea that PAL improves OA-OP by altering GM and serum metabolites. In addition, the application of GM and serum metabolomics correlation analysis provides a new strategy for uncovering the mechanism of herbal treatment for bone diseases.
Collapse
Affiliation(s)
- Lishi Jie
- Department of Orthopaedics and Traumatology, Jiangsu Provincial Hospital of Traditional Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhenyuan Ma
- Department of Orthopaedics and Traumatology, Jiangsu Provincial Hospital of Traditional Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yifan Gao
- Department of Orthopaedics and Traumatology, Jiangsu Provincial Hospital of Traditional Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaoqing Shi
- Department of Orthopaedics and Traumatology, Jiangsu Provincial Hospital of Traditional Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Likai Yu
- Department of Orthopaedics and Traumatology, Jiangsu Provincial Hospital of Traditional Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jun Mao
- Department of Orthopaedics and Traumatology, Jiangsu Provincial Hospital of Traditional Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Peimin Wang
- Department of Orthopaedics and Traumatology, Jiangsu Provincial Hospital of Traditional Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- *Correspondence: Peimin Wang,
| |
Collapse
|
29
|
Wang P, Feng Z, Chen S, Liang Y, Hou H, Ouyang Q, Yu H, Ye H, Cai L, Qi Y, Wu K, Luo H. A synthetic peptide from Sipunculus nudus promotes bone formation via Estrogen/MAPK signal pathway based on network pharmacology. Front Pharmacol 2023; 14:1173110. [PMID: 37168991 PMCID: PMC10165119 DOI: 10.3389/fphar.2023.1173110] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/12/2023] [Indexed: 05/13/2023] Open
Abstract
The tripeptide Leu-Pro-Lys (LPK), derived from the Sipunculus nudus protein, was synthesized and studied to investigate its potential protective effect on bone formation. The effect and mechanism of LPK were analyzed through network pharmacology, bioinformatics, and experimental pharmacology. The study found that LPK at concentrations of 25 μg/mL and 50 μg/mL significantly increased ALP activity and mineralization in C3H10 cells. LPK also increased the expression of COL1A1 and promoted bone formation in zebrafish larvae. Network pharmacology predicted 148 interaction targets between LPK and bone development, and analysis of the protein-protein interaction network identified 13 hub genes, including ESR1, MAPK8, and EGFR, involved in bone development. Through KEGG enrichment pathways analysis, it was determined that LPK promotes bone development by regulating endocrine resistance, the relaxin signaling pathway, and the estrogen signaling pathway. Molecular docking results showed direct interactions between LPK and ESR1, MAPK8, and MAPK14. Additional verification experiments using western blot assay revealed that LPK significantly upregulated the expression of genes related to bone formation, including COL1A1, OPG, RUNX2, ESR1, phosphorylated MAPK14, and phosphorylated MAPK8 in C3H10 cells. These results suggest that LPK promotes bone formation by activating the estrogen/MAPK signaling pathway.
Collapse
Affiliation(s)
- Peiran Wang
- Marine Biomedical Research Institution, Guangdong Medical University, Zhanjiang, China
| | - Zhenhui Feng
- Marine Biomedical Research Institution, Guangdong Medical University, Zhanjiang, China
- Guangdong (Zhanjiang) Provincial Laboratory of Southern Marine Science and Engineering, Zhanjiang, China
| | - Siyu Chen
- Marine Biomedical Research Institution, Guangdong Medical University, Zhanjiang, China
- Guangdong (Zhanjiang) Provincial Laboratory of Southern Marine Science and Engineering, Zhanjiang, China
| | - Yingye Liang
- Marine Biomedical Research Institution, Guangdong Medical University, Zhanjiang, China
- Guangdong (Zhanjiang) Provincial Laboratory of Southern Marine Science and Engineering, Zhanjiang, China
| | - Haiyan Hou
- Marine Biomedical Research Institution, Guangdong Medical University, Zhanjiang, China
| | - Qianqian Ouyang
- Marine Biomedical Research Institution, Guangdong Medical University, Zhanjiang, China
- Guangdong (Zhanjiang) Provincial Laboratory of Southern Marine Science and Engineering, Zhanjiang, China
- Marine Traditional Chinese Medicine Sub-center of National Engineering Research Center for Modernization of Traditional Chinese Medicine, Zhanjiang, China
| | - Hui Yu
- Marine Biomedical Research Institution, Guangdong Medical University, Zhanjiang, China
- Guangdong (Zhanjiang) Provincial Laboratory of Southern Marine Science and Engineering, Zhanjiang, China
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, China
| | - Hua Ye
- Marine Biomedical Research Institution, Guangdong Medical University, Zhanjiang, China
- Guangdong (Zhanjiang) Provincial Laboratory of Southern Marine Science and Engineering, Zhanjiang, China
- Marine Traditional Chinese Medicine Sub-center of National Engineering Research Center for Modernization of Traditional Chinese Medicine, Zhanjiang, China
| | - Lei Cai
- Guangdong Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| | - Yi Qi
- Marine Biomedical Research Institution, Guangdong Medical University, Zhanjiang, China
- Guangdong (Zhanjiang) Provincial Laboratory of Southern Marine Science and Engineering, Zhanjiang, China
- Marine Traditional Chinese Medicine Sub-center of National Engineering Research Center for Modernization of Traditional Chinese Medicine, Zhanjiang, China
- *Correspondence: Yi Qi, Kefeng Wu,
| | - Kefeng Wu
- Marine Biomedical Research Institution, Guangdong Medical University, Zhanjiang, China
- Guangdong (Zhanjiang) Provincial Laboratory of Southern Marine Science and Engineering, Zhanjiang, China
- Marine Traditional Chinese Medicine Sub-center of National Engineering Research Center for Modernization of Traditional Chinese Medicine, Zhanjiang, China
- *Correspondence: Yi Qi, Kefeng Wu,
| | - Hui Luo
- Marine Biomedical Research Institution, Guangdong Medical University, Zhanjiang, China
- Guangdong (Zhanjiang) Provincial Laboratory of Southern Marine Science and Engineering, Zhanjiang, China
- Marine Traditional Chinese Medicine Sub-center of National Engineering Research Center for Modernization of Traditional Chinese Medicine, Zhanjiang, China
| |
Collapse
|
30
|
Tian YQ, Zhang SP, Zhang KL, Cao D, Zheng YJ, Liu P, Zhou HH, Wu YN, Xu QX, Liu XP, Tang XD, Zheng YQ, Wang FY. Paeoniflorin Ameliorates Colonic Fibrosis in Rats with Postinfectious Irritable Bowel Syndrome by Inhibiting the Leptin/LepRb Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:6010858. [PMID: 36225193 PMCID: PMC9550452 DOI: 10.1155/2022/6010858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/01/2022] [Indexed: 11/17/2022]
Abstract
Postinfectious irritable bowel syndrome (PI-IBS) is a highly prevalent gastrointestinal disorder associated with immune dysregulation and depression- and anxiety-like behaviors. Through traditional medicine, the active ingredient of Paeoniae Radix called paeoniflorin (PF) was previously found to prevent the symptoms of PI-IBS. However, there is limited information on the effects of PF on intestinal function and depression- and anxiety-like symptoms in PI-IBS animal models. Here, we aimed to determine the effects of PF treatment on the symptoms of PI-IBS in a rat model. The PI-IBS rat model was established via early postnatal sibling deprivation (EPSD), trinitrobenzenesulfonic acid (TNBS), and chronic unpredictable mild stress (CUMS) stimulation and then treated with different dosages of PF (10, 20, and 40 mg/kg) and leptin (1 and 10 mg/kg). The fecal water content and body weight were measured to evaluate the intestinal function, while the two-bottle test for sucrose intake, open field test (OFT), and elevated plus maze test (EMT) were performed to assess behavioral changes. The serum leptin levels were also measured using an enzyme-linked immunosorbent assay. Furthermore, the expressions of leptin and its receptor, LepRb, were detected in colonic mucosal tissues through an immunohistochemical assay. The activation of the PI3K/AKT signaling pathway and the expression of brain-derived neurotrophic factor (BDNF) were also detected via western blotting. After the experimental period, the PI-IBS rats presented decreased body weight and increased fecal water content, which coincided with elevated leptin levels and heightened depression- and anxiety-like behaviors (e.g., low sucrose intake, less frequency in the center areas during OFT, and fewer activities in the open arms during EMT). However, the PF treatment ameliorated these observed symptoms. Furthermore, PF not only inhibited leptin/LepRb expression but also reduced the PI3K/AKT phosphorylation and BDNF expression in PI-IBS rats. Notably, cotreatment with leptin (10 mg/kg) reduced the effects of PF (20 mg/kg) on colonic fibrosis, leptin/LepRb expression, and PI3K/AKT activation. Therefore, our findings suggest that leptin is targeted by PF via the leptin/LepRb pathway, consequently ameliorating the symptoms of PI-IBS. Our study also contributes novel insights for elucidating the pharmacological action of PF on gastrointestinal disorders and may be used for the clinical treatment of PI-IBS in the future.
Collapse
Affiliation(s)
- Ya-Qing Tian
- Provincial Engineering Laboratory for Screening and Re-Evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Teaching and Research Section of Traditional Chinese Medicine, School of Pharmacy, Wannan Medical College, Wuhu 241000, Anhui, China
| | - Sheng-Peng Zhang
- Provincial Engineering Laboratory for Screening and Re-Evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Teaching and Research Section of Traditional Chinese Medicine, School of Pharmacy, Wannan Medical College, Wuhu 241000, Anhui, China
| | - Kun-Li Zhang
- China Academy of Chinese Medical Sciences, Beijing, China
| | - Di Cao
- Provincial Engineering Laboratory for Screening and Re-Evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Teaching and Research Section of Traditional Chinese Medicine, School of Pharmacy, Wannan Medical College, Wuhu 241000, Anhui, China
| | - Yi-Jun Zheng
- China Academy of Chinese Medical Sciences, Beijing, China
| | - Ping Liu
- China Academy of Chinese Medical Sciences, Beijing, China
| | - Hui-Hui Zhou
- Provincial Engineering Laboratory for Screening and Re-Evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Teaching and Research Section of Traditional Chinese Medicine, School of Pharmacy, Wannan Medical College, Wuhu 241000, Anhui, China
| | - Ya-Ning Wu
- Provincial Engineering Laboratory for Screening and Re-Evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Teaching and Research Section of Traditional Chinese Medicine, School of Pharmacy, Wannan Medical College, Wuhu 241000, Anhui, China
| | - Qi-Xiang Xu
- Provincial Engineering Laboratory for Screening and Re-Evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Teaching and Research Section of Traditional Chinese Medicine, School of Pharmacy, Wannan Medical College, Wuhu 241000, Anhui, China
| | - Xiao-Ping Liu
- Provincial Engineering Laboratory for Screening and Re-Evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Teaching and Research Section of Traditional Chinese Medicine, School of Pharmacy, Wannan Medical College, Wuhu 241000, Anhui, China
| | - Xu-Dong Tang
- China Academy of Chinese Medical Sciences, Beijing, China
| | - Yong-Qiu Zheng
- Provincial Engineering Laboratory for Screening and Re-Evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Teaching and Research Section of Traditional Chinese Medicine, School of Pharmacy, Wannan Medical College, Wuhu 241000, Anhui, China
| | - Feng-Yun Wang
- China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
31
|
Dong Z, Fan C, Deng W, Sun P. Porous gelatin microsphere-based scaffolds containing MC3T3-E1 cells and calcitriol for the repair of skull defect. BIOMATERIALS ADVANCES 2022; 138:212964. [PMID: 35913236 DOI: 10.1016/j.bioadv.2022.212964] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/30/2022] [Accepted: 05/28/2022] [Indexed: 06/15/2023]
Abstract
There is an increasing demand for biomaterials with skull regeneration for clinical application. However, most of the current skull repair materials still have limitations, such as inadequate sources, poor cell adherence, differentiation, tissue infiltration, and foreign body sensation. Therefore, this study developed porous microsphere-based scaffolds containing mouse embryonic osteoblast precursor cells (MC3T3-E1 cells) and calcitriol (Cal) using gelatin and gelatin/hydroxyapatite through green freeze-crosslinking and freeze-drying. Gelatin was employed to prepare porous microspheres with a particle size of 100-300 μm, containing open pores of 2-70 μm and interconnected paths. Furthermore, the addition of Cal to porous gelatin microsphere-based scaffolds containing MC3T3-E1 cells (PGMSs-MC) and porous gelatin/hydroxyapatite composite microspheres containing MC3T3-E1 cells (HPGMSs-MC) improved their osteoinductivity and cell proliferation and promoted the formation of mature and well-organized bone. The developed Cal-HPGMSs-MC and Cal-PGMSs-MC displayed a good porous structure and cytocompatibility, histocompatibility, osteoconductivity, and osteoinduction. Thus, the designed scaffolds provide a promising prospect for tissue-engineered constructs with skull growth and integration, laying a foundation for further research on the reconstruction of skull defects.
Collapse
Affiliation(s)
- Zuoxiang Dong
- Department of Neurosurgery, Affiliated Hospital of Qingdao University, Qingdao 266000, China; Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao 266000, China
| | - Changjiang Fan
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao 266000, China.
| | - Wenshuai Deng
- Department of Neurosurgery, Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Peng Sun
- Department of Neurosurgery, Affiliated Hospital of Qingdao University, Qingdao 266000, China.
| |
Collapse
|
32
|
Cho E, Cheon S, Ding M, Lim K, Park SW, Park C, Lee TH. Identification of Novel Genes for Cell Fusion during Osteoclast Formation. Int J Mol Sci 2022; 23:ijms23126421. [PMID: 35742859 PMCID: PMC9224196 DOI: 10.3390/ijms23126421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/07/2022] [Accepted: 06/07/2022] [Indexed: 12/04/2022] Open
Abstract
Osteoclasts are derived from hematopoietic stem cells. Monocyte preosteoclasts obtain resorbing activity via cell–cell fusion to generate multinucleated cells. However, the mechanisms and molecules involved in the fusion process are poorly understood. In this study, we performed RNA sequencing with single nucleated cells (SNCs) and multinucleated cells (MNCs) to identify the fusion-specific genes. The SNCs and MNCs were isolated under the same conditions during osteoclastogenesis with the receptor activator of nuclear factor-κB ligand (RANKL) administration. Based on this analysis, the expression of seven genes was found to be significantly increased in MNCs but decreased in SNCs, compared to that in bone marrow-derived macrophages (BMMs). We then generated knockout macrophage cell lines using a CRISPR-Cas9 genome-editing tool to examine their function during osteoclastogenesis. Calcrl-, Marco-, or Ube3a-deficient cells could not develop multinucleated giant osteoclasts upon RANKL stimulation. However, Tmem26-deficient cells fused more efficiently than control cells. Our findings demonstrate that Calcrl, Marco, and Ube3a are novel determinants of osteoclastogenesis, especially with respect to cell fusion, and highlight potential targets for osteoporosis therapy.
Collapse
Affiliation(s)
- Eunjin Cho
- Department of Oral Biochemistry, Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju 61186, Korea; (E.C.); (S.-W.P.)
| | - Seongmin Cheon
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Korea; (S.C.); (C.P.)
- Proteomics Core Facility, Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Korea
| | - Mina Ding
- Biomedical Sciences Graduate Program, School of Medical, Chonnam National University, Gwangju 61186, Korea;
| | - Kayeong Lim
- Center for Genome Engineering, Institute for Basic Science, Daejeon 34126, Korea;
| | - Sang-Wook Park
- Department of Oral Biochemistry, Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju 61186, Korea; (E.C.); (S.-W.P.)
| | - Chungoo Park
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Korea; (S.C.); (C.P.)
| | - Tae-Hoon Lee
- Department of Oral Biochemistry, Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju 61186, Korea; (E.C.); (S.-W.P.)
- Correspondence:
| |
Collapse
|
33
|
Xu H, Jia Y, Li J, Huang X, Jiang L, Xiang T, Xie Y, Yang X, Liu T, Xiang Z, Sheng J. Niloticin inhibits osteoclastogenesis by blocking RANKL-RANK interaction and suppressing the AKT, MAPK, and NF-κB signaling pathways. Biomed Pharmacother 2022; 149:112902. [PMID: 35364377 DOI: 10.1016/j.biopha.2022.112902] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/17/2022] [Accepted: 03/27/2022] [Indexed: 11/28/2022] Open
Abstract
Dysregulation of osteoclasts or excessive osteoclastogenesis significantly -contributes to the occurrence and development of osteolytic diseases, including osteoporosis, inflammatory bone erosion, and tumor-induced osteolysis. The protein-protein interaction between the receptor activator of nuclear factor (NF)-κB (RANK) and its ligand (RANKL) mediates the differentiation and activation of osteoclasts, making it a key therapeutic target for osteoclastogenesis inhibition. However, very few natural compounds exerting anti-osteoclastogenesis activity by inhibiting the RANKL-RANK interaction have been found. Niloticin is a natural tetracyclic triterpenoid compound with anti-viral, antioxidative, and mosquitocidal activities. However, its role in osteoclastogenesis remains unknown. The present study found that niloticin directly binds to RANK with an equilibrium dissociation constant of 5.8 μM, blocking RANKL-RANK interaction, thereby inhibiting RANKL-induced AKT, MAPK (p38, JNK, and ERK1/2), and NF-κB (IKKα/β, IκBα, and p65) pathways activation, and reducing the expression of key osteoclast differentiation-related regulatory factors (NFATc1, c-Fos, TRAP, c-Src, β3-Integrin, and cathepsin K) in osteoclast precursors, ultimately negatively regulating osteoclastogenesis. These findings suggest that niloticin could serve as a novel osteoclastogenesis inhibitor and might have beneficial effects on bone health.
Collapse
Affiliation(s)
- Huanhuan Xu
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; College of Science, Yunnan Agricultural University, Kunming 650201, China
| | - Yuankan Jia
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Jin Li
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; College of Science, Yunnan Agricultural University, Kunming 650201, China
| | - Xueqin Huang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Li Jiang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Ting Xiang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Yuanhao Xie
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; College of Science, Yunnan Agricultural University, Kunming 650201, China
| | - Xiaomei Yang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; College of Science, Yunnan Agricultural University, Kunming 650201, China
| | - Titi Liu
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; College of Science, Yunnan Agricultural University, Kunming 650201, China.
| | - Zemin Xiang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; College of Science, Yunnan Agricultural University, Kunming 650201, China; State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Kunming 650201, China.
| | - Jun Sheng
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Kunming 650201, China.
| |
Collapse
|
34
|
Song S, Guo Y, Yang Y, Fu D. Advances in pathogenesis and therapeutic strategies for osteoporosis. Pharmacol Ther 2022; 237:108168. [PMID: 35283172 DOI: 10.1016/j.pharmthera.2022.108168] [Citation(s) in RCA: 164] [Impact Index Per Article: 54.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/25/2022] [Accepted: 03/07/2022] [Indexed: 02/07/2023]
Abstract
Osteoporosis, is the most common bone disorder worldwide characterized by low bone mineral density, leaving affected bones vulnerable to fracture. Bone homeostasis depends on the precise balance between bone resorption by osteoclasts and bone matrix formation by mesenchymal lineage osteoblasts, and involves a series of complex and highly regulated steps. Bone homeostasis will be disrupted when the speed of bone resorption is faster than bone formation. Based on various regulatory mechanisms of bone homeostasis, a series of drugs targeting osteoporosis have emerged in clinical practice, including bisphosphonates, selective estrogen receptor modulators, calcitonin, molecular-targeted drugs and so on. However, many drugs have major adverse effects or are unsuitable for long-term use. Therefore, it is very urgent to find more effective therapeutic drugs based on the new pathogenesis of osteoporosis. In this review, we summarize novel mechanisms involved in the pathological process of osteoporosis, including the roles of gut microbiome, autophagy, iron balance and cellular senescence. Based on the above pathological mechanism, we found promising drugs for osteoporosis treatment, such as: probiotics, alpha-ketoglutarate, senolytics and hydrogen sulfide. This new finding may provide an important basis for elucidating the complex pathological mechanisms of osteoporosis and provide promising drugs for clinical osteoporosis treatment.
Collapse
Affiliation(s)
- Shasha Song
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, PR China
| | - Yuanyuan Guo
- Department of Pharmacy, Liyuan Hospital, Tongji Medical School, Huazhong University of Science and Technology, Wuhan, Hubei 430077, PR China
| | - Yuehua Yang
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, PR China
| | - Dehao Fu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, PR China.
| |
Collapse
|