1
|
Chennuri PR, Zapletal J, Monfardini RD, Ndeffo-Mbah ML, Adelman ZN, Myles KM. Repeat mediated excision of gene drive elements for restoring wild-type populations. PLoS Genet 2024; 20:e1011450. [PMID: 39509462 PMCID: PMC11584131 DOI: 10.1371/journal.pgen.1011450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 11/22/2024] [Accepted: 10/04/2024] [Indexed: 11/15/2024] Open
Abstract
Here, we demonstrate that single strand annealing (SSA) can be co-opted for the precise autocatalytic excision of a drive element. We have termed this technology Repeat Mediated Excision of a Drive Element (ReMEDE). By engineering direct repeats flanking the drive allele and inducing a double-strand DNA break (DSB) at a second endonuclease target site within the allele, we increased the utilization of SSA repair. ReMEDE was incorporated into the mutagenic chain reaction (MCR) gene drive targeting the yellow gene of Drosophila melanogaster, successfully replacing drive alleles with wild-type alleles. Sequencing across the Cas9 target site confirmed transgene excision by SSA after pair-mated outcrosses with yReMEDE females, revealing ~4% inheritance of an engineered silent TcG marker sequence. However, phenotypically wild-type flies with alleles of indeterminate biogenesis also were observed, retaining the TGG sequence (~16%) or harboring a silent gGG mutation (~0.5%) at the PAM site. Additionally, ~14% of alleles in the F2 flies were intact or uncut paternally inherited alleles, indicating limited maternal deposition of Cas9 RNP. Although ReMEDE requires further research and development, the technology has some promising features as a gene drive mitigation strategy, notably its potential to restore wild-type populations without additional transgenic releases or large-scale environmental modifications.
Collapse
Affiliation(s)
- Pratima R Chennuri
- Department of Entomology and AgriLife Research, Texas A&M University, College Station, Texas, United States of America
| | - Josef Zapletal
- Department of Industrial and Systems Engineering, Texas A&M University, College Station, Texas, United States of America
| | - Raquel D Monfardini
- Department of Entomology and AgriLife Research, Texas A&M University, College Station, Texas, United States of America
| | - Martial Loth Ndeffo-Mbah
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, United States of America
- Department of Epidemiology and Biostatistics, Texas A&M University, College Station, Texas, United States of America
| | - Zach N Adelman
- Department of Entomology and AgriLife Research, Texas A&M University, College Station, Texas, United States of America
| | - Kevin M Myles
- Department of Entomology and AgriLife Research, Texas A&M University, College Station, Texas, United States of America
| |
Collapse
|
2
|
Zhao Y, Li L, Wei L, Wang Y, Han Z. Advancements and Future Prospects of CRISPR-Cas-Based Population Replacement Strategies in Insect Pest Management. INSECTS 2024; 15:653. [PMID: 39336621 PMCID: PMC11432399 DOI: 10.3390/insects15090653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/22/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024]
Abstract
Population replacement refers to the process by which a wild-type population of insect pests is replaced by a population possessing modified traits or abilities. Effective population replacement necessitates a gene drive system capable of spreading desired genes within natural populations, operating under principles akin to super-Mendelian inheritance. Consequently, releasing a small number of genetically edited insects could potentially achieve population control objectives. Currently, several gene drive approaches are under exploration, including the newly adapted CRISPR-Cas genome editing system. Multiple studies are investigating methods to engineer pests that are incapable of causing crop damage or transmitting vector-borne diseases, with several notable successful examples documented. This review summarizes the recent advancements of the CRISPR-Cas system in the realm of population replacement and provides insights into research methodologies, testing protocols, and implementation strategies for gene drive techniques. The review also discusses emerging trends and prospects for establishing genetic tools in pest management.
Collapse
Affiliation(s)
- Yu Zhao
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Longfeng Li
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Liangzi Wei
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Yifan Wang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Zhilin Han
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
3
|
Hou S, Chen J, Feng R, Xu X, Liang N, Champer J. A homing rescue gene drive with multiplexed gRNAs reaches high frequency in cage populations but generates functional resistance. J Genet Genomics 2024; 51:836-843. [PMID: 38599514 DOI: 10.1016/j.jgg.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/02/2024] [Accepted: 04/02/2024] [Indexed: 04/12/2024]
Abstract
CRISPR homing gene drives have considerable potential for managing populations of medically and agriculturally significant insects. They operate by Cas9 cleavage followed by homology-directed repair, copying the drive allele to the wild-type chromosome and thus increasing in frequency and spreading throughout a population. However, resistance alleles formed by end-joining repair pose a significant obstacle. To address this, we create a homing drive targeting the essential hairy gene in Drosophila melanogaster. Nonfunctional resistance alleles are recessive lethal, while drive carriers have a recoded "rescue" version of hairy. The drive inheritance rate is moderate, and multigenerational cage studies show drive spread to 96%-97% of the population. However, the drive does not reach 100% due to the formation of functional resistance alleles despite using four gRNAs. These alleles have a large deletion but likely utilize an alternate start codon. Thus, revised designs targeting more essential regions of a gene may be necessary to avoid such functional resistance. Replacement of the rescue element's native 3' UTR with a homolog from another species increases drive inheritance by 13%-24%. This was possibly because of reduced homology between the rescue element and surrounding genomic DNA, which could also be an important design consideration for rescue gene drives.
Collapse
Affiliation(s)
- Shibo Hou
- Center for Bioinformatics, Center for Life Sciences, School of Life Sciences, Peking University, Beijing 100871, China
| | - Jingheng Chen
- Center for Bioinformatics, Center for Life Sciences, School of Life Sciences, Peking University, Beijing 100871, China
| | - Ruobing Feng
- Center for Bioinformatics, Center for Life Sciences, School of Life Sciences, Peking University, Beijing 100871, China
| | - Xuejiao Xu
- Center for Bioinformatics, Center for Life Sciences, School of Life Sciences, Peking University, Beijing 100871, China
| | - Nan Liang
- Center for Bioinformatics, Center for Life Sciences, School of Life Sciences, Peking University, Beijing 100871, China
| | - Jackson Champer
- Center for Bioinformatics, Center for Life Sciences, School of Life Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
4
|
Adedeji EO, Beder T, Damiani C, Cappelli A, Accoti A, Tapanelli S, Ogunlana OO, Fatumo S, Favia G, Koenig R, Adebiyi E. Combination of computational techniques and RNAi reveal targets in Anopheles gambiae for malaria vector control. PLoS One 2024; 19:e0305207. [PMID: 38968330 PMCID: PMC11226046 DOI: 10.1371/journal.pone.0305207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 05/25/2024] [Indexed: 07/07/2024] Open
Abstract
Increasing reports of insecticide resistance continue to hamper the gains of vector control strategies in curbing malaria transmission. This makes identifying new insecticide targets or alternative vector control strategies necessary. CLassifier of Essentiality AcRoss EukaRyote (CLEARER), a leave-one-organism-out cross-validation machine learning classifier for essential genes, was used to predict essential genes in Anopheles gambiae and selected predicted genes experimentally validated. The CLEARER algorithm was trained on six model organisms: Caenorhabditis elegans, Drosophila melanogaster, Homo sapiens, Mus musculus, Saccharomyces cerevisiae and Schizosaccharomyces pombe, and employed to identify essential genes in An. gambiae. Of the 10,426 genes in An. gambiae, 1,946 genes (18.7%) were predicted to be Cellular Essential Genes (CEGs), 1716 (16.5%) to be Organism Essential Genes (OEGs), and 852 genes (8.2%) to be essential as both OEGs and CEGs. RNA interference (RNAi) was used to validate the top three highly expressed non-ribosomal predictions as probable vector control targets, by determining the effect of these genes on the survival of An. gambiae G3 mosquitoes. In addition, the effect of knockdown of arginase (AGAP008783) on Plasmodium berghei infection in mosquitoes was evaluated, an enzyme we computationally inferred earlier to be essential based on chokepoint analysis. Arginase and the top three genes, AGAP007406 (Elongation factor 1-alpha, Elf1), AGAP002076 (Heat shock 70kDa protein 1/8, HSP), AGAP009441 (Elongation factor 2, Elf2), had knockdown efficiencies of 91%, 75%, 63%, and 61%, respectively. While knockdown of HSP or Elf2 significantly reduced longevity of the mosquitoes (p<0.0001) compared to control groups, Elf1 or arginase knockdown had no effect on survival. However, arginase knockdown significantly reduced P. berghei oocytes counts in the midgut of mosquitoes when compared to LacZ-injected controls. The study reveals HSP and Elf2 as important contributors to mosquito survival and arginase as important for parasite development, hence placing them as possible targets for vector control.
Collapse
Affiliation(s)
- Eunice O. Adedeji
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Ogun State, Nigeria
- Department of Biochemistry, Covenant University, Ota, Ogun State, Nigeria
- School of Biosciences & Veterinary Medicine, University of Camerino, Camerino, Italy
- Department of Biology, University of York, York, United Kingdom
| | - Thomas Beder
- Medical Department II, Hematology and Oncology, University Medical Center Schleswig-Holstein, Kiel, Germany
- University Cancer Center Schleswig-Holstein, University Medical Center Schleswig-Holstein, Kiel and Lübeck, Germany
- Institute for Infectious Diseases and Infection Control (IIMK, RG Systemsbiology), Jena University Hospital, Jena, Germany
| | - Claudia Damiani
- School of Biosciences & Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Alessia Cappelli
- School of Biosciences & Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Anastasia Accoti
- School of Biosciences & Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Sofia Tapanelli
- Department of Life Sciences, Imperial College, London, United Kingdom
| | - Olubanke O. Ogunlana
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Ogun State, Nigeria
- Department of Biochemistry, Covenant University, Ota, Ogun State, Nigeria
- African Center of Excellence in Bioinformatics & Data Intensive Science, Makerere University, Kampala, Uganda
| | - Segun Fatumo
- Department of Non-Communicable Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Guido Favia
- School of Biosciences & Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Rainer Koenig
- Institute for Infectious Diseases and Infection Control (IIMK, RG Systemsbiology), Jena University Hospital, Jena, Germany
| | - Ezekiel Adebiyi
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Ogun State, Nigeria
- African Center of Excellence in Bioinformatics & Data Intensive Science, Makerere University, Kampala, Uganda
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
5
|
Kefi M, Cardoso-Jaime V, Saab SA, Dimopoulos G. Curing mosquitoes with genetic approaches for malaria control. Trends Parasitol 2024; 40:487-499. [PMID: 38760256 DOI: 10.1016/j.pt.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/15/2024] [Accepted: 04/15/2024] [Indexed: 05/19/2024]
Abstract
Malaria remains a persistent global public health challenge because of the limitations of current prevention tools. The use of transgenic mosquitoes incapable of transmitting malaria, in conjunction with existing methods, holds promise for achieving elimination of malaria and preventing its reintroduction. In this context, population modification involves the spread of engineered genetic elements through mosquito populations that render them incapable of malaria transmission. Significant progress has been made in this field over the past decade in revealing promising targets, optimizing genetic tools, and facilitating the transition from the laboratory to successful field deployments, which are subject to regulatory scrutiny. This review summarizes recent advances and ongoing challenges in 'curing' Anopheles vectors of the malaria parasite.
Collapse
Affiliation(s)
- Mary Kefi
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Victor Cardoso-Jaime
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Sally A Saab
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - George Dimopoulos
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
6
|
Wang H, Ying J, Mao Z, Wang B, Ye Z, Chen Y, Chen J, Zhang C, Li J, Zhuo J. Identification and functional analysis of the female determiner gene in the bean bug, Riptortus pedestris. PEST MANAGEMENT SCIENCE 2024; 80:1240-1248. [PMID: 37934463 DOI: 10.1002/ps.7853] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/21/2023] [Accepted: 11/07/2023] [Indexed: 11/08/2023]
Abstract
BACKGROUND Homing-based gene drives targeting sex-specific lethal genes have been used for genetic control. Additionally, understanding insect sex determination provides new targets for managing insect pests. While sex determination mechanisms in holometabolous insects have been thoroughly studied and employed in pest control, the study of the sex determination pathway in hemimetabolous insects is limited to only a few species. Riptortus pedestris (Fabricius; Hemiptera: Heteroptera), commonly known as the bean bug, is a significant pest for soybeans. Nonetheless, the mechanism of its sex determination and the target gene for genetic control are not well understood. RESULTS We identified Rpfmd as the female determiner gene in the sex determination pathway of R. pedestris. Rpfmd encodes a female-specific serine/arginine-rich protein of 436 amino acids and one non-sex-specific short protein of 98 amino acids. Knockdown of Rpfmd in R. pedestris nymphs caused death of molting females with masculinized somatic morphology but did not affect male development. Knockdown of Rpfmd in newly emerged females inhibited ovary development, while maternal-mediated RNA interference (RNAi) knockdown of Rpfmd expression resulted in male-only offspring. Transcriptome sequencing revealed that Rpfmd regulates X chromosome dosage compensation and influences various biological processes in females but has no significant effect on males. Moreover, RNAi mediated knockdown of Rpfmd-C had no influence on the development of R. pedestris, suggesting that Rpfmd regulates sex determination through female-specific splicing isoforms. We also found that Rpfmd pre-mRNA alternative splicing regulation starts at the 24-h embryo stage, indicating the activation of sex differentiation. CONCLUSION Our study confirms that Rpfmd, particularly its female-specific isoform (Rpfmd-F), is the female determiner gene that regulates sex differentiation in R. pedestris. Knockdown of Rpfmd results in female-specific lethality without affecting males, making it a promising target for genetic control of this soybean pest throughout its development stages. Additionally, our findings improve the understanding of the sex-determination mechanism in hemimetabolous insects. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Haiqiang Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Jinjun Ying
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Zeping Mao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Biyun Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Zhuangxin Ye
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Youyuan Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Chuanxi Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Junmin Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Jichong Zhuo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| |
Collapse
|
7
|
Overton MS, Guy SE, Chen X, Martsul A, Carolino K, Akbari OS, Meyer JR, Kryazhimskiy S. Upper Bound on the Mutational Burden Imposed by a CRISPR-Cas9 Gene-Drive Element. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.28.569142. [PMID: 38076841 PMCID: PMC10705488 DOI: 10.1101/2023.11.28.569142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
CRISPR-Cas9 gene drives (CCGDs) are powerful tools for genetic control of wild populations, useful for eradication of disease vectors, conservation of endangered species and other applications. However, Cas9 alone and in a complex with gRNA can cause double-stranded DNA breaks at off-target sites, which could increase the mutational load and lead to loss of heterozygosity (LOH). These undesired effects raise potential concerns about the long-term evolutionary safety of CCGDs, but the magnitude of these effects is unknown. To estimate how the presence of a CCGD or a Cas9 alone in the genome affects the rates of LOH events and de novo mutations, we carried out a mutation accumulation experiment in yeast Saccharomyces cerevisiae. Despite its substantial statistical power, our experiment revealed no detectable effect of CCGD or Cas9 alone on the genome-wide rates of mutations or LOH events, suggesting that these rates are affected by less than 30%. Nevertheless, we found that Cas9 caused a slight but significant shift towards more interstitial and fewer terminal LOH events, and the CCGD caused a significant difference in the distribution of LOH events on Chromosome V. Taken together, our results show that these genetic elements impose a weak and likely localized additional mutational burden in the yeast model. Although the mutagenic effects of CCGDs need to be further evaluated in other systems, our results suggest that the effect of CCGDs on off-target mutation rates and genetic diversity may be acceptable.
Collapse
Affiliation(s)
- Michael S. Overton
- Department of Ecology, Behavior and Evolution, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093
| | - Sean E. Guy
- Department of Ecology, Behavior and Evolution, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093
- Current address: Bionano Genomics, San Diego, CA 92121
| | - Xingsen Chen
- Department of Ecology, Behavior and Evolution, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093
- Current address: Department of Entomology, University of Arizona, Tucson, Arizona, USA
| | - Alena Martsul
- Department of Ecology, Behavior and Evolution, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093
- Current address: Illumina Inc., San Diego, CA 92122
| | - Krypton Carolino
- Department of Ecology, Behavior and Evolution, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093
| | - Omar S. Akbari
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Justin R. Meyer
- Department of Ecology, Behavior and Evolution, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093
| | - Sergey Kryazhimskiy
- Department of Ecology, Behavior and Evolution, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093
| |
Collapse
|
8
|
Raban R, Marshall JM, Hay BA, Akbari OS. Manipulating the Destiny of Wild Populations Using CRISPR. Annu Rev Genet 2023; 57:361-390. [PMID: 37722684 PMCID: PMC11064769 DOI: 10.1146/annurev-genet-031623-105059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Genetic biocontrol aims to suppress or modify populations of species to protect public health, agriculture, and biodiversity. Advancements in genome engineering technologies have fueled a surge in research in this field, with one gene editing technology, CRISPR, leading the charge. This review focuses on the current state of CRISPR technologies for genetic biocontrol of pests and highlights the progress and ongoing challenges of using these approaches.
Collapse
Affiliation(s)
- Robyn Raban
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, California, USA;
| | - John M Marshall
- Divisions of Epidemiology and Biostatistics, School of Public Health, University of California, Berkeley, California, USA
| | - Bruce A Hay
- Division of Biology and Biological Engineering (BBE), California Institute of Technology, Pasadena, California, USA
| | - Omar S Akbari
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, California, USA;
| |
Collapse
|
9
|
Chennuri PR, Zapletal J, Monfardini RD, Ndeffo-Mbah ML, Adelman ZN, Myles KM. Repeat mediated excision of gene drive elements for restoring wild-type populations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.23.568397. [PMID: 38045402 PMCID: PMC10690251 DOI: 10.1101/2023.11.23.568397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
We demonstrate here that single strand annealing (SSA) repair can be co-opted for the precise autocatalytic excision of a drive element. Although SSA is not the predominant form of DNA repair in eukaryotic organisms, we increased the likelihood of its use by engineering direct repeats at sites flanking the drive allele, and then introducing a double-strand DNA break (DSB) at a second endonuclease target site encoded within the drive allele. We have termed this technology Repeat Mediated Excision of a Drive Element (ReMEDE). Incorporation of ReMEDE into the previously described mutagenic chain reaction (MCR) gene drive, targeting the yellow gene of Drosophila melanogaster, replaced drive alleles with wild-type alleles demonstrating proof-of-principle. Although the ReMEDE system requires further research and development, the technology has a number of attractive features as a gene drive mitigation strategy, chief among these the potential to restore a wild-type population without releasing additional transgenic organisms or large-scale environmental engineering efforts.
Collapse
Affiliation(s)
- Pratima R Chennuri
- Department of Entomology and AgriLife Research, Texas A&M University, College Station, TX 77843, USA
| | - Josef Zapletal
- Department of Industrial and Systems Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Raquel D Monfardini
- Department of Entomology and AgriLife Research, Texas A&M University, College Station, TX 77843, USA
| | - Martial Loth Ndeffo-Mbah
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA
- Department of Epidemiology and Biostatistics, Texas A&M University, College Station, TX 77843, USA
| | - Zach N Adelman
- Department of Entomology and AgriLife Research, Texas A&M University, College Station, TX 77843, USA
| | - Kevin M Myles
- Department of Entomology and AgriLife Research, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
10
|
Smidler AL, Pai JJ, Apte RA, Sánchez C. HM, Corder RM, Jeffrey Gutiérrez E, Thakre N, Antoshechkin I, Marshall JM, Akbari OS. A confinable female-lethal population suppression system in the malaria vector, Anopheles gambiae. SCIENCE ADVANCES 2023; 9:eade8903. [PMID: 37406109 PMCID: PMC10321730 DOI: 10.1126/sciadv.ade8903] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 06/01/2023] [Indexed: 07/07/2023]
Abstract
Malaria is among the world's deadliest diseases, predominantly affecting Sub-Saharan Africa and killing over half a million people annually. Controlling the principal vector, the mosquito Anopheles gambiae, as well as other anophelines, is among the most effective methods to control disease spread. Here, we develop a genetic population suppression system termed Ifegenia (inherited female elimination by genetically encoded nucleases to interrupt alleles) in this deadly vector. In this bicomponent CRISPR-based approach, we disrupt a female-essential gene, femaleless (fle), demonstrating complete genetic sexing via heritable daughter gynecide. Moreover, we demonstrate that Ifegenia males remain reproductively viable and can load both fle mutations and CRISPR machinery to induce fle mutations in subsequent generations, resulting in sustained population suppression. Through modeling, we demonstrate that iterative releases of nonbiting Ifegenia males can act as an effective, confinable, controllable, and safe population suppression and elimination system.
Collapse
Affiliation(s)
- Andrea L. Smidler
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093, USA
| | - James J. Pai
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093, USA
| | - Reema A. Apte
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093, USA
| | - Héctor M. Sánchez C.
- Divisions of Epidemiology and Biostatistics, School of Public Health, University of California, Berkeley, CA 94720, USA
| | - Rodrigo M. Corder
- Divisions of Epidemiology and Biostatistics, School of Public Health, University of California, Berkeley, CA 94720, USA
| | - Eileen Jeffrey Gutiérrez
- Divisions of Epidemiology and Biostatistics, School of Public Health, University of California, Berkeley, CA 94720, USA
- Oxitec Ltd., Abingdon, OX14 4RQ, UK
| | - Neha Thakre
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093, USA
| | - Igor Antoshechkin
- Division of Biology and Biological Engineering (BBE), California Institute of Technology, Pasadena, CA 91125, USA
| | - John M. Marshall
- Divisions of Epidemiology and Biostatistics, School of Public Health, University of California, Berkeley, CA 94720, USA
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
| | - Omar S. Akbari
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
11
|
Combs MA, Golnar AJ, Overcash JM, Lloyd AL, Hayes KR, O'Brochta DA, Pepin KM. Leveraging eco-evolutionary models for gene drive risk assessment. Trends Genet 2023:S0168-9525(23)00090-2. [PMID: 37198063 DOI: 10.1016/j.tig.2023.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/07/2023] [Accepted: 04/14/2023] [Indexed: 05/19/2023]
Abstract
Engineered gene drives create potential for both widespread benefits and irreversible harms to ecosystems. CRISPR-based systems of allelic conversion have rapidly accelerated gene drive research across diverse taxa, putting field trials and their necessary risk assessments on the horizon. Dynamic process-based models provide flexible quantitative platforms to predict gene drive outcomes in the context of system-specific ecological and evolutionary features. Here, we synthesize gene drive dynamic modeling studies to highlight research trends, knowledge gaps, and emergent principles, organized around their genetic, demographic, spatial, environmental, and implementation features. We identify the phenomena that most significantly influence model predictions, discuss limitations of biological complexity and uncertainty, and provide insights to promote responsible development and model-assisted risk assessment of gene drives.
Collapse
Affiliation(s)
- Matthew A Combs
- National Wildlife Research Center, United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, Fort Collins, CO, 80521, USA.
| | - Andrew J Golnar
- National Wildlife Research Center, United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, Fort Collins, CO, 80521, USA
| | - Justin M Overcash
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Biotechnology Regulatory Services, 20737, USA
| | - Alun L Lloyd
- North Carolina State University, Biomathematics Graduate Program and Department of Mathematics, Raleigh, NC, 27695, USA
| | - Keith R Hayes
- The Commonwealth Scientific and Industrial Research Organisation, Data 61, Hobart, TAS, 7004, Australia
| | - David A O'Brochta
- Foundation for the National Institutes of Health, North Bethesda, MD, 20852, USA
| | - Kim M Pepin
- National Wildlife Research Center, United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, Fort Collins, CO, 80521, USA
| |
Collapse
|
12
|
Zhu Y, Champer J. Simulations Reveal High Efficiency and Confinement of a Population Suppression CRISPR Toxin-Antidote Gene Drive. ACS Synth Biol 2023; 12:809-819. [PMID: 36825354 DOI: 10.1021/acssynbio.2c00611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Though engineered gene drives hold great promise for spreading through and suppressing populations of disease vectors or invasive species, complications such as resistance alleles and spatial population structure can prevent their success. Additionally, most forms of suppression drives, such as homing drives or driving Y chromosomes, will generally spread uncontrollably between populations with even small levels of migration. The previously proposed CRISPR-based toxin-antidote system called toxin-antidote dominant embryo (TADE) suppression drive could potentially address the issues of confinement and resistance. However, it is a relatively weak form of drive compared to homing drives, which might make it particularly vulnerable to spatial population structure. In this study, we investigate TADE suppression drive using individual-based simulations in a continuous spatial landscape. We find that the drive is actually more confined than in simple models without space, even in its most efficient form with low cleavage rate in embryos from maternally deposited Cas9. Furthermore, the drive performed well in continuous space scenarios if the initial release requirements were met, suppressing the population in a timely manner without being severely affected by chasing, a phenomenon in which wild-type individuals avoid the drive by recolonizing empty areas. At higher embryo cut rates, the drive loses its ability to spread, but a single, widespread release can often still induce rapid population collapse. Thus, if TADE suppression gene drives can be successfully constructed, they may play an important role in control of disease vectors and invasive species when stringent confinement to target populations is desired.
Collapse
Affiliation(s)
- Yutong Zhu
- Center for Bioinformatics, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Jackson Champer
- Center for Bioinformatics, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
13
|
Chen J, Xu X, Champer J. Assessment of distant-site rescue elements for CRISPR toxin-antidote gene drives. Front Bioeng Biotechnol 2023; 11:1138702. [PMID: 36860883 PMCID: PMC9968759 DOI: 10.3389/fbioe.2023.1138702] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/03/2023] [Indexed: 02/15/2023] Open
Abstract
Gene drive is a genetic engineering technology that can enable super-mendelian inheritance of specific alleles, allowing them to spread through a population. New gene drive types have increased flexibility, offering options for confined modification or suppression of target populations. Among the most promising are CRISPR toxin-antidote gene drives, which disrupt essential wild-type genes by targeting them with Cas9/gRNA. This results in their removal, increasing the frequency of the drive. All these drives rely on having an effective rescue element, which consists of a recoded version of the target gene. This rescue element can be at the same site as the target gene, maximizing the chance of efficient rescue, or at a distant site, which allows useful options such as easily disrupting another essential gene or increasing confinement. Previously, we developed a homing rescue drive targeting a haplolethal gene and a toxin-antidote drive targeting a haplosufficient gene. These successful drives had functional rescue elements but suboptimal drive efficiency. Here, we attempted to construct toxin-antidote drives targeting these genes with a distant-site configuration from three loci in Drosophila melanogaster. We found that additional gRNAs increased cut rates to nearly 100%. However, all distant-site rescue elements failed for both target genes. Furthermore, one rescue element with a minimally recoded sequence was used as a template for homology-directed repair for the target gene on a different chromosomal arm, resulting in the formation of functional resistance alleles. Together, these results can inform the design of future CRISPR-based toxin-antidote gene drives.
Collapse
Affiliation(s)
| | | | - Jackson Champer
- Center for Bioinformatics, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| |
Collapse
|
14
|
Li J, Champer J. Harnessing Wolbachia cytoplasmic incompatibility alleles for confined gene drive: A modeling study. PLoS Genet 2023; 19:e1010591. [PMID: 36689491 PMCID: PMC9894560 DOI: 10.1371/journal.pgen.1010591] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 02/02/2023] [Accepted: 12/21/2022] [Indexed: 01/24/2023] Open
Abstract
Wolbachia are maternally-inherited bacteria, which can spread rapidly in populations by manipulating reproduction. cifA and cifB are genes found in Wolbachia phage that are responsible for cytoplasmic incompatibility, the most common type of Wolbachia reproductive interference. In this phenomenon, no viable offspring are produced when a male with both cifA and cifB (or just cifB in some systems) mates with a female lacking cifA. Utilizing this feature, we propose new types of toxin-antidote gene drives that can be constructed with only these two genes in an insect genome, instead of the whole Wolbachia bacteria. By using both mathematical and simulation models, we found that a drive containing cifA and cifB together creates a confined drive with a moderate to high introduction threshold. When introduced separately, they act as a self-limiting drive. We observed that the performance of these drives is substantially influenced by various ecological parameters and drive characteristics. Extending our models to continuous space, we found that the drive individual release distribution has a critical impact on drive persistence. Our results suggest that these new types of drives based on Wolbachia transgenes are safe and flexible candidates for genetic modification of populations.
Collapse
Affiliation(s)
- Jiahe Li
- Center for Bioinformatics, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Jackson Champer
- Center for Bioinformatics, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
- * E-mail:
| |
Collapse
|
15
|
Wortel MT, Agashe D, Bailey SF, Bank C, Bisschop K, Blankers T, Cairns J, Colizzi ES, Cusseddu D, Desai MM, van Dijk B, Egas M, Ellers J, Groot AT, Heckel DG, Johnson ML, Kraaijeveld K, Krug J, Laan L, Lässig M, Lind PA, Meijer J, Noble LM, Okasha S, Rainey PB, Rozen DE, Shitut S, Tans SJ, Tenaillon O, Teotónio H, de Visser JAGM, Visser ME, Vroomans RMA, Werner GDA, Wertheim B, Pennings PS. Towards evolutionary predictions: Current promises and challenges. Evol Appl 2023; 16:3-21. [PMID: 36699126 PMCID: PMC9850016 DOI: 10.1111/eva.13513] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 12/14/2022] Open
Abstract
Evolution has traditionally been a historical and descriptive science, and predicting future evolutionary processes has long been considered impossible. However, evolutionary predictions are increasingly being developed and used in medicine, agriculture, biotechnology and conservation biology. Evolutionary predictions may be used for different purposes, such as to prepare for the future, to try and change the course of evolution or to determine how well we understand evolutionary processes. Similarly, the exact aspect of the evolved population that we want to predict may also differ. For example, we could try to predict which genotype will dominate, the fitness of the population or the extinction probability of a population. In addition, there are many uses of evolutionary predictions that may not always be recognized as such. The main goal of this review is to increase awareness of methods and data in different research fields by showing the breadth of situations in which evolutionary predictions are made. We describe how diverse evolutionary predictions share a common structure described by the predictive scope, time scale and precision. Then, by using examples ranging from SARS-CoV2 and influenza to CRISPR-based gene drives and sustainable product formation in biotechnology, we discuss the methods for predicting evolution, the factors that affect predictability and how predictions can be used to prevent evolution in undesirable directions or to promote beneficial evolution (i.e. evolutionary control). We hope that this review will stimulate collaboration between fields by establishing a common language for evolutionary predictions.
Collapse
Affiliation(s)
- Meike T. Wortel
- Swammerdam Institute for Life SciencesUniversity of AmsterdamAmsterdamThe Netherlands
| | - Deepa Agashe
- National Centre for Biological SciencesBangaloreIndia
| | | | - Claudia Bank
- Institute of Ecology and EvolutionUniversity of BernBernSwitzerland
- Swiss Institute of BioinformaticsLausanneSwitzerland
- Gulbenkian Science InstituteOeirasPortugal
| | - Karen Bisschop
- Institute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamAmsterdamThe Netherlands
- Origins CenterGroningenThe Netherlands
- Laboratory of Aquatic Biology, KU Leuven KulakKortrijkBelgium
| | - Thomas Blankers
- Institute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamAmsterdamThe Netherlands
- Origins CenterGroningenThe Netherlands
| | | | - Enrico Sandro Colizzi
- Origins CenterGroningenThe Netherlands
- Mathematical InstituteLeiden UniversityLeidenThe Netherlands
| | | | | | - Bram van Dijk
- Max Planck Institute for Evolutionary BiologyPlönGermany
| | - Martijn Egas
- Institute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamAmsterdamThe Netherlands
| | - Jacintha Ellers
- Department of Ecological ScienceVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Astrid T. Groot
- Institute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamAmsterdamThe Netherlands
| | | | | | - Ken Kraaijeveld
- Leiden Centre for Applied BioscienceUniversity of Applied Sciences LeidenLeidenThe Netherlands
| | - Joachim Krug
- Institute for Biological PhysicsUniversity of CologneCologneGermany
| | - Liedewij Laan
- Department of Bionanoscience, Kavli Institute of NanoscienceTU DelftDelftThe Netherlands
| | - Michael Lässig
- Institute for Biological PhysicsUniversity of CologneCologneGermany
| | - Peter A. Lind
- Department Molecular BiologyUmeå UniversityUmeåSweden
| | - Jeroen Meijer
- Theoretical Biology and Bioinformatics, Department of BiologyUtrecht UniversityUtrechtThe Netherlands
| | - Luke M. Noble
- Institute de Biologie, École Normale Supérieure, CNRS, InsermParisFrance
| | | | - Paul B. Rainey
- Department of Microbial Population BiologyMax Planck Institute for Evolutionary BiologyPlönGermany
- Laboratoire Biophysique et Évolution, CBI, ESPCI Paris, Université PSL, CNRSParisFrance
| | - Daniel E. Rozen
- Institute of Biology, Leiden UniversityLeidenThe Netherlands
| | - Shraddha Shitut
- Origins CenterGroningenThe Netherlands
- Institute of Biology, Leiden UniversityLeidenThe Netherlands
| | | | | | | | | | - Marcel E. Visser
- Department of Animal EcologyNetherlands Institute of Ecology (NIOO‐KNAW)WageningenThe Netherlands
| | - Renske M. A. Vroomans
- Origins CenterGroningenThe Netherlands
- Informatics InstituteUniversity of AmsterdamAmsterdamThe Netherlands
| | | | - Bregje Wertheim
- Groningen Institute for Evolutionary Life SciencesUniversity of GroningenGroningenThe Netherlands
| | | |
Collapse
|
16
|
Verkuijl SAN, Gonzalez E, Li M, Ang JXD, Kandul NP, Anderson MAE, Akbari OS, Bonsall MB, Alphey L. A CRISPR endonuclease gene drive reveals distinct mechanisms of inheritance bias. Nat Commun 2022; 13:7145. [PMID: 36414618 PMCID: PMC9681865 DOI: 10.1038/s41467-022-34739-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 11/04/2022] [Indexed: 11/24/2022] Open
Abstract
CRISPR/Cas gene drives can bias transgene inheritance through different mechanisms. Homing drives are designed to replace a wild-type allele with a copy of a drive element on the homologous chromosome. In Aedes aegypti, the sex-determining locus is closely linked to the white gene, which was previously used as a target for a homing drive element (wGDe). Here, through an analysis using this linkage we show that in males inheritance bias of wGDe did not occur by homing, rather through increased propagation of the donor drive element. We test the same wGDe drive element with transgenes expressing Cas9 with germline regulatory elements sds3, bgcn, and nup50. We only find inheritance bias through homing, even with the identical nup50-Cas9 transgene. We propose that DNA repair outcomes may be more context dependent than anticipated and that other previously reported homing drives may, in fact, bias their inheritance through other mechanisms.
Collapse
Affiliation(s)
- Sebald A N Verkuijl
- Mathematical Ecology Research Group, Department of Biology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK
- Arthropod Genetics, The Pirbright Institute, Ash Road, Pirbright, GU24 0NF, UK
| | - Estela Gonzalez
- Arthropod Genetics, The Pirbright Institute, Ash Road, Pirbright, GU24 0NF, UK
- The Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Ming Li
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Joshua X D Ang
- Arthropod Genetics, The Pirbright Institute, Ash Road, Pirbright, GU24 0NF, UK
- The Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Nikolay P Kandul
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Michelle A E Anderson
- Arthropod Genetics, The Pirbright Institute, Ash Road, Pirbright, GU24 0NF, UK
- The Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Omar S Akbari
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Michael B Bonsall
- Mathematical Ecology Research Group, Department of Biology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK
| | - Luke Alphey
- Arthropod Genetics, The Pirbright Institute, Ash Road, Pirbright, GU24 0NF, UK.
- The Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK.
| |
Collapse
|
17
|
Raban R, Gendron WAC, Akbari OS. A perspective on the expansion of the genetic technologies to support the control of neglected vector-borne diseases and conservation. FRONTIERS IN TROPICAL DISEASES 2022. [DOI: 10.3389/fitd.2022.999273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Abstract
Genetic-based technologies are emerging as promising tools to support vector population control. Vectors of human malaria and dengue have been the main focus of these development efforts, but in recent years these technologies have become more flexible and adaptable and may therefore have more wide-ranging applications. Culex quinquefasciatus, for example, is the primary vector of avian malaria in Hawaii and other tropical islands. Avian malaria has led to the extinction of numerous native bird species and many native bird species continue to be threatened as climate change is expanding the range of this mosquito. Genetic-based technologies would be ideal to support avian malaria control as they would offer alternatives to interventions that are difficult to implement in natural areas, such as larval source reduction, and limit the need for chemical insecticides, which can harm beneficial species in these natural areas. This mosquito is also an important vector of human diseases, such as West Nile and Saint Louis encephalitis viruses, so genetic-based control efforts for this species could also have a direct impact on human health. This commentary will discuss the current state of development and future needs for genetic-based technologies in lesser studied, but important disease vectors, such as C. quinquefasciatus, and make comparisons to technologies available in more studied vectors. While most current genetic control focuses on human disease, we will address the impact that these technologies could have on both disease and conservation focused vector control efforts and what is needed to prepare these technologies for evaluation in the field. The versatility of genetic-based technologies may result in the development of many important tools to control a variety of vectors that impact human, animal, and ecosystem health.
Collapse
|
18
|
Melesse Vergara M, Labbé J, Tannous J. Reflection on the Challenges, Accomplishments, and New Frontiers of Gene Drives. BIODESIGN RESEARCH 2022; 2022:9853416. [PMID: 37850135 PMCID: PMC10521683 DOI: 10.34133/2022/9853416] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/19/2022] [Indexed: 10/19/2023] Open
Abstract
Ongoing pest and disease outbreaks pose a serious threat to human, crop, and animal lives, emphasizing the need for constant genetic discoveries that could serve as mitigation strategies. Gene drives are genetic engineering approaches discovered decades ago that may allow quick, super-Mendelian dissemination of genetic modifications in wild populations, offering hopes for medicine, agriculture, and ecology in combating diseases. Following its first discovery, several naturally occurring selfish genetic elements were identified and several gene drive mechanisms that could attain relatively high threshold population replacement have been proposed. This review provides a comprehensive overview of the recent advances in gene drive research with a particular emphasis on CRISPR-Cas gene drives, the technology that has revolutionized the process of genome engineering. Herein, we discuss the benefits and caveats of this technology and place it within the context of natural gene drives discovered to date and various synthetic drives engineered. Later, we elaborate on the strategies for designing synthetic drive systems to address resistance issues and prevent them from altering the entire wild populations. Lastly, we highlight the major applications of synthetic CRISPR-based gene drives in different living organisms, including plants, animals, and microorganisms.
Collapse
Affiliation(s)
| | - Jesse Labbé
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Invaio Sciences, Cambridge, MA 02138USA
| | - Joanna Tannous
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| |
Collapse
|
19
|
Gantz VM, Bier E. Active genetics comes alive: Exploring the broad applications of CRISPR-based selfish genetic elements (or gene-drives): Exploring the broad applications of CRISPR-based selfish genetic elements (or gene-drives). Bioessays 2022; 44:e2100279. [PMID: 35686327 PMCID: PMC9397133 DOI: 10.1002/bies.202100279] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 05/06/2022] [Accepted: 05/10/2022] [Indexed: 11/11/2022]
Abstract
Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-based "active genetic" elements developed in 2015 bypassed the fundamental rules of traditional genetics. Inherited in a super-Mendelian fashion, such selfish genetic entities offered a variety of potential applications including: gene-drives to disseminate gene cassettes carrying desired traits throughout insect populations to control disease vectors or pest species, allelic drives biasing inheritance of preferred allelic variants, neutralizing genetic elements to delete and replace or to halt the spread of gene-drives, split-drives with the core constituent Cas9 endonuclease and guide RNA (gRNA) components inserted at separate genomic locations to accelerate assembly of complex arrays of genetic traits or to gain genetic entry into novel organisms (vertebrates, plants, bacteria), and interhomolog based copying systems in somatic cells to develop tools for treating inherited or infectious diseases. Here, we summarize the substantial advances that have been made on all of these fronts and look forward to the next phase of this rapidly expanding and impactful field.
Collapse
Affiliation(s)
- Valentino M Gantz
- Department of Cell and Developmental Biology, University of California, La Jolla, California, USA
| | - Ethan Bier
- Department of Cell and Developmental Biology, University of California, La Jolla, California, USA
| |
Collapse
|
20
|
Verkuijl SAN, Ang JXD, Alphey L, Bonsall MB, Anderson MAE. The Challenges in Developing Efficient and Robust Synthetic Homing Endonuclease Gene Drives. Front Bioeng Biotechnol 2022; 10:856981. [PMID: 35419354 PMCID: PMC8996256 DOI: 10.3389/fbioe.2022.856981] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/04/2022] [Indexed: 11/13/2022] Open
Abstract
Making discrete and precise genetic changes to wild populations has been proposed as a means of addressing some of the world's most pressing ecological and public health challenges caused by insect pests. Technologies that would allow this, such as synthetic gene drives, have been under development for many decades. Recently, a new generation of programmable nucleases has dramatically accelerated technological development. CRISPR-Cas9 has improved the efficiency of genetic engineering and has been used as the principal effector nuclease in different gene drive inheritance biasing mechanisms. Of these nuclease-based gene drives, homing endonuclease gene drives have been the subject of the bulk of research efforts (particularly in insects), with many different iterations having been developed upon similar core designs. We chart the history of homing gene drive development, highlighting the emergence of challenges such as unintended repair outcomes, "leaky" expression, and parental deposition. We conclude by discussing the progress made in developing strategies to increase the efficiency of homing endonuclease gene drives and mitigate or prevent unintended outcomes.
Collapse
Affiliation(s)
- Sebald A. N. Verkuijl
- Arthropod Genetics, The Pirbright Institute, Pirbright, United Kingdom
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Joshua X. D. Ang
- Arthropod Genetics, The Pirbright Institute, Pirbright, United Kingdom
| | - Luke Alphey
- Arthropod Genetics, The Pirbright Institute, Pirbright, United Kingdom
| | | | | |
Collapse
|
21
|
Wang GH, Du J, Chu CY, Madhav M, Hughes GL, Champer J. Symbionts and gene drive: two strategies to combat vector-borne disease. Trends Genet 2022; 38:708-723. [PMID: 35314082 DOI: 10.1016/j.tig.2022.02.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/24/2022] [Accepted: 02/24/2022] [Indexed: 01/26/2023]
Abstract
Mosquitoes bring global health problems by transmitting parasites and viruses such as malaria and dengue. Unfortunately, current insecticide-based control strategies are only moderately effective because of high cost and resistance. Thus, scalable, sustainable, and cost-effective strategies are needed for mosquito-borne disease control. Symbiont-based and genome engineering-based approaches provide new tools that show promise for meeting these criteria, enabling modification or suppression approaches. Symbiotic bacteria like Wolbachia are maternally inherited and manipulate mosquito host reproduction to enhance their vertical transmission. Genome engineering-based gene drive methods, in which mosquitoes are genetically altered to spread drive alleles throughout wild populations, are also proving to be a potentially powerful approach in the laboratory. Here, we review the latest developments in both symbionts and gene drive-based methods. We describe some notable similarities, as well as distinctions and obstacles, relating to these promising technologies.
Collapse
Affiliation(s)
- Guan-Hong Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Jie Du
- Center for Bioinformatics, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Chen Yi Chu
- Center for Bioinformatics, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Mukund Madhav
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical Disease, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Grant L Hughes
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical Disease, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Jackson Champer
- Center for Bioinformatics, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
22
|
Xu X, Harvey-Samuel T, Siddiqui HA, Ang JXD, Anderson ME, Reitmayer CM, Lovett E, Leftwich PT, You M, Alphey L. Toward a CRISPR-Cas9-based Gene Drive in the Diamondback Moth Plutella xylostella. CRISPR J 2022; 5:224-236. [PMID: 35285719 DOI: 10.1089/crispr.2021.0129] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Promising to provide powerful genetic control tools, gene drives have been constructed in multiple dipteran insects, yeast, and mice for the purposes of population elimination or modification. However, it remains unclear whether these techniques can be applied to lepidopterans. Here, we used endogenous regulatory elements to drive Cas9 and single guide RNA (sgRNA) expression in the diamondback moth (DBM), Plutella xylostella, and test the first split gene drive system in a lepidopteran. The DBM is an economically important global agriculture pest of cruciferous crops and has developed severe resistance to various insecticides, making it a prime candidate for such novel control strategy development. A very high level of somatic editing was observed in Cas9/sgRNA transheterozygotes, although no significant homing was revealed in the subsequent generation. Although heritable Cas9-medated germline cleavage as well as maternal and paternal Cas9 deposition were observed, rates were far lower than for somatic cleavage events, indicating robust somatic but limited germline activity of Cas9/sgRNA under the control of selected regulatory elements. Our results provide valuable experience, paving the way for future construction of gene drives or other Cas9-based genetic control strategies in DBM and other lepidopterans.
Collapse
Affiliation(s)
- Xuejiao Xu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, P.R. China.,School of Life Sciences, Peking University, Beijing, P.R. China
| | - Tim Harvey-Samuel
- Arthropod Genetics Group, The Pirbright Institute, Woking, Pirbright, United Kingdom
| | - Hamid Anees Siddiqui
- National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | - Joshua Xin De Ang
- Arthropod Genetics Group, The Pirbright Institute, Woking, Pirbright, United Kingdom
| | | | - Christine M Reitmayer
- Arthropod Genetics Group, The Pirbright Institute, Woking, Pirbright, United Kingdom
| | - Erica Lovett
- Arthropod Genetics Group, The Pirbright Institute, Woking, Pirbright, United Kingdom
| | - Philip T Leftwich
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - Minsheng You
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, P.R. China
| | - Luke Alphey
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, P.R. China.,Arthropod Genetics Group, The Pirbright Institute, Woking, Pirbright, United Kingdom
| |
Collapse
|
23
|
Kaduskar B, Kushwah RBS, Auradkar A, Guichard A, Li M, Bennett JB, Julio AHF, Marshall JM, Montell C, Bier E. Reversing insecticide resistance with allelic-drive in Drosophila melanogaster. Nat Commun 2022; 13:291. [PMID: 35022402 PMCID: PMC8755802 DOI: 10.1038/s41467-021-27654-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 12/02/2021] [Indexed: 12/27/2022] Open
Abstract
A recurring target-site mutation identified in various pests and disease vectors alters the voltage gated sodium channel (vgsc) gene (often referred to as knockdown resistance or kdr) to confer resistance to commonly used insecticides, pyrethroids and DDT. The ubiquity of kdr mutations poses a major global threat to the continued use of insecticides as a means for vector control. In this study, we generate common kdr mutations in isogenic laboratory Drosophila strains using CRISPR/Cas9 editing. We identify differential sensitivities to permethrin and DDT versus deltamethrin among these mutants as well as contrasting physiological consequences of two different kdr mutations. Importantly, we apply a CRISPR-based allelic-drive to replace a resistant kdr mutation with a susceptible wild-type counterpart in population cages. This successful proof-of-principle opens-up numerous possibilities including targeted reversion of insecticide-resistant populations to a native susceptible state or replacement of malaria transmitting mosquitoes with those bearing naturally occurring parasite resistant alleles. Insecticide resistance (IR) poses a major global health challenge. Here, the authors generate common IR mutations in laboratory Drosophila strains and use a CRISPR-based allelic-drive to replace an IR allele with a susceptible wild-type counterpart, providing a potent new tool for vector control.
Collapse
Affiliation(s)
- Bhagyashree Kaduskar
- Tata Institute for Genetics and Society, Center at inStem, Bangalore, Karnataka, 560065, India.,Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, 92093, USA.,Tata Institute for Genetics and Society, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Raja Babu Singh Kushwah
- Tata Institute for Genetics and Society, Center at inStem, Bangalore, Karnataka, 560065, India.,Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, 92093, USA.,Tata Institute for Genetics and Society, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Ankush Auradkar
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Annabel Guichard
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, 92093, USA.,Tata Institute for Genetics and Society, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Menglin Li
- Neuroscience Research Institute, University of California, Santa Barbara, CA, 93106, USA.,Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA, 93106, USA
| | - Jared B Bennett
- Biophysics Graduate Group, Division of Biological Sciences, College of Letters and Science, University of California, Berkeley, CA, 94720, USA
| | | | - John M Marshall
- Division of Biostatistics and Epidemiology - School of Public Health, University of California, Berkeley, CA, 94720, USA.,Innovative Genomics Institute, Berkeley, CA, 94720, USA
| | - Craig Montell
- Neuroscience Research Institute, University of California, Santa Barbara, CA, 93106, USA.,Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA, 93106, USA
| | - Ethan Bier
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, 92093, USA. .,Tata Institute for Genetics and Society, University of California, San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
24
|
Abstract
Gene drives are selfish genetic elements that are transmitted to progeny at super-Mendelian (>50%) frequencies. Recently developed CRISPR-Cas9-based gene-drive systems are highly efficient in laboratory settings, offering the potential to reduce the prevalence of vector-borne diseases, crop pests and non-native invasive species. However, concerns have been raised regarding the potential unintended impacts of gene-drive systems. This Review summarizes the phenomenal progress in this field, focusing on optimal design features for full-drive elements (drives with linked Cas9 and guide RNA components) that either suppress target mosquito populations or modify them to prevent pathogen transmission, allelic drives for updating genetic elements, mitigating strategies including trans-complementing split-drives and genetic neutralizing elements, and the adaptation of drive technology to other organisms. These scientific advances, combined with ethical and social considerations, will facilitate the transparent and responsible advancement of these technologies towards field implementation.
Collapse
Affiliation(s)
- Ethan Bier
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
25
|
Gamez S, Chaverra-Rodriguez D, Buchman A, Kandul NP, Mendez-Sanchez SC, Bennett JB, Sánchez C HM, Yang T, Antoshechkin I, Duque JE, Papathanos PA, Marshall JM, Akbari OS. Exploiting a Y chromosome-linked Cas9 for sex selection and gene drive. Nat Commun 2021; 12:7202. [PMID: 34893590 PMCID: PMC8664916 DOI: 10.1038/s41467-021-27333-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 11/03/2021] [Indexed: 02/06/2023] Open
Abstract
CRISPR-based genetic engineering tools aimed to bias sex ratios, or drive effector genes into animal populations, often integrate the transgenes into autosomal chromosomes. However, in species with heterogametic sex chromsomes (e.g. XY, ZW), sex linkage of endonucleases could be beneficial to drive the expression in a sex-specific manner to produce genetic sexing systems, sex ratio distorters, or even sex-specific gene drives, for example. To explore this possibility, here we develop a transgenic line of Drosophila melanogaster expressing Cas9 from the Y chromosome. We functionally characterize the utility of this strain for both sex selection and gene drive finding it to be quite effective. To explore its utility for population control, we built mathematical models illustrating its dynamics as compared to other state-of-the-art systems designed for both population modification and suppression. Taken together, our results contribute to the development of current CRISPR genetic control tools and demonstrate the utility of using sex-linked Cas9 strains for genetic control of animals.
Collapse
Affiliation(s)
- Stephanie Gamez
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, 92093, USA
- Agragene Inc., San Diego, CA, 92121, USA
| | - Duverney Chaverra-Rodriguez
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Anna Buchman
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, 92093, USA
- Verily Life Sciences, South San Francisco, CA, 94080, USA
| | - Nikolay P Kandul
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Stelia C Mendez-Sanchez
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, 92093, USA
- Group for Research in Biochemistry and Microbiology (Grupo de Investigación en Bioquímica Y Microbiología-GIBIM), School of Chemistry, Universidad Industrial de Santander, Bucaramanga, Colombia
| | - Jared B Bennett
- Biophysics Graduate Group, University of California, Berkeley, CA, 94720, USA
- Divisions of Epidemiology & Biostatistics, School of Public Health, University of California, Berkeley, CA, 94720, USA
| | - Héctor M Sánchez C
- Divisions of Epidemiology & Biostatistics, School of Public Health, University of California, Berkeley, CA, 94720, USA
| | - Ting Yang
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Igor Antoshechkin
- Division of Biology and Biological Engineering (BBE), California Institute of Technology, Pasadena, CA, 91125, USA
| | - Jonny E Duque
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, 92093, USA
- Centro de Investigaciones en Enfermedades Tropicales - CINTROP, Facultad de Salud, Escuela de Medicina, Departamento de Ciencias Básicas, Universidad Industrial de Santander, Piedecuesta, Santander, Colombia
| | - Philippos A Papathanos
- Department of Entomology, Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, 7610001, Israel
| | - John M Marshall
- Divisions of Epidemiology & Biostatistics, School of Public Health, University of California, Berkeley, CA, 94720, USA
- Innovative Genomics Institute, University of California, Berkeley, CA, 94720, USA
| | - Omar S Akbari
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
26
|
Oberhofer G, Ivy T, Hay BA. Gene drive that results in addiction to a temperature-sensitive version of an essential gene triggers population collapse in Drosophila. Proc Natl Acad Sci U S A 2021; 118:e2107413118. [PMID: 34845012 PMCID: PMC8670509 DOI: 10.1073/pnas.2107413118] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2021] [Indexed: 12/15/2022] Open
Abstract
One strategy for population suppression seeks to use gene drive to spread genes that confer conditional lethality or sterility, providing a way of combining population modification with suppression. Stimuli of potential interest could be introduced by humans, such as an otherwise benign virus or chemical, or occur naturally on a seasonal basis, such as a change in temperature. Cleave and Rescue (ClvR) selfish genetic elements use Cas9 and guide RNAs (gRNAs) to disrupt endogenous versions of an essential gene while also including a Rescue version of the essential gene resistant to disruption. ClvR spreads by creating loss-of-function alleles of the essential gene that select against those lacking it, resulting in populations in which the Rescue provides the only source of essential gene function. As a consequence, if function of the Rescue, a kind of Trojan horse now omnipresent in a population, is condition dependent, so too will be the survival of that population. To test this idea, we created a ClvR in Drosophila in which Rescue activity of an essential gene, dribble, requires splicing of a temperature-sensitive intein (TS-ClvRdbe ). This element spreads to transgene fixation at 23 °C, but when populations now dependent on Ts-ClvRdbe are shifted to 29 °C, death and sterility result in a rapid population crash. These results show that conditional population elimination can be achieved. A similar logic, in which Rescue activity is conditional, could also be used in homing-based drive and to bring about suppression and/or killing of specific individuals in response to other stimuli.
Collapse
Affiliation(s)
- Georg Oberhofer
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Tobin Ivy
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Bruce A Hay
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125
| |
Collapse
|
27
|
Kandul NP, Belikoff EJ, Liu J, Buchman A, Li F, Yamamoto A, Yang T, Shriner I, Scott MJ, Akbari OS. Genetically Encoded CRISPR Components Yield Efficient Gene Editing in the Invasive Pest Drosophila suzukii. CRISPR J 2021; 4:739-751. [PMID: 34661429 DOI: 10.1089/crispr.2021.0032] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Originally from Asia, Drosophila suzukii Matsumura is a global pest of economically important soft-skinned fruits. Also commonly known as spotted wing drosophila, it is largely controlled through repeated applications of broad-spectrum insecticides by which resistance has been observed in the field. There is a pressing need for a better understanding of D. suzukii biology and for developing alternative environmentally friendly methods of control. The RNA-guided Cas9 nuclease has revolutionized functional genomics and is an integral component of several recently developed genetic strategies for population control of insects. Here, we describe genetically modified strains that encode three different terminators and four different promoters to express Cas9 robustly in both the soma and/or germline of D. suzukii. The Cas9 strains were rigorously evaluated through genetic crossing to transgenic strains that encode single-guide RNAs targeting the conserved X-linked yellow body and white eye genes. We find that several Cas9/gRNA strains display remarkably high editing capacity. Going forward, these tools will be instrumental for evaluating gene function in D. suzukii and may even provide tools useful for the development of new genetic strategies for control of this invasive species.
Collapse
Affiliation(s)
- Nikolay P Kandul
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, California, USA; and North Carolina State University, Raleigh, North Carolina, USA
| | - Esther J Belikoff
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina, USA
| | - Junru Liu
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, California, USA; and North Carolina State University, Raleigh, North Carolina, USA
| | - Anna Buchman
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, California, USA; and North Carolina State University, Raleigh, North Carolina, USA
| | - Fang Li
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina, USA
| | - Akihiko Yamamoto
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina, USA
| | - Ting Yang
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, California, USA; and North Carolina State University, Raleigh, North Carolina, USA
| | - Isaiah Shriner
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, California, USA; and North Carolina State University, Raleigh, North Carolina, USA
| | - Maxwell J Scott
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina, USA
| | - Omar S Akbari
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, California, USA; and North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
28
|
Fuchs S, Garrood WT, Beber A, Hammond A, Galizi R, Gribble M, Morselli G, Hui TYJ, Willis K, Kranjc N, Burt A, Crisanti A, Nolan T. Resistance to a CRISPR-based gene drive at an evolutionarily conserved site is revealed by mimicking genotype fixation. PLoS Genet 2021; 17:e1009740. [PMID: 34610011 PMCID: PMC8519452 DOI: 10.1371/journal.pgen.1009740] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/15/2021] [Accepted: 09/24/2021] [Indexed: 01/06/2023] Open
Abstract
CRISPR-based homing gene drives can be designed to disrupt essential genes whilst biasing their own inheritance, leading to suppression of mosquito populations in the laboratory. This class of gene drives relies on CRISPR-Cas9 cleavage of a target sequence and copying ('homing') therein of the gene drive element from the homologous chromosome. However, target site mutations that are resistant to cleavage yet maintain the function of the essential gene are expected to be strongly selected for. Targeting functionally constrained regions where mutations are not easily tolerated should lower the probability of resistance. Evolutionary conservation at the sequence level is often a reliable indicator of functional constraint, though the actual level of underlying constraint between one conserved sequence and another can vary widely. Here we generated a novel adult lethal gene drive (ALGD) in the malaria vector Anopheles gambiae, targeting an ultra-conserved target site in a haplosufficient essential gene (AGAP029113) required during mosquito development, which fulfils many of the criteria for the target of a population suppression gene drive. We then designed a selection regime to experimentally assess the likelihood of generation and subsequent selection of gene drive resistant mutations at its target site. We simulated, in a caged population, a scenario where the gene drive was approaching fixation, where selection for resistance is expected to be strongest. Continuous sampling of the target locus revealed that a single, restorative, in-frame nucleotide substitution was selected. Our findings show that ultra-conservation alone need not be predictive of a site that is refractory to target site resistance. Our strategy to evaluate resistance in vivo could help to validate candidate gene drive targets for their resilience to resistance and help to improve predictions of the invasion dynamics of gene drives in field populations.
Collapse
Affiliation(s)
- Silke Fuchs
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - William T. Garrood
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Anna Beber
- Department of Biology, University of Padua, Padua, Italy
| | - Andrew Hammond
- Department of Life Sciences, Imperial College London, London, United Kingdom
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, United States of America
| | - Roberto Galizi
- Centre for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Keele, Staffordshire, United Kingdom
| | - Matthew Gribble
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Giulia Morselli
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Tin-Yu J. Hui
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Katie Willis
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Nace Kranjc
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Austin Burt
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Andrea Crisanti
- Department of Life Sciences, Imperial College London, London, United Kingdom
- Department of Molecular Medicine, University of Padua, Padua, Italy
- * E-mail: (AC); (TN)
| | - Tony Nolan
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- * E-mail: (AC); (TN)
| |
Collapse
|
29
|
Devos Y, Mumford JD, Bonsall MB, Glandorf DCM, Quemada HD. Risk management recommendations for environmental releases of gene drive modified insects. Biotechnol Adv 2021; 54:107807. [PMID: 34314837 DOI: 10.1016/j.biotechadv.2021.107807] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 07/01/2021] [Accepted: 07/21/2021] [Indexed: 12/18/2022]
Abstract
The ability to engineer gene drives (genetic elements that bias their own inheritance) has sparked enthusiasm and concerns. Engineered gene drives could potentially be used to address long-standing challenges in the control of insect disease vectors, agricultural pests and invasive species, or help to rescue endangered species. However, risk concerns and uncertainty associated with potential environmental release of gene drive modified insects (GDMIs) have led some stakeholders to call for a global moratorium on such releases or the application of other strict precautionary measures to mitigate perceived risk assessment and risk management challenges. Instead, we provide recommendations that may help to improve the relevance of risk assessment and risk management frameworks for environmental releases of GDMIs. These recommendations include: (1) developing additional and more practical risk assessment guidance to ensure appropriate levels of safety; (2) making policy goals and regulatory decision-making criteria operational for use in risk assessment so that what constitutes harm is clearly defined; (3) ensuring a more dynamic interplay between risk assessment and risk management to manage uncertainty through closely interlinked pre-release modelling and post-release monitoring; (4) considering potential risks against potential benefits, and comparing them with those of alternative actions to account for a wider (management) context; and (5) implementing a modular, phased approach to authorisations for incremental acceptance and management of risks and uncertainty. Along with providing stakeholder engagement opportunities in the risk analysis process, the recommendations proposed may enable risk managers to make choices that are more proportionate and adaptive to potential risks, uncertainty and benefits of GDMI applications, and socially robust.
Collapse
Affiliation(s)
- Yann Devos
- Scientific Committee and Emerging Risk (SCER) Unit, European Food Safety Authority (EFSA), Parma, Italy.
| | - John D Mumford
- Centre for Environmental Policy, Imperial College London, Ascot, United Kingdom
| | | | - Debora C M Glandorf
- National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Hector D Quemada
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, United States
| |
Collapse
|
30
|
Wang GH, Gamez S, Raban RR, Marshall JM, Alphey L, Li M, Rasgon JL, Akbari OS. Combating mosquito-borne diseases using genetic control technologies. Nat Commun 2021; 12:4388. [PMID: 34282149 PMCID: PMC8290041 DOI: 10.1038/s41467-021-24654-z] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 06/30/2021] [Indexed: 01/03/2023] Open
Abstract
Mosquito-borne diseases, such as dengue and malaria, pose significant global health burdens. Unfortunately, current control methods based on insecticides and environmental maintenance have fallen short of eliminating the disease burden. Scalable, deployable, genetic-based solutions are sought to reduce the transmission risk of these diseases. Pathogen-blocking Wolbachia bacteria, or genome engineering-based mosquito control strategies including gene drives have been developed to address these problems, both requiring the release of modified mosquitoes into the environment. Here, we review the latest developments, notable similarities, and critical distinctions between these promising technologies and discuss their future applications for mosquito-borne disease control.
Collapse
Affiliation(s)
- Guan-Hong Wang
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, CA, USA
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Stephanie Gamez
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, CA, USA
| | - Robyn R Raban
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, CA, USA
| | - John M Marshall
- Division of Epidemiology and Biostatistics, School of Public Health, University of California, Berkeley, CA, USA
- Innovative Genomics Institute, Berkeley, CA, USA
| | - Luke Alphey
- Arthropod Genetics, The Pirbright Institute, Pirbright, UK
| | - Ming Li
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, CA, USA
| | - Jason L Rasgon
- Department of Entomology, The Pennsylvania State University, University Park, PA, USA
- The Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, USA
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Omar S Akbari
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, CA, USA.
| |
Collapse
|
31
|
Devos Y, Mumford JD, Bonsall MB, Camargo AM, Firbank LG, Glandorf DCM, Nogué F, Paraskevopoulos K, Wimmer EA. Potential use of gene drive modified insects against disease vectors, agricultural pests and invasive species poses new challenges for risk assessment. Crit Rev Biotechnol 2021; 42:254-270. [PMID: 34167401 DOI: 10.1080/07388551.2021.1933891] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Potential future application of engineered gene drives (GDs), which bias their own inheritance and can spread genetic modifications in wild target populations, has sparked both enthusiasm and concern. Engineered GDs in insects could potentially be used to address long-standing challenges in control of disease vectors, agricultural pests and invasive species, or help to rescue endangered species, and thus provide important public benefits. However, there are concerns that the deliberate environmental release of GD modified insects may pose different or new harms to animal and human health and the wider environment, and raise novel challenges for risk assessment. Risk assessors, risk managers, developers, potential applicants and other stakeholders at many levels are currently discussing whether there is a need to develop new or additional risk assessment guidance for the environmental release of GD modified organisms, including insects. Developing new or additional guidance that is useful and practical is a challenge, especially at an international level, as risk assessors, risk managers and many other stakeholders have different, often contrasting, opinions and perspectives toward the environmental release of GD modified organisms, and on the adequacy of current risk assessment frameworks for such organisms. Here, we offer recommendations to overcome some of the challenges associated with the potential future development of new or additional risk assessment guidance for GD modified insects and provide considerations on areas where further risk assessment guidance may be required.
Collapse
Affiliation(s)
- Yann Devos
- GMO Unit, European Food Safety Authority (EFSA), Parma, Italy
| | - John D Mumford
- Centre for Environmental Policy, Imperial College London, Ascot, UK
| | | | - Ana M Camargo
- GMO Unit, European Food Safety Authority (EFSA), Parma, Italy
| | | | - Debora C M Glandorf
- National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Fabien Nogué
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
| | | | - Ernst A Wimmer
- Johann Friedrich Blumenbach Institute of Zoology and Anthropology, GZMB, Georg August University, Göttingen, Germany
| |
Collapse
|