1
|
da Silva MBF, Teixeira CMLL. Cyanobacterial and microalgae polymers: antiviral activity and applications. Braz J Microbiol 2024; 55:3287-3301. [PMID: 39008244 PMCID: PMC11711419 DOI: 10.1007/s42770-024-01452-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 07/03/2024] [Indexed: 07/16/2024] Open
Abstract
At the end of 2019, the world witnessed the beginning of the COVID-19 pandemic. As an aggressive viral infection, the entire world remained attentive to new discoveries about the SARS-CoV-2 virus and its effects in the human body. The search for new antivirals capable of preventing and/or controlling the infection became one of the main goals of research during this time. New biocompounds from marine sources, especially microalgae and cyanobacteria, with pharmacological benefits, such as anticoagulant, anti-inflammatory and antiviral attracted particular interest. Polysaccharides (PS) and extracellular polymeric substances (EPS), especially those containing sulfated groups in their structure, have potential antiviral activity against several types of viruses including HIV-1, herpes simplex virus type 1, and SARS-CoV-2. We review the main characteristics of PS and EPS with antiviral activity, the mechanisms of action, and the different extraction methodologies from microalgae and cyanobacteria biomass.
Collapse
Affiliation(s)
- Mariana Barbalho Farias da Silva
- Laboratório de Genética Microbiana, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| | | |
Collapse
|
2
|
Kim M, Jung J, Kim W, Park Y, Jeon CO, Park W. Extensive Genomic Rearrangement of Catalase-Less Cyanobloom-Forming Microcystis aeruginosa in Freshwater Ecosystems. J Microbiol 2024; 62:933-950. [PMID: 39377859 DOI: 10.1007/s12275-024-00172-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 10/09/2024]
Abstract
Many of the world's freshwater ecosystems suffer from cyanobacteria-mediated blooms and their toxins. However, a mechanistic understanding of why and how Microcystis aeruginosa dominates over other freshwater cyanobacteria during warmer summers is lacking. This paper utilizes comparative genomics with other cyanobacteria and literature reviews to predict the gene functions and genomic architectures of M. aeruginosa based on complete genomes. The primary aim is to understand this species' survival and competitive strategies in warmer freshwater environments. M. aeruginosa strains exhibiting a high proportion of insertion sequences (~ 11%) possess genomic structures with low synteny across different strains. This indicates the occurrence of extensive genomic rearrangements and the presence of many possible diverse genotypes that result in greater population heterogeneities than those in other cyanobacteria in order to increase survivability during rapidly changing and threatening environmental challenges. Catalase-less M. aeruginosa strains are even vulnerable to low light intensity in freshwater environments with strong ultraviolet radiation. However, they can continuously grow with the help of various defense genes (e.g., egtBD, cruA, and mysABCD) and associated bacteria. The strong defense strategies against biological threats (e.g., antagonistic bacteria, protozoa, and cyanophages) are attributed to dense exopolysaccharide (EPS)-mediated aggregate formation with efficient buoyancy and the secondary metabolites of M. aeruginosa cells. Our review with extensive genome analysis suggests that the ecological vulnerability of M. aeruginosa cells can be overcome by diverse genotypes, secondary defense metabolites, reinforced EPS, and associated bacteria.
Collapse
Affiliation(s)
- Minkyung Kim
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Jaejoon Jung
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Wonjae Kim
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Yerim Park
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Che Ok Jeon
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Woojun Park
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
3
|
Han Y, Ge H, Xu C, Zeng G, Li Z, Huang X, Zhang Y, Liu Z, Wang Y, Fang L. Glycosyltransferase Slr1064 regulates carbon metabolism by modulating the levels of UDP-GlcNAc in Synechocystis sp. PCC 6803. THE NEW PHYTOLOGIST 2024; 243:936-950. [PMID: 38831647 DOI: 10.1111/nph.19872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/15/2024] [Indexed: 06/05/2024]
Abstract
Glycosyltransferases (GTs) are enzymes that transfer sugars to various targets. They play important roles in diverse biological processes, including photosynthesis, cell motility, exopolysaccharide biosynthesis, and lipid metabolism; however, their involvement in regulating carbon metabolism in Synechocystis sp. PCC 6803 has not been reported. We identified a novel GT protein, Slr1064, involved in carbon metabolism. The effect of slr1064 deletion on the growth of Synechocystis cells and functional mechanisms of Slr1064 on carbon metabolism were thoroughly investigated through physiological, biochemistry, proteomic, and metabolic analyses. We found that this GT, which is mainly distributed in the membrane compartment, is essential for the growth of Synechocystis under heterotrophic and mixotrophic conditions, but not under autotrophic conditions. The deletion of slr1064 hampers the turnover rate of Gap2 under mixotrophic conditions and disrupts the assembly of the PRK/GAPDH/CP12 complex under dark culture conditions. Additionally, UDP-GlcNAc, the pivotal metabolite responsible for the O-GlcNAc modification of GAPDH, is downregulated in the Δslr1064. Our work provides new insights into the role of GTs in carbon metabolism in Synechocystis and elucidate the mechanism by which carbon metabolism is regulated in this important model organism.
Collapse
Affiliation(s)
- Yuling Han
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Haitao Ge
- State Key Laboratory of Molecular Developmental Biology, Innovation Academy for Seed Design, CAS, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100049, China
| | - Congzhuo Xu
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Gang Zeng
- Zunyi Normal College, Zunyi, 100049, China
| | - Zhen Li
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiahe Huang
- State Key Laboratory of Molecular Developmental Biology, Innovation Academy for Seed Design, CAS, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuanya Zhang
- State Key Laboratory of Molecular Developmental Biology, Innovation Academy for Seed Design, CAS, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhipeng Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Yingchun Wang
- State Key Laboratory of Molecular Developmental Biology, Innovation Academy for Seed Design, CAS, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100049, China
| | - Longfa Fang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| |
Collapse
|
4
|
Debnath S, Muthuraj M, Bandyopadhyay TK, Bobby MN, Vanitha K, Tiwari ON, Bhunia B. Engineering strategies and applications of cyanobacterial exopolysaccharides: A review on past achievements and recent perspectives. Carbohydr Polym 2024; 328:121686. [PMID: 38220318 DOI: 10.1016/j.carbpol.2023.121686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 11/08/2023] [Accepted: 12/08/2023] [Indexed: 01/16/2024]
Abstract
Cyanobacteria are ideally suited for developing sustainable biological products but are underdeveloped due to a lack of genetic tools. Exopolysaccharide (EPS) is one of the essential bioproducts with widespread industrial applications. Despite their unique structural characteristics associated with distinct biological and physicochemical aspects, EPS from cyanobacteria has been underexplored. However, it is expected to accelerate in the near future due to the utilization of low-cost cyanobacterial platforms and readily available information on the structural data and specific features of these biopolymers. In recent years, cyanobacterial EPSs have attracted growing scientific attention due to their simple renewability, rheological characteristics, massive production, and potential uses in several biotechnology domains. This review focuses on the most recent research on potential new EPS producers and their distinct compositions responsible for novel biological activities. Additionally, nutritional and process parameters discovered recently for enhancing EPS production and engineering strategies applied currently to control the biosynthetic pathway for enhanced EPS production are critically highlighted. The process intensification of previously developed EPS extraction and purification processes from cyanobacterial biomass is also extensively explained. Furthermore, the newly reported biotechnological applications of cyanobacterial exopolysaccharides are also discussed.
Collapse
Affiliation(s)
- Shubhankar Debnath
- Bioproducts Processing Research Laboratory (BPRL), Department of Bio Engineering, National Institute of Technology, Agartala 799046, India
| | - Muthusivaramapandian Muthuraj
- Bioproducts Processing Research Laboratory (BPRL), Department of Bio Engineering, National Institute of Technology, Agartala 799046, India.
| | | | - Md Nazneen Bobby
- Department of Biotechnology, Vignan's Foundation for Science Technology and Research, Guntur 522213, Andhra Pradesh, India
| | - Kondi Vanitha
- Department of Pharmaceutics, Vishnu Institute of Pharmaceutical Education and Research, Narsapur, Medak, Telangana, India
| | - Onkar Nath Tiwari
- Centre for Conservation and Utilization of Blue Green Algae, Division of Microbiology, Indian Agricultural Research Institute (ICAR), New Delhi 110012, India.
| | - Biswanath Bhunia
- Bioproducts Processing Research Laboratory (BPRL), Department of Bio Engineering, National Institute of Technology, Agartala 799046, India.
| |
Collapse
|
5
|
Yang XT, Wang J, Jiang YH, Zhang L, Du L, Li J, Liu F. Insight into the mechanism of gallstone disease by proteomic and metaproteomic characterization of human bile. Front Microbiol 2023; 14:1276951. [PMID: 38111640 PMCID: PMC10726133 DOI: 10.3389/fmicb.2023.1276951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 11/16/2023] [Indexed: 12/20/2023] Open
Abstract
Introduction Cholesterol gallstone disease is a prevalent condition that has a significant economic impact. However, the role of the bile microbiome in its development and the host's responses to it remain poorly understood. Methods In this study, we conducted a comprehensive analysis of microbial and human bile proteins in 40 individuals with either gallstone disease or gallbladder polyps. We employed a combined proteomic and metaproteomic approach, as well as meta-taxonomic analysis, functional pathway enrichment, and Western blot analyses. Results Our metaproteomic analysis, utilizing the lowest common ancestor algorithm, identified 158 microbial taxa in the bile samples. We discovered microbial taxa that may contribute to gallstone formation, including β-glucuronidase-producing bacteria such as Streptococcus, Staphylococcus, and Clostridium, as well as those involved in biofilm formation like Helicobacter, Cyanobacteria, Pseudomonas, Escherichia coli, and Clostridium. Furthermore, we identified 2,749 human proteins and 87 microbial proteins with a protein false discovery rate (FDR) of 1% and at least 2 distinct peptides. Among these proteins, we found microbial proteins crucial to biofilm formation, such as QDR3, ompA, ndk, pstS, nanA, pfIB, and dnaK. Notably, QDR3 showed a gradual upregulation from chronic to acute cholesterol gallstone disease when compared to polyp samples. Additionally, we discovered other microbial proteins that enhance bacterial virulence and gallstone formation by counteracting host oxidative stress, including sodB, katG, rbr, htrA, and ahpC. We also identified microbial proteins like lepA, rtxA, pckA, tuf, and tpiA that are linked to bacterial virulence and potential gallstone formation, with lepA being upregulated in gallstone bile compared to polyp bile. Furthermore, our analysis of the host proteome in gallstone bile revealed enhanced inflammatory molecular profiles, including innate immune molecules against microbial infections. Gallstone bile exhibited overrepresented pathways related to blood coagulation, folate metabolism, and the IL-17 pathway. However, we observed suppressed metabolic activities, particularly catabolic metabolism and transport activities, in gallstone bile compared to polyp bile. Notably, acute cholelithiasis bile demonstrated significantly impaired metabolic activities compared to chronic cholelithiasis bile. Conclusion Our study provides a comprehensive metaproteomic analysis of bile samples related to gallstone disease, offering new insights into the microbiome-host interaction and gallstone formation mechanism.
Collapse
Affiliation(s)
- Xue-Ting Yang
- Minhang Hospital, Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical of Sciences, Fudan University, Shanghai, China
| | - Jie Wang
- Minhang Hospital, Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical of Sciences, Fudan University, Shanghai, China
| | - Ying-Hua Jiang
- Minhang Hospital, Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical of Sciences, Fudan University, Shanghai, China
| | - Lei Zhang
- Minhang Hospital, Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical of Sciences, Fudan University, Shanghai, China
| | - Ling Du
- Key Laboratory of Digestive Cancer Full Cycle Monitoring and Precise Intervention of Shanghai Municipal Health Commission, Minhang Hospital, Fudan University, Shanghai, China
| | - Jun Li
- Department of Surgery, Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Feng Liu
- Minhang Hospital, Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical of Sciences, Fudan University, Shanghai, China
| |
Collapse
|
6
|
Kato R, Maeda K, Yano TA, Tanaka K, Tanaka T. Label-free visualization of photosynthetic microbial biofilms using mid-infrared photothermal and autofluorescence imaging. Analyst 2023; 148:6241-6247. [PMID: 37947037 DOI: 10.1039/d3an01453c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
The formation of photosynthetic microbial biofilms comprising multispecies biomolecules, such as extracellular polymeric substances (EPSs), and microbial cells play pivotal roles in maintaining or stimulating their biological functions. Although there are numerous studies on photosynthetic microbial biofilms, the spatial distribution of EPS components that are vital for microbial biofilm formation, such as exopolysaccharides and proteins, is not well understood. Visualization of photosynthetic microbial biofilms requires label-free methods, because labelling EPSs results in structural changes or aggregation. Raman spectroscopy is useful for label-free visualization of biofilm constituents based on chemical contrast. However, interference resulting from the bright autofluorescence of photosynthetic molecules and the low detection efficiency of Raman scattering make visualization a challenge. Herein, we visualized photosynthetic microbial biofilms in a label-free manner using a super-resolution optical infrared absorption imaging technique, called mid-infrared photothermal (MIP) microscopy. By leveraging the advantages of MIP microscopy, such as its sub-micrometer spatial resolution, autofluorescence-free features, and high detection sensitivity, the distribution of cyanobacteria and their extracellular polysaccharides in the biofilm matrix were successfully visualized. This showed that cyanobacterial cells were aligned along acidic/sulfated polysaccharides in the extracellular environment. Furthermore, spectroscopic analyses elucidated that during formation of biofilms, sulfated polysaccharides initially form linear structures followed by entrapment of cyanobacterial cells. The present study provides the foundation for further studies on the formation, structure, and biological functions of microbial biofilms.
Collapse
Affiliation(s)
- Ryo Kato
- Institute of Post-LED Photonics, Tokushima University, 2-1 Minamijosanjima-cho, Tokushima, Tokushima 770-0856, Japan.
- Innovative Photon Manipulation Research Team, RIKEN Center for Advanced Photonics, Wako, Saitama 351-0198, Japan
- Metamaterials Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
| | - Kaisei Maeda
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Midori-Ku, Yokohama, Kanagawa 226-8503, Japan.
| | - Taka-Aki Yano
- Institute of Post-LED Photonics, Tokushima University, 2-1 Minamijosanjima-cho, Tokushima, Tokushima 770-0856, Japan.
- Innovative Photon Manipulation Research Team, RIKEN Center for Advanced Photonics, Wako, Saitama 351-0198, Japan
- Metamaterials Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
| | - Kan Tanaka
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Midori-Ku, Yokohama, Kanagawa 226-8503, Japan.
| | - Takuo Tanaka
- Institute of Post-LED Photonics, Tokushima University, 2-1 Minamijosanjima-cho, Tokushima, Tokushima 770-0856, Japan.
- Innovative Photon Manipulation Research Team, RIKEN Center for Advanced Photonics, Wako, Saitama 351-0198, Japan
- Metamaterials Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
| |
Collapse
|
7
|
Saad MH, Sidkey NM, El-Fakharany EM. Identification and statistical optimization of a novel alginate polymer extracted from newly isolated Synechocystis algini MNE ON864447 with antibacterial activity. Microb Cell Fact 2023; 22:229. [PMID: 37932753 PMCID: PMC10629183 DOI: 10.1186/s12934-023-02240-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 10/28/2023] [Indexed: 11/08/2023] Open
Abstract
Cyanobacteria are a potential source of promising secondary metabolites with different biological activities, including antibacterial, antiviral, antifungal, antiprotozoal, and anticancer activities. To combat the emergence of antibiotic resistance, there is an urgent requirement for new drugs, and cyanobacteria metabolites can constitute alternative new antibacterial medication. The chemical complexity of their exopolysaccharides indicates that they have the potential to be bioactive molecules with many biological activities. The present study aimed to produce and optimise a novel alginate polymer from a newly isolated cyanobacterium, S. algini MNE ON864447, in addition to its promising antibacterial activity. We successfully isolated a new cyanobacterium strain, S. algini MNE ON864447 from the Nile River, which produces alginate as an extracellular polymeric substance. The isolated cyanobacterial alginate was identified using a set of tests, including FTIR, TLC, HPLC, GC-MS, and 1H NMR. Plackett-Burman statistical design showed that working volume (X1), the incubation period (X2), and inoculum size (X3) are the most significant variables affecting the production of alginate. The highest alginate production (3.57 g/L) was obtained using 4% inoculum size in 400 mL medium/L conical flask after 20 days of the incubation period. The extracted alginate showed potent antibacterial activity against both Gram-negative and Gram-positive bacteria and Streptococcus mutants (NCTC10449) are the most sensitive tested pathogen for purified cyanobacterial alginate with inhibition zone diameters of 34 ± 0.1 mm at 10 mg/mL of purified alginate while Vibro cholera (NCTC 8021) the lowest sensitive one and showed inhibition zone diameters of 22.5 ± 0.05 mm at the same cyanobacterial alginate concentration. This antibacterial activity is a critical step in the development of antibacterial drugs and presents a new challenge to fight against multi-resistant bacteria.
Collapse
Affiliation(s)
- Mabroka H Saad
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research andTechnological Applications (SRTA-City), New Borg AL Arab, Alexandria, Egypt
- Botany & Microbiology Department, Faculty of Science, Al-Azhar University (Girls Branch), Cairo, Egypt
| | - Nagwa M Sidkey
- Botany & Microbiology Department, Faculty of Science, Al-Azhar University (Girls Branch), Cairo, Egypt
| | - Esmail M El-Fakharany
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research andTechnological Applications (SRTA-City), New Borg AL Arab, Alexandria, Egypt.
- Pharmaceutical and Fermentation Industries Development Centre (PFIDC), City of Scientific Research and Technological Applications (SRTA-City), New Borg Al-Arab, Alexandria, Egypt.
| |
Collapse
|
8
|
Cruz JD, Delattre C, Felpeto AB, Pereira H, Pierre G, Morais J, Petit E, Silva J, Azevedo J, Elboutachfaiti R, Maia IB, Dubessay P, Michaud P, Vasconcelos V. Bioprospecting for industrially relevant exopolysaccharide-producing cyanobacteria under Portuguese simulated climate. Sci Rep 2023; 13:13561. [PMID: 37604835 PMCID: PMC10442320 DOI: 10.1038/s41598-023-40542-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 08/12/2023] [Indexed: 08/23/2023] Open
Abstract
Cyanobacterial exopolysaccharides (EPS) are potential candidates for the production of sustainable biopolymers. Although the bioactive and physicochemical properties of cyanobacterial-based EPS are attractive, their commercial exploitation is limited by the high production costs. Bioprospecting and characterizing novel EPS-producing strains for industrially relevant conditions is key to facilitate their implementation in various biotechnological applications and fields. In the present work, we selected twenty-five Portuguese cyanobacterial strains from a diverse taxonomic range (including some genera studied for the first time) to be grown in diel light and temperature, simulating the Portuguese climate conditions, and evaluated their growth performance and proximal composition of macronutrients. Synechocystis and Cyanobium genera, from marine and freshwater origin, were highlighted as fast-growing (0.1-0.2 g L-1 day-1) with distinct biomass composition. Synechocystis sp. LEGE 07367 and Chroococcales cyanobacterium LEGE 19970, showed a production of 0.3 and 0.4 g L-1 of released polysaccharides (RPS). These were found to be glucan-based polymers with high molecular weight and a low number of monosaccharides than usually reported for cyanobacterial EPS. In addition, the absence of known cyanotoxins in these two RPS producers was also confirmed. This work provides the initial steps for the development of cyanobacterial EPS bioprocesses under the Portuguese climate.
Collapse
Affiliation(s)
- José Diogo Cruz
- Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007, Porto, Portugal
- Interdisciplinary Center of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal
| | - Cédric Delattre
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, 63000, Clermont-Ferrand, France
- Institut Universitaire de France (IUF), 75005, Paris, France
| | - Aldo Barreiro Felpeto
- Interdisciplinary Center of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal
| | - Hugo Pereira
- GreenCoLab - Associação Oceano Verde, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Guillaume Pierre
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, 63000, Clermont-Ferrand, France
| | - João Morais
- Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007, Porto, Portugal
- Interdisciplinary Center of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal
| | - Emmanuel Petit
- UMRT INRAE 1158 BioEcoAgro, BIOlogie des Plantes et Innovation (BIOPI), Université de Picardie Jules Verne, IUT d'Amiens, Avenue des Facultés, Le Bailly, 80025, Amiens, France
| | - Joana Silva
- R&D Department, Allmicroalgae Natural Products S.A, Rua 25 de Abril 19, 2445-287, Pataias, Portugal
| | - Joana Azevedo
- Interdisciplinary Center of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal
| | - Redouan Elboutachfaiti
- UMRT INRAE 1158 BioEcoAgro, BIOlogie des Plantes et Innovation (BIOPI), Université de Picardie Jules Verne, IUT d'Amiens, Avenue des Facultés, Le Bailly, 80025, Amiens, France
| | - Inês B Maia
- CCMAR - Centre of Marine Sciences, University of Algarve, 8005-139, Gambelas, Faro, Portugal
| | - Pascal Dubessay
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, 63000, Clermont-Ferrand, France
| | - Philippe Michaud
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, 63000, Clermont-Ferrand, France
| | - Vitor Vasconcelos
- Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007, Porto, Portugal.
- Interdisciplinary Center of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal.
| |
Collapse
|
9
|
Ugya AY, Chen H, Wang Q. Microalgae biofilm system as an efficient tool for wastewater remediation and potential bioresources for pharmaceutical product production: an overview. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2023; 26:131-142. [PMID: 37382505 DOI: 10.1080/15226514.2023.2229920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
The role of microalgae in wastewater remediation and metabolite production has been well documented, but the limitations of microalgae harvesting and low biomass production call for a more sustainable method of microalgae utilization. The current review gives an insight on how microalgae biofilms can be utilized as a more efficient system for wastewater remediation and as potential source of metabolite for pharmaceutical product production. The review affirms that the extracellular polymeric substance (EPS) is the vital component of the microalgae biofilm because it influences the spatial organization of the organisms forming microalgae biofilm. The EPS is also responsible for the ease interaction between organisms forming microalgae biofilm. This review restate the crucial role play by EPS in the removal of heavy metals from water to be due to the presence of binding sites on its surface. This review also attribute the ability of microalgae biofilm to bio-transform organic pollutant to be dependent on enzymatic activities and the production of reactive oxygen species (ROS). The review assert that during the treatment of wastewater, the wastewater pollutants induce oxidative stress on microalgae biofilms. The response of the microalgae biofilm toward counteracting the stress induced by ROS leads to production of metabolites. These metabolites are important tools that can be harness for the production of pharmaceutical products.
Collapse
Affiliation(s)
- Adamu Yunusa Ugya
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
- Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, China
- Department of Environmental Management, Kaduna State University, Kaduna State, Nigeria
| | - Hui Chen
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
- Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, China
| | - Qiang Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
- Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, China
| |
Collapse
|
10
|
do Amaral SC, Xavier LP, Vasconcelos V, Santos AV. Cyanobacteria: A Promising Source of Antifungal Metabolites. Mar Drugs 2023; 21:359. [PMID: 37367684 PMCID: PMC10300848 DOI: 10.3390/md21060359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/23/2023] [Accepted: 05/27/2023] [Indexed: 06/28/2023] Open
Abstract
Cyanobacteria are a rich source of secondary metabolites, and they have received a great deal of attention due to their applicability in different industrial sectors. Some of these substances are known for their notorious ability to inhibit fungal growth. Such metabolites are very chemically and biologically diverse. They can belong to different chemical classes, including peptides, fatty acids, alkaloids, polyketides, and macrolides. Moreover, they can also target different cell components. Filamentous cyanobacteria have been the main source of these compounds. This review aims to identify the key features of these antifungal agents, as well as the sources from which they are obtained, their major targets, and the environmental factors involved when they are being produced. For the preparation of this work, a total of 642 documents dating from 1980 to 2022 were consulted, including patents, original research, review articles, and theses.
Collapse
Affiliation(s)
- Samuel Cavalcante do Amaral
- Laboratory of Biotechnology of Enzymes and Biotransformation, Biological Sciences Institute, Federal University of Pará, Belém 66075-110, Brazil;
| | - Luciana Pereira Xavier
- Laboratory of Biotechnology of Enzymes and Biotransformation, Biological Sciences Institute, Federal University of Pará, Belém 66075-110, Brazil;
| | - Vítor Vasconcelos
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, University of Porto, 4450-208 Matosinhos, Portugal;
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, Edifício FC4, 4169-007 Porto, Portugal
| | - Agenor Valadares Santos
- Laboratory of Biotechnology of Enzymes and Biotransformation, Biological Sciences Institute, Federal University of Pará, Belém 66075-110, Brazil;
| |
Collapse
|
11
|
Spät P, Krauspe V, Hess WR, Maček B, Nalpas N. Deep Proteogenomics of a Photosynthetic Cyanobacterium. J Proteome Res 2023; 22:1969-1983. [PMID: 37146978 PMCID: PMC10243305 DOI: 10.1021/acs.jproteome.3c00065] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Indexed: 05/07/2023]
Abstract
Cyanobacteria, the evolutionary ancestors of plant chloroplasts, contribute substantially to the Earth's biogeochemical cycles and are of great interest for a sustainable economy. Knowledge of protein expression is the key to understanding cyanobacterial metabolism; however, proteome studies in cyanobacteria are limited and cover only a fraction of the theoretical proteome. Here, we performed a comprehensive proteogenomic analysis of the model cyanobacterium Synechocystis sp. PCC 6803 to characterize the expressed (phospho)proteome, re-annotate known and discover novel open reading frames (ORFs). By mapping extensive shotgun mass spectrometry proteomics data onto a six-frame translation of the Synechocystis genome, we refined the genomic annotation of 64 ORFs, including eight completely novel ORFs. Our study presents the largest reported (phospho)proteome dataset for a unicellular cyanobacterium, covering the expression of about 80% of the theoretical proteome under various cultivation conditions, such as nitrogen or carbon limitation. We report 568 phosphorylated S/T/Y sites that are present on numerous regulatory proteins, including the transcriptional regulators cyAbrB1 and cyAbrB2. We also catalogue the proteins that have never been detected under laboratory conditions and found that a large portion of them is plasmid-encoded. This dataset will serve as a resource, providing dedicated information on growth condition-dependent protein expression and phosphorylation.
Collapse
Affiliation(s)
- Philipp Spät
- Quantitative
Proteomics, Interfaculty Institute of Cell Biology, University of Tuebingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| | - Vanessa Krauspe
- Genetics
& Experimental Bioinformatics, Institute of Biology III, University of Freiburg, Schänzlestraße 1, 79104 Freiburg im Breisgau, Germany
| | - Wolfgang R. Hess
- Genetics
& Experimental Bioinformatics, Institute of Biology III, University of Freiburg, Schänzlestraße 1, 79104 Freiburg im Breisgau, Germany
| | - Boris Maček
- Quantitative
Proteomics, Interfaculty Institute of Cell Biology, University of Tuebingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| | - Nicolas Nalpas
- Quantitative
Proteomics, Interfaculty Institute of Cell Biology, University of Tuebingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| |
Collapse
|
12
|
Kaltenbrunner A, Reimann V, Hoffmann UA, Aoyagi T, Sakata M, Nimura-Matsune K, Watanabe S, Steglich C, Wilde A, Hess WR. Regulation of pSYSA defense plasmid copy number in Synechocystis through RNase E and a highly transcribed asRNA. Front Microbiol 2023; 14:1112307. [PMID: 36876071 PMCID: PMC9978351 DOI: 10.3389/fmicb.2023.1112307] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/23/2023] [Indexed: 02/18/2023] Open
Abstract
Synthetic biology approaches toward the development of cyanobacterial producer strains require the availability of appropriate sets of plasmid vectors. A factor for the industrial usefulness of such strains is their robustness against pathogens, such as bacteriophages infecting cyanobacteria. Therefore, it is of great interest to understand the native plasmid replication systems and the CRISPR-Cas based defense mechanisms already present in cyanobacteria. In the model cyanobacterium Synechocystis sp. PCC 6803, four large and three smaller plasmids exist. The ~100 kb plasmid pSYSA is specialized in defense functions by encoding all three CRISPR-Cas systems and several toxin-antitoxin systems. The expression of genes located on pSYSA depends on the plasmid copy number in the cell. The pSYSA copy number is positively correlated with the expression level of the endoribonuclease E. As molecular basis for this correlation we identified the RNase E-mediated cleavage within the pSYSA-encoded ssr7036 transcript. Together with a cis-encoded abundant antisense RNA (asRNA1), this mechanism resembles the control of ColE1-type plasmid replication by two overlapping RNAs, RNA I and II. In the ColE1 mechanism, two non-coding RNAs interact, supported by the small protein Rop, which is encoded separately. In contrast, in pSYSA the similar-sized protein Ssr7036 is encoded within one of the interacting RNAs and it is this mRNA that likely primes pSYSA replication. Essential for plasmid replication is furthermore the downstream encoded protein Slr7037 featuring primase and helicase domains. Deletion of slr7037 led to the integration of pSYSA into the chromosome or the other large plasmid pSYSX. Moreover, the presence of slr7037 was required for successful replication of a pSYSA-derived vector in another model cyanobacterium, Synechococcus elongatus PCC 7942. Therefore, we annotated the protein encoded by slr7037 as Cyanobacterial Rep protein A1 (CyRepA1). Our findings open new perspectives on the development of shuttle vectors for genetic engineering of cyanobacteria and of modulating the activity of the entire CRISPR-Cas apparatus in Synechocystis sp. PCC 6803.
Collapse
Affiliation(s)
- Alena Kaltenbrunner
- Genetics and Experimental Bioinformatics Group, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Viktoria Reimann
- Genetics and Experimental Bioinformatics Group, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Ute A. Hoffmann
- Molecular Genetics of Prokaryotes, Institute of Biology III, University of Freiburg, Freiburg, Germany
| | - Tomohiro Aoyagi
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Minori Sakata
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | | | - Satoru Watanabe
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Claudia Steglich
- Genetics and Experimental Bioinformatics Group, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Annegret Wilde
- Molecular Genetics of Prokaryotes, Institute of Biology III, University of Freiburg, Freiburg, Germany
| | - Wolfgang R. Hess
- Genetics and Experimental Bioinformatics Group, Faculty of Biology, University of Freiburg, Freiburg, Germany
| |
Collapse
|
13
|
Nakane D. Live Cell Imaging of the Twitching Motility of Cyanobacteria by High-Resolution Microscopy. Methods Mol Biol 2023; 2646:255-263. [PMID: 36842120 DOI: 10.1007/978-1-0716-3060-0_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Many cyanobacteria show directional movement either toward or away from light sources. The cell movement, also known as twitching motility, is usually driven by type IV pili (T4P), a bacterial molecular machine. The machine generates a propulsion force through repeated cycles of extension and retraction of pilus filaments. Here, I describe a phototaxis assay for observing Synechocystis sp. PCC6803 and Thermosynechococcus vulcanus at the single-cell level with optical microscopy. By adding fluorescent beads, I also describe a method how to visualize the asymmetric activation of T4P during phototaxis.
Collapse
Affiliation(s)
- Daisuke Nakane
- Department of Engineering Science, Graduate School of Informatics and Engineering, The University of Electro-Communications, Tokyo, Japan.
| |
Collapse
|
14
|
Wang Y, Fu M, Wu B, Huang M, Ma T, Zang H, Jiang H, Zhang Y, Li C. Insight into biofilm-forming patterns: biofilm-forming conditions and dynamic changes in extracellular polymer substances. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:89542-89556. [PMID: 35852740 DOI: 10.1007/s11356-022-21645-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
The microbial biofilm adheres to the surface of the carrier, which protects the pollutant-degrading bacteria and resists harsh environments; thus, research on biofilm-forming patterns will help promote the application of biofilms in wastewater treatment. Herein, univariate analysis and response surface methodology (RSM) confirmed that glucose and mannose at 3-5 g/L promoted biofilm formation. Notably, the microplate method demonstrated that compared to trivalent cations, divalent cations could more greatly enhance the activity (especially magnesium) of the biofilm matrix, and the period of biofilm formation in the three strains was divided into the following stages: initial attachment (0-10 h), microcolony (10-24 h), maturation (24-48 h), and dispersion (36-72 h). During maturation, large amounts of extracellular polysaccharides (EPs) and extracellular DNA (eDNA) were distributed in the extracellular and intracellular spaces, respectively, as observed by super-resolution structured illumination microscopy (SR-SIM). This study enhances the understanding of the characteristics and patterns of biofilm formation and can facilitate the application of biofilms in wastewater treatment.
Collapse
Affiliation(s)
- Yue Wang
- College of Resource and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Meng Fu
- College of Resource and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Bowen Wu
- College of Resource and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Mingyan Huang
- College of Resource and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Tian Ma
- College of Resource and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Hailian Zang
- College of Resource and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Hanyi Jiang
- College of Resource and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Yuting Zhang
- College of Resource and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Chunyan Li
- College of Resource and Environment, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
15
|
Effendi DB, Sakamoto T, Ohtani S, Awai K, Kanesaki Y. Possible involvement of extracellular polymeric substrates of Antarctic cyanobacterium Nostoc sp. strain SO-36 in adaptation to harsh environments. JOURNAL OF PLANT RESEARCH 2022; 135:771-784. [PMID: 36107269 DOI: 10.1007/s10265-022-01411-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
Cyanobacteria are some of the primary producers in extremely cold biospheres such as the Arctic, Antarctic, and vast ice sheets. Many genera of cyanobacteria are identified from these harsh environments, but their specific mechanisms for cold adaptation are not fully understood. Nostoc sp. strain SO-36 is a cyanobacterium isolated in Antarctica more than 30 years ago and regarded as a psychrotolelant species. To determine whether the strain is psychrotolelant or psychrophilic, it was first grown at 30 °C and 10 °C. The cells grew exponentially at 30 °C, but their growth stopped at 10 °C, indicating that the strain is only psychrotolerant. Microscopic analysis revealed that the morphology of the cells grown at 30 °C was filamentous and differentiated heterocysts, which are specialized cells for gaseous nitrogen fixation under nitrogen-deprived conditions, indicating that the strain can grow diazotrophically. The cells grown at 10 °C have a smaller size, shortened filament length and decreased chlorophyll content per cell. At 10 °C, the cells are aggregated with extracellular polymeric substrates (EPSs), which is a common mechanism to protect cells from ultraviolet light. These results imply that segmentation into short filaments was induced by photodamage at low temperatures. To fully understand the adaptation mechanisms of Nostoc sp. strain SO-36 for low-temperature conditions, next-generation sequencing analyses were conducted. Complete genome sequence of the strain revealed that it has one main chromosome of approximately 6.8 Mbp with 4 plasmids, including 6855 coding sequences, 48 tRNA genes, 4 copies of rRNA operons, and 5 CRISPR regions. Putative genes for EPS biosynthesis were found to be conserved in Nostocaceae regardless of their habitat. These results provide basic information to understand the adaptation mechanisms at low temperatures, and the strain can be a model organism to analyze adaptation to extreme environments.
Collapse
Affiliation(s)
- Devi B Effendi
- Graduate School of Science and Technology, Shizuoka University, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Toshio Sakamoto
- School of Biological Science and Technology, College of Science and Engineering, Kanazawa University, Kakuma, Kanazawa, 920-1192, Japan
| | - Shuji Ohtani
- Faculty of Education, Shimane University, Matsue, Shimane, 690-8504, Japan
| | - Koichiro Awai
- Graduate School of Science and Technology, Shizuoka University, Suruga-ku, Shizuoka, 422-8529, Japan
- Department of Biological Science, Faculty of Science, Shizuoka University, Suruga-ku, Shizuoka, 422-8529, Japan
- Research Institute of Electronics, Shizuoka University, Johoku-ku, Hamamatsu, 432-8561, Japan
| | - Yu Kanesaki
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan.
| |
Collapse
|
16
|
Nair S, Zhang Z, Li H, Zhao H, Shen H, Kao SJ, Jiao N, Zhang Y. Inherent tendency of Synechococcus and heterotrophic bacteria for mutualism on long-term coexistence despite environmental interference. SCIENCE ADVANCES 2022; 8:eabf4792. [PMID: 36179022 PMCID: PMC9524826 DOI: 10.1126/sciadv.abf4792] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 08/17/2022] [Indexed: 06/12/2023]
Abstract
Mutualism between Synechococcus and heterotrophic bacteria has been found to support their prolonged survival in nutrient-depleted conditions. However, environmental interference on the fate of their mutualism is not understood. Here, we show that exogenous nutrients disrupt their established mutualism. Once the exogenous nutrients were exhausted, Synechococcus and heterotrophic bacteria gradually reestablished their metabolic mutualism during 450 days of culture, which revived unhealthy Synechococcus cells. Using metagenomics, metatranscriptomics, and the 15N tracer method, we reveal that the associated bacterial nitrogen fixation triggered the reestablishment of the mutualism and revival of Synechococcus health. During this process, bacterial community structure and functions underwent tremendous adjustments to achieve the driving effect, and a cogeneration of nitrogen, phosphorus, iron, and vitamin by the heterotrophic bacteria sustained Synechococcus's prolonged healthy growth. Our findings suggest that Synechococcus and heterotrophic bacteria may have an inherent tendency toward mutualism despite environmental interference. This may exhibit their coevolutionary adaptations in nutrient-deficient environments.
Collapse
Affiliation(s)
- Shailesh Nair
- Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zenghu Zhang
- Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongmei Li
- Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hanshuang Zhao
- Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui Shen
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361101, China
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou 570228, China
| | - Shuh-Ji Kao
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361101, China
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou 570228, China
| | - Nianzhi Jiao
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361101, China
| | - Yongyu Zhang
- Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
17
|
Agathokleous E, Peñuelas J, Azevedo RA, Rillig MC, Sun H, Calabrese EJ. Low Levels of Contaminants Stimulate Harmful Algal Organisms and Enrich Their Toxins. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:11991-12002. [PMID: 35968681 DOI: 10.1021/acs.est.2c02763] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A widespread increase in intense phytoplankton blooms has been noted in lakes worldwide since the 1980s, with the summertime peak intensity amplifying in most lakes. Such blooms cause annual economic losses of multibillion USD and present a major challenge, affecting 11 out of the 17 United Nations Sustainable Development Goals. Here, we evaluate recent scientific evidence for hormetic effects of emerging contaminants and regulated pollutants on Microcystis sp., the most notorious cyanobacteria forming harmful algal blooms and releasing phycotoxins in eutrophic freshwater systems. This new evidence leads to the conclusion that pollution is linked to algal bloom intensification. Concentrations of contaminants that are considerably smaller than the threshold for toxicity enhance the formation of harmful colonies, increase the production of phycotoxins and their release into the environment, and lower the efficacy of algaecides to control algal blooms. The low-dose enhancement of microcystins is attributed to the up-regulation of a protein controlling microcystin release (McyH) and various microcystin synthetases in tandem with the global nitrogen regulator Ycf28, nonribosomal peptide synthetases, and several ATP-binding cassette transport proteins. Given that colony formation and phycotoxin production and release are enhanced by contaminant concentrations smaller than the toxicological threshold and are widely occurring in the environment, the effect of contaminants on harmful algal blooms is more prevalent than previously thought. Climate change and nutrient enrichment, known mechanisms underpinning algal blooms, are thus joined by low-level pollutants as another causal mechanism.
Collapse
Affiliation(s)
- Evgenios Agathokleous
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science & Technology, Nanjing 210044, Jiangsu, People's Republic of China
- Research Center for Global Changes and Ecosystem Carbon Sequestration & Mitigation, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing 210044, Jiangsu, People's Republic of China
| | - Josep Peñuelas
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, Catalonia 08193, Spain
- CREAF, Cerdanyola del Vallès, Catalonia 08193, Spain
| | - Ricardo A Azevedo
- Departamento de Genética, Escola Superior de Agricultura "Luiz de Queiroz"/Universidade de São Paulo (ESALQ/USP), Avenida Pádua Dias, 11, Piracicaba, São Paulo, São Paulo 13418-900, Brazil
| | - Matthias C Rillig
- Institut für Biologie, Freie Universität Berlin, Altensteinstr. 6, D-14195 Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), D-14195 Berlin, Germany
| | - Haoyu Sun
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Edward J Calabrese
- Department of Environmental Health Sciences, University of Massachusetts, Morrill I, N344, Amherst, Massachusetts 01003, United States
| |
Collapse
|
18
|
Yao L, D'Agostino GD, Park J, Hang S, Adhikari AA, Zhang Y, Li W, Avila-Pacheco J, Bae S, Clish CB, Franzosa EA, Huttenhower C, Huh JR, Devlin AS. A biosynthetic pathway for the selective sulfonation of steroidal metabolites by human gut bacteria. Nat Microbiol 2022; 7:1404-1418. [PMID: 35982310 DOI: 10.1038/s41564-022-01176-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 06/20/2022] [Indexed: 12/13/2022]
Abstract
Members of the human gut microbiome enzymatically process many bioactive molecules in the gastrointestinal tract. Most gut bacterial modifications characterized so far are hydrolytic or reductive in nature. Here we report that abundant human gut bacteria from the phylum Bacteroidetes perform conjugative modifications by selectively sulfonating steroidal metabolites. While sulfonation is a ubiquitous biochemical modification, this activity has not yet been characterized in gut microbes. Using genetic and biochemical approaches, we identify a widespread biosynthetic gene cluster that encodes both a sulfotransferase (BtSULT, BT0416) and enzymes that synthesize the sulfonate donor adenosine 3'-phosphate-5'-phosphosulfate (PAPS), including an APS kinase (CysC, BT0413) and an ATP sulfurylase (CysD and CysN, BT0414-BT0415). BtSULT selectively sulfonates steroidal metabolites with a flat A/B ring fusion, including cholesterol. Germ-free mice monocolonized with Bacteroides thetaiotaomicron ΔBT0416 exhibited reduced gastrointestinal levels of cholesterol sulfate (Ch-S) compared with wild-type B. thetaiotaomicron-colonized mice. The presence of BtSULT and BtSULT homologues in bacteria inhibited leucocyte migration in vitro and in vivo, and abundances of cluster genes were significantly reduced in patients with inflammatory bowel disease. Together, these data provide a mechanism by which gut bacteria sulfonate steroidal metabolites and suggest that these compounds can modulate immune cell trafficking in the host.
Collapse
Affiliation(s)
- Lina Yao
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Gabriel D D'Agostino
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Jinseok Park
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Saiyu Hang
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Arijit A Adhikari
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Yancong Zhang
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Wei Li
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | | | - Sena Bae
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, USA.,Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Clary B Clish
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Eric A Franzosa
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, USA.,Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Curtis Huttenhower
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, USA.,Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Jun R Huh
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - A Sloan Devlin
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
19
|
Mantovani O, Reimann V, Haffner M, Herrmann FP, Selim KA, Forchhammer K, Hess WR, Hagemann M. The impact of the cyanobacterial carbon-regulator protein SbtB and of the second messengers cAMP and c-di-AMP on CO 2 -dependent gene expression. THE NEW PHYTOLOGIST 2022; 234:1801-1816. [PMID: 35285042 DOI: 10.1111/nph.18094] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
The amount of inorganic carbon (Ci ) fluctuates in aquatic environments. Cyanobacteria evolved a Ci -concentrating mechanism (CCM) that is regulated at different levels. The regulator SbtB binds to the second messengers cAMP or c-di-AMP and is involved in acclimation to low Ci (LC) in Synechocystis sp. PCC 6803. Here, we investigated the role of SbtB and of associated second messengers at different Ci conditions. The transcriptome of wild-type (WT) Synechocystis and the ΔsbtB mutant were compared with Δcya1, a mutant defective in cAMP production, and ΔdacA, a mutant defective in generating c-di-AMP. A defined subset of LC-regulated genes in the WT was already changed in ΔsbtB under high Ci (HC) conditions. This response of ΔsbtB correlated with a diminished induction of many CCM-associated genes after LC shift in this mutant. The Δcya1 mutant showed less deviation from WT, whereas ΔdacA induced CCM-associated genes under HC. Metabolome analysis also revealed differences between the strains, whereby ΔsbtB showed slower accumulation of 2-phosphoglycolate and ΔdacA differences among amino acids compared to WT. Collectively, these results indicate that SbtB regulates a subset of LC acclimation genes while c-di-AMP and especially cAMP appear to have a lesser impact on gene expression under different Ci availabilities.
Collapse
Affiliation(s)
- Oliver Mantovani
- Department of Plant Physiology, Institute of Biosciences, University of Rostock, Rostock, D-18059, Germany
| | - Viktoria Reimann
- Genetics and Experimental Bioinformatics, Faculty of Biology, University of Freiburg, Freiburg, D-79104, Germany
| | - Michael Haffner
- Department of Organismic Interactions, Interfaculty Institute of Microbiology and Infection Medicine Tübingen, University of Tübingen, Tübingen, D-72076, Germany
| | - Felix Philipp Herrmann
- Department of Plant Physiology, Institute of Biosciences, University of Rostock, Rostock, D-18059, Germany
| | - Khaled A Selim
- Department of Organismic Interactions, Interfaculty Institute of Microbiology and Infection Medicine Tübingen, University of Tübingen, Tübingen, D-72076, Germany
| | - Karl Forchhammer
- Department of Organismic Interactions, Interfaculty Institute of Microbiology and Infection Medicine Tübingen, University of Tübingen, Tübingen, D-72076, Germany
| | - Wolfgang R Hess
- Genetics and Experimental Bioinformatics, Faculty of Biology, University of Freiburg, Freiburg, D-79104, Germany
| | - Martin Hagemann
- Department of Plant Physiology, Institute of Biosciences, University of Rostock, Rostock, D-18059, Germany
- Department Life, Light and Matter, Interdisciplinary Faculty, University of Rostock, Rostock, D-18059, Germany
| |
Collapse
|
20
|
Cyanobacteria: Model Microorganisms and Beyond. Microorganisms 2022; 10:microorganisms10040696. [PMID: 35456747 PMCID: PMC9025173 DOI: 10.3390/microorganisms10040696] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 02/01/2023] Open
Abstract
In this review, the general background is provided on cyanobacteria, including morphology, cell membrane structure, and their photosynthesis pathway. The presence of cyanobacteria in nature, and their industrial applications are discussed, and their production of secondary metabolites are explained. Biofilm formation, as a common feature of microorganisms, is detailed and the role of cell diffusion in bacterial colonization is described. Then, the discussion is narrowed down to cyanobacterium Synechocystis, as a lab model microorganism. In this relation, the morphology of Synechocystis is discussed and its different elements are detailed. Type IV pili, the complex multi-protein apparatus for motility and cell-cell adhesion in Synechocystis is described and the underlying function of its different elements is detailed. The phototaxis behavior of the cells, in response to homogenous or directional illumination, is reported and its relation to the run and tumble statistics of the cells is emphasized. In Synechocystis suspensions, there may exist a reciprocal interaction between the cell and the carrying fluid. The effects of shear flow on the growth, doubling per day, biomass production, pigments, and lipid production of Synechocystis are reported. Reciprocally, the effects of Synechocystis presence and its motility on the rheological properties of cell suspensions are addressed. This review only takes up the general grounds of cyanobacteria and does not get into the detailed biological aspects per se. Thus, it is substantially more comprehensive in that sense than other reviews that have been published in the last two decades. It is also written not only for the researchers in the field, but for those in physics and engineering, who may find it interesting, useful, and related to their own research.
Collapse
|
21
|
Abstract
Cyanobacteria rely on photosynthesis, and thus have evolved complex responses to light. These include phototaxis, the ability of cells to sense light direction and move towards or away from it. Analysis of mutants has demonstrated that phototaxis requires the coordination of multiple photoreceptors and signal transduction networks. The output of these networks is relayed to type IV pili (T4P) that attach to and exert forces on surfaces or other neighboring cells to drive “twitching” or “gliding” motility. This, along with the extrusion of polysaccharides or “slime” by cells, facilitates the emergence of group behavior. We evaluate recent models that describe the emergence of collective colony-scale behavior from the responses of individual, interacting cells. We highlight the advantages of “active matter” approaches in the study of bacterial communities, discussing key differences between emergent behavior in cyanobacterial phototaxis and similar behavior in chemotaxis or quorum sensing.
Collapse
|
22
|
Santos M, Pacheco CC, Yao L, Hudson EP, Tamagnini P. CRISPRi as a Tool to Repress Multiple Copies of Extracellular Polymeric Substances (EPS)-Related Genes in the Cyanobacterium Synechocystis sp. PCC 6803. Life (Basel) 2021; 11:life11111198. [PMID: 34833074 PMCID: PMC8620461 DOI: 10.3390/life11111198] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 10/28/2021] [Accepted: 11/03/2021] [Indexed: 12/03/2022] Open
Abstract
The use of the versatile cyanobacterial extracellular polymeric substances (EPS) for biotechnological/biomedical applications implies an extensive knowledge of their biosynthetic pathways to improve/control polymer production yields and characteristics. The multiple copies of EPS-related genes, scattered throughout cyanobacterial genomes, adds another layer of complexity, making these studies challenging and time-consuming. Usually, this issue would be tackled by generating deletion mutants, a process that in cyanobacteria is also hindered by the polyploidy. Thus, the use of the CRISPRi multiplex system constitutes an efficient approach to addressing this redundancy. Here, three putative Synechocystis sp. PCC 6803 kpsM homologues (slr0977, slr2107, and sll0574) were repressed using this methodology. The characterization of the 3-sgRNA mutant in terms of fitness/growth and total carbohydrates, released and capsular polysaccharides, and its comparison with previously generated single knockout mutants pointed towards Slr0977 being the key KpsM player in Synechocystis EPS production. This work validates CRISPRi as a powerful tool to unravel cyanobacterial complex EPS biosynthetic pathways expediting this type of studies.
Collapse
Affiliation(s)
- Marina Santos
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4000-008 Porto, Portugal; (M.S.); (C.C.P.)
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, 4000-008 Porto, Portugal
- Programa Doutoral em Biologia Molecular e Celular (MCbiology), Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, 4000-008 Porto, Portugal
| | - Catarina C. Pacheco
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4000-008 Porto, Portugal; (M.S.); (C.C.P.)
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, 4000-008 Porto, Portugal
| | - Lun Yao
- Science for Life Laboratory, KTH Royal Institute of Technology, 10004 Stockholm, Sweden; (L.Y.); (E.P.H.)
- Department of Protein Science, KTH Royal Institute of Technology, 10004 Stockholm, Sweden
| | - Elton P. Hudson
- Science for Life Laboratory, KTH Royal Institute of Technology, 10004 Stockholm, Sweden; (L.Y.); (E.P.H.)
- Department of Protein Science, KTH Royal Institute of Technology, 10004 Stockholm, Sweden
| | - Paula Tamagnini
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4000-008 Porto, Portugal; (M.S.); (C.C.P.)
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, 4000-008 Porto, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4000-008 Porto, Portugal
- Correspondence: ; Tel.: +351-226074957
| |
Collapse
|
23
|
Mullineaux CW, Wilde A. The social life of cyanobacteria. eLife 2021; 10:70327. [PMID: 34132636 PMCID: PMC8208810 DOI: 10.7554/elife.70327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 06/11/2021] [Indexed: 11/13/2022] Open
Abstract
The cyanobacterium Synechocystis secretes a specific sulphated polysaccharide to form floating cell aggregates.
Collapse
Affiliation(s)
- Conrad W Mullineaux
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Annegret Wilde
- Institute of Biology III, University of Freiburg, Freiburg, Germany
| |
Collapse
|
24
|
Oeser S, Wallner T, Schuergers N, Bučinská L, Sivabalasarma S, Bähre H, Albers SV, Wilde A. Minor pilins are involved in motility and natural competence in the cyanobacterium Synechocystis sp. PCC 6803. Mol Microbiol 2021; 116:743-765. [PMID: 34115422 DOI: 10.1111/mmi.14768] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 06/04/2021] [Accepted: 06/05/2021] [Indexed: 11/28/2022]
Abstract
Cyanobacteria synthesize type IV pili, which are known to be essential for motility, adhesion and natural competence. They consist of long flexible fibers that are primarily composed of the major pilin PilA1 in Synechocystis sp. PCC 6803. In addition, Synechocystis encodes less abundant pilin-like proteins, which are known as minor pilins. In this study, we show that the minor pilin PilA5 is essential for natural transformation but is dispensable for motility and flocculation. In contrast, a set of minor pilins encoded by the pilA9-slr2019 transcriptional unit are necessary for motility but are dispensable for natural transformation. Neither pilA5-pilA6 nor pilA9-slr2019 are essential for pilus assembly as mutant strains showed type IV pili on the cell surface. Three further gene products with similarity to PilX-like minor pilins have a function in flocculation of Synechocystis. The results of our study indicate that different minor pilins facilitate distinct pilus functions. Further, our microarray analysis demonstrated that the transcription levels of the minor pilin genes change in response to surface contact. A total of 122 genes were determined to have altered transcription between planktonic and surface growth, including several plasmid genes which are involved exopolysaccharide synthesis and the formation of bloom-like aggregates.
Collapse
Affiliation(s)
- Sabrina Oeser
- Molecular Genetics, Institute of Biology III, University of Freiburg, Freiburg, Germany
| | - Thomas Wallner
- Molecular Genetics, Institute of Biology III, University of Freiburg, Freiburg, Germany
| | - Nils Schuergers
- Molecular Genetics, Institute of Biology III, University of Freiburg, Freiburg, Germany
| | - Lenka Bučinská
- Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Trebon, Czech Republic
| | - Shamphavi Sivabalasarma
- Molecular Biology of Archaea, Institute of Biology II, University of Freiburg, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany
| | - Heike Bähre
- Research Core Unit Metabolomics, Medical School Hannover, Hannover, Germany
| | - Sonja-Verena Albers
- Molecular Biology of Archaea, Institute of Biology II, University of Freiburg, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany
| | - Annegret Wilde
- Molecular Genetics, Institute of Biology III, University of Freiburg, Freiburg, Germany
| |
Collapse
|