1
|
Lakey B, Alberge F, Donohue TJ. Insights into Alphaproteobacterial regulators of cell envelope remodeling. Curr Opin Microbiol 2024; 81:102538. [PMID: 39232444 DOI: 10.1016/j.mib.2024.102538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 09/06/2024]
Abstract
The cell envelope is at the center of many processes essential for bacterial lifestyles. In addition to giving bacteria shape and delineating it from the environment, it contains macromolecules important for energy transduction, cell division, protection against toxins, biofilm formation, or virulence. Hence, many systems coordinate different processes within the cell envelope to ensure function and integrity. Two-component systems have been identified as crucial regulators of cell envelope functions over the last few years. In this review, we summarize the new information obtained on the regulation of cell envelope biosynthesis and homeostasis in α-proteobacteria, as well as newly identified targets that coordinate the processes in the cell envelope.
Collapse
Affiliation(s)
- Bryan Lakey
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - François Alberge
- CEA, CNRS, Aix-Marseille Université, Institut de Biosciences et Biotechnologies d'Aix-Marseille, UMR 7265, CEA Cadarache, Saint Paul-lez Durance, France
| | - Timothy J Donohue
- Department of Bacteriology, Wisconsin Energy Institute, University of Wisconsin Madison, Madison, WI, USA.
| |
Collapse
|
2
|
Parkhill SL, Johnson EO. Integrating bacterial molecular genetics with chemical biology for renewed antibacterial drug discovery. Biochem J 2024; 481:839-864. [PMID: 38958473 PMCID: PMC11346456 DOI: 10.1042/bcj20220062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 07/04/2024]
Abstract
The application of dyes to understanding the aetiology of infection inspired antimicrobial chemotherapy and the first wave of antibacterial drugs. The second wave of antibacterial drug discovery was driven by rapid discovery of natural products, now making up 69% of current antibacterial drugs. But now with the most prevalent natural products already discovered, ∼107 new soil-dwelling bacterial species must be screened to discover one new class of natural product. Therefore, instead of a third wave of antibacterial drug discovery, there is now a discovery bottleneck. Unlike natural products which are curated by billions of years of microbial antagonism, the vast synthetic chemical space still requires artificial curation through the therapeutics science of antibacterial drugs - a systematic understanding of how small molecules interact with bacterial physiology, effect desired phenotypes, and benefit the host. Bacterial molecular genetics can elucidate pathogen biology relevant to therapeutics development, but it can also be applied directly to understanding mechanisms and liabilities of new chemical agents with new mechanisms of action. Therefore, the next phase of antibacterial drug discovery could be enabled by integrating chemical expertise with systematic dissection of bacterial infection biology. Facing the ambitious endeavour to find new molecules from nature or new-to-nature which cure bacterial infections, the capabilities furnished by modern chemical biology and molecular genetics can be applied to prospecting for chemical modulators of new targets which circumvent prevalent resistance mechanisms.
Collapse
Affiliation(s)
- Susannah L. Parkhill
- Systems Chemical Biology of Infection and Resistance Laboratory, The Francis Crick Institute, London, U.K
- Faculty of Life Sciences, University College London, London, U.K
| | - Eachan O. Johnson
- Systems Chemical Biology of Infection and Resistance Laboratory, The Francis Crick Institute, London, U.K
- Faculty of Life Sciences, University College London, London, U.K
- Department of Chemistry, Imperial College, London, U.K
- Department of Chemistry, King's College London, London, U.K
| |
Collapse
|
3
|
George A, Patil AG, Mahalakshmi R. ATP-independent assembly machinery of bacterial outer membranes: BAM complex structure and function set the stage for next-generation therapeutics. Protein Sci 2024; 33:e4896. [PMID: 38284489 PMCID: PMC10804688 DOI: 10.1002/pro.4896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/28/2023] [Accepted: 12/31/2023] [Indexed: 01/30/2024]
Abstract
Diderm bacteria employ β-barrel outer membrane proteins (OMPs) as their first line of communication with their environment. These OMPs are assembled efficiently in the asymmetric outer membrane by the β-Barrel Assembly Machinery (BAM). The multi-subunit BAM complex comprises the transmembrane OMP BamA as its functional subunit, with associated lipoproteins (e.g., BamB/C/D/E/F, RmpM) varying across phyla and performing different regulatory roles. The ability of BAM complex to recognize and fold OM β-barrels of diverse sizes, and reproducibly execute their membrane insertion, is independent of electrochemical energy. Recent atomic structures, which captured BAM-substrate complexes, show the assembly function of BamA can be tailored, with different substrate types exhibiting different folding mechanisms. Here, we highlight common and unique features of its interactome. We discuss how this conserved protein complex has evolved the ability to effectively achieve the directed assembly of diverse OMPs of wide-ranging sizes (8-36 β-stranded monomers). Additionally, we discuss how darobactin-the first natural membrane protein inhibitor of Gram-negative bacteria identified in over five decades-selectively targets and specifically inhibits BamA. We conclude by deliberating how a detailed deduction of BAM complex-associated regulation of OMP biogenesis and OM remodeling will open avenues for the identification and development of effective next-generation therapeutics against Gram-negative pathogens.
Collapse
Affiliation(s)
- Anjana George
- Molecular Biophysics Laboratory, Department of Biological SciencesIndian Institute of Science Education and ResearchBhopalIndia
| | - Akanksha Gajanan Patil
- Molecular Biophysics Laboratory, Department of Biological SciencesIndian Institute of Science Education and ResearchBhopalIndia
| | - Radhakrishnan Mahalakshmi
- Molecular Biophysics Laboratory, Department of Biological SciencesIndian Institute of Science Education and ResearchBhopalIndia
| |
Collapse
|
4
|
Rachwalski K, Tu MM, Madden SJ, French S, Hansen DM, Brown ED. A mobile CRISPRi collection enables genetic interaction studies for the essential genes of Escherichia coli. CELL REPORTS METHODS 2024; 4:100693. [PMID: 38262349 PMCID: PMC10832289 DOI: 10.1016/j.crmeth.2023.100693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 10/27/2023] [Accepted: 12/22/2023] [Indexed: 01/25/2024]
Abstract
Advances in gene editing, in particular CRISPR interference (CRISPRi), have enabled depletion of essential cellular machinery to study the downstream effects on bacterial physiology. Here, we describe the construction of an ordered E. coli CRISPRi collection, designed to knock down the expression of 356 essential genes with the induction of a catalytically inactive Cas9, harbored on the conjugative plasmid pFD152. This mobile CRISPRi library can be conjugated into other ordered genetic libraries to assess combined effects of essential gene knockdowns with non-essential gene deletions. As proof of concept, we probed cell envelope synthesis with two complementary crosses: (1) an Lpp deletion into every CRISPRi knockdown strain and (2) the lolA knockdown plasmid into the Keio collection. These experiments revealed a number of notable genetic interactions for the essential phenotype probed and, in particular, showed suppressing interactions for the loci in question.
Collapse
Affiliation(s)
- Kenneth Rachwalski
- Institute of Infectious Disease Research, McMaster University, Hamilton, ON L8S 4L8, Canada; Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Megan M Tu
- Institute of Infectious Disease Research, McMaster University, Hamilton, ON L8S 4L8, Canada; Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Sean J Madden
- Institute of Infectious Disease Research, McMaster University, Hamilton, ON L8S 4L8, Canada; Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Shawn French
- Institute of Infectious Disease Research, McMaster University, Hamilton, ON L8S 4L8, Canada; Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Drew M Hansen
- Institute of Infectious Disease Research, McMaster University, Hamilton, ON L8S 4L8, Canada; Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Eric D Brown
- Institute of Infectious Disease Research, McMaster University, Hamilton, ON L8S 4L8, Canada; Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada.
| |
Collapse
|
5
|
Abuta'a YA, Caumont-Sarcos A, Albenne C, Ieva R. In Vivo Site-Directed and Time-Resolved Photocrosslinking of Envelope Proteins. Methods Mol Biol 2024; 2715:299-320. [PMID: 37930537 DOI: 10.1007/978-1-0716-3445-5_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
In vivo site-directed photocrosslinking provides a means to probe the vicinity of proteins in their native cellular environment. Because this method relies on the incorporation of unnatural amino acid analogs that are similar in size to natural amino acids, crosslink products are indicative of direct protein-protein interactions. Here, we present the use of this approach to monitor both transient and stable interactions of two proteins of the envelope of Escherichia coli. First, we describe a protocol to characterize the interactions of a secretory protein as it transverses the bacterial envelope with temporal and spatial resolution. We combine site-directed photocrosslinking with radiolabeling of proteins and lipids. Second, we describe a method to purify a photocrosslinked partner protein and to analyze it by mass spectrometry. We use in-gel protein digestion and peptide fragmentation by MALDI-TOF/TOF tandem mass spectrometry to determine the site of interaction on the photocrosslinked partner.
Collapse
Affiliation(s)
- Yassin A Abuta'a
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Anne Caumont-Sarcos
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Cécile Albenne
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Raffaele Ieva
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France.
| |
Collapse
|
6
|
Lee Upton S, Tay JW, Schwartz DK, Sousa MC. Similarly slow diffusion of BAM and SecYEG complexes in live E. coli cells observed with 3D spt-PALM. Biophys J 2023; 122:4382-4394. [PMID: 37853695 PMCID: PMC10698321 DOI: 10.1016/j.bpj.2023.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/05/2023] [Accepted: 10/16/2023] [Indexed: 10/20/2023] Open
Abstract
The β-barrel assembly machinery (BAM) complex is responsible for inserting outer membrane proteins (OMPs) into the Escherichia coli outer membrane. The SecYEG translocon inserts inner membrane proteins into the inner membrane and translocates both soluble proteins and nascent OMPs into the periplasm. Recent reports describe Sec possibly playing a direct role in OMP biogenesis through interactions with the soluble polypeptide transport-associated (POTRA) domains of BamA (the central OMP component of BAM). Here we probe the diffusion behavior of these protein complexes using photoactivatable super-resolution localization microscopy and single-particle tracking in live E. coli cells of BAM and SecYEG components BamA and SecE and compare them to other outer and inner membrane proteins. To accurately measure trajectories on the highly curved cell surface, three-dimensional tracking was performed using double-helix point-spread function microscopy. All proteins tested exhibit two diffusive modes characterized by "slow" and "fast" diffusion coefficients. We implement a diffusion coefficient analysis as a function of the measurement lag time to separate positional uncertainty from true mobility. The resulting true diffusion coefficients of the slow and fast modes showed a complete immobility of full-length BamA constructs in the time frame of the experiment, whereas the OMP OmpLA displayed a slow diffusion consistent with the high viscosity of the outer membrane. The periplasmic POTRA domains of BamA were found to anchor BAM to other cellular structures and render it immobile. However, deletion of individual distal POTRA domains resulted in increased mobility, suggesting that these domains are required for the full set of cellular interactions. SecE diffusion was much slower than that of the inner membrane protein PgpB and was more like OMPs and BamA. Strikingly, SecE diffused faster upon POTRA domain deletion. These results are consistent with the existence of a BAM-SecYEG trans-periplasmic assembly in live E. coli cells.
Collapse
Affiliation(s)
- Stephen Lee Upton
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado
| | - Jian Wei Tay
- BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado
| | - Daniel Keith Schwartz
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado
| | | |
Collapse
|
7
|
Yang Y, Chen H, Corey RA, Morales V, Quentin Y, Froment C, Caumont-Sarcos A, Albenne C, Burlet-Schiltz O, Ranava D, Stansfeld PJ, Marcoux J, Ieva R. LptM promotes oxidative maturation of the lipopolysaccharide translocon by substrate binding mimicry. Nat Commun 2023; 14:6368. [PMID: 37821449 PMCID: PMC10567701 DOI: 10.1038/s41467-023-42007-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 09/27/2023] [Indexed: 10/13/2023] Open
Abstract
Insertion of lipopolysaccharide (LPS) into the bacterial outer membrane (OM) is mediated by a druggable OM translocon consisting of a β-barrel membrane protein, LptD, and a lipoprotein, LptE. The β-barrel assembly machinery (BAM) assembles LptD together with LptE at the OM. In the enterobacterium Escherichia coli, formation of two native disulfide bonds in LptD controls translocon activation. Here we report the discovery of LptM (formerly YifL), a lipoprotein conserved in Enterobacteriaceae, that assembles together with LptD and LptE at the BAM complex. LptM stabilizes a conformation of LptD that can efficiently acquire native disulfide bonds, whereas its inactivation makes disulfide bond isomerization by DsbC become essential for viability. Our structural prediction and biochemical analyses indicate that LptM binds to sites in both LptD and LptE that are proposed to coordinate LPS insertion into the OM. These results suggest that, by mimicking LPS binding, LptM facilitates oxidative maturation of LptD, thereby activating the LPS translocon.
Collapse
Affiliation(s)
- Yiying Yang
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, 31062, France
| | - Haoxiang Chen
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, 31062, France
| | - Robin A Corey
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, Bristol, BS8 1TD, UK
| | - Violette Morales
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, 31062, France
| | - Yves Quentin
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, 31062, France
| | - Carine Froment
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, 31077, France
- Infrastructure Nationale de Protéomique, ProFI, FR 2048, Toulouse, France
| | - Anne Caumont-Sarcos
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, 31062, France
| | - Cécile Albenne
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, 31062, France
| | - Odile Burlet-Schiltz
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, 31077, France
- Infrastructure Nationale de Protéomique, ProFI, FR 2048, Toulouse, France
| | - David Ranava
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, 31062, France
| | - Phillip J Stansfeld
- School of Life Sciences and Department of Chemistry, Gibbet Hill Campus, The University of Warwick, Coventry, CV4 7AL, UK
| | - Julien Marcoux
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, 31077, France
- Infrastructure Nationale de Protéomique, ProFI, FR 2048, Toulouse, France
| | - Raffaele Ieva
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, 31062, France.
| |
Collapse
|
8
|
Watkins DW, Williams SL, Collinson I. A bacterial secretosome for regulated envelope biogenesis and quality control? MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 36260397 DOI: 10.1099/mic.0.001255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The Gram-negative bacterial envelope is the first line of defence against environmental stress and antibiotics. Therefore, its biogenesis is of considerable fundamental interest, as well as a challenge to address the growing problem of antimicrobial resistance. All bacterial proteins are synthesised in the cytosol, so inner- and outer-membrane proteins, and periplasmic residents have to be transported to their final destinations via specialised protein machinery. The Sec translocon, a ubiquitous integral inner-membrane (IM) complex, is key to this process as the major gateway for protein transit from the cytosol to the cell envelope; this can be achieved during their translation, or afterwards. Proteins need to be directed into the inner-membrane (usually co-translational), otherwise SecA utilises ATP and the proton-motive-force (PMF) to drive proteins across the membrane post-translationally. These proteins are then picked up by chaperones for folding in the periplasm, or delivered to the β-barrel assembly machinery (BAM) for incorporation into the outer-membrane. The core hetero-trimeric SecYEG-complex forms the hub for an extensive network of interactions that regulate protein delivery and quality control. Here, we conduct a biochemical exploration of this 'secretosome' -a very large, versatile and inter-changeable assembly with the Sec-translocon at its core; featuring interactions that facilitate secretion (SecDF), inner- and outer-membrane protein insertion (respectively, YidC and BAM), protein folding and quality control (e.g. PpiD, YfgM and FtsH). We propose the dynamic interplay amongst these, and other factors, act to ensure efficient envelope biogenesis, regulated to accommodate the requirements of cell elongation and division. We believe this organisation is critical for cell wall biogenesis and remodelling and thus its perturbation could be a means for the development of anti-microbials.
Collapse
Affiliation(s)
- Daniel W Watkins
- School of Biochemistry, University of Bristol, BS8 1TD, UK.,Present address: CytoSeek, Science Creates Old Market, Midland Road, Bristol, BS20JZ, UK
| | | | - Ian Collinson
- School of Biochemistry, University of Bristol, BS8 1TD, UK
| |
Collapse
|
9
|
Overexpression of the Bam Complex Improves the Production of Chlamydia trachomatis MOMP in the E. coli Outer Membrane. Int J Mol Sci 2022; 23:ijms23137393. [PMID: 35806397 PMCID: PMC9266984 DOI: 10.3390/ijms23137393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 06/29/2022] [Accepted: 06/29/2022] [Indexed: 02/07/2023] Open
Abstract
A licensed Chlamydia trachomatis (Ct) vaccine is not yet available. Recombinant Chlamydia trachomatis major outer membrane protein (Ct-MOMP), the most abundant constituent of the chlamydial outer membrane complex, is considered the most attractive candidate for subunit-based vaccine formulations. Unfortunately, Ct-MOMP is difficult to express in its native structure in the E. coli outer membrane (OM). Here, by co-expression of the Bam complex, we improved the expression and localization of recombinant Ct-MOMP in the E. coli OM. Under these conditions, recombinant Ct-MOMP appeared to assemble into a β-barrel conformation and express domains at the cell surface indicative of correct folding. The data indicate that limited availability of the Bam complex can be a bottleneck for the production of heterologous OM vaccine antigens, information that is also relevant for strategies aimed at producing recombinant OMV-based vaccines.
Collapse
|
10
|
Boelter G, Bryant JA, Doherty H, Wotherspoon P, Alodaini D, Ma X, Alao MB, Moynihan PJ, Moradigaravand D, Glinkowska M, Knowles TJ, Henderson IR, Banzhaf M. The lipoprotein DolP affects cell separation in Escherichia coli, but not as an upstream regulator of NlpD. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35604759 DOI: 10.1099/mic.0.001197] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Bacterial amidases are essential to split the shared envelope of adjunct daughter cells to allow cell separation. Their activity needs to be precisely controlled to prevent cell lysis. In Escherichia coli, amidase activity is controlled by three regulatory proteins NlpD, EnvC and ActS. However, recent studies linked the outer membrane lipoprotein DolP (formerly YraP) as a potential upstream regulator of NlpD. In this study we explored this link in further detail. To our surprise DolP did not modulate amidase activity in vitro and was unable to interact with NlpD in pull-down and MST (MicroScale Thermophoresis) assays. Next, we excluded the hypothesis that ΔdolP phenocopied ΔnlpD in a range of envelope stresses. However, morphological analysis of double deletion mutants of amidases (AmiA, AmiB AmiC) and amidase regulators with dolP revealed that ΔamiAΔdolP and ΔenvCΔdolP mutants display longer chain length compared to their parental strains indicating a role for DolP in cell division. Overall, we present evidence that DolP does not affect NlpD function in vitro, implying that DolP is not an upstream regulator of NlpD. However, DolP may impact daughter cell separation by interacting directly with AmiA or AmiC, or by a yet undiscovered mechanism.
Collapse
Affiliation(s)
- Gabriela Boelter
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, UK
| | - Jack A Bryant
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, UK
| | - Hannah Doherty
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, UK
| | - Peter Wotherspoon
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, UK
| | - Dema Alodaini
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, UK
| | - Xuyu Ma
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, UK
| | - Micheal B Alao
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, UK
| | - Patrick J Moynihan
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, UK
| | - Danesh Moradigaravand
- Centre for Computational Biology, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Monika Glinkowska
- Department of Bacterial Molecular Genetics, University of Gdansk, Gdańsk, Poland
| | - Timothy J Knowles
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, UK
| | - Ian R Henderson
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, UK.,Institute for Molecular Bioscience, University of Queensland, St. Lucia, Australia
| | - Manuel Banzhaf
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
11
|
BonA from Acinetobacter baumannii Forms a Divisome-Localized Decamer That Supports Outer Envelope Function. mBio 2021; 12:e0148021. [PMID: 34311571 PMCID: PMC8406262 DOI: 10.1128/mbio.01480-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Acinetobacter baumannii is a high-risk pathogen due to the rapid global spread of multidrug-resistant lineages. Its phylogenetic divergence from other ESKAPE pathogens means that determinants of its antimicrobial resistance can be difficult to extrapolate from other widely studied bacteria. A recent study showed that A. baumannii upregulates production of an outer membrane lipoprotein, which we designate BonA, in response to challenge with polymyxins. Here, we show that BonA has limited sequence similarity and distinct structural features compared to lipoproteins from other bacterial species. Analyses through X-ray crystallography, small-angle X-ray scattering, electron microscopy, and multiangle light scattering demonstrate that BonA has a dual BON (Bacterial OsmY and Nodulation) domain architecture and forms a decamer via an unusual oligomerization mechanism. This analysis also indicates this decamer is transient, suggesting dynamic oligomerization plays a role in BonA function. Antisera recognizing BonA shows it is an outer membrane protein localized to the divisome. Loss of BonA modulates the density of the outer membrane, consistent with a change in its structure or link to the peptidoglycan, and prevents motility in a clinical strain (ATCC 17978). Consistent with these findings, the dimensions of the BonA decamer are sufficient to permeate the peptidoglycan layer, with the potential to form a membrane-spanning complex during cell division. IMPORTANCE The pathogen Acinetobacter baumannii is considered an urgent threat to human health. A. baumannii is highly resistant to treatment with antibiotics, in part due to its protective cell envelope. This bacterium is only distantly related to other bacterial pathogens, so its cell envelope has distinct properties and contains components distinct from those of other bacteria that support its function. Here, we report the discovery of BonA, a protein that supports A. baumannii outer envelope function and is required for cell motility. We determine the atomic structure of BonA and show that it forms part of the cell division machinery and functions by forming a complex, features that mirror those of distantly related homologs from other bacteria. By improving our understanding of the A. baumannii cell envelope this work will assist in treating this pathogen.
Collapse
|
12
|
Park J, Kim M, Shin B, Kang M, Yang J, Lee TK, Park W. A novel decoy strategy for polymyxin resistance in Acinetobacter baumannii. eLife 2021; 10:66988. [PMID: 34180396 PMCID: PMC8324293 DOI: 10.7554/elife.66988] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 06/27/2021] [Indexed: 12/17/2022] Open
Abstract
Modification of the outer membrane charge by a polymyxin B (PMB)-induced PmrAB two-component system appears to be a dominant phenomenon in PMB-resistant Acinetobacter baumannii. PMB-resistant variants and many clinical isolates also appeared to produce outer membrane vesicles (OMVs). Genomic, transcriptomic, and proteomic analyses revealed that upregulation of the pmr operon and decreased membrane-linkage proteins (OmpA, OmpW, and BamE) are linked to overproduction of OMVs, which also promoted enhanced biofilm formation. The addition of OMVs from PMB-resistant variants into the cultures of PMB-susceptible A. baumannii and the clinical isolates protected these susceptible bacteria from PMB. Taxonomic profiling of in vitro human gut microbiomes under anaerobic conditions demonstrated that OMVs completely protected the microbial community against PMB treatment. A Galleria mellonella-infection model with PMB treatment showed that OMVs increased the mortality rate of larvae by protecting A. baumannii from PMB. Taken together, OMVs released from A. baumannii functioned as decoys against PMB. Wrapped in a thick, protective outer membrane, Acinetobacter baumannii bacteria can sometimes cause serious infections when they find their way into human lungs and urinary tracts. Antibiotics are increasingly ineffective against this threat, which forces physicians to resort to polymyxin B, an old, positively-charged drug that ‘sticks’ to the negatively-charged proteins and fatty components at the surface of A. baumannii. Scientists have noticed that when bacteria are exposed to lethal drugs, they often react by releasing vesicles, small ‘sacs’ made of pieces of the outer membranes which can contain DNA or enzymes. How this strategy protects the cells against antibiotics such as polymyxin B remains poorly understood. To investigate this question, Park et al. examined different strains of A. baumannii, showing that bacteria resistant to polymyxin B had lower levels of outer membrane proteins but would release more vesicles. Adding vesicles from resistant strains to non-resistant A. baumannii cultures helped cells to survive the drugs. In fact, this protective effect extended to other species, shielding whole communities of bacteria against polymyxin B. In vivo, the vesicles protected bacteria in moth larvae infected with A. baumannii, leading to a higher death rate in the animals. Experiments showed that the negatively-charged vesicles worked as decoys, trapping the positively-charged polymyxin B away from its target. Taken together, the findings by Park et al. highlight a new strategy that allows certain strains of bacteria to protect themselves from antibiotics, while also benefitting the rest of the microbial community.
Collapse
Affiliation(s)
- Jaeeun Park
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea
| | - Misung Kim
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea
| | - Bora Shin
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea
| | - Mingyeong Kang
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea
| | - Jihye Yang
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea
| | - Tae Kwon Lee
- Department of Environmental Engineering, Yonsei University, Wonju, Republic of Korea
| | - Woojun Park
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea
| |
Collapse
|