1
|
Merriam AB, Malone JM, Hereward JP, Gill G, Preston C. Point mutations including a novel Pro-197-Phe mutation confer cross-resistance to acetolactate synthase (ALS) inhibiting herbicides in Lactuca serriola in Australia. PEST MANAGEMENT SCIENCE 2023; 79:5333-5340. [PMID: 37615238 DOI: 10.1002/ps.7743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/07/2023] [Accepted: 08/24/2023] [Indexed: 08/25/2023]
Abstract
BACKGROUND Control of prickly lettuce has become increasingly difficult for lentil growers in southern Australia because of widespread resistance to common herbicides, a lack of alternative herbicide options and the prolific production of highly mobile seed. This study aimed to quantify acetolactate synthase (ALS)-inhibiting herbicide resistance in the Mid North (MN) and Yorke Peninsula (YP) of South Australia, characterize the resistance mutations present and investigate population structure and gene flow in this species. RESULTS Resistance was identified in all populations tested, with average survival of 92% to chlorsulfuron and 95% to imazamox + imazapyr. Five different amino acid substitutions were identified at proline 197 of the ALS gene. There was no significant difference in the median lethal dose (LD50 ) between plants with these five different substitutions when treated with metsulfuron-methyl; however, the imidazolinone resistance level was higher in plants with a phenylalanine substitution and lower in plants with a serine. Population structure based on 701 single nucleotide polymorphisms and 271 individuals provided evidence for both independent evolution of the same mutation in different populations, as well as frequent short- to medium-distance dispersal accompanied by occasional long-distance dispersal events. The overall inbreeding coefficient (FIS ) was calculated at 0.5174, indicating an intermediate level of outcrossing despite the cross-pollination experiment showing only low outcrossing. In the structure analyses, most individuals from YP were assigned to a single cluster, whereas most individuals from MN were assigned 50% to each of two clusters, indicating some genetic differences between these two regions, but also evidence for dispersal between them. CONCLUSIONS Use of imidazolinone herbicides has selected for mutations conferring higher levels of resistance, such as the Pro-197-Phe mutation, and resulted in further spread of resistance in this species. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Alicia B Merriam
- School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, South Australia, Australia
| | - Jenna M Malone
- School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, South Australia, Australia
| | - James P Hereward
- School of Biological Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - Gurjeet Gill
- School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, South Australia, Australia
| | - Christopher Preston
- School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, South Australia, Australia
| |
Collapse
|
2
|
Kersten S, Rabanal FA, Herrmann J, Hess M, Kronenberg ZN, Schmid K, Weigel D. Deep haplotype analyses of target-site resistance locus ACCase in blackgrass enabled by pool-based amplicon sequencing. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:1240-1253. [PMID: 36807472 PMCID: PMC10214753 DOI: 10.1111/pbi.14033] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 12/27/2022] [Accepted: 02/06/2023] [Indexed: 05/27/2023]
Abstract
Rapid adaptation of weeds to herbicide applications in agriculture through resistance development is a widespread phenomenon. In particular, the grass Alopecurus myosuroides is an extremely problematic weed in cereal crops with the potential to manifest resistance in only a few generations. Target-site resistances (TSRs), with their strong phenotypic response, play an important role in this rapid adaptive response. Recently, using PacBio's long-read amplicon sequencing technology in hundreds of individuals, we were able to decipher the genomic context in which TSR mutations occur. However, sequencing individual amplicons are costly and time-consuming, thus impractical to implement for other resistance loci or applications. Alternatively, pool-based approaches overcome these limitations and provide reliable allele frequencies, although at the expense of not preserving haplotype information. In this proof-of-concept study, we sequenced with PacBio High Fidelity (HiFi) reads long-range amplicons (13.2 kb), encompassing the entire ACCase gene in pools of over 100 individuals, and resolved them into haplotypes using the clustering algorithm PacBio amplicon analysis (pbaa), a new application for pools in plants and other organisms. From these amplicon pools, we were able to recover most haplotypes from previously sequenced individuals of the same population. In addition, we analysed new pools from a Germany-wide collection of A. myosuroides populations and found that TSR mutations originating from soft sweeps of independent origin were common. Forward-in-time simulations indicate that TSR haplotypes will persist for decades even at relatively low frequencies and without selection, highlighting the importance of accurate measurement of TSR haplotype prevalence for weed management.
Collapse
Affiliation(s)
- Sonja Kersten
- Institute of Plant Breeding, Seed Science and Population GeneticsUniversity of HohenheimStuttgartGermany
- Department of Molecular BiologyMax Planck Institute for Biology TübingenTübingenGermany
| | - Fernando A. Rabanal
- Department of Molecular BiologyMax Planck Institute for Biology TübingenTübingenGermany
| | | | | | | | - Karl Schmid
- Institute of Plant Breeding, Seed Science and Population GeneticsUniversity of HohenheimStuttgartGermany
| | - Detlef Weigel
- Department of Molecular BiologyMax Planck Institute for Biology TübingenTübingenGermany
| |
Collapse
|
3
|
Gupta S, Harkess A, Soble A, Van Etten M, Leebens-Mack J, Baucom RS. Interchromosomal linkage disequilibrium and linked fitness cost loci associated with selection for herbicide resistance. THE NEW PHYTOLOGIST 2023; 238:1263-1277. [PMID: 36721257 DOI: 10.1111/nph.18782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
The adaptation of weeds to herbicide is both a significant problem in agriculture and a model of rapid adaptation. However, significant gaps remain in our knowledge of resistance controlled by many loci and the evolutionary factors that influence the maintenance of resistance. Here, using herbicide-resistant populations of the common morning glory (Ipomoea purpurea), we perform a multilevel analysis of the genome and transcriptome to uncover putative loci involved in nontarget-site herbicide resistance (NTSR) and to examine evolutionary forces underlying the maintenance of resistance in natural populations. We found loci involved in herbicide detoxification and stress sensing to be under selection and confirmed that detoxification is responsible for glyphosate (RoundUp) resistance using a functional assay. We identified interchromosomal linkage disequilibrium (ILD) among loci under selection reflecting either historical processes or additive effects leading to the resistance phenotype. We further identified potential fitness cost loci that were strongly linked to resistance alleles, indicating the role of genetic hitchhiking in maintaining the cost. Overall, our work suggests that NTSR glyphosate resistance in I. purpurea is conferred by multiple genes which are potentially maintained through generations via ILD, and that the fitness cost associated with resistance in this species is likely a by-product of genetic hitchhiking.
Collapse
Affiliation(s)
- Sonal Gupta
- Ecology and Evolutionary Biology Department, University of Michigan, 4034 Biological Sciences Building, Ann Arbor, MI, 48109, USA
- Center for Genomics and Systems Biology, New York University, New York, NY, 10003, USA
| | - Alex Harkess
- Department of Crop, Soil and Environmental Sciences, Auburn University, Auburn, AL, 36849, USA
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA
| | - Anah Soble
- Ecology and Evolutionary Biology Department, University of Michigan, 4034 Biological Sciences Building, Ann Arbor, MI, 48109, USA
| | - Megan Van Etten
- Biology Department, Pennsylvania State University, Dunmore, PA, 18512, USA
| | - James Leebens-Mack
- Department of Plant Biology, University of Georgia, Athens, GA, 30602, USA
| | - Regina S Baucom
- Ecology and Evolutionary Biology Department, University of Michigan, 4034 Biological Sciences Building, Ann Arbor, MI, 48109, USA
| |
Collapse
|
4
|
Waselkov K, Olsen KM. Herbaria reveal cost of the Green Revolution. Science 2022; 378:1053-1054. [PMID: 36480609 DOI: 10.1126/science.ade4615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Rapid weed evolution is exposed by genome sequencing of natural history collections.
Collapse
Affiliation(s)
- Katherine Waselkov
- Department of Biology, California State University, Fresno, Fresno, CA 93740, USA
| | - Kenneth M Olsen
- Department of Biology, Washington University, St. Louis, MO 63130, USA
| |
Collapse
|
5
|
Kreiner JM, Latorre SM, Burbano HA, Stinchcombe JR, Otto SP, Weigel D, Wright SI. Rapid weed adaptation and range expansion in response to agriculture over the past two centuries. Science 2022; 378:1079-1085. [PMID: 36480621 DOI: 10.1126/science.abo7293] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
North America has experienced a massive increase in cropland use since 1800, accompanied more recently by the intensification of agricultural practices. Through genome analysis of present-day and historical samples spanning environments over the past two centuries, we studied the effect of these changes in farming on the extent and tempo of evolution across the native range of the common waterhemp (Amaranthus tuberculatus), a now pervasive agricultural weed. Modern agriculture has imposed strengths of selection rarely observed in the wild, with notable shifts in allele frequency trajectories since agricultural intensification in the 1960s. An evolutionary response to this extreme selection was facilitated by a concurrent human-mediated range shift. By reshaping genome-wide diversity across the landscape, agriculture has driven the success of this weed in the 21st century.
Collapse
Affiliation(s)
- Julia M Kreiner
- Department of Botany, University of British Columbia, Vancouver, BC, Canada.,Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Sergio M Latorre
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, London, UK.,Department of Molecular Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Hernán A Burbano
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, London, UK.,Department of Molecular Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - John R Stinchcombe
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - Sarah P Otto
- Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada.,Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Stephen I Wright
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
6
|
Spring JF, Revolinski SR, Young FL, Lyon DJ, Burke IC. Weak population differentiation and high diversity in Salsola tragus in the inland Pacific Northwest, USA. PEST MANAGEMENT SCIENCE 2022; 78:4728-4740. [PMID: 35872633 DOI: 10.1002/ps.7093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/13/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Salsola tragus is a widespread and problematic weed of semi-arid wheat production globally, and in the inland Pacific Northwest region of the USA. The species exhibits high levels of phenotypic diversity across its range and, at least in California USA, previous work has described cryptic diversity comprising a multi-species complex. Such cryptic diversity could suggest the potential for a differential response to management inputs between groups, and have important implications for the spread of herbicide resistance or other adaptive traits within populations. We used a genotyping-by-sequencing approach to characterize the population structure of S. tragus in the inland Pacific Northwest. RESULTS Our results indicated that the population in this region is comprised of a single, tetraploid species (S. tragus sensu latu) with weak population structure on a regional scale. Isolation-by-distance appears to be the primary pattern of structure, but an independent set of weakly differentiated clusters of unknown origin were also apparent, along with a mixed mating system and high levels of largely unstructured genetic diversity. CONCLUSIONS Despite considerable phenotypic variability within S. tragus in the region, agronomic weed managers can likely consider it as a single entity across the region, rather than a collection of cryptic subgroups with possible differential responses to management inputs or agroecosystem conditions. A lack of strong barriers to migration and gene flow mean that adaptive traits, such as herbicide resistance, can be expected to spread rapidly through populations across the region. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- John F Spring
- Oregon State University Central Oregon Agricultural Research and Extension Center, Madras, OR, USA
| | - Samuel R Revolinski
- Washington State University Department of Crop and Soil Sciences, Pullman, WA, USA
| | - Frank L Young
- USDA-ARS Northwest Sustainable Agroecosystems Research Unit, Pullman, WA, USA
| | - Drew J Lyon
- Washington State University Department of Crop and Soil Sciences, Pullman, WA, USA
| | - Ian C Burke
- Washington State University Department of Crop and Soil Sciences, Pullman, WA, USA
| |
Collapse
|
7
|
Diversity of Herbicide-Resistance Mechanisms of Avena fatua L. to Acetyl-CoA Carboxylase-Inhibiting Herbicides in the Bajio, Mexico. PLANTS 2022; 11:plants11131644. [PMID: 35807596 PMCID: PMC9269088 DOI: 10.3390/plants11131644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/16/2022] [Accepted: 05/23/2022] [Indexed: 11/17/2022]
Abstract
Herbicide resistance is an evolutionary process that affects entire agricultural regions’ yield and productivity. The high number of farms and the diversity of weed management can generate hot selection spots throughout the regions. Resistant biotypes can present a diversity of mechanisms of resistance and resistance factors depending on selective conditions inside the farm; this situation is similar to predictions by the geographic mosaic theory of coevolution. In Mexico, the agricultural region of the Bajio has been affected by herbicide resistance for 25 years. To date, Avena fatua L. is one of the most abundant and problematic weed species. The objective of this study was to determine the mechanism of resistance of biotypes with failures in weed control in 70 wheat and barley crop fields in the Bajio, Mexico. The results showed that 70% of farms have biotypes with target site resistance (TSR). The most common mutations were Trp–1999–Cys, Asp–2078–Gly, Ile–2041–Asn, and some of such mutations confer cross-resistance to ACCase-inhibiting herbicides. Metabolomic fingerprinting showed four different metabolic expression patterns. The results confirmed that in the Bajio, there exist multiple selection sites for both resistance mechanisms, which proves that this area can be considered as a geographic mosaic of resistance.
Collapse
|