1
|
Chen YR, Harel I, Singh PP, Ziv I, Moses E, Goshtchevsky U, Machado BE, Brunet A, Jarosz DF. Tissue-specific landscape of protein aggregation and quality control in an aging vertebrate. Dev Cell 2024; 59:1892-1911.e13. [PMID: 38810654 PMCID: PMC11265985 DOI: 10.1016/j.devcel.2024.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/13/2024] [Accepted: 04/15/2024] [Indexed: 05/31/2024]
Abstract
Protein aggregation is a hallmark of age-related neurodegeneration. Yet, aggregation during normal aging and in tissues other than the brain is poorly understood. Here, we leverage the African turquoise killifish to systematically profile protein aggregates in seven tissues of an aging vertebrate. Age-dependent aggregation is strikingly tissue specific and not simply driven by protein expression differences. Experimental interrogation in killifish and yeast, combined with machine learning, indicates that this specificity is linked to protein-autonomous biophysical features and tissue-selective alterations in protein quality control. Co-aggregation of protein quality control machinery during aging may further reduce proteostasis capacity, exacerbating aggregate burden. A segmental progeria model with accelerated aging in specific tissues exhibits selectively increased aggregation in these same tissues. Intriguingly, many age-related protein aggregates arise in wild-type proteins that, when mutated, drive human diseases. Our data chart a comprehensive landscape of protein aggregation during vertebrate aging and identify strong, tissue-specific associations with dysfunction and disease.
Collapse
Affiliation(s)
- Yiwen R Chen
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Itamar Harel
- The Silberman Institute, the Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel; Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Param Priya Singh
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Inbal Ziv
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Eitan Moses
- The Silberman Institute, the Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel
| | - Uri Goshtchevsky
- The Silberman Institute, the Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel
| | - Ben E Machado
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Anne Brunet
- Department of Genetics, Stanford University, Stanford, CA 94305, USA; Glenn Center for the Biology of Aging, Stanford University, Stanford, CA 94305, USA.
| | - Daniel F Jarosz
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
2
|
Wen X, Xu H, Woolley PR, Conway OM, Yao J, Matouschek A, Lambowitz AM, Paull TT. Senataxin deficiency disrupts proteostasis through nucleolar ncRNA-driven protein aggregation. J Cell Biol 2024; 223:e202309036. [PMID: 38717338 PMCID: PMC11080644 DOI: 10.1083/jcb.202309036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 01/19/2024] [Accepted: 03/13/2024] [Indexed: 05/12/2024] Open
Abstract
Senataxin is an evolutionarily conserved RNA-DNA helicase involved in DNA repair and transcription termination that is associated with human neurodegenerative disorders. Here, we investigated whether Senataxin loss affects protein homeostasis based on previous work showing R-loop-driven accumulation of DNA damage and protein aggregates in human cells. We find that Senataxin loss results in the accumulation of insoluble proteins, including many factors known to be prone to aggregation in neurodegenerative disorders. These aggregates are located primarily in the nucleolus and are promoted by upregulation of non-coding RNAs expressed from the intergenic spacer region of ribosomal DNA. We also map sites of R-loop accumulation in human cells lacking Senataxin and find higher RNA-DNA hybrids within the ribosomal DNA, peri-centromeric regions, and other intergenic sites but not at annotated protein-coding genes. These findings indicate that Senataxin loss affects the solubility of the proteome through the regulation of transcription-dependent lesions in the nucleus and the nucleolus.
Collapse
Affiliation(s)
- Xuemei Wen
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Hengyi Xu
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Phillip R. Woolley
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Olivia M. Conway
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Jun Yao
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Andreas Matouschek
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Alan M. Lambowitz
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
- Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - Tanya T. Paull
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
- Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
3
|
Callan-Sidat A, Zewdu E, Cavallaro M, Liu J, Hebenstreit D. N-terminal tagging of RNA Polymerase II shapes transcriptomes more than C-terminal alterations. iScience 2024; 27:109914. [PMID: 38799575 PMCID: PMC11126984 DOI: 10.1016/j.isci.2024.109914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 02/14/2024] [Accepted: 05/03/2024] [Indexed: 05/29/2024] Open
Abstract
RNA polymerase II (Pol II) has a C-terminal domain (CTD) that is unstructured, consisting of a large number of heptad repeats, and whose precise function remains unclear. Here, we investigate how altering the CTD's length and fusing it with protein tags affects transcriptional output on a genome-wide scale in mammalian cells at single-cell resolution. While transcription generally appears to occur in burst-like fashion, where RNA is predominantly made during short bursts of activity that are interspersed with periods of transcriptional silence, the CTD's role in shaping these dynamics seems gene-dependent; global patterns of bursting appear mostly robust to CTD alterations. Introducing protein tags with defined structures to the N terminus cause transcriptome-wide effects, however. We find the type of tag to dominate characteristics of the resulting transcriptomes. This is possibly due to Pol II-interacting factors, including non-coding RNAs, whose expression correlates with the tags. Proteins involved in liquid-liquid phase separation appear prominently.
Collapse
Affiliation(s)
- Adam Callan-Sidat
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Emmanuel Zewdu
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Massimo Cavallaro
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
- School of Computing and Mathematical Sciences, University of Leicester, Leicester LE1 7RH, UK
| | - Juntai Liu
- Department of Physics, University of Warwick, Coventry CV4 7AL, UK
| | | |
Collapse
|
4
|
Ainslie AP, Klaver M, Voshart DC, Gerrits E, den Dunnen WFA, Eggen BJL, Bergink S, Barazzuol L. Glioblastoma and its treatment are associated with extensive accelerated brain aging. Aging Cell 2024; 23:e14066. [PMID: 38234228 PMCID: PMC10928584 DOI: 10.1111/acel.14066] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/17/2023] [Accepted: 11/29/2023] [Indexed: 01/19/2024] Open
Abstract
Progressive neurocognitive dysfunction is the leading cause of a reduced quality of life in patients with primary brain tumors. Understanding how the human brain responds to cancer and its treatment is essential to improve the associated cognitive sequelae. In this study, we performed integrated transcriptomic and tissue analysis on postmortem normal-appearing non-tumor brain tissue from glioblastoma (GBM) patients that had received cancer treatments, region-matched brain tissue from unaffected control individuals and Alzheimer's disease (AD) patients. We show that normal-appearing non-tumor brain regions of patients with GBM display hallmarks of accelerated aging, in particular mitochondrial dysfunction, inflammation, and proteostasis deregulation. The extent and spatial pattern of this response decreased with distance from the tumor. Gene set enrichment analyses and a direct comparative analysis with an independent cohort of brain tissue samples from AD patients revealed a significant overlap in differentially expressed genes and a similar biological aging trajectory. Additionally, these responses were validated at the protein level showing the presence of increased lysosomal lipofuscin, phosphorylated microtubule-associated protein Tau, and oxidative DNA damage in normal-appearing brain areas of GBM patients. Overall, our data show that the brain of GBM patients undergoes accelerated aging and shared AD-like features, providing the basis for novel or repurposed therapeutic targets for managing brain tumor-related side effects.
Collapse
Affiliation(s)
- Anna P. Ainslie
- Department of Radiation OncologyUniversity Medical Center Groningen, University of GroningenGroningenThe Netherlands
- Department of Biomedical Sciences of Cells and SystemsUniversity Medical Center Groningen, University of GroningenGroningenThe Netherlands
- European Research Institute for the Biology of AgeingUniversity Medical Center Groningen, University of GroningenGroningenThe Netherlands
| | - Myrthe Klaver
- Department of Radiation OncologyUniversity Medical Center Groningen, University of GroningenGroningenThe Netherlands
- Department of Biomedical Sciences of Cells and SystemsUniversity Medical Center Groningen, University of GroningenGroningenThe Netherlands
- European Research Institute for the Biology of AgeingUniversity Medical Center Groningen, University of GroningenGroningenThe Netherlands
| | - Daniëlle C. Voshart
- Department of Radiation OncologyUniversity Medical Center Groningen, University of GroningenGroningenThe Netherlands
- Department of Biomedical Sciences of Cells and SystemsUniversity Medical Center Groningen, University of GroningenGroningenThe Netherlands
| | - Emma Gerrits
- Department of Biomedical Sciences of Cells and SystemsUniversity Medical Center Groningen, University of GroningenGroningenThe Netherlands
| | - Wilfred F. A. den Dunnen
- Department of Pathology and Medical BiologyUniversity Medical Center Groningen, University of GroningenGroningenThe Netherlands
| | - Bart J. L. Eggen
- Department of Biomedical Sciences of Cells and SystemsUniversity Medical Center Groningen, University of GroningenGroningenThe Netherlands
| | - Steven Bergink
- Department of Biomedical Sciences of Cells and SystemsUniversity Medical Center Groningen, University of GroningenGroningenThe Netherlands
- University College Groningen, University of GroningenGroningenThe Netherlands
| | - Lara Barazzuol
- Department of Radiation OncologyUniversity Medical Center Groningen, University of GroningenGroningenThe Netherlands
- Department of Biomedical Sciences of Cells and SystemsUniversity Medical Center Groningen, University of GroningenGroningenThe Netherlands
| |
Collapse
|
5
|
Paull TT, Woolley PR. A-T neurodegeneration and DNA damage-induced transcriptional stress. DNA Repair (Amst) 2024; 135:103647. [PMID: 38377644 DOI: 10.1016/j.dnarep.2024.103647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/08/2024] [Indexed: 02/22/2024]
Abstract
Loss of the ATM protein kinase in humans results in Ataxia-telangiectasia, a disorder characterized by childhood-onset neurodegeneration of the cerebellum as well as cancer predisposition and immunodeficiency. Although many aspects of ATM function are well-understood, the mechanistic basis of the progressive cerebellar ataxia that occurs in patients is not. Here we review recent progress related to the role of ATM in neurons and the cerebellum that comes from many sources: animal models, post-mortem brain tissue samples, and human neurons in culture. These observations have revealed new insights into the consequences of ATM loss on DNA damage, gene expression, and immune signaling in the brain. Many results point to the importance of reactive oxygen species as well as single-strand DNA breaks in the progression of molecular events leading to neuronal dysfunction. In addition, innate immunity signaling pathways appear to play a critical role in ATM functions in microglia, responding to various forms of nucleic acid sensors and regulating survival of neurons and other cell types. Overall, the results lead to an updated view of transcriptional stress and DNA damage resulting from ATM loss that results in changes in gene expression as well as neuroinflammation that contribute to the cerebellar neurodegeneration observed in patients.
Collapse
Affiliation(s)
- Tanya T Paull
- The University of Texas at Austin, Department of Molecular Biosciences, Austin, TX 78712, USA.
| | - Phillip R Woolley
- The University of Texas at Austin, Department of Molecular Biosciences, Austin, TX 78712, USA
| |
Collapse
|
6
|
Louros N, Schymkowitz J, Rousseau F. Mechanisms and pathology of protein misfolding and aggregation. Nat Rev Mol Cell Biol 2023; 24:912-933. [PMID: 37684425 DOI: 10.1038/s41580-023-00647-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2023] [Indexed: 09/10/2023]
Abstract
Despite advances in machine learning-based protein structure prediction, we are still far from fully understanding how proteins fold into their native conformation. The conventional notion that polypeptides fold spontaneously to their biologically active states has gradually been replaced by our understanding that cellular protein folding often requires context-dependent guidance from molecular chaperones in order to avoid misfolding. Misfolded proteins can aggregate into larger structures, such as amyloid fibrils, which perpetuate the misfolding process, creating a self-reinforcing cascade. A surge in amyloid fibril structures has deepened our comprehension of how a single polypeptide sequence can exhibit multiple amyloid conformations, known as polymorphism. The assembly of these polymorphs is not a random process but is influenced by the specific conditions and tissues in which they originate. This observation suggests that, similar to the folding of native proteins, the kinetics of pathological amyloid assembly are modulated by interactions specific to cells and tissues. Here, we review the current understanding of how intrinsic protein conformational propensities are modulated by physiological and pathological interactions in the cell to shape protein misfolding and aggregation pathology.
Collapse
Affiliation(s)
- Nikolaos Louros
- Switch Laboratory, VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Joost Schymkowitz
- Switch Laboratory, VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium.
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.
| | - Frederic Rousseau
- Switch Laboratory, VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium.
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.
| |
Collapse
|
7
|
Wysocki R, Rodrigues JI, Litwin I, Tamás MJ. Mechanisms of genotoxicity and proteotoxicity induced by the metalloids arsenic and antimony. Cell Mol Life Sci 2023; 80:342. [PMID: 37904059 PMCID: PMC10616229 DOI: 10.1007/s00018-023-04992-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/12/2023] [Accepted: 09/29/2023] [Indexed: 11/01/2023]
Abstract
Arsenic and antimony are metalloids with profound effects on biological systems and human health. Both elements are toxic to cells and organisms, and exposure is associated with several pathological conditions including cancer and neurodegenerative disorders. At the same time, arsenic- and antimony-containing compounds are used in the treatment of multiple diseases. Although these metalloids can both cause and cure disease, their modes of molecular action are incompletely understood. The past decades have seen major advances in our understanding of arsenic and antimony toxicity, emphasizing genotoxicity and proteotoxicity as key contributors to pathogenesis. In this review, we highlight mechanisms by which arsenic and antimony cause toxicity, focusing on their genotoxic and proteotoxic effects. The mechanisms used by cells to maintain proteostasis during metalloid exposure are also described. Furthermore, we address how metalloid-induced proteotoxicity may promote neurodegenerative disease and how genotoxicity and proteotoxicity may be interrelated and together contribute to proteinopathies. A deeper understanding of cellular toxicity and response mechanisms and their links to pathogenesis may promote the development of strategies for both disease prevention and treatment.
Collapse
Affiliation(s)
- Robert Wysocki
- Department of Genetics and Cell Physiology, Faculty of Biological Sciences, University of Wroclaw, 50-328, Wroclaw, Poland.
| | - Joana I Rodrigues
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 405 30, Göteborg, Sweden
| | - Ireneusz Litwin
- Academic Excellence Hub - Research Centre for DNA Repair and Replication, Faculty of Biological Sciences, University of Wroclaw, 50-328, Wroclaw, Poland
| | - Markus J Tamás
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 405 30, Göteborg, Sweden.
| |
Collapse
|
8
|
Zhao Y, Ye X, Xiong Z, Ihsan A, Ares I, Martínez M, Lopez-Torres B, Martínez-Larrañaga MR, Anadón A, Wang X, Martínez MA. Cancer Metabolism: The Role of ROS in DNA Damage and Induction of Apoptosis in Cancer Cells. Metabolites 2023; 13:796. [PMID: 37512503 PMCID: PMC10383295 DOI: 10.3390/metabo13070796] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/21/2023] [Accepted: 06/23/2023] [Indexed: 07/30/2023] Open
Abstract
Cancer is a huge challenge for people worldwide. High reactive oxygen species (ROS) levels are a recognized hallmark of cancer and an important aspect of cancer treatment research. Abnormally elevated ROS levels are often attributable to alterations in cellular metabolic activities and increased oxidative stress, which affects both the development and maintenance of cancer. Moderately high levels of ROS are beneficial to maintain tumor cell genesis and development, while toxic levels of ROS have been shown to be an important force in destroying cancer cells. ROS has become an important anticancer target based on the proapoptotic effect of toxic levels of ROS. Therefore, this review summarizes the role of increased ROS in DNA damage and the apoptosis of cancer cells caused by changes in cancer cell metabolism, as well as various anticancer therapies targeting ROS generation, in order to provide references for cancer therapies based on ROS generation.
Collapse
Affiliation(s)
- Yongxia Zhao
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaochun Ye
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhifeng Xiong
- Department of Animal Nutrition and Feed Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Awais Ihsan
- Department of Biosciences, COMSATS University Islamabad, Sahiwal Campus, Sahiwal 57000, Pakistan
| | - Irma Ares
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i+12), 28040 Madrid, Spain
| | - Marta Martínez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i+12), 28040 Madrid, Spain
| | - Bernardo Lopez-Torres
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i+12), 28040 Madrid, Spain
| | - María-Rosa Martínez-Larrañaga
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i+12), 28040 Madrid, Spain
| | - Arturo Anadón
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i+12), 28040 Madrid, Spain
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i+12), 28040 Madrid, Spain
| | - María-Aránzazu Martínez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i+12), 28040 Madrid, Spain
| |
Collapse
|
9
|
Ajouaou Y, Magnani E, Madakashira B, Jenkins E, Sadler KC. atm Mutation and Oxidative Stress Enhance the Pre-Cancerous Effects of UHRF1 Overexpression in Zebrafish Livers. Cancers (Basel) 2023; 15:cancers15082302. [PMID: 37190230 DOI: 10.3390/cancers15082302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 03/29/2023] [Indexed: 05/17/2023] Open
Abstract
The ataxia-telangiectasia mutated (atm) gene is activated in response to genotoxic stress and leads to activation of the tp53 tumor suppressor gene which induces either senescence or apoptosis as tumor suppressive mechanisms. Atm also serves non-canonical functions in the response to oxidative stress and chromatin reorganization. We previously reported that overexpression of the epigenetic regulator and oncogene Ubiquitin Like with PHD and Ring Finger Domains 1 (UHRF1) in zebrafish hepatocytes resulted in tp53-dependent hepatocyte senescence, a small liver and larval lethality. We investigated the role of atm on UHRF1-mediated phenotypes by generating zebrafish atm mutants. atm-/- adults were viable but had reduction in fertility. Embryos developed normally but were protected from lethality caused by etoposide or H2O2 exposure and failed to fully upregulate Tp53 targets or oxidative stress response genes in response to these treatments. In contrast to the finding that Tp53 prevents the small liver phenotype caused by UHRF1 overexpression, atm mutation and exposure to H2O2 further reduced the liver size in UHRF1 overexpressing larvae whereas treatment with the antioxidant N-acetyl cysteine suppressed this phenotype. We conclude that UHRF1 overexpression in hepatocytes causes oxidative stress, and that loss of atm further enhances this, triggering elimination of these precancerous cells, leading to a small liver.
Collapse
Affiliation(s)
- Yousra Ajouaou
- Program in Biology, New York University Abu Dhabi, Abu Dhabi P.O. 129188, United Arab Emirates
- Center for Genomics and Systems Biology (CGSB), New York University Abu Dhabi, Abu Dhabi P.O. 129188, United Arab Emirates
| | - Elena Magnani
- Program in Biology, New York University Abu Dhabi, Abu Dhabi P.O. 129188, United Arab Emirates
| | - Bhavani Madakashira
- Program in Biology, New York University Abu Dhabi, Abu Dhabi P.O. 129188, United Arab Emirates
| | - Eleanor Jenkins
- Program in Biology, New York University Abu Dhabi, Abu Dhabi P.O. 129188, United Arab Emirates
| | - Kirsten C Sadler
- Program in Biology, New York University Abu Dhabi, Abu Dhabi P.O. 129188, United Arab Emirates
- Center for Genomics and Systems Biology (CGSB), New York University Abu Dhabi, Abu Dhabi P.O. 129188, United Arab Emirates
| |
Collapse
|
10
|
Wang ZX, Li YL, Pu JL, Zhang BR. DNA Damage-Mediated Neurotoxicity in Parkinson’s Disease. Int J Mol Sci 2023; 24:ijms24076313. [PMID: 37047285 PMCID: PMC10093980 DOI: 10.3390/ijms24076313] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Parkinson’s disease (PD) is the second most common neurodegenerative disease around the world; however, its pathogenesis remains unclear so far. Recent advances have shown that DNA damage and repair deficiency play an important role in the pathophysiology of PD. There is growing evidence suggesting that DNA damage is involved in the propagation of cellular damage in PD, leading to neuropathology under different conditions. Here, we reviewed the current work on DNA damage repair in PD. First, we outlined the evidence and causes of DNA damage in PD. Second, we described the potential pathways by which DNA damage mediates neurotoxicity in PD and discussed the precise mechanisms that drive these processes by DNA damage. In addition, we looked ahead to the potential interventions targeting DNA damage and repair. Finally, based on the current status of research, key problems that need to be addressed in future research were proposed.
Collapse
Affiliation(s)
| | | | - Jia-Li Pu
- Correspondence: (J.-L.P.); (B.-R.Z.); Tel./Fax: +86-571-87784752 (J.-L.P. & B.-R.Z.)
| | - Bao-Rong Zhang
- Correspondence: (J.-L.P.); (B.-R.Z.); Tel./Fax: +86-571-87784752 (J.-L.P. & B.-R.Z.)
| |
Collapse
|
11
|
Mukherjee P, Panda P, Kasturi P. A comparative meta-analysis of membraneless organelle-associated proteins with age related proteome of C. elegans. Cell Stress Chaperones 2022; 27:619-631. [PMID: 36169889 PMCID: PMC9672229 DOI: 10.1007/s12192-022-01299-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 01/25/2023] Open
Abstract
Proteome imbalance can lead to protein misfolding and aggregation which is associated with pathologies. Protein aggregation can also be an active, organized process and can be exploited by cells as a survival strategy. In adverse conditions, it is beneficial to deposit the proteins in a condensate rather degrading and resynthesizing. Membraneless organelles (MLOs) are biological condensates formed through liquid-liquid phase separation (LLPS), involving cellular components such as nucleic acids and proteins. LLPS is a regulated process, which when perturbed, can undergo a transition from a physiological liquid condensate to pathological solid-like protein aggregates. To understand how the MLO-associated proteins (MLO-APs) behave during aging, we performed a comparative meta-analysis with age-related proteome of C. elegans. We found that the MLO-APs are highly abundant throughout the lifespan in wild-type and long-lived daf-2 mutant animals. Interestingly, they are aggregating more in long-lived mutant animals compared to the age matched wild-type and short-lived daf-16 and hsf-1 mutant animals. GO term analysis revealed that the cell cycle and embryonic development are among the top enriched processes in addition to RNP components in aggregated proteome. Considering antagonistic pleotropic nature of these developmental genes and post mitotic status of C. elegans, we assume that these proteins phase transit during post development. As the organism ages, these MLO-APs either mature to become more insoluble or dissolve in uncontrolled manner. However, in the long-lived daf-2 mutant animals, the MLOs may attain protective states due to extended availability and association of molecular chaperones.
Collapse
Affiliation(s)
- Pritam Mukherjee
- BioX Centre, School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh, 175005, India
| | - Prajnadipta Panda
- BioX Centre, School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh, 175005, India
| | - Prasad Kasturi
- BioX Centre, School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh, 175005, India.
| |
Collapse
|