1
|
Grodner B, Wu DT, Hahm S, Takayasu L, Wen N, Kim DM, Chen CY, De Vlaminck I. Microscale Spatial Dysbiosis in Oral biofilms Associated with Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.24.604873. [PMID: 39211202 PMCID: PMC11360903 DOI: 10.1101/2024.07.24.604873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Microbiome dysbiosis has largely been defined using compositional analysis of metagenomic sequencing data; however, differences in the spatial arrangement of bacteria between healthy and diseased microbiomes remain largely unexplored. In this study, we measured the spatial arrangement of bacteria in dental implant biofilms from patients with healthy implants, peri-implant mucositis, or peri-implantitis, an oral microbiome-associated inflammatory disease. We discovered that peri-implant biofilms from patients with mild forms of the disease were characterized by large single-genus patches of bacteria, while biofilms from healthy sites were more complex, mixed structures. Based on these findings, we propose a model of peri-implant dysbiosis where changes in biofilm spatial architecture allow the colonization of new community members. This model indicates that spatial structure could be used as a potential biomarker for community stability and has implications in diagnosis and treatment of peri-implant diseases. These results enhance our understanding of peri-implant disease pathogenesis and may be broadly relevant for spatially structured microbiomes.
Collapse
|
2
|
Smith TJ, Sundarraman D, Melancon E, Desban L, Parthasarathy R, Guillemin K. A mucin-regulated adhesin determines the spatial organization and inflammatory character of a bacterial symbiont in the vertebrate gut. Cell Host Microbe 2023; 31:1371-1385.e6. [PMID: 37516109 PMCID: PMC10492631 DOI: 10.1016/j.chom.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 05/11/2023] [Accepted: 07/06/2023] [Indexed: 07/31/2023]
Abstract
In a healthy gut, microbes are often aggregated with host mucus, yet the molecular basis for this organization and its impact on intestinal health are unclear. Mucus is a viscous physical barrier separating resident microbes from epithelia, but it also provides glycan cues that regulate microbial behaviors. Here, we describe a mucin-sensing pathway in an Aeromonas symbiont of zebrafish, Aer01. In response to the mucin-associated glycan N-acetylglucosamine, a sensor kinase regulates the expression of an aggregation-promoting adhesin we named MbpA. Upon MbpA disruption, Aer01 colonizes to normal levels but is largely planktonic and more pro-inflammatory. Increasing cell surface MbpA rescues these traits. MbpA-like adhesins are common in human-associated bacteria, and the expression of an Akkermansia muciniphila MbpA-like adhesin in MbpA-deficient Aer01 restores lumenal aggregation and reverses its pro-inflammatory character. Our work demonstrates how resident bacteria use mucin glycans to modulate behaviors congruent with host health.
Collapse
Affiliation(s)
- T Jarrod Smith
- Institute of Molecular Biology, University of Oregon, Eugene, OR, USA
| | - Deepika Sundarraman
- Department of Physics and Materials Science Institute, University of Oregon, Eugene, OR, USA
| | - Ellie Melancon
- Institute of Neuroscience, University of Oregon, Eugene, OR, USA
| | - Laura Desban
- Institute of Neuroscience, University of Oregon, Eugene, OR, USA
| | - Raghuveer Parthasarathy
- Department of Physics and Materials Science Institute, University of Oregon, Eugene, OR, USA
| | - Karen Guillemin
- Institute of Molecular Biology, University of Oregon, Eugene, OR, USA; Institute of Neuroscience, University of Oregon, Eugene, OR, USA; Humans and the Microbiome Program, Canadian Institute for Advanced Research, Toronto, ON, Canada.
| |
Collapse
|
3
|
Denk-Lobnig M, Wood KB. Antibiotic resistance in bacterial communities. Curr Opin Microbiol 2023; 74:102306. [PMID: 37054512 PMCID: PMC10527032 DOI: 10.1016/j.mib.2023.102306] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 02/16/2023] [Accepted: 03/06/2023] [Indexed: 04/15/2023]
Abstract
Bacteria are single-celled organisms, but the survival of microbial communities relies on complex dynamics at the molecular, cellular, and ecosystem scales. Antibiotic resistance, in particular, is not just a property of individual bacteria or even single-strain populations, but depends heavily on the community context. Collective community dynamics can lead to counterintuitive eco-evolutionary effects like survival of less resistant bacterial populations, slowing of resistance evolution, or population collapse, yet these surprising behaviors are often captured by simple mathematical models. In this review, we highlight recent progress - in many cases, advances driven by elegant combinations of quantitative experiments and theoretical models - in understanding how interactions between bacteria and with the environment affect antibiotic resistance, from single-species populations to multispecies communities embedded in an ecosystem.
Collapse
Affiliation(s)
| | - Kevin B Wood
- Department of Biophysics, University of Michigan, United States.
| |
Collapse
|
4
|
Xia H, Chen H, Cheng X, Yin M, Yao X, Ma J, Huang M, Chen G, Liu H. Zebrafish: an efficient vertebrate model for understanding role of gut microbiota. Mol Med 2022; 28:161. [PMID: 36564702 PMCID: PMC9789649 DOI: 10.1186/s10020-022-00579-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 11/21/2022] [Indexed: 12/24/2022] Open
Abstract
Gut microbiota plays a critical role in the maintenance of host health. As a low-cost and genetically tractable vertebrate model, zebrafish have been widely used for biological research. Zebrafish and humans share some similarities in intestinal physiology and function, and this allows zebrafish to be a surrogate model for investigating the crosstalk between the gut microbiota and host. Especially, zebrafish have features such as high fecundity, external fertilization, and early optical transparency. These enable the researchers to employ the fish to address questions not easily addressed in other animal models. In this review, we described the intestine structure of zebrafish. Also, we summarized the methods of generating a gnotobiotic zebrafish model, the factors affecting its intestinal flora, and the study progress of gut microbiota functions in zebrafish. Finally, we discussed the limitations and challenges of the zebrafish model for gut microbiota studies. In summary, this review established that zebrafish is an attractive research tool to understand mechanistic insights into host-microbe interaction.
Collapse
Affiliation(s)
- Hui Xia
- College of Basic Medicine, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Hongshan Disctrict, Wuhan, 430065, China
| | - Huimin Chen
- College of Basic Medicine, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Hongshan Disctrict, Wuhan, 430065, China
| | - Xue Cheng
- College of Basic Medicine, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Hongshan Disctrict, Wuhan, 430065, China
| | - Mingzhu Yin
- College of Basic Medicine, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Hongshan Disctrict, Wuhan, 430065, China
| | - Xiaowei Yao
- College of Basic Medicine, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Hongshan Disctrict, Wuhan, 430065, China
| | - Jun Ma
- College of Basic Medicine, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Hongshan Disctrict, Wuhan, 430065, China
| | - Mengzhen Huang
- College of Basic Medicine, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Hongshan Disctrict, Wuhan, 430065, China
| | - Gang Chen
- Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, 430061, China.
| | - Hongtao Liu
- College of Basic Medicine, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Hongshan Disctrict, Wuhan, 430065, China.
| |
Collapse
|
5
|
Sundarraman D, Smith TJ, Kast JVZ, Guillemin K, Parthasarathy R. Disaggregation as an interaction mechanism among intestinal bacteria. Biophys J 2022; 121:3458-3473. [PMID: 35982615 PMCID: PMC9515126 DOI: 10.1016/j.bpj.2022.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/22/2022] [Accepted: 08/11/2022] [Indexed: 12/01/2022] Open
Abstract
The gut microbiome contains hundreds of interacting species that together influence host health and development. The mechanisms by which intestinal microbes can interact, however, remain poorly mapped and are often modeled as spatially unstructured competitions for chemical resources. Recent imaging studies examining the zebrafish gut have shown that patterns of aggregation are central to bacterial population dynamics. In this study, we focus on bacterial species of genera Aeromonas and Enterobacter. Two zebrafish gut-derived isolates, Aeromonas ZOR0001 (AE) and Enterobacter ZOR0014 (EN), when mono-associated with the host, are highly aggregated and located primarily in the intestinal midgut. An Aeromonas isolate derived from the commensal strain, Aeromonas-MB4 (AE-MB4), differs from the parental strain in that it is composed mostly of planktonic cells localized to the anterior gut. When challenged by AE-MB4, clusters of EN rapidly fragment into non-motile, slow-growing, dispersed individual cells with overall abundance two orders of magnitude lower than the mono-association value. In the presence of a certain set of additional gut bacterial species, these effects on EN are dampened. In particular, if AE-MB4 invades an already established multi-species community, EN persists in the form of large aggregates. These observations reveal an unanticipated competition mechanism based on manipulation of bacterial spatial organization, namely dissolution of aggregates, and provide evidence that multi-species communities may facilitate stable intestinal co-existence.
Collapse
Affiliation(s)
- Deepika Sundarraman
- Department of Physics and Materials Science Institute, University of Oregon, Eugene, Oregon
| | - T Jarrod Smith
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon
| | - Jade V Z Kast
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon
| | - Karen Guillemin
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon; Humans and the Microbiome Program, CIFAR, Toronto, Ontario
| | - Raghuveer Parthasarathy
- Department of Physics and Materials Science Institute, University of Oregon, Eugene, Oregon; Institute of Molecular Biology, University of Oregon, Eugene, Oregon.
| |
Collapse
|