1
|
Rodriguez-Valbuena H, Salcedo J, De Their O, Flot JF, Tiozzo S, De Tomaso AW. Genetic and functional diversity of allorecognition receptors in the urochordate, Botryllus schlosseri. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.16.618699. [PMID: 39463968 PMCID: PMC11507803 DOI: 10.1101/2024.10.16.618699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Allorecognition in Botryllus schlosseri is controlled by a highly polymorphic locus (the fuhc), and functionally similar to missing-self recognition utilized by Natural Killer cells-compatibility is determined by sharing a self-allele, and integration of activating and inhibitory signals determines outcome. We had found these signals were generated by two fuhc-encoded receptors, called fester and uncle fester. Here we show that fester genes are members of an extended family consisting of >37 loci, and co-expressed with an even more diverse gene family-the fester co-receptors (FcoR). The FcoRs are membrane proteins related to fester, but include conserved tyrosine motifs, including ITIMs and hemITAMs. Both genes are encoded in highly polymorphic haplotypes on multiple chromosomes, revealing an unparalleled level of diversity of innate receptors. Our results also suggest that ITAM/ITIM signal integration is a deeply conserved mechanism that has allowed convergent evolution of innate and adaptive cell-based recognition systems.
Collapse
Affiliation(s)
| | - Jorge Salcedo
- Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA, USA
| | - Olivier De Their
- Evolutionary Biology & Ecology, C.P. 160/12, Université libre de Bruxelles (ULB), Avenue F.D. Roosevelt 50, B-1050 Brussels, Belgium
| | - Jean Francois Flot
- Evolutionary Biology & Ecology, C.P. 160/12, Université libre de Bruxelles (ULB), Avenue F.D. Roosevelt 50, B-1050 Brussels, Belgium
| | - Stefano Tiozzo
- Evolutionary Biology & Ecology, C.P. 160/12, Université libre de Bruxelles (ULB), Avenue F.D. Roosevelt 50, B-1050 Brussels, Belgium
| | - Anthony W De Tomaso
- Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA, USA
| |
Collapse
|
2
|
Ing-Esteves S, Lefebvre JL. Gamma-protocadherins regulate dendrite self-recognition and dynamics to drive self-avoidance. Curr Biol 2024; 34:4224-4239.e4. [PMID: 39214087 DOI: 10.1016/j.cub.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 06/03/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024]
Abstract
Neurons form cell-type-specific morphologies that are shaped by cell-surface molecules and their cellular events governing dendrite growth. One growth rule is dendrite self-avoidance, whereby dendrites distribute uniformly within a neuron's territory by avoiding sibling branches. In mammalian neurons, dendrite self-avoidance is regulated by a large family of cell-recognition molecules called the clustered protocadherins (cPcdhs). Genetic and molecular studies suggest that the cPcdhs mediate homophilic recognition and repulsion between self-dendrites. However, this model has not been tested through direct investigation of self-avoidance during development. Here, we performed live imaging and four-dimensional (4D) quantifications of dendrite morphogenesis to define the dynamics and cPcdh-dependent mechanisms of self-avoidance. We focused on the mouse retinal starburst amacrine cell (SAC), which requires the gamma-Pcdhs (Pcdhgs) and self/non-self-recognition to establish a stereotypic radial morphology while permitting dendritic interactions with neighboring SACs. Through morphogenesis, SACs extend dendritic protrusions that iteratively fill the growing arbor and contact and retract from nearby self-dendrites. Compared to non-self-contacting protrusions, self-contacting events have longer lifetimes, and a subset persists as loops. In the absence of the Pcdhgs, non-self-contacting dynamics are unaffected but self-contacting retractions are significantly diminished. Self-contacting bridges accumulate, leading to the bundling of dendritic processes and disruption to the arbor shape. By tracking dendrite self-avoidance in real time, our findings establish that the γ-Pcdhs mediate self-recognition and retraction between contacting sibling dendrites. Our results also illustrate how self-avoidance shapes stochastic and space-filling dendritic outgrowth for robust pattern formation in mammalian neurons.
Collapse
Affiliation(s)
- Samantha Ing-Esteves
- Program for Neuroscience and Mental Health, Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Julie L Lefebvre
- Program for Neuroscience and Mental Health, Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
3
|
Wiseglass G, Boni N, Smorodinsky-Atias K, Rubinstein R. Clustered protocadherin cis-interactions are required for combinatorial cell-cell recognition underlying neuronal self-avoidance. Proc Natl Acad Sci U S A 2024; 121:e2319829121. [PMID: 38976736 PMCID: PMC11260096 DOI: 10.1073/pnas.2319829121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 06/04/2024] [Indexed: 07/10/2024] Open
Abstract
In the developing human brain, only 53 stochastically expressed clustered protocadherin (cPcdh) isoforms enable neurites from individual neurons to recognize and self-avoid while simultaneously maintaining contact with neurites from other neurons. Cell assays have demonstrated that self-recognition occurs only when all cPcdh isoforms perfectly match across the cell boundary, with a single mismatch in the cPcdh expression profile interfering with recognition. It remains unclear, however, how a single mismatched isoform between neighboring cells is sufficient to block erroneous recognitions. Using systematic cell aggregation experiments, we show that abolishing cPcdh interactions on the same membrane (cis) results in a complete loss of specific combinatorial binding between cells (trans). Our computer simulations demonstrate that the organization of cPcdh in linear array oligomers, composed of cis and trans interactions, enhances self-recognition by increasing the concentration and stability of cPcdh trans complexes between the homotypic membranes. Importantly, we show that the presence of mismatched isoforms between cells drastically diminishes the concentration and stability of the trans complexes. Overall, we provide an explanation for the role of the cPcdh assembly arrangements in neuronal self/non-self-discrimination underlying neuronal self-avoidance.
Collapse
Affiliation(s)
- Gil Wiseglass
- Department of Biochemistry and Molecular Biology, School of Neurobiology, Biochemistry and Biophysics, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv6997801, Israel
| | - Nadir Boni
- Department of Biochemistry and Molecular Biology, School of Neurobiology, Biochemistry and Biophysics, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv6997801, Israel
| | - Karina Smorodinsky-Atias
- Department of Biochemistry and Molecular Biology, School of Neurobiology, Biochemistry and Biophysics, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv6997801, Israel
| | - Rotem Rubinstein
- Department of Biochemistry and Molecular Biology, School of Neurobiology, Biochemistry and Biophysics, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv6997801, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv6997801, Israel
| |
Collapse
|
4
|
Hanes CM, Mah KM, Steffen DM, McLeod CM, Marcucci CG, Fuller LC, Burgess RW, Garrett AM, Weiner JA. A C-terminal motif containing a PKC phosphorylation site regulates γ-Protocadherin-mediated dendrite arborization in the cerebral cortex in vivo. Dev Neurobiol 2024; 84:217-235. [PMID: 38837880 PMCID: PMC11251855 DOI: 10.1002/dneu.22950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/11/2024] [Accepted: 05/22/2024] [Indexed: 06/07/2024]
Abstract
The Pcdhg gene cluster encodes 22 γ-Protocadherin (γ-Pcdh) cell adhesion molecules that critically regulate multiple aspects of neural development, including neuronal survival, dendritic and axonal arborization, and synapse formation and maturation. Each γ-Pcdh isoform has unique protein domains-a homophilically interacting extracellular domain and a juxtamembrane cytoplasmic domain-as well as a C-terminal cytoplasmic domain shared by all isoforms. The extent to which isoform-specific versus shared domains regulate distinct γ-Pcdh functions remains incompletely understood. Our previous in vitro studies identified protein kinase C (PKC) phosphorylation of a serine residue within a shared C-terminal motif as a mechanism through which γ-Pcdh promotion of dendrite arborization via myristoylated alanine-rich C-kinase substrate (MARCKS) is abrogated. Here, we used CRISPR/Cas9 genome editing to generate two new mouse lines expressing only non-phosphorylatable γ-Pcdhs, due either to a serine-to-alanine mutation (PcdhgS/A) or to a 15-amino acid C-terminal deletion resulting from insertion of an early stop codon (PcdhgCTD). Both lines are viable and fertile, and the density and maturation of dendritic spines remain unchanged in both PcdhgS/A and PcdhgCTD cortex. Dendrite arborization of cortical pyramidal neurons, however, is significantly increased in both lines, as are levels of active MARCKS. Intriguingly, despite having significantly reduced levels of γ-Pcdh proteins, the PcdhgCTD mutation yields the strongest phenotype, with even heterozygous mutants exhibiting increased arborization. The present study confirms that phosphorylation of a shared C-terminal motif is a key γ-Pcdh negative regulation point and contributes to a converging understanding of γ-Pcdh family function in which distinct roles are played by both individual isoforms and discrete protein domains.
Collapse
Affiliation(s)
- Camille M. Hanes
- Department of Biology, Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, USA
| | - Kar Men Mah
- Department of Biology, Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, USA
| | - David M. Steffen
- Department of Biology, Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, USA
| | - Cathy M. McLeod
- Department of Pharmacology and Department of Ophthalmology, Visual, and Anatomical Sciences, Wayne State University, Detroit, MI 48202, USA
| | - Charles G. Marcucci
- Department of Biology, Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, USA
| | - Leah C. Fuller
- Department of Biology, Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, USA
| | | | - Andrew M. Garrett
- Department of Pharmacology and Department of Ophthalmology, Visual, and Anatomical Sciences, Wayne State University, Detroit, MI 48202, USA
| | - Joshua A. Weiner
- Department of Biology, Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
5
|
Morano NC, Lopez DH, Meltzer H, Sergeeva AP, Katsamba PS, Rostam KD, Gupta HP, Becker JE, Bornstein B, Cosmanescu F, Schuldiner O, Honig B, Mann RS, Shapiro L. Cis inhibition of co-expressed DIPs and Dprs shapes neural development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.04.583391. [PMID: 38895375 PMCID: PMC11185508 DOI: 10.1101/2024.03.04.583391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
In Drosophila , two interacting adhesion protein families, Dprs and DIPs, coordinate the assembly of neural networks. While intercellular DIP/Dpr interactions have been well characterized, DIPs and Dprs are often co-expressed within the same cells, raising the question as to whether they also interact in cis . We show, in cultured cells and in vivo, that DIP-α and DIP-δ can interact in cis with their ligands, Dpr6/10 and Dpr12, respectively. When co-expressed in cis with their cognate partners, these Dprs regulate the extent of trans binding, presumably through competitive cis interactions. We demonstrate the neurodevelopmental effects of cis inhibition in fly motor neurons and in the mushroom body. We further show that a long disordered region of DIP-α at the C-terminus is required for cis but not trans interactions, likely because it alleviates geometric constraints on cis binding. Thus, the balance between cis and trans interactions plays a role in controlling neural development.
Collapse
|
6
|
Zipursky S, Lee J, Sergeeva A, Ahlsen G, Mannepalli S, Bahna F, Goodman K, Khakh B, Weiner J, Shapiro L, Honig B. Astrocyte morphogenesis requires self-recognition. RESEARCH SQUARE 2024:rs.3.rs-3932947. [PMID: 38463964 PMCID: PMC10925414 DOI: 10.21203/rs.3.rs-3932947/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Self-recognition is a fundamental cellular process across evolution and forms the basis of neuronal self-avoidance1-4. Clustered protocadherins (Pcdh), comprising a large family of isoform-specific homophilic recognition molecules, play a pivotal role in neuronal self-avoidance required for mammalian brain development5-7. The probabilistic expression of different Pcdh isoforms confers unique identities upon neurons and forms the basis for neuronal processes to discriminate between self and non-self5,6,8. Whether this self-recognition mechanism exists in astrocytes, the other predominant cell type of the brain, remains unknown. Here, we report that a specific isoform in the Pcdhγ cluster, γC3, is highly enriched in human and murine astrocytes. Through genetic manipulation, we demonstrate that γC3 acts autonomously to regulate astrocyte morphogenesis in the mouse visual cortex. To determine if γC3 proteins act by promoting recognition between processes of the same astrocyte, we generated pairs of γC3 chimeric proteins capable of heterophilic binding to each other, but incapable of homophilic binding. Co-expressing complementary heterophilic binding isoform pairs in the same γC3 null astrocyte restored normal morphology. By contrast, chimeric γC3 proteins individually expressed in single γC3 null mutant astrocytes did not. These data establish that self-recognition is essential for astrocyte development in the mammalian brain and that, by contrast to neuronal self-recognition, a single Pcdh isoform is both necessary and sufficient for this process.
Collapse
Affiliation(s)
| | - John Lee
- University of California Los Angeles
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Leon WRM, Steffen DM, Dale-Huang FR, Rakela B, Breevoort A, Romero-Rodriguez R, Hasenstaub AR, Stryker MP, Weiner JA, Alvarez-Buylla A. The clustered gamma protocadherin PcdhγC4 isoform regulates cortical interneuron programmed cell death in the mouse cortex. Proc Natl Acad Sci U S A 2024; 121:e2313596120. [PMID: 38285948 PMCID: PMC10861877 DOI: 10.1073/pnas.2313596120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/16/2023] [Indexed: 01/31/2024] Open
Abstract
Cortical inhibitory interneurons (cINs) are born in the ventral forebrain and migrate into the cortex where they make connections with locally produced excitatory glutamatergic neurons. Cortical function critically depends on the number of cINs, which is also key to establishing the appropriate inhibitory/excitatory balance. The final number of cINs is determined during a postnatal period of programmed cell death (PCD) when ~40% of the young cINs are eliminated. Previous work shows that the loss of clustered gamma protocadherins (Pcdhgs), but not of genes in the Pcdha or Pcdhb clusters, dramatically increased BAX-dependent cIN PCD. Here, we show that PcdhγC4 is highly expressed in cINs of the mouse cortex and that this expression increases during PCD. The sole deletion of the PcdhγC4 isoform, but not of the other 21 isoforms in the Pcdhg gene cluster, increased cIN PCD. Viral expression of the PcdhγC4, in cIN lacking the function of the entire Pcdhg cluster, rescued most of these cells from cell death. We conclude that PcdhγC4 plays a critical role in regulating the survival of cINs during their normal period of PCD. This highlights how a single isoform of the Pcdhg cluster, which has been linked to human neurodevelopmental disorders, is essential to adjust cIN cell numbers during cortical development.
Collapse
Affiliation(s)
- Walter R. Mancia Leon
- Department of Neurological Surgery and The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA94143
| | - David M. Steffen
- Department of Neurological Surgery and The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA94143
- Department of Biology, The University of Iowa, Iowa City, IA52242
| | - Fiona R. Dale-Huang
- Department of Neurological Surgery and The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA94143
| | - Benjamin Rakela
- Department of Physiology, University of California, San Francisco, San Francisco, CA94143
| | - Arnar Breevoort
- Department of Physiology, University of California, San Francisco, San Francisco, CA94143
| | - Ricardo Romero-Rodriguez
- Department of Neurological Surgery and The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA94143
| | - Andrea R. Hasenstaub
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, San Francisco, CA94143
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA94143
| | - Michael P. Stryker
- Department of Physiology, University of California, San Francisco, San Francisco, CA94143
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA94143
| | - Joshua A. Weiner
- Department of Biology, The University of Iowa, Iowa City, IA52242
| | - Arturo Alvarez-Buylla
- Department of Neurological Surgery and The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA94143
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA94143
| |
Collapse
|
8
|
Hanes CM, Mah KM, Steffen DM, Marcucci CG, Fuller LC, Burgess RW, Garrett AM, Weiner JA. A C-terminal motif containing a PKC phosphorylation site regulates γ-Protocadherin-mediated dendrite arborization in the cerebral cortex in vivo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.25.577214. [PMID: 38328061 PMCID: PMC10849722 DOI: 10.1101/2024.01.25.577214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
The Pcdhg gene cluster encodes 22 γ-Protocadherin (γ-Pcdh) cell adhesion molecules that critically regulate multiple aspects of neural development, including neuronal survival, dendritic and axonal arborization, and synapse formation and maturation. Each γ-Pcdh isoform has unique protein domains-a homophilically-interacting extracellular domain and a juxtamembrane cytoplasmic domain-as well as a C-terminal cytoplasmic domain shared by all isoforms. The extent to which isoform-specific vs. shared domains regulate distinct γ-Pcdh functions remains incompletely understood. Our previous in vitro studies identified PKC phosphorylation of a serine residue within a shared C-terminal motif as a mechanism through which γ-Pcdh promotion of dendrite arborization via MARCKS is abrogated. Here, we used CRISPR/Cas9 genome editing to generate two new mouse lines expressing only non-phosphorylatable γ-Pcdhs, due either to a serine-to-alanine mutation (PcdhgS/A) or to a 15-amino acid C-terminal deletion resulting from insertion of an early stop codon (PcdhgCTD). Both lines are viable and fertile, and the density and maturation of dendritic spines remains unchanged in both PcdhgS/A and PcdhgCTD cortex. Dendrite arborization of cortical pyramidal neurons, however, is significantly increased in both lines, as are levels of active MARCKS. Intriguingly, despite having significantly reduced levels of γ-Pcdh proteins, the PcdhgCTD mutation yields the strongest phenotype, with even heterozygous mutants exhibiting increased arborization. The present study confirms that phosphorylation of a shared C-terminal motif is a key γ-Pcdh negative regulation point, and contributes to a converging understanding of γ-Pcdh family function in which distinct roles are played by both individual isoforms and discrete protein domains.
Collapse
Affiliation(s)
- Camille M. Hanes
- Department of Biology, Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA 52242
| | - Kar Men Mah
- Department of Biology, Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA 52242
| | - David M. Steffen
- Department of Biology, Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA 52242
| | - Charles G. Marcucci
- Department of Biology, Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA 52242
| | - Leah C. Fuller
- Department of Biology, Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA 52242
| | | | - Andrew M. Garrett
- Department of Pharmacology and Department of Ophthalmology, Visual, and Anatomical Sciences, Wayne State University, Detroit, MI 48202
| | - Joshua A. Weiner
- Department of Biology, Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA 52242
| |
Collapse
|
9
|
Dong H, Li J, Wu Q, Jin Y. Confluence and convergence of Dscam and Pcdh cell-recognition codes. Trends Biochem Sci 2023; 48:1044-1057. [PMID: 37839971 DOI: 10.1016/j.tibs.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/02/2023] [Accepted: 09/08/2023] [Indexed: 10/17/2023]
Abstract
The ability of neurites of the same neuron to avoid each other (self-avoidance) is a conserved feature in both invertebrates and vertebrates. The key to self-avoidance is the generation of a unique subset of cell-surface proteins in individual neurons engaging in isoform-specific homophilic interactions that drive neurite repulsion rather than adhesion. Among these cell-surface proteins are fly Dscam1 and vertebrate clustered protocadherins (cPcdhs), as well as the recently characterized shortened Dscam (sDscam) in the Chelicerata. Herein, we review recent advances in our understanding of how cPcdh, Dscam, and sDscam cell-surface recognition codes are expressed and translated into cellular functions essential for neural wiring.
Collapse
Affiliation(s)
- Haiyang Dong
- The First Affiliated Hospital, School of Medicine, Zhejiang University, 310006, Hangzhou, China; MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, ZJ310058, China
| | - Jinhuan Li
- Center for Comparative Biomedicine, Ministry of Education Key Laboratory of Systems Biomedicine, State Key Laboratory of Systems Medicine for Cancer, Institute of Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qiang Wu
- Center for Comparative Biomedicine, Ministry of Education Key Laboratory of Systems Biomedicine, State Key Laboratory of Systems Medicine for Cancer, Institute of Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yongfeng Jin
- The First Affiliated Hospital, School of Medicine, Zhejiang University, 310006, Hangzhou, China; MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, ZJ310058, China.
| |
Collapse
|
10
|
Kawamura N, Osuka T, Kaneko R, Kishi E, Higuchi R, Yoshimura Y, Hirabayashi T, Yagi T, Tarusawa E. Reciprocal Connections between Parvalbumin-Expressing Cells and Adjacent Pyramidal Cells Are Regulated by Clustered Protocadherin γ. eNeuro 2023; 10:ENEURO.0250-23.2023. [PMID: 37890993 PMCID: PMC10614112 DOI: 10.1523/eneuro.0250-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 10/29/2023] Open
Abstract
Functional neural circuits in the cerebral cortex are established through specific neural connections between excitatory and various inhibitory cell types. However, the molecular mechanisms underlying synaptic partner recognition remain unclear. In this study, we examined the impact of clustered protocadherin-γ (cPcdhγ) gene deletion in parvalbumin-positive (PV+) cells on intralaminar and translaminar neural circuits formed between PV+ and pyramidal (Pyr) cells in the primary visual cortex (V1) of male and female mice. First, we used whole-cell recordings and laser-scan photostimulation with caged glutamate to map excitatory inputs from layer 2/3 to layer 6. We found that cPcdhγ-deficient PV+ cells in layer 2/3 received normal translaminar inputs from Pyr cells through layers 2/3-6. Second, to further elucidate the effect on PV+-Pyr microcircuits within intralaminar layer 2/3, we conducted multiple whole-cell recordings. While the overall connection probability of PV+-Pyr cells remained largely unchanged, the connectivity of PV+-Pyr was significantly different between control and PV+-specific cPcdhγ-conditional knock-out (PV-cKO) mice. In control mice, the number of reciprocally connected PV+ cells was significantly higher than PV+ cells connected one way to Pyr cells, a difference that was not significant in PV-cKO mice. Interestingly, the proportion of highly reciprocally connected PV+ cells to Pyr cells with large unitary IPSC (uIPSC) amplitudes was reduced in PV-cKO mice. Conversely, the proportion of middle reciprocally connected PV+ cells to Pyr cells with large uIPSC amplitudes increased compared with control mice. This study demonstrated that cPcdhγ in PV+ cells modulates their reciprocity with Pyr cells in the cortex.
Collapse
Affiliation(s)
- Nanami Kawamura
- KOKORO-Biology Group, Laboratories for Integrated Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Tomoki Osuka
- KOKORO-Biology Group, Laboratories for Integrated Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Ryosuke Kaneko
- KOKORO-Biology Group, Laboratories for Integrated Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Eri Kishi
- KOKORO-Biology Group, Laboratories for Integrated Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Ryuon Higuchi
- KOKORO-Biology Group, Laboratories for Integrated Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yumiko Yoshimura
- Section of Visual Information Processing, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Department of Physiological Sciences, The Graduate University for Advanced Studies, Okazaki, Aichi 444-8585, Japan
| | - Takahiro Hirabayashi
- Clinical Medicine Research Laboratory, Shonan University of Medical Sciences, Totsuka-ku, Yokohama 244-0806, Japan
| | - Takeshi Yagi
- KOKORO-Biology Group, Laboratories for Integrated Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Etsuko Tarusawa
- KOKORO-Biology Group, Laboratories for Integrated Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
11
|
Hoshino N, Kanadome T, Takasugi T, Itoh M, Kaneko R, Inoue YU, Inoue T, Hirabayashi T, Watanabe M, Matsuda T, Nagai T, Tarusawa E, Yagi T. Visualization of trans homophilic interaction of clustered protocadherin in neurons. Proc Natl Acad Sci U S A 2023; 120:e2301003120. [PMID: 37695902 PMCID: PMC10515168 DOI: 10.1073/pnas.2301003120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 07/20/2023] [Indexed: 09/13/2023] Open
Abstract
Clustered protocadherin (Pcdh) functions as a cell recognition molecule through the homophilic interaction in the central nervous system. However, its interactions have not yet been visualized in neurons. We previously reported PcdhγB2-Förster resonance energy transfer (FRET) probes to be applicable only to cell lines. Herein, we designed γB2-FRET probes by fusing FRET donor and acceptor fluorescent proteins to a single γB2 molecule and succeeded in visualizing γB2 homophilic interaction in cultured hippocampal neurons. The γB2-FRET probe localized in the soma and neurites, and FRET signals, which were observed at contact sites between neurites, eliminated by ethylene glycol tetraacetic acid (EGTA) addition. Live imaging revealed that the FRET-negative γB2 signals rapidly moved along neurites and soma, whereas the FRET-positive signals remained in place. We observed that the γB2 proteins at synapses rarely interact homophilically. The γB2-FRET probe might allow us to elucidate the function of the homophilic interaction and the cell recognition mechanism.
Collapse
Affiliation(s)
- Natsumi Hoshino
- KOKORO-Biology Group, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka565-0871, Japan
| | - Takashi Kanadome
- Department of Biomolecular Science and Engineering, SANKEN, Osaka University, Ibaraki, Osaka567-0047, Japan
- Japan Science and Technology Agency, Precursory Research for Embryonic Science and Technology, Kawaguchi, Saitama332-0012, Japan
| | - Tomomi Takasugi
- KOKORO-Biology Group, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka565-0871, Japan
| | - Mizuho Itoh
- KOKORO-Biology Group, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka565-0871, Japan
| | - Ryosuke Kaneko
- KOKORO-Biology Group, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka565-0871, Japan
| | - Yukiko U. Inoue
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo187-8501, Japan
| | - Takayoshi Inoue
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo187-8501, Japan
| | - Takahiro Hirabayashi
- KOKORO-Biology Group, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka565-0871, Japan
- Clinical Medicine Research Laboratory, Shonan University of Medical Sciences, Yokohama244-0806, Japan
| | - Masahiko Watanabe
- Department of Anatomy, Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido060-8638, Japan
| | - Tomoki Matsuda
- Department of Biomolecular Science and Engineering, SANKEN, Osaka University, Ibaraki, Osaka567-0047, Japan
| | - Takeharu Nagai
- Department of Biomolecular Science and Engineering, SANKEN, Osaka University, Ibaraki, Osaka567-0047, Japan
| | - Etsuko Tarusawa
- KOKORO-Biology Group, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka565-0871, Japan
| | - Takeshi Yagi
- KOKORO-Biology Group, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka565-0871, Japan
| |
Collapse
|
12
|
Meltzer S, Boulanger KC, Chirila AM, Osei-Asante E, DeLisle M, Zhang Q, Kalish BT, Tasnim A, Huey EL, Fuller LC, Flaherty EK, Maniatis T, Garrett AM, Weiner JA, Ginty DD. γ-Protocadherins control synapse formation and peripheral branching of touch sensory neurons. Neuron 2023; 111:1776-1794.e10. [PMID: 37028432 PMCID: PMC10365546 DOI: 10.1016/j.neuron.2023.03.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 01/20/2023] [Accepted: 03/07/2023] [Indexed: 04/09/2023]
Abstract
Light touch sensation begins with activation of low-threshold mechanoreceptor (LTMR) endings in the skin and propagation of their signals to the spinal cord and brainstem. We found that the clustered protocadherin gamma (Pcdhg) gene locus, which encodes 22 cell-surface homophilic binding proteins, is required in somatosensory neurons for normal behavioral reactivity to a range of tactile stimuli. Developmentally, distinct Pcdhg isoforms mediate LTMR synapse formation through neuron-neuron interactions and peripheral axonal branching through neuron-glia interactions. The Pcdhgc3 isoform mediates homophilic interactions between sensory axons and spinal cord neurons to promote synapse formation in vivo and is sufficient to induce postsynaptic specializations in vitro. Moreover, loss of Pcdhgs and somatosensory synaptic inputs to the dorsal horn leads to fewer corticospinal synapses on dorsal horn neurons. These findings reveal essential roles for Pcdhg isoform diversity in somatosensory neuron synapse formation, peripheral axonal branching, and stepwise assembly of central mechanosensory circuitry.
Collapse
Affiliation(s)
- Shan Meltzer
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Katelyn C Boulanger
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Anda M Chirila
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Emmanuella Osei-Asante
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Michelle DeLisle
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Qiyu Zhang
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Brian T Kalish
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Aniqa Tasnim
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Erica L Huey
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Leah C Fuller
- Department of Biology and Iowa Neuroscience Institute, University of Iowa, 143 Biology Building, Iowa City, IA 52242, USA
| | - Erin K Flaherty
- Department of Biochemistry and Molecular Biophysics, Zuckerman Institute of Mind Brain and Behavior, Columbia University, New York, NY 10032, USA
| | - Tom Maniatis
- Department of Biochemistry and Molecular Biophysics, Zuckerman Institute of Mind Brain and Behavior, Columbia University, New York, NY 10032, USA
| | - Andrew M Garrett
- Department of Pharmacology and Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, 540 E. Canfield St. 7322 Scott Hall, Detroit, MI 48201, USA
| | - Joshua A Weiner
- Department of Biology and Iowa Neuroscience Institute, University of Iowa, 143 Biology Building, Iowa City, IA 52242, USA
| | - David D Ginty
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
13
|
Cheng J, Yu Y, Wang X, Zheng X, Liu T, Hu D, Jin Y, Lai Y, Fu TM, Chen Q. Structural basis for the self-recognition of sDSCAM in Chelicerata. Nat Commun 2023; 14:2522. [PMID: 37130844 PMCID: PMC10154414 DOI: 10.1038/s41467-023-38205-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 04/20/2023] [Indexed: 05/04/2023] Open
Abstract
To create a functional neural circuit, neurons develop a molecular identity to discriminate self from non-self. The invertebrate Dscam family and vertebrate Pcdh family are implicated in determining synaptic specificity. Recently identified in Chelicerata, a shortened Dscam (sDscam) has been shown to resemble the isoform-generating characters of both Dscam and Pcdh and represent an evolutionary transition. Here we presented the molecular details of sDscam self-recognition via both trans and cis interactions using X-ray crystallographic data and functional assays. Based on our results, we proposed a molecular zipper model for the assemblies of sDscam to mediate cell-cell recognition. In this model, sDscam utilized FNIII domain to form side-by-side interactions with neighboring molecules in the same cell while established hand-in-hand interactions via Ig1 domain with molecules from another cell around. Together, our study provided a framework for understanding the assembly, recognition, and evolution of sDscam.
Collapse
Affiliation(s)
- Jie Cheng
- National Clinical Research Center for Geriatrics, West China Hospital, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan University, 610041, Chengdu, China
| | - Yamei Yu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, 610041, Chengdu, China
| | - Xingyu Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, 610041, Chengdu, China
| | - Xi Zheng
- Department of Thoracic Surgery, West China Hospital, Sichuan University, 610041, Chengdu, China
- Lung Cancer Center, West China Hospital, Sichuan University, 611135, Chengdu, China
| | - Ting Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, 610041, Chengdu, China
| | - Daojun Hu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, 610041, Chengdu, China
| | - Yongfeng Jin
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Ying Lai
- National Clinical Research Center for Geriatrics, West China Hospital, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan University, 610041, Chengdu, China
| | - Tian-Min Fu
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, 43210, USA
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - Qiang Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, 610041, Chengdu, China.
| |
Collapse
|
14
|
Marasco LE, Kornblihtt AR. The physiology of alternative splicing. Nat Rev Mol Cell Biol 2023; 24:242-254. [PMID: 36229538 DOI: 10.1038/s41580-022-00545-z] [Citation(s) in RCA: 140] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2022] [Indexed: 11/09/2022]
Abstract
Alternative splicing is a substantial contributor to the high complexity of transcriptomes of multicellular eukaryotes. In this Review, we discuss the accumulated evidence that most of this complexity is reflected at the protein level and fundamentally shapes the physiology and pathology of organisms. This notion is supported not only by genome-wide analyses but, mainly, by detailed studies showing that global and gene-specific modulations of alternative splicing regulate highly diverse processes such as tissue-specific and species-specific cell differentiation, thermal regulation, neuron self-avoidance, infrared sensing, the Warburg effect, maintenance of telomere length, cancer and autism spectrum disorders (ASD). We also discuss how mastering the control of alternative splicing paved the way to clinically approved therapies for hereditary diseases.
Collapse
Affiliation(s)
- Luciano E Marasco
- Universidad de Buenos Aires (UBA), Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Moleculary Celular and CONICET-UBA, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires, Argentina
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Alberto R Kornblihtt
- Universidad de Buenos Aires (UBA), Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Moleculary Celular and CONICET-UBA, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires, Argentina.
| |
Collapse
|
15
|
Leon WRM, Steffen DM, Dale-Huang F, Rakela B, Breevoort A, Romero-Rodriguez R, Hasenstaub AR, Stryker MP, Weiner JA, Alvarez-Buylla A. The Clustered Gamma Protocadherin Pcdhγc4 Isoform Regulates Cortical Interneuron Programmed Cell Death in the Mouse Cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.03.526887. [PMID: 36778455 PMCID: PMC9915683 DOI: 10.1101/2023.02.03.526887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Cortical function critically depends on inhibitory/excitatory balance. Cortical inhibitory interneurons (cINs) are born in the ventral forebrain and migrate into cortex, where their numbers are adjusted by programmed cell death. Previously, we showed that loss of clustered gamma protocadherins (Pcdhγ), but not of genes in the alpha or beta clusters, increased dramatically cIN BAX-dependent cell death in mice. Here we show that the sole deletion of the Pcdhγc4 isoform, but not of the other 21 isoforms in the Pcdhγ gene cluster, increased cIN cell death in mice during the normal period of programmed cell death. Viral expression of the Pcdhγc4 isoform rescued transplanted cINs lacking Pcdhγ from cell death. We conclude that Pcdhγ, specifically Pcdhγc4, plays a critical role in regulating the survival of cINs during their normal period of cell death. This demonstrates a novel specificity in the role of Pcdhγ isoforms in cortical development.
Collapse
Affiliation(s)
- Walter R Mancia Leon
- Department of Neurological Surgery and The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, United States
| | - David M Steffen
- Department of Neurological Surgery and The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, United States
- Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA 52242
- Department of Biology, The University of Iowa, Iowa City IA 52242
| | - Fiona Dale-Huang
- Department of Neurological Surgery and The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, United States
| | - Benjamin Rakela
- Department of Physiology and Center for Integrative Neuroscience, University of California, San Francisco, San Francisco, United States
| | - Arnar Breevoort
- Department of Physiology and Center for Integrative Neuroscience, University of California, San Francisco, San Francisco, United States
| | - Ricardo Romero-Rodriguez
- Department of Neurological Surgery and The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, United States
| | - Andrea R Hasenstaub
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, San Francisco, United States
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, United States
| | - Michael P Stryker
- Department of Physiology and Center for Integrative Neuroscience, University of California, San Francisco, San Francisco, United States
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, United States
| | - Joshua A Weiner
- Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA 52242
- Department of Biology, The University of Iowa, Iowa City IA 52242
| | - Arturo Alvarez-Buylla
- Department of Neurological Surgery and The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, United States
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, United States
| |
Collapse
|
16
|
Kobayashi H, Takemoto K, Sanbo M, Hirabayashi M, Hirabayashi T, Hirayama T, Kiyonari H, Abe T, Yagi T. Isoform requirement of clustered protocadherin for preventing neuronal apoptosis and neonatal lethality. iScience 2023; 26:105766. [PMID: 36582829 PMCID: PMC9793319 DOI: 10.1016/j.isci.2022.105766] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 10/24/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Clustered protocadherin is a family of cell-surface recognition molecules implicated in neuronal connectivity that has a diverse isoform repertoire and homophilic binding specificity. Mice have 58 isoforms, encoded by Pcdhα, β, and γ gene clusters, and mutant mice lacking all isoforms died after birth, displaying massive neuronal apoptosis and synapse loss. The current hypothesis is that the three specific γC-type isoforms, especially γC4, are essential for the phenotype, raising the question about the necessity of isoform diversity. We generated TC mutant mice that expressed the three γC-type isoforms but lacked all the other 55 isoforms. The TC mutants died immediately after birth, showing massive neuronal death, and γC3 or γC4 expression did not prevent apoptosis. Restoring the α- and β-clusters with the three γC alleles rescued the phenotype, suggesting that along with the three γC-type isoforms, other isoforms are also required for the survival of neurons and individual mice.
Collapse
Affiliation(s)
- Hiroaki Kobayashi
- KOKORO-Biology Group, Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan
- Division of Biophysical Engineering, Department of Systems Science, School of Engineering Science, Osaka University, Toyonaka 565-8531, Japan
| | - Kenji Takemoto
- KOKORO-Biology Group, Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan
| | - Makoto Sanbo
- Section of Mammalian Transgenesis, Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Okazaki 444-8585, Japan
| | - Masumi Hirabayashi
- Section of Mammalian Transgenesis, Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Okazaki 444-8585, Japan
| | - Takahiro Hirabayashi
- KOKORO-Biology Group, Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan
| | - Teruyoshi Hirayama
- KOKORO-Biology Group, Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan
- Department of Anatomy and Developmental Neurobiology, Tokushima University, Graduate School of Medical Science, Tokushima 770-8503, Japan
| | - Hiroshi Kiyonari
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe 6500047, Japan
| | - Takaya Abe
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe 6500047, Japan
| | - Takeshi Yagi
- KOKORO-Biology Group, Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan
- Division of Biophysical Engineering, Department of Systems Science, School of Engineering Science, Osaka University, Toyonaka 565-8531, Japan
| |
Collapse
|
17
|
Takeichi M. Cell sorting in vitro and in vivo: How are cadherins involved? Semin Cell Dev Biol 2022; 147:2-11. [PMID: 36376196 DOI: 10.1016/j.semcdb.2022.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/07/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022]
Abstract
Animal tissues are composed of heterogenous cells, and their sorting into different compartments of the tissue is a pivotal process for organogenesis. Cells accomplish sorting by themselves-it is well known that singly dispersed cells can self-organize into tissue-like structures in vitro. Cell sorting is regulated by both biochemical and physical mechanisms. Adhesive proteins connect cells together, selecting particular partners through their specific binding properties, while physical forces, such as cell-cortical tension, control the cohesiveness between cells and in turn cell assembly patterns in mechanical ways. These processes cooperate in determining the overall cell sorting behavior. This article focuses on the 'cadherin' family of adhesion molecules as a biochemical component of cell-cell interactions, addressing how they regulate cell sorting by themselves or by cooperating with other factors. New ideas beyond the classical models of cell sorting are also discussed.
Collapse
|
18
|
Boni N, Shapiro L, Honig B, Wu Y, Rubinstein R. On the formation of ordered protein assemblies in cell-cell interfaces. Proc Natl Acad Sci U S A 2022; 119:e2206175119. [PMID: 35969779 PMCID: PMC9407605 DOI: 10.1073/pnas.2206175119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/20/2022] [Indexed: 11/18/2022] Open
Abstract
Crystal structures of many cell-cell adhesion receptors reveal the formation of linear "molecular zippers" comprising an ordered one-dimensional array of proteins that form both intercellular (trans) and intracellular (cis) interactions. The clustered protocadherins (cPcdhs) provide an exemplar of this phenomenon and use it as a basis of barcoding of vertebrate neurons. Here, we report both Metropolis and kinetic Monte Carlo simulations of cPcdh zipper formation using simplified models of cPcdhs that nevertheless capture essential features of their three-dimensional structure. The simulations reveal that the formation of long zippers is an implicit feature of cPcdh structure and is driven by their cis and trans interactions that have been quantitatively characterized in previous work. Moreover, in agreement with cryo-electron tomography studies, the zippers are found to organize into two-dimensional arrays even in the absence of attractive interactions between individual zippers. Our results suggest that the formation of ordered two-dimensional arrays of linear zippers of adhesion proteins is a common feature of cell-cell interfaces. From the perspective of simulations, they demonstrate the importance of a realistic depiction of adhesion protein structure and interactions if important biological phenomena are to be properly captured.
Collapse
Affiliation(s)
- Nadir Boni
- School of Neurobiology, Biochemistry and Biophysics, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Lawrence Shapiro
- Zuckerman Mind, Brain and Behavior Institute, Columbia University, New York, NY 10027
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032
| | - Barry Honig
- Zuckerman Mind, Brain and Behavior Institute, Columbia University, New York, NY 10027
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032
- Department of Systems Biology, Columbia University, New York, NY 10032
- Department of Medicine, Division of Nephrology, Columbia University, New York, NY 10032
| | - Yinghao Wu
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Rotem Rubinstein
- School of Neurobiology, Biochemistry and Biophysics, Tel Aviv University, Tel Aviv-Yafo, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv-Yafo, Israel
| |
Collapse
|