1
|
Zhang Z, Huang Y, Chen X, Li J, Yang Y, Lv L, Wang J, Wang M, Wang Y, Wang Z. State-specific Regulation of Electrical Stimulation in the Intralaminar Thalamus of Macaque Monkeys: Network and Transcriptional Insights into Arousal. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402718. [PMID: 38938001 PMCID: PMC11434125 DOI: 10.1002/advs.202402718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/03/2024] [Indexed: 06/29/2024]
Abstract
Long-range thalamocortical communication is central to anesthesia-induced loss of consciousness and its reversal. However, isolating the specific neural networks connecting thalamic nuclei with various cortical regions for state-specific anesthesia regulation is challenging, with the biological underpinnings still largely unknown. Here, simultaneous electroencephalogram-fuctional magnetic resonance imaging (EEG-fMRI) and deep brain stimulation are applied to the intralaminar thalamus in macaques under finely-tuned propofol anesthesia. This approach led to the identification of an intralaminar-driven network responsible for rapid arousal during slow-wave oscillations. A network-based RNA-sequencing analysis is conducted of region-, layer-, and cell-specific gene expression data from independent transcriptomic atlases and identifies 2489 genes preferentially expressed within this arousal network, notably enriched in potassium channels and excitatory, parvalbumin-expressing neurons, and oligodendrocytes. Comparison with human RNA-sequencing data highlights conserved molecular and cellular architectures that enable the matching of homologous genes, protein interactions, and cell types across primates, providing novel insight into network-focused transcriptional signatures of arousal.
Collapse
Affiliation(s)
- Zhao Zhang
- Department of Anesthesiology, Huashan Hospital, Fudan University, 12 Urumqi Middle Rd, Jing'an District, Shanghai, 200040, China
| | - Yichun Huang
- School of Psychological and Cognitive Sciences, Beijing Key Laboratory of Behavior and Mental Health, State Key Laboratory of General Artificial Intelligence, IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, Peking University, 5 Yiheyuan Rd, Haidian District, Beijing, 100871, China
| | - Xiaoyu Chen
- Institute of Natural Sciences and School of Mathematical Sciences, Shanghai Jiao Tong University, 800 Dongchuan RD, Minhang District, Shanghai, 200240, China
| | - Jiahui Li
- School of Psychological and Cognitive Sciences, Beijing Key Laboratory of Behavior and Mental Health, State Key Laboratory of General Artificial Intelligence, IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, Peking University, 5 Yiheyuan Rd, Haidian District, Beijing, 100871, China
| | - Yi Yang
- Department of Neurosurgery, Brain Computer Interface Transition Research Center, Beijing Tiantan Hospital, Capital Medical University, 119 South Fourth Ring Rd West, Fengtai District, Beijing, 100070, China
| | - Longbao Lv
- National Resource Center for Non-Human Primates, Kunming Primate Research Center, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, 32 East of Jiaochang Rd, Kunming, Yunnan, 650223, China
| | - Jianhong Wang
- National Resource Center for Non-Human Primates, Kunming Primate Research Center, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, 32 East of Jiaochang Rd, Kunming, Yunnan, 650223, China
| | - Meiyun Wang
- Department of Medical Imaging, Henan Provincial People's Hospital & the People's Hospital of Zhengzhou University, No. 7 Weiwu Road, Zhengzhou, Henan, 450003, China
| | - Yingwei Wang
- Department of Anesthesiology, Huashan Hospital, Fudan University, 12 Urumqi Middle Rd, Jing'an District, Shanghai, 200040, China
| | - Zheng Wang
- School of Psychological and Cognitive Sciences, Beijing Key Laboratory of Behavior and Mental Health, State Key Laboratory of General Artificial Intelligence, IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, Peking University, 5 Yiheyuan Rd, Haidian District, Beijing, 100871, China
- School of Biomedical Engineering, Hainan University, 58 Renmin Avenue, Haikou, Hainan, 570228, China
| |
Collapse
|
2
|
Liu Z, Feng Z, Liu G, Li A, Gong H, Yang X, Li X. A complementary approach for neocortical cytoarchitecture inspection with cellular resolution imaging at whole brain scale. Front Neuroanat 2024; 18:1388084. [PMID: 38846539 PMCID: PMC11153794 DOI: 10.3389/fnana.2024.1388084] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/26/2024] [Indexed: 06/09/2024] Open
Abstract
Cytoarchitecture, the organization of cells within organs and tissues, serves as a crucial anatomical foundation for the delineation of various regions. It enables the segmentation of the cortex into distinct areas with unique structural and functional characteristics. While traditional 2D atlases have focused on cytoarchitectonic mapping of cortical regions through individual sections, the intricate cortical gyri and sulci demands a 3D perspective for unambiguous interpretation. In this study, we employed fluorescent micro-optical sectioning tomography to acquire architectural datasets of the entire macaque brain at a resolution of 0.65 μm × 0.65 μm × 3 μm. With these volumetric data, the cortical laminar textures were remarkably presented in appropriate view planes. Additionally, we established a stereo coordinate system to represent the cytoarchitectonic information as surface-based tomograms. Utilizing these cytoarchitectonic features, we were able to three-dimensionally parcel the macaque cortex into multiple regions exhibiting contrasting architectural patterns. The whole-brain analysis was also conducted on mice that clearly revealed the presence of barrel cortex and reflected biological reasonability of this method. Leveraging these high-resolution continuous datasets, our method offers a robust tool for exploring the organizational logic and pathological mechanisms of the brain's 3D anatomical structure.
Collapse
Affiliation(s)
- Zhixiang Liu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, China
| | - Zhao Feng
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou, China
- Research Unit of Multimodal Cross Scale Neural Signal Detection and Imaging, Chinese Academy of Medical Sciences, HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou, China
| | - Guangcai Liu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, China
| | - Anan Li
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, China
- Research Unit of Multimodal Cross Scale Neural Signal Detection and Imaging, Chinese Academy of Medical Sciences, HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou, China
| | - Hui Gong
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, China
- Research Unit of Multimodal Cross Scale Neural Signal Detection and Imaging, Chinese Academy of Medical Sciences, HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou, China
| | - Xiaoquan Yang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, China
- Research Unit of Multimodal Cross Scale Neural Signal Detection and Imaging, Chinese Academy of Medical Sciences, HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou, China
| | - Xiangning Li
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou, China
- Research Unit of Multimodal Cross Scale Neural Signal Detection and Imaging, Chinese Academy of Medical Sciences, HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou, China
| |
Collapse
|
3
|
Orsher Y, Rom A, Perel R, Lahini Y, Blinder P, Shein-Idelson M. Sequentially activated discrete modules appear as traveling waves in neuronal measurements with limited spatiotemporal sampling. eLife 2024; 12:RP92254. [PMID: 38451063 PMCID: PMC10942589 DOI: 10.7554/elife.92254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024] Open
Abstract
Numerous studies have identified traveling waves in the cortex and suggested they play important roles in brain processing. These waves are most often measured using macroscopic methods that are unable to assess the local spiking activity underlying wave dynamics. Here, we investigated the possibility that waves may not be traveling at the single neuron scale. We first show that sequentially activating two discrete brain areas can appear as traveling waves in EEG simulations. We next reproduce these results using an analytical model of two sequentially activated regions. Using this model, we were able to generate wave-like activity with variable directions, velocities, and spatial patterns, and to map the discriminability limits between traveling waves and modular sequential activations. Finally, we investigated the link between field potentials and single neuron excitability using large-scale measurements from turtle cortex ex vivo. We found that while field potentials exhibit wave-like dynamics, the underlying spiking activity was better described by consecutively activated spatially adjacent groups of neurons. Taken together, this study suggests caution when interpreting phase delay measurements as continuously propagating wavefronts in two different spatial scales. A careful distinction between modular and wave excitability profiles across scales will be critical for understanding the nature of cortical computations.
Collapse
Affiliation(s)
- Yuval Orsher
- School of Neurobiology, Biochemistry, and Biophysics, Tel Aviv UniversityTel AvivIsrael
- School of Physics & Astronomy, Faculty of Exact Sciences, Tel Aviv UniversityTel AvivIsrael
| | - Ariel Rom
- School of Neurobiology, Biochemistry, and Biophysics, Tel Aviv UniversityTel AvivIsrael
- Sagol School of Neuroscience, Tel Aviv University, IsraelTel AvivIsrael
| | - Rotem Perel
- School of Neurobiology, Biochemistry, and Biophysics, Tel Aviv UniversityTel AvivIsrael
| | - Yoav Lahini
- School of Physics & Astronomy, Faculty of Exact Sciences, Tel Aviv UniversityTel AvivIsrael
- Sagol School of Neuroscience, Tel Aviv University, IsraelTel AvivIsrael
| | - Pablo Blinder
- School of Neurobiology, Biochemistry, and Biophysics, Tel Aviv UniversityTel AvivIsrael
- Sagol School of Neuroscience, Tel Aviv University, IsraelTel AvivIsrael
| | - Mark Shein-Idelson
- School of Neurobiology, Biochemistry, and Biophysics, Tel Aviv UniversityTel AvivIsrael
- Sagol School of Neuroscience, Tel Aviv University, IsraelTel AvivIsrael
| |
Collapse
|
4
|
Howell AM, Warrington S, Fonteneau C, Cho YT, Sotiropoulos SN, Murray JD, Anticevic A. The spatial extent of anatomical connections within the thalamus varies across the cortical hierarchy in humans and macaques. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.22.550168. [PMID: 37546767 PMCID: PMC10401924 DOI: 10.1101/2023.07.22.550168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Each cortical area has a distinct pattern of anatomical connections within the thalamus, a central subcortical structure composed of functionally and structurally distinct nuclei. Previous studies have suggested that certain cortical areas may have more extensive anatomical connections that target multiple thalamic nuclei, which potentially allows them to modulate distributed information flow. However, there is a lack of quantitative investigations into anatomical connectivity patterns within the thalamus. Consequently, it remains unknown if cortical areas exhibit systematic differences in the extent of their anatomical connections within the thalamus. To address this knowledge gap, we used diffusion magnetic resonance imaging (dMRI) to perform brain-wide probabilistic tractography for 828 healthy adults from the Human Connectome Project. We then developed a framework to quantify the spatial extent of each cortical area's anatomical connections within the thalamus. Additionally, we leveraged resting-state functional MRI, cortical myelin, and human neural gene expression data to test if the extent of anatomical connections within the thalamus varied along the cortical hierarchy. Our results revealed two distinct corticothalamic tractography motifs: 1) a sensorimotor cortical motif characterized by focal thalamic connections targeting posterolateral thalamus, associated with fast, feed-forward information flow; and 2) an associative cortical motif characterized by diffuse thalamic connections targeting anteromedial thalamus, associated with slow, feed-back information flow. These findings were consistent across human subjects and were also observed in macaques, indicating cross-species generalizability. Overall, our study demonstrates that sensorimotor and association cortical areas exhibit differences in the spatial extent of their anatomical connections within the thalamus, which may support functionally-distinct cortico-thalamic information flow.
Collapse
Affiliation(s)
- Amber M Howell
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511, USA
- Division of Neurocognition, Neurocomputation, & Neurogenetics (N3), Yale University School of Medicine, New Haven, Connecticut, 06511, USA
- Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut, 06511, USA
| | - Shaun Warrington
- Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Clara Fonteneau
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511, USA
- Division of Neurocognition, Neurocomputation, & Neurogenetics (N3), Yale University School of Medicine, New Haven, Connecticut, 06511, USA
| | - Youngsun T Cho
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511, USA
- Division of Neurocognition, Neurocomputation, & Neurogenetics (N3), Yale University School of Medicine, New Haven, Connecticut, 06511, USA
| | - Stamatios N Sotiropoulos
- Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham, UK
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
- National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Queens Medical Centre, Nottingham, UK
| | - John D Murray
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511, USA
- Division of Neurocognition, Neurocomputation, & Neurogenetics (N3), Yale University School of Medicine, New Haven, Connecticut, 06511, USA
- Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut, 06511, USA
- Physics, Yale University, New Haven, Connecticut, 06511, USA
| | - Alan Anticevic
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511, USA
- Division of Neurocognition, Neurocomputation, & Neurogenetics (N3), Yale University School of Medicine, New Haven, Connecticut, 06511, USA
- Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut, 06511, USA
- Department of Psychology, Yale University, New Haven, Connecticut, 06511, USA
| |
Collapse
|
5
|
Qiao N, Ma L, Zhang Y, Wang L. Update on Nonhuman Primate Models of Brain Disease and Related Research Tools. Biomedicines 2023; 11:2516. [PMID: 37760957 PMCID: PMC10525665 DOI: 10.3390/biomedicines11092516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/19/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
The aging of the population is an increasingly serious issue, and many age-related illnesses are on the rise. These illnesses pose a serious threat to the health and safety of elderly individuals and create a serious economic and social burden. Despite substantial research into the pathogenesis of these diseases, their etiology and pathogenesis remain unclear. In recent decades, rodent models have been used in attempts to elucidate these disorders, but such models fail to simulate the full range of symptoms. Nonhuman primates (NHPs) are the most ideal neuroscientific models for studying the human brain and are more functionally similar to humans because of their high genetic similarities and phenotypic characteristics in comparison with humans. Here, we review the literature examining typical NHP brain disease models, focusing on NHP models of common diseases such as dementia, Parkinson's disease, and epilepsy. We also explore the application of electroencephalography (EEG), magnetic resonance imaging (MRI), and optogenetic study methods on NHPs and neural circuits associated with cognitive impairment.
Collapse
Affiliation(s)
- Nan Qiao
- School of Life Sciences, Hebei University, 180 Wusi Dong Lu, Baoding 071002, China;
- Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850, China;
| | - Lizhen Ma
- Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850, China;
| | - Yi Zhang
- School of Life Sciences, Hebei University, 180 Wusi Dong Lu, Baoding 071002, China;
- Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850, China;
| | - Lifeng Wang
- School of Life Sciences, Hebei University, 180 Wusi Dong Lu, Baoding 071002, China;
- Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850, China;
| |
Collapse
|
6
|
Georgiadis M, Menzel M, Reuter JA, Born DE, Kovacevich SR, Alvarez D, Taghavi HM, Schroeter A, Rudin M, Gao Z, Guizar-Sicairos M, Weiss TM, Axer M, Rajkovic I, Zeineh MM. Imaging crossing fibers in mouse, pig, monkey, and human brain using small-angle X-ray scattering. Acta Biomater 2023; 164:317-331. [PMID: 37098400 PMCID: PMC10811447 DOI: 10.1016/j.actbio.2023.04.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 04/15/2023] [Accepted: 04/18/2023] [Indexed: 04/27/2023]
Abstract
Myelinated axons (nerve fibers) efficiently transmit signals throughout the brain via action potentials. Multiple methods that are sensitive to axon orientations, from microscopy to magnetic resonance imaging, aim to reconstruct the brain's structural connectome. As billions of nerve fibers traverse the brain with various possible geometries at each point, resolving fiber crossings is necessary to generate accurate structural connectivity maps. However, doing so with specificity is a challenging task because signals originating from oriented fibers can be influenced by brain (micro)structures unrelated to myelinated axons. X-ray scattering can specifically probe myelinated axons due to the periodicity of the myelin sheath, which yields distinct peaks in the scattering pattern. Here, we show that small-angle X-ray scattering (SAXS) can be used to detect myelinated, axon-specific fiber crossings. We first demonstrate the capability using strips of human corpus callosum to create artificial double- and triple-crossing fiber geometries, and we then apply the method in mouse, pig, vervet monkey, and human brains. We compare results to polarized light imaging (3D-PLI), tracer experiments, and to outputs from diffusion MRI that sometimes fails to detect crossings. Given its specificity, capability of 3-dimensional sampling and high resolution, SAXS could serve as a ground truth for validating fiber orientations derived using diffusion MRI as well as microscopy-based methods. STATEMENT OF SIGNIFICANCE: To study how the nerve fibers in our brain are interconnected, scientists need to visualize their trajectories, which often cross one another. Here, we show the unique capacity of small-angle X-ray scattering (SAXS) to study these fiber crossings without use of labeling, taking advantage of SAXS's specificity to myelin - the insulating sheath that is wrapped around nerve fibers. We use SAXS to detect double and triple crossing fibers and unveil intricate crossings in mouse, pig, vervet monkey, and human brains. This non-destructive method can uncover complex fiber trajectories and validate other less specific imaging methods (e.g., MRI or microscopy), towards accurate mapping of neuronal connectivity in the animal and human brain.
Collapse
Affiliation(s)
- Marios Georgiadis
- Department of Radiology, Stanford School of Medicine, Stanford, CA, USA; Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland.
| | - Miriam Menzel
- Institute of Neuroscience and Medicine (INM-1), Forschungszentrum Jülich GmbH, Jülich 52425, Germany; Department of Imaging Physics, Delft University of Technology, Delft, the Netherlands
| | - Jan A Reuter
- Institute of Neuroscience and Medicine (INM-1), Forschungszentrum Jülich GmbH, Jülich 52425, Germany
| | - Donald E Born
- Department of Pathology, Stanford School of Medicine, Stanford, CA, USA
| | | | - Dario Alvarez
- Department of Radiology, Stanford School of Medicine, Stanford, CA, USA
| | | | - Aileen Schroeter
- Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Markus Rudin
- Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Zirui Gao
- Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland
| | | | - Thomas M Weiss
- SLAC National Accelerator Laboratory, Stanford Synchrotron Radiation Lightsource, USA
| | - Markus Axer
- Institute of Neuroscience and Medicine (INM-1), Forschungszentrum Jülich GmbH, Jülich 52425, Germany
| | - Ivan Rajkovic
- SLAC National Accelerator Laboratory, Stanford Synchrotron Radiation Lightsource, USA
| | - Michael M Zeineh
- Department of Radiology, Stanford School of Medicine, Stanford, CA, USA
| |
Collapse
|
7
|
Charvet CJ. Mapping Human Brain Pathways: Challenges and Opportunities in the Integration of Scales. BRAIN, BEHAVIOR AND EVOLUTION 2023; 98:194-209. [PMID: 36972574 PMCID: PMC11310840 DOI: 10.1159/000530317] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/16/2023] [Indexed: 03/29/2023]
Abstract
The human brain is composed of a complex web of pathways. Diffusion magnetic resonance (MR) tractography is a neuroimaging technique that relies on the principle of diffusion to reconstruct brain pathways. Its tractography is broadly applicable to a range of problems as it is amenable for study in individuals of any age and from any species. However, it is well known that this technique can generate biologically implausible pathways, especially in regions of the brain where multiple fibers cross. This review highlights potential misconnections in two cortico-cortical association pathways with a focus on the aslant tract and inferior frontal occipital fasciculus. The lack of alternative methods to validate observations from diffusion MR tractography means there is a need to develop new integrative approaches to trace human brain pathways. This review discusses integrative approaches in neuroimaging, anatomical, and transcriptional variation as having much potential to trace the evolution of human brain pathways.
Collapse
Affiliation(s)
- Christine J Charvet
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama, USA
| |
Collapse
|
8
|
Bo T, Li J, Hu G, Zhang G, Wang W, Lv Q, Zhao S, Ma J, Qin M, Yao X, Wang M, Wang GZ, Wang Z. Brain-wide and cell-specific transcriptomic insights into MRI-derived cortical morphology in macaque monkeys. Nat Commun 2023; 14:1499. [PMID: 36932104 PMCID: PMC10023667 DOI: 10.1038/s41467-023-37246-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 03/06/2023] [Indexed: 03/19/2023] Open
Abstract
Integrative analyses of transcriptomic and neuroimaging data have generated a wealth of information about biological pathways underlying regional variability in imaging-derived brain phenotypes in humans, but rarely in nonhuman primates due to the lack of a comprehensive anatomically-defined atlas of brain transcriptomics. Here we generate complementary bulk RNA-sequencing dataset of 819 samples from 110 brain regions and single-nucleus RNA-sequencing dataset, and neuroimaging data from 162 cynomolgus macaques, to examine the link between brain-wide gene expression and regional variation in morphometry. We not only observe global/regional expression profiles of macaque brain comparable to human but unravel a dorsolateral-ventromedial gradient of gene assemblies within the primate frontal lobe. Furthermore, we identify a set of 971 protein-coding and 34 non-coding genes consistently associated with cortical thickness, specially enriched for neurons and oligodendrocytes. These data provide a unique resource to investigate nonhuman primate models of human diseases and probe cross-species evolutionary mechanisms.
Collapse
Affiliation(s)
- Tingting Bo
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Clinical Neuroscience Center, Ruijin Hospital Luwan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Li
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ganlu Hu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Ge Zhang
- Department of Medical Imaging, Henan Provincial People's Hospital & the People's Hospital of Zhengzhou University, No. 7 Weiwu Road, Zhengzhou, Henan, China
| | - Wei Wang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qian Lv
- School of Psychological and Cognitive Sciences; Beijing Key Laboratory of Behavior and Mental Health; IDG/McGovern Institute for Brain Research; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Shaoling Zhao
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Junjie Ma
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Meng Qin
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Xiaohui Yao
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao, Shandong, China
- College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin, Heilongjiang, China
| | - Meiyun Wang
- Department of Medical Imaging, Henan Provincial People's Hospital & the People's Hospital of Zhengzhou University, No. 7 Weiwu Road, Zhengzhou, Henan, China.
| | - Guang-Zhong Wang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
| | - Zheng Wang
- School of Psychological and Cognitive Sciences; Beijing Key Laboratory of Behavior and Mental Health; IDG/McGovern Institute for Brain Research; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.
- School of Biomedical Engineering, Hainan University, Haikou, Hainan, China.
| |
Collapse
|