1
|
Sauciuc A, Morozzo Della Rocca B, Tadema MJ, Chinappi M, Maglia G. Translocation of linearized full-length proteins through an engineered nanopore under opposing electrophoretic force. Nat Biotechnol 2024; 42:1275-1281. [PMID: 37723268 DOI: 10.1038/s41587-023-01954-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 08/17/2023] [Indexed: 09/20/2023]
Abstract
Nanopores have recently been used to identify and fingerprint proteins. However, because proteins, unlike DNA, do not have a uniform charge, the electrophoretic force cannot in general be used to translocate or linearize them. Here we show that the introduction of sets of charges in the lumen of the CytK nanopore spaced by ~1 nm creates an electroosmotic flow that induces the unidirectional transport of unstructured natural polypeptides against a strong electrophoretic force. Molecular dynamics simulations indicate that this electroosmotic-dominated force has a strength of ~20 pN at -100 mV, which is similar to the electric force on single-stranded DNA. Unfolded polypeptides produce current signatures as they traverse the nanopore, which may be used to identify proteins. This approach can be used to translocate and stretch proteins for enzymatic and non-enzymatic protein identification and sequencing.
Collapse
Affiliation(s)
- Adina Sauciuc
- Groningen Biomolecular Sciences & Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | | | - Matthijs Jonathan Tadema
- Groningen Biomolecular Sciences & Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Mauro Chinappi
- Department of Industrial Engineering, University of Rome Tor Vergata, Rome, Italy
| | - Giovanni Maglia
- Groningen Biomolecular Sciences & Biotechnology Institute, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
2
|
Faivre N, Verollet C, Dumas F. The chemokine receptor CCR5: multi-faceted hook for HIV-1. Retrovirology 2024; 21:2. [PMID: 38263120 PMCID: PMC10807162 DOI: 10.1186/s12977-024-00634-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/13/2024] [Indexed: 01/25/2024] Open
Abstract
Chemokines are cytokines whose primary role is cellular activation and stimulation of leukocyte migration. They perform their various functions by interacting with G protein-coupled cell surface receptors (GPCRs) and are involved in the regulation of many biological processes such as apoptosis, proliferation, angiogenesis, hematopoiesis or organogenesis. They contribute to the maintenance of the homeostasis of lymphocytes and coordinate the function of the immune system. However, chemokines and their receptors are sometimes hijacked by some pathogens to infect the host organism. For a given chemokine receptor, there is a wide structural, organizational and conformational diversity. In this review, we describe the evidence for structural variety reported for the chemokine receptor CCR5, how this variability can be exploited by HIV-1 to infect its target cells and what therapeutic solutions are currently being developed to overcome this problem.
Collapse
Affiliation(s)
- Natacha Faivre
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UPS), Toulouse, France
- International Research Laboratory (IRP) CNRS "IM-TB/HIV", Toulouse, France
- International Research Laboratory (IRP) CNRS "IM-TB/HIV", Buenos Aires, Argentina
| | - Christel Verollet
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UPS), Toulouse, France
- International Research Laboratory (IRP) CNRS "IM-TB/HIV", Toulouse, France
- International Research Laboratory (IRP) CNRS "IM-TB/HIV", Buenos Aires, Argentina
| | - Fabrice Dumas
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UPS), Toulouse, France.
| |
Collapse
|
3
|
Ayoub MA. Hijacking of GPCRs and RTKs by pathogens. Cell Signal 2023:110802. [PMID: 37437829 DOI: 10.1016/j.cellsig.2023.110802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/29/2023] [Accepted: 07/08/2023] [Indexed: 07/14/2023]
Abstract
Pathogens exploit multiple cellular and molecular pathways in the host organisms for their entry, survival and dissemination. The cell surface receptors such as G protein-coupled receptors (GPCRs) and receptor tyrosine kinases (RTKs) constitute the targets of many pathogens. This is due to the ubiquitous expression of these two receptor families in the organism and their pivotal role in various cellular and physiological processes. At the molecular level, receptor hijacking implies either direct or indirect interactions between pathogens' effectors or toxins with GPCRs and RTKs at the cell surface thereby interfering with their activation and their downstream signaling pathways inside the host cells. As a result, the pathogens manipulate and redirect GPCR/RTK-mediated signaling pathways and different aspects of cell function for their benefit. The review presents a compilation of the major examples of pathogen infections where GPCRs and RTKs and their related intracellular signaling pathways are targeted. This provides a molecular basis for pathogens hijacking cell signaling and their virulence. Our understanding of such complex host-pathogen interactions at the molecular level will open new opportunities to develop new prophylactic and therapeutic approaches against infections. In this context, the pharmacological targeting of GPCRs and RTKs may be a promising approach.
Collapse
Affiliation(s)
- Mohammed Akli Ayoub
- Biology Department, College of Arts and Sciences, Khalifa University, PO Box 127788, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
4
|
Feng S, Park S, Choi YK, Im W. CHARMM-GUI Membrane Builder: Past, Current, and Future Developments and Applications. J Chem Theory Comput 2023; 19:2161-2185. [PMID: 37014931 PMCID: PMC10174225 DOI: 10.1021/acs.jctc.2c01246] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Indexed: 04/06/2023]
Abstract
Molecular dynamics simulations of membranes and membrane proteins serve as computational microscopes, revealing coordinated events at the membrane interface. As G protein-coupled receptors, ion channels, transporters, and membrane-bound enzymes are important drug targets, understanding their drug binding and action mechanisms in a realistic membrane becomes critical. Advances in materials science and physical chemistry further demand an atomistic understanding of lipid domains and interactions between materials and membranes. Despite a wide range of membrane simulation studies, generating a complex membrane assembly remains challenging. Here, we review the capability of CHARMM-GUI Membrane Builder in the context of emerging research demands, as well as the application examples from the CHARMM-GUI user community, including membrane biophysics, membrane protein drug-binding and dynamics, protein-lipid interactions, and nano-bio interface. We also provide our perspective on future Membrane Builder development.
Collapse
Affiliation(s)
- Shasha Feng
- Departments of Biological
Sciences and Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Soohyung Park
- Departments of Biological
Sciences and Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Yeol Kyo Choi
- Departments of Biological
Sciences and Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Wonpil Im
- Departments of Biological
Sciences and Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
5
|
Paternoster C, Tarenzi T, Potestio R, Lattanzi G. Gamma-Hemolysin Components: Computational Strategies for LukF-Hlg2 Dimer Reconstruction on a Model Membrane. Int J Mol Sci 2023; 24:ijms24087113. [PMID: 37108277 PMCID: PMC10138441 DOI: 10.3390/ijms24087113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/07/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
The gamma-hemolysin protein is one of the most common pore-forming toxins expressed by the pathogenic bacterium Staphylococcus aureus. The toxin is used by the pathogen to escape the immune system of the host organism, by assembling into octameric transmembrane pores on the surface of the target immune cell and leading to its death by leakage or apoptosis. Despite the high potential risks associated with Staphylococcus aureus infections and the urgent need for new treatments, several aspects of the pore-formation process from gamma-hemolysin are still unclear. These include the identification of the interactions between the individual monomers that lead to the formation of a dimer on the cell membrane, which represents the unit for further oligomerization. Here, we employed a combination of all-atom explicit solvent molecular dynamics simulations and protein-protein docking to determine the stabilizing contacts that guide the formation of a functional dimer. The simulations and the molecular modeling reveal the importance of the flexibility of specific protein domains, in particular the N-terminus, to drive the formation of the correct dimerization interface through functional contacts between the monomers. The results obtained are compared with the experimental data available in the literature.
Collapse
Affiliation(s)
- Costanza Paternoster
- Department of Physics, University of Trento, Via Sommarive 14, I-38123 Trento, Italy
- INFN-TIFPA, Trento Institute for Fundamental Physics and Applications, Via Sommarive 14, I-38123 Trento, Italy
| | - Thomas Tarenzi
- Department of Physics, University of Trento, Via Sommarive 14, I-38123 Trento, Italy
- INFN-TIFPA, Trento Institute for Fundamental Physics and Applications, Via Sommarive 14, I-38123 Trento, Italy
| | - Raffaello Potestio
- Department of Physics, University of Trento, Via Sommarive 14, I-38123 Trento, Italy
- INFN-TIFPA, Trento Institute for Fundamental Physics and Applications, Via Sommarive 14, I-38123 Trento, Italy
| | - Gianluca Lattanzi
- Department of Physics, University of Trento, Via Sommarive 14, I-38123 Trento, Italy
- INFN-TIFPA, Trento Institute for Fundamental Physics and Applications, Via Sommarive 14, I-38123 Trento, Italy
| |
Collapse
|
6
|
Zhou L, Liu Z, Zheng Z, Yao D, Zhao Y, Chen X, Zhang Y, Aweya JJ. The CCR1 and CCR5 C-C chemokine receptors in Penaeus vannamei are annexed by bacteria to attenuate shrimp survival. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 139:104561. [PMID: 36183838 DOI: 10.1016/j.dci.2022.104561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/09/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
The C-C chemokine receptors (CCRs) family is involved in diverse pathophysiological processes in mammals, such as immune regulation and cancer, but their functions in invertebrates remain enigmatic. Here, two CCR homologs in Penaeus vannamei (designated PvCCR1 and PvCCR5) were characterized and found to share sequence homology with other CCRs and contain the conserved 7TM functional domain. Both PvCCR1 and PvCCR5 were constitutively expressed in healthy shrimp tissues, while their mRNA transcript levels were induced in hepatopancreas and hemocytes by Vibrio parahaemolyticus, Streptococcus iniae, and white spot syndrome virus. Notably, shrimp survival increased after knockdown of PvCCR1 and PvCCR5 followed by V. parahaemolyticus infection, indicating that PvCCR1 and PvCCR5 are annexed by the bacteria for their benefit, the absence of which attenuates the effects of the pathogen on shrimp survival. The present data indicate that PvCCR1 and PvCCR5 play key roles in the antimicrobial immune response and therefore vital for shrimp survival.
Collapse
Affiliation(s)
- Liping Zhou
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China
| | - Zhouyan Liu
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China
| | - Zhihong Zheng
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China
| | - Defu Yao
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China
| | - Yongzhen Zhao
- Guangxi Academy of Fishery Sciences, Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Nanning, 530021, China
| | - Xiuli Chen
- Guangxi Academy of Fishery Sciences, Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Nanning, 530021, China
| | - Yueling Zhang
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, China; Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China
| | - Jude Juventus Aweya
- College of Ocean Food and Biological Engineering, Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Jimei University, Xiamen, 361021, Fujian, China; Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China.
| |
Collapse
|