1
|
Schöneberg T. Modulating vertebrate physiology by genomic fine-tuning of GPCR functions. Physiol Rev 2025; 105:383-439. [PMID: 39052017 DOI: 10.1152/physrev.00017.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/08/2024] [Accepted: 07/20/2024] [Indexed: 07/27/2024] Open
Abstract
G protein-coupled receptors (GPCRs) play a crucial role as membrane receptors, facilitating the communication of eukaryotic species with their environment and regulating cellular and organ interactions. Consequently, GPCRs hold immense potential in contributing to adaptation to ecological niches and responding to environmental shifts. Comparative analyses of vertebrate genomes reveal patterns of GPCR gene loss, expansion, and signatures of selection. Integrating these genomic data with insights from functional analyses of gene variants enables the interpretation of genotype-phenotype correlations. This review underscores the involvement of GPCRs in adaptive processes, presenting numerous examples of how alterations in GPCR functionality influence vertebrate physiology or, conversely, how environmental changes impact GPCR functions. The findings demonstrate that modifications in GPCR function contribute to adapting to aquatic, arid, and nocturnal habitats, influencing camouflage strategies, and specializing in particular dietary preferences. Furthermore, the adaptability of GPCR functions provides an effective mechanism in facilitating past, recent, or ongoing adaptations in animal domestication and human evolution and should be considered in therapeutic strategies and drug development.
Collapse
Affiliation(s)
- Torsten Schöneberg
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, University of Leipzig, Leipzig, Germany
- School of Medicine, University of Global Health Equity, Kigali, Rwanda
| |
Collapse
|
2
|
Li W, Ye C, He M, Ko WKW, Cheng CHK, Chan YW, Wong AOL. Differential involvement of cAMP/PKA-, PLC/PKC- and Ca 2+/calmodulin-dependent pathways in GnRH-induced prolactin secretion and gene expression in grass carp pituitary cells. Front Endocrinol (Lausanne) 2024; 15:1399274. [PMID: 38894746 PMCID: PMC11183098 DOI: 10.3389/fendo.2024.1399274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/13/2024] [Indexed: 06/21/2024] Open
Abstract
Gonadotropin-releasing hormone (GnRH) is a key stimulator for gonadotropin secretion in the pituitary and its pivotal role in reproduction is well conserved in vertebrates. In fish models, GnRH can also induce prolactin (PRL) release, but little is known for the corresponding effect on PRL gene expression as well as the post-receptor signalling involved. Using grass carp as a model, the functional role of GnRH and its underlying signal transduction for PRL regulation were examined at the pituitary level. Using laser capture microdissection coupled with RT-PCR, GnRH receptor expression could be located in carp lactotrophs. In primary cell culture prepared from grass carp pituitaries, the native forms of GnRH, GnRH2 and GnRH3, as well as the GnRH agonist [D-Arg6, Pro9, NEt]-sGnRH were all effective in elevating PRL secretion, PRL mRNA level, PRL cell content and total production. In pituitary cells prepared from the rostral pars distalis, the region in the carp pituitary enriched with lactotrophs, GnRH not only increased cAMP synthesis with parallel CREB phosphorylation and nuclear translocation but also induced a rapid rise in cytosolic Ca2+ by Ca2+ influx via L-type voltage-sensitive Ca2+ channel (VSCC) with subsequent CaM expression and NFAT2 dephosphorylation. In carp pituitary cells prepared from whole pituitaries, GnRH-induced PRL secretion was reduced/negated by inhibiting cAMP/PKA, PLC/PKC and Ca2+/CaM/CaMK-II pathways but not the signalling events via IP3 and CaN/NFAT. The corresponding effect on PRL mRNA expression, however, was blocked by inhibiting cAMP/PKA/CREB/CBP and Ca2+/CaM/CaN/NFAT2 signalling but not PLC/IP3/PKC pathway. At the pituitary cell level, activation of cAMP/PKA pathway could also induce CaM expression and Ca2+ influx via VSCC with parallel rises in PRL release and gene expression in a Ca2+/CaM-dependent manner. These findings, as a whole, suggest that the cAMP/PKA-, PLC/PKC- and Ca2+/CaM-dependent cascades are differentially involved in GnRH-induced PRL secretion and PRL transcript expression in carp lactotrophs. During the process, a functional crosstalk between the cAMP/PKA- and Ca2+/CaM-dependent pathways may occur with PRL release linked with CaMK-II and PKC activation and PRL gene transcription caused by nuclear action of CREB/CBP and CaN/NFAT2 signalling.
Collapse
Affiliation(s)
- Wensheng Li
- School of Biological Sciences, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Cheng Ye
- School of Biological Sciences, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Mulan He
- School of Biological Sciences, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Wendy K. W. Ko
- School of Biological Sciences, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Christopher H. K. Cheng
- School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Ying Wai Chan
- School of Biological Sciences, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Anderson O. L. Wong
- School of Biological Sciences, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
3
|
Santiago-Andres Y, Aquiles A, Taniguchi-Ponciano K, Salame L, Guinto G, Mercado M, Fiordelisio T. Association between Intracellular Calcium Signaling and Tumor Recurrence in Human Non-Functioning Pituitary Adenomas. Int J Mol Sci 2024; 25:3968. [PMID: 38612778 PMCID: PMC11011867 DOI: 10.3390/ijms25073968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 03/24/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
Clinically non-functioning pituitary adenomas (CNFPAs) are the second most frequent sellar tumor among studies on community-dwelling adults. They are characterized by the absence of hormonal hypersecretion syndrome, and patients present with compressive symptoms, such as a headache and visual field defects. Immunohistochemically, most CNFPAs are of gonadotrope differentiation, with only a few of them being truly null cell adenomas. Although these tumors express receptors for one or more hypothalamic releasing hormones, to what extent this has an impact on the biological and clinical behavior of these neoplasms remains to be defined. In this research, we evaluated the basal and hypothalamic secretagogue-stimulated intracellular calcium mobilization in 13 CNFPAs, trying to correlate this response to the phenotypic features of the patients. Our results indicate that the recurrence of a CNFPA correlates positively with cellular responsiveness, as measured by spontaneous intracellular calcium activity and the ability to respond to multiple hypothalamic secretagogues. We conclude that this finding may be a useful tool for predicting the clinicopathologic behavior of CNFPAs, by testing the variation of cellular responsiveness to hypothalamic secretagogues.
Collapse
Affiliation(s)
- Yorgui Santiago-Andres
- Laboratorio de Neuroendocrinología Comparada, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de Mexico 04510, Mexico;
- Posgrado en Ciencias Biológicas, Unidad de Posgrado, Edificio D, 1° Piso, Circuito de Posgrados, Ciudad Universitaria, Ciudad de Mexico 04510, Mexico
| | - Ana Aquiles
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro 76230, Mexico;
| | - Keiko Taniguchi-Ponciano
- Unidad de Investigación Médica en Enfermedades Endocrinas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de Mexico 06720, Mexico; (K.T.-P.); (L.S.)
| | - Latife Salame
- Unidad de Investigación Médica en Enfermedades Endocrinas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de Mexico 06720, Mexico; (K.T.-P.); (L.S.)
| | - Gerardo Guinto
- Centro Neurológico, Centro Médico ABC, Ciudad de México 05370, Mexico;
| | - Moises Mercado
- Unidad de Investigación Médica en Enfermedades Endocrinas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de Mexico 06720, Mexico; (K.T.-P.); (L.S.)
| | - Tatiana Fiordelisio
- Laboratorio de Neuroendocrinología Comparada, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de Mexico 04510, Mexico;
| |
Collapse
|
4
|
Alonso CAI, David CD, Toufaily C, Wang Y, Zhou X, Ongaro L, Nudelman G, Nair VD, Ruf-Zamojski F, Boehm U, Sealfon SC, Bernard DJ. Activating Transcription Factor 3 Stimulates Follicle-Stimulating Hormone-β Expression In Vitro But Is Dispensable for Follicle-Stimulating Hormone Production in Murine Gonadotropes In Vivo. Endocrinology 2023; 164:bqad050. [PMID: 36951304 PMCID: PMC10282924 DOI: 10.1210/endocr/bqad050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/07/2023] [Accepted: 03/21/2023] [Indexed: 03/24/2023]
Abstract
Follicle-stimulating hormone (FSH), a dimeric glycoprotein produced by pituitary gonadotrope cells, regulates spermatogenesis in males and ovarian follicle growth in females. Hypothalamic gonadotropin-releasing hormone (GnRH) stimulates FSHβ subunit gene (Fshb) transcription, though the underlying mechanisms are poorly understood. To address this gap in knowledge, we examined changes in pituitary gene expression in GnRH-deficient mice (hpg) treated with a regimen of exogenous GnRH that increases pituitary Fshb but not luteinizing hormone β (Lhb) messenger RNA levels. Activating transcription factor 3 (Atf3) was among the most upregulated genes. Activating transcription factor 3 (ATF3) can heterodimerize with members of the activator protein 1 family to regulate gene transcription. Co-expression of ATF3 with JunB stimulated murine Fshb, but not Lhb, promoter-reporter activity in homologous LβT2b cells. ATF3 also synergized with a constitutively active activin type I receptor to increase endogenous Fshb expression in these cells. Nevertheless, FSH production was intact in gonadotrope-specific Atf3 knockout [conditional knockout (cKO)] mice. Ovarian follicle development, ovulation, and litter sizes were equivalent between cKOs and controls. Testis weights and sperm counts did not differ between genotypes. Following gonadectomy, increases in LH secretion were enhanced in cKO animals. Though FSH levels did not differ between genotypes, post-gonadectomy increases in pituitary Fshb and gonadotropin α subunit expression were more pronounced in cKO than control mice. These data indicate that ATF3 can selectively stimulate Fshb expression in vitro but is not required for FSH production in vivo.
Collapse
Affiliation(s)
- Carlos A I Alonso
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Caroline D David
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Chirine Toufaily
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Ying Wang
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Xiang Zhou
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Luisina Ongaro
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC H3G 1Y6, Canada
| | - German Nudelman
- Department of Neurology, Center for Advanced Research on Diagnostic Assay, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Venugopalan D Nair
- Department of Neurology, Center for Advanced Research on Diagnostic Assay, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Frederique Ruf-Zamojski
- Department of Neurology, Center for Advanced Research on Diagnostic Assay, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ulrich Boehm
- Department of Experimental Pharmacology, Center for Molecular Signaling, Saarland University School of Medicine, Homburg 66421, Germany
| | - Stuart C Sealfon
- Department of Neurology, Center for Advanced Research on Diagnostic Assay, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Daniel J Bernard
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC H3G 1Y6, Canada
| |
Collapse
|
5
|
Constantin S, Bjelobaba I, Stojilkovic SS. Pituitary gonadotroph-specific patterns of gene expression and hormone secretion. Curr Opin Pharmacol 2022; 66:102274. [PMID: 35994915 PMCID: PMC9509429 DOI: 10.1016/j.coph.2022.102274] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/30/2022] [Accepted: 07/04/2022] [Indexed: 11/28/2022]
Abstract
Pituitary gonadotrophs play a key role in reproductive functions by secreting luteinizing hormone (LH) and follicle-stimulating hormone (FSH). The LH secretory activity of gonadotroph is controlled by hypothalamic gonadotropin-releasing hormone (GnRH) via GnRH receptors and is accompanied by only minor effects on high basal Lhb gene expression. The secretory profiles of GnRH and LH are highly synchronized, with the latter reflecting a depletion of prestored LH in secretory vesicles by regulated exocytosis. In contrast, FSH is predominantly released by constitutive exocytosis, and secretory activity reflects the kinetics of Fshb gene expression controlled by GnRH, activin, and inhibin. Here is a review of recent data to improve the understanding of multiple patterns of gonadotroph gene expression and hormone secretion.
Collapse
Affiliation(s)
- Stephanie Constantin
- Section on Cellular Signaling, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ivana Bjelobaba
- Department for Neurobiology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11000, Belgrade, Serbia
| | - Stanko S Stojilkovic
- Section on Cellular Signaling, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|