1
|
Lu T, Luo L, Yang J, Cheng X, Sun J. Circulating Levels of T-Cell Traits and the Risk of Amyotrophic Lateral Sclerosis: A Mendelian Randomization Study. Mol Neurobiol 2024; 61:10529-10537. [PMID: 38748065 DOI: 10.1007/s12035-024-04226-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 05/08/2024] [Indexed: 11/24/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) represents a rare and potentially fatal neurodegenerative disease. Diverse T-cell subsets could potentially exert diametrically opposite impacts upon ALS development. A two-sample Mendelian randomization (MR) analysis was performed to investigate the correlation between 244 T-cell subsets and ALS risk. Genetic instrumental variables were procured from a standard genome-wide association study (GWAS) that encompassed 244 T-cell subsets in 3757 individuals of European lineage. ALS-related data were collected from a GWAS comprising 20,806 ALS instances and 59,804 European control participants. Multiple sensitivity analyses were performed to verify the robustness of the significant results. Reverse MR analysis was used for delineating the effects of ALS on the characteristics of T-cells. After multiple comparison corrections, 24 out of the 244 subtypes demonstrated a potential association with ALS risk. Significantly, 75% of these associations encompassed the expression of the CD3 on diverse T-cell subtypes, revealing a highly consistent inverse relation to ALS risk. The proportion of T regulatory cells (Tregs) in CD4+ T cells and secreting Tregs in CD4+ T cells demonstrated negative associations with the risk of ALS. CCR7 expression on naive CD4+ T cells and CCR7 expression on naive CD8+ T cells showed positive associations with ALS risk. Certain T-cell subsets, particularly those identified by CD3 expression on terminally differentiated CD8+ T cells, proportions of Tregs, and CCR7 expression, indicated an association with ALS risk. These findings harmonize with and extend previous observational studies investigating the involvement of T lymphocyte subset-induced immunological processes in ALS.
Collapse
Affiliation(s)
- Ting Lu
- The Second School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Lijun Luo
- Department of Neurology, Wuhan No.1 Hospital, Wuhan, 430033, China
| | - Jie Yang
- Department of Neurology, Wuhan No.1 Hospital, Wuhan, 430033, China
| | - Xiao Cheng
- The Second School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
- Department of Neurology, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, 510120, China.
- State Key Laboratory of Dampness, Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China.
- Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangzhou, 510120, China.
| | - Jingbo Sun
- The Second School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
- Department of Neurology, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, 510120, China.
- State Key Laboratory of Dampness, Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China.
- Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangzhou, 510120, China.
| |
Collapse
|
2
|
Hu Y, Deeba E, Kläppe U, Öijerstedt L, Andersson J, Ruffin N, Piehl F, Ingre C, Fang F, Seitz C. Immune cells and the trajectories of depression, anxiety, and cognitive function among people with amyotrophic lateral sclerosis. Brain Behav Immun Health 2024; 42:100907. [PMID: 39650285 PMCID: PMC11625338 DOI: 10.1016/j.bbih.2024.100907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/01/2024] [Accepted: 11/20/2024] [Indexed: 12/11/2024] Open
Abstract
Background Amyotrophic lateral sclerosis (ALS) represents a complex syndrome characterized by motor, psychiatric, and cognitive symptoms, where associations between cellular immune features and non-motor manifestations remain unknown. Methods In this cohort study, we enrolled 250 incident people with ALS (pwALS) assessed with the Hospital Anxiety and Depression Scale, and 226 pwALS with the Montreal Cognitive Assessment, including 218 overlapping pwALS. All individuals were diagnosed between January 2015 and January 2023 in Stockholm, Sweden. We applied joint latent class models to delineate distinct trajectories of anxiety, depression, and cognition, incorporating survival outcomes. A majority of the pwALS had data on leukocyte counts and flow cytometric analyses using a comprehensive T cell panel. We then used immune cell subtypes measured at diagnosis to predict trajectories of these outcomes following ALS diagnosis. Results We identified two distinct trajectories for anxiety, depression, and cognitive function following ALS diagnosis. PwALS with longer survival displayed more stable trajectories, while those with shorter survival showed decreasing anxiety symptom, increasing depressive symptom, and declining cognitive function. Higher count of leukocytes at the time of ALS diagnosis tended to associate with anxiety and depression trajectories related to shorter survival. Among T cell subpopulations, several CD8+ T cell subsets were associated with a stable trajectory of depressive symptom, and, in turn, better survival. Conclusion ALS-associated psychiatric and cognitive trajectories vary significantly between pwALS with different prognosis. Certain T cell subsets measured at diagnosis might be indicative of depression trajectories post-diagnosis.
Collapse
Affiliation(s)
- Yihan Hu
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Elie Deeba
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ulf Kläppe
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Linn Öijerstedt
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - John Andersson
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Nicolas Ruffin
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Fredrik Piehl
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Caroline Ingre
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Fang Fang
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Christina Seitz
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
3
|
Kim HJ, Ban JJ, Kang J, Im HR, Ko SH, Sung JJ, Park SH, Park JE, Choi SJ. Single-cell analysis reveals expanded CD8 + GZMK high T cells in CSF and shared peripheral clones in sporadic amyotrophic lateral sclerosis. Brain Commun 2024; 6:fcae428. [PMID: 39659975 PMCID: PMC11631212 DOI: 10.1093/braincomms/fcae428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/24/2024] [Accepted: 11/25/2024] [Indexed: 12/12/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that affects motor neurons in the brain and spinal cord. Despite the crucial role of aberrant immune responses in ALS pathogenesis, studies investigating immunological profiles in the cerebrospinal fluid (CSF) of patients with ALS have reported inconsistent findings. Herein, we explored the intrathecal adaptive immune response and features of circulating T cells between CSF and blood of patients with ALS using single-cell RNA and T-cell receptor (TCR) sequencing. This study comprised a total of 11 patients with apparently sporadic ALS and three controls with non-inflammatory diseases. We collected CSF from all participants, and for three patients with ALS, we additionally obtained paired samples of peripheral blood mononuclear cells (PBMCs). Utilizing droplet-based single-cell RNA and TCR sequencing, we analysed immunological profiles, gene expression characteristics and clonality. Furthermore, we examined T-cell characteristics in both PBMC and CSF samples, evaluating the shared T-cell clones across these compartments. In the CSF, patients with ALS exhibited a lower proportion of CD4+ T cells (45.2 versus 61.2%, P = 0.005) and a higher proportion of CD8+ GZMK hi effector memory T cells (TEMs) than controls (21.7 versus 16.8%, P = 0.060). Higher clonality was observed in CD8+ TEMs in patients with ALS compared with controls. In addition, CSF macrophages of patients with ALS exhibited a significant increase in chemokines recruiting CD8+ TEMs. Immunohistochemical analysis showed slightly higher proportions of T cells in the perivascular and parenchymal spaces in patients with ALS than in controls, and CD8+ TEMs co-localized with neurons or astrocytes in the motor cortices of patients with ALS. Clonally expanded CD8+ GZMK hi TEMs primarily comprised shared T-cell clones between CSF and PBMCs. Moreover, the shared CD8+ TEMs of PBMCs exhibited gene expression profiles similar to CSF T cells. Patients with ALS showed an increase in proportion and clonality of CD8+ GZMK hi TEMs and activated features of macrophages in CSF. The shared T-cell clone between CSF and blood was mainly composed of expanded CD8+ GZMK hi TEMs. In conclusion, single-cell immune profiling provided novel insights into the pathogenesis of ALS, characterized by activated macrophages and clonally expanded CD8+ T cells potentially communicating with the central nervous system and peripheral circulation.
Collapse
Affiliation(s)
- Hyo Jae Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Jae-Jun Ban
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Junho Kang
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Hye-Ryeong Im
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Sun Hi Ko
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Jung-Joon Sung
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Sung-Hye Park
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Jong-Eun Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Seok-Jin Choi
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| |
Collapse
|
4
|
Ohnari K, Mafune K, Adachi H. Fasciculation potentials are related to the prognosis of amyotrophic lateral sclerosis. PLoS One 2024; 19:e0313307. [PMID: 39514515 PMCID: PMC11548741 DOI: 10.1371/journal.pone.0313307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Some prognostic biomarkers of amyotrophic lateral sclerosis (ALS) have been described; however, they are inadequate for satisfactorily predicting individual patient outcomes. Fasciculation potentials (FPs) on electromyography (EMG) are useful for the early diagnosis of ALS, and complex FPs are associated with shorter survival in ALS. In this study, we investigated the relationship between the proportion of muscles with FPs, biochemical markers, and the prognosis of ALS. 89 Patients with ALS were retrospectively classified into three groups based on the interval from onset to death or tracheostomy (less than 1 year: fast progression; from 1 year to less than 3 years: average progression; 3 years or more: slow progression). We performed statistical analysis of the electrophysiological findings, including the percentage of examined muscles with FPs, and biochemical markers evaluated on admission. Patients with fast ALS progression had a higher percentage of muscles with FPs (93.1% vs. 37.9%, P<0.001) and lower uric acid (UA) levels (male: 4.19 mg/dl vs 5.55 mg/dl, P<0.001; female: 3.71 mg/dl vs 5.41 mg/dl, P<0.001) than patients with slow progression. Survival curves demonstrated a relationship between these factors and the survival time in patients with ALS. Furthermore, UA levels were correlated with the percentage of muscles with FPs. Our electrophysiological findings suggest that ALS presents with multisystem neurological manifestations, and these manifestations differed among the groups classified by disease progression. The percentage of muscles with FPs on EMG and serum UA levels were especially associated with the prognosis of ALS.
Collapse
Affiliation(s)
- Keiko Ohnari
- Department of Neurology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Fukuoka, Japan
| | - Kosuke Mafune
- Department of Mental Health, Institute of Industrial Ecological Sciences, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Fukuoka, Japan
| | - Hiroaki Adachi
- Department of Neurology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Fukuoka, Japan
| |
Collapse
|
5
|
Lietzau G. Neurobiology Research on Neurodegenerative Disorders. Brain Sci 2024; 14:1121. [PMID: 39595884 PMCID: PMC11591749 DOI: 10.3390/brainsci14111121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 10/14/2024] [Indexed: 11/28/2024] Open
Abstract
The aim of the following Special Issue was to call for research in the field of neurodegenerative disorders (NDDs) [...].
Collapse
Affiliation(s)
- Grażyna Lietzau
- Division of Anatomy and Neurobiology, Faculty of Medicine, Medical University of Gdańsk, Dębinki 1, 80-211 Gdańsk, Poland
| |
Collapse
|
6
|
Matsuo K, Nagamatsu J, Nagata K, Umeda R, Shiota T, Morimoto S, Suzuki N, Aoki M, Okano H, Nakamori M, Nishihara H. Establishment of a novel amyotrophic lateral sclerosis patient ( TARDBP N345K/+)-derived brain microvascular endothelial cell model reveals defective Wnt/β-catenin signaling: investigating diffusion barrier dysfunction and immune cell interaction. Front Cell Dev Biol 2024; 12:1357204. [PMID: 39211392 PMCID: PMC11357944 DOI: 10.3389/fcell.2024.1357204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 07/25/2024] [Indexed: 09/04/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a major neurodegenerative disease for which there is currently no curative treatment. The blood-brain barrier (BBB), multiple physiological functions formed by mainly specialized brain microvascular endothelial cells (BMECs), serves as a gatekeeper to protect the central nervous system (CNS) from harmful molecules in the blood and aberrant immune cell infiltration. The accumulation of evidence indicating that alterations in the peripheral milieu can contribute to neurodegeneration within the CNS suggests that the BBB may be a previously overlooked factor in the pathogenesis of ALS. Animal models suggest BBB breakdown may precede neurodegeneration and link BBB alteration to the disease progression or even onset. However, the lack of a useful patient-derived model hampers understanding the pathomechanisms of BBB dysfunction and the development of BBB-targeted therapies. In this study, we differentiated BMEC-like cells from human induced pluripotent stem cells (hiPSCs) derived from ALS patients to investigate BMEC functions in ALS patients. TARDBP N345K/+ carrying patient-derived BMEC-like cells exhibited increased permeability to small molecules due to loss of tight junction in the absence of neurodegeneration or neuroinflammation, highlighting that BMEC abnormalities in ALS are not merely secondary consequences of disease progression. Furthermore, they exhibited increased expression of cell surface adhesion molecules like ICAM-1 and VCAM-1, leading to enhanced immune cell adhesion. BMEC-like cells derived from hiPSCs with other types of TARDBP gene mutations (TARDBP K263E/K263E and TARDBP G295S/G295S) introduced by genome editing technology did not show such BMEC dysfunction compared to the isogenic control. Interestingly, transactive response DNA-binding protein 43 (TDP-43) was mislocalized to cytoplasm in TARDBP N345K/+ carrying model. Wnt/β-catenin signaling was downregulated in the ALS patient (TARDBP N345K/+)-derived BMEC-like cells and its activation rescued the leaky barrier phenotype and settled down VCAM-1 expressions. These results indicate that TARDBP N345K/+ carrying model recapitulated BMEC abnormalities reported in brain samples of ALS patients. This novel patient-derived BMEC-like cell is useful for the further analysis of the involvement of vascular barrier dysfunctions in the pathogenesis of ALS and for promoting therapeutic drug discovery targeting BMEC.
Collapse
Affiliation(s)
- Kinya Matsuo
- Department of Neurology and Clinical Neuroscience, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Jun Nagamatsu
- Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Kazuhiro Nagata
- Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Ryusei Umeda
- Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Takaya Shiota
- Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Satoru Morimoto
- Keio University, Regenerative Medicine Research Center, Kawasaki, Kanagawa, Japan
| | - Naoki Suzuki
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masashi Aoki
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hideyuki Okano
- Keio University, Regenerative Medicine Research Center, Kawasaki, Kanagawa, Japan
| | - Masayuki Nakamori
- Department of Neurology and Clinical Neuroscience, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Hideaki Nishihara
- Department of Neurology and Clinical Neuroscience, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| |
Collapse
|
7
|
Nona RJ, Henderson RD, McCombe PA. Neutrophil-to-lymphocyte ratio at diagnosis as a biomarker for survival of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener 2024; 25:452-464. [PMID: 38745425 DOI: 10.1080/21678421.2024.2351187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 04/22/2024] [Accepted: 04/29/2024] [Indexed: 05/16/2024]
Abstract
INTRODUCTION The neutrophil-to-lymphocyte ratio (NLR) has previously been reported to be associated with survival in ALS. To provide further information about the role of NLR as a biomarker in ALS, we performed a systematic review, analyzed data from our local cohort of ALS subjects and performed a meta-analysis. METHODS (1) The systematic review used established methods. (2) Using data from our cohort of subjects, we analyzed the association of NLR with survival. (3) Meta-analysis was performed using previous studies and our local data. RESULTS (1) In the systematic review, higher NLR was associated with shorter survival in all studies. (2) In our subjects, survival was significantly shorter in patients in the highest NLR groups. (3) Meta-analysis showed subjects with highest NLR tertile or with NLR >3 had significantly shorter survival than other subjects. DISCUSSION This study supports NLR as a biomarker in ALS; high NLR is associated with poor survival.
Collapse
Affiliation(s)
- Robert J Nona
- University of Queensland Centre for Clinical Research, Brisbane, Queensland, Australia and
| | - Robert D Henderson
- University of Queensland Centre for Clinical Research, Brisbane, Queensland, Australia and
- Department of Neurology, The Royal Brisbane & Women's Hospital, Brisbane, Queensland, Australia
| | - Pamela A McCombe
- University of Queensland Centre for Clinical Research, Brisbane, Queensland, Australia and
- Department of Neurology, The Royal Brisbane & Women's Hospital, Brisbane, Queensland, Australia
| |
Collapse
|
8
|
Murdock BJ, Zhao B, Pawlowski KD, Famie JP, Piecuch CE, Webber-Davis IF, Teener SJ, Feldman EL, Zhao L, Goutman SA. Peripheral Immune Profiles Predict ALS Progression in an Age- and Sex-Dependent Manner. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2024; 11:e200241. [PMID: 38626361 PMCID: PMC11087030 DOI: 10.1212/nxi.0000000000200241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 02/12/2024] [Indexed: 04/18/2024]
Abstract
BACKGROUND AND OBJECTIVES Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease whose pathobiology associates with peripheral blood immune cell levels and activation patterns in an age and sex-dependent manner. This study's objective was to identify immune profile associations with ALS progression, whether the associations are age and sex-specific, and whether immune profiles can predict a future disease course. METHODS Flow cytometry immune profiles (a combination of 22 peripheral blood immune markers) were generated for 241 participants with ALS and linked to ALS progression, using progression-free survival, which is a composite combining the revised ALS Functional Rating Scale and survival. Participants were first grouped by immune profiles using unsupervised hierarchical clustering, and clusters were associated with subsequent progression-free survival. Next, individual immune markers were associated with progression-free survival using least absolute shrinkage and selection operator-Cox regression. Analyses were stratified by age and sex to identify demographic-specific immune mechanisms. Finally, random forest determined the predictive power of immune profiles on ALS progression in the whole population and again stratified by age and sex. RESULTS Progression-free survival differed between clusters of participants with similar immune profiles, particularly reduced natural killer (NK)-cell activation associated with slower progression. Individual markers such as neutrophil levels and NK-cell NKp46 expression associated with faster ALS progression while overall NK-cell levels and NK-cell subpopulations associated with slower progression; the strength of these associations varied by age and sex. Adding these immune markers to prediction models dramatically increased short-term prediction compared with routine clinical prognostic variables alone, and the addition of NK-cell markers further improved the prediction accuracy in female participants. DISCUSSION Specific immune profiles likely contribute to ALS progression in an age and sex-dependent manner, and peripheral immune markers enhance the prediction of short-term clinical outcomes. These findings suggest a complex milieu of immune profiles associated with ALS progression, and more detailed immunophenotyping in ALS will facilitate personalized immunotherapeutics in ALS.
Collapse
Affiliation(s)
- Benjamin J Murdock
- From the Department of Neurology (B.J.M., K.D.P., J.P.F., C.E.P., I.F.W.-D., S.J.T., E.L.F., S.A.G.); and School of Public Health (B.Z., L.Z.), Biostatistics Department, University of Michigan, Ann Arbor
| | - Bangyao Zhao
- From the Department of Neurology (B.J.M., K.D.P., J.P.F., C.E.P., I.F.W.-D., S.J.T., E.L.F., S.A.G.); and School of Public Health (B.Z., L.Z.), Biostatistics Department, University of Michigan, Ann Arbor
| | - Kristen D Pawlowski
- From the Department of Neurology (B.J.M., K.D.P., J.P.F., C.E.P., I.F.W.-D., S.J.T., E.L.F., S.A.G.); and School of Public Health (B.Z., L.Z.), Biostatistics Department, University of Michigan, Ann Arbor
| | - Joshua P Famie
- From the Department of Neurology (B.J.M., K.D.P., J.P.F., C.E.P., I.F.W.-D., S.J.T., E.L.F., S.A.G.); and School of Public Health (B.Z., L.Z.), Biostatistics Department, University of Michigan, Ann Arbor
| | - Caroline E Piecuch
- From the Department of Neurology (B.J.M., K.D.P., J.P.F., C.E.P., I.F.W.-D., S.J.T., E.L.F., S.A.G.); and School of Public Health (B.Z., L.Z.), Biostatistics Department, University of Michigan, Ann Arbor
| | - Ian F Webber-Davis
- From the Department of Neurology (B.J.M., K.D.P., J.P.F., C.E.P., I.F.W.-D., S.J.T., E.L.F., S.A.G.); and School of Public Health (B.Z., L.Z.), Biostatistics Department, University of Michigan, Ann Arbor
| | - Samuel J Teener
- From the Department of Neurology (B.J.M., K.D.P., J.P.F., C.E.P., I.F.W.-D., S.J.T., E.L.F., S.A.G.); and School of Public Health (B.Z., L.Z.), Biostatistics Department, University of Michigan, Ann Arbor
| | - Eva L Feldman
- From the Department of Neurology (B.J.M., K.D.P., J.P.F., C.E.P., I.F.W.-D., S.J.T., E.L.F., S.A.G.); and School of Public Health (B.Z., L.Z.), Biostatistics Department, University of Michigan, Ann Arbor
| | - Lili Zhao
- From the Department of Neurology (B.J.M., K.D.P., J.P.F., C.E.P., I.F.W.-D., S.J.T., E.L.F., S.A.G.); and School of Public Health (B.Z., L.Z.), Biostatistics Department, University of Michigan, Ann Arbor
| | - Stephen A Goutman
- From the Department of Neurology (B.J.M., K.D.P., J.P.F., C.E.P., I.F.W.-D., S.J.T., E.L.F., S.A.G.); and School of Public Health (B.Z., L.Z.), Biostatistics Department, University of Michigan, Ann Arbor
| |
Collapse
|
9
|
Xu CZ, Huan X, Luo SS, Zhong HH, Zhao CB, Chen Y, Zou ZY, Chen S. Serum cytokines profile changes in amyotrophic lateral sclerosis. Heliyon 2024; 10:e28553. [PMID: 38596011 PMCID: PMC11002056 DOI: 10.1016/j.heliyon.2024.e28553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 03/13/2024] [Accepted: 03/20/2024] [Indexed: 04/11/2024] Open
Abstract
Background Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disorder, characterized by progressive limb weakness, dysphagia, dysphonia, and respiratory failure due to degeneration of upper and lower motor neurons. The pathogenesis of ALS is still unclear. Neuroinflammation has been found to be involved in its development and progression. Cytokines play a significant role in the inflammatory process. This study aims to identify novel biomarkers that may assist in the diagnosis of ALS. Methods In Fujian Medical University Union Hospital and Huashan Hospital Fudan University, two independent centers, we prospectively recruited 50 ALS patients, and 41 healthy controls (25 ALS and 26 controls in the first stage and 25 ALS and 15 controls in the validation stage). An 18-plex Luminex kit was used to screen the serum cytokines levels in the first stage. Commercial ELISA kits were used to measure the levels of target cytokines in the validation stage. A single-molecule array HD-X platform was applied to assess the levels of serum neurofilament light chain (NFL). Results The levels of serum IL-18 were markedly increased in patients with ALS in the first stage (p = 0.016). The ROC curve showed an area under the curve at 0.695 (95% CI 0.50-0.84) in distinguishing ALS patients from healthy controls. The IL-21 was decreased in elderly patients when grouped by 55 years old (the medium age). Furthermore, the IL-5, IL-13, IL-18, and NFL had a positive relationship with the disease progression of ALS. We also found that serum IL-18 was markedly increased in ALS patients in the validation stage (167.67 [148.25-175.59] vs 116.44 [102.43-122.19]pg/ml, p < 0.0015). Conclusion In this study, we identified systemic cytokine profile changes in the serum of ALS patients, especially the elevated IL-18, as well as the decreased IL-21 in elder patients. These changes in serum cytokine profiles may shed new light on an in-depth understanding of the immunopathogenic characteristics of ALS.
Collapse
Affiliation(s)
- Chun-Zuan Xu
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China
| | - Xiao Huan
- Department of Neurology, Fudan University Huashan Hospital, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
| | - Su-Shan Luo
- Department of Neurology, Fudan University Huashan Hospital, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
| | - Hua-Hua Zhong
- Department of Neurology, Fudan University Huashan Hospital, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
| | - Chong-Bo Zhao
- Department of Neurology, Fudan University Huashan Hospital, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
| | - Yan Chen
- Department of Neurology, Fudan University Huashan Hospital, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
| | - Zhang-Yu Zou
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China
| | - Sheng Chen
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China
| |
Collapse
|
10
|
Chen S, Huan X, Xu C, Luo S, Zhao C, Zhong H, Zheng X, Qiao K, Dong Y, Wang Y, Liu C, Huang H, Chen Y, Zou Z. Eomesodermin expression in CD4 +T-cells associated with disease progression in amyotrophic lateral sclerosis. CNS Neurosci Ther 2024; 30:e14503. [PMID: 37850654 PMCID: PMC11017423 DOI: 10.1111/cns.14503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/25/2023] [Accepted: 10/05/2023] [Indexed: 10/19/2023] Open
Abstract
AIM To clarify the role of Eomesodermin (EOMES) to serve as a disease-relevant biomarker and the intracellular molecules underlying the immunophenotype shifting of CD4+T subsets in amyotrophic lateral sclerosis (ALS). METHODS The derivation and validation cohorts included a total of 148 ALS patients and 101 healthy controls (HCs). Clinical data and peripheral blood were collected. T-cell subsets and the EOMES expression were quantified using multicolor flow cytometry. Serum neurofilament light chain (NFL) was measured. In 1-year longitudinal follow-ups, the ALSFRS-R scores and primary endpoint events were further recorded in the ALS patients of the validation cohort. RESULTS In the derivation cohort, the CD4+EOMES+T-cell subsets were significantly increased (p < 0.001). EOMES+ subset was positively correlated with increased serum NFL levels in patients with onset longer than 12 months. In the validation cohort, the elevated CD4+EOMES+T-cell proportions and their association with NFL levels were also identified. The longitudinal study revealed that ALS patients with higher EOMES expression were associated with higher progression rates (p = .010) and worse prognosis (p = .003). CONCLUSIONS We demonstrated that increased CD4+EOMES+T-cell subsets in ALS were associated with disease progression and poor prognosis. Identifying these associations may contribute to a better understanding of the immunopathological mechanism of ALS.
Collapse
Affiliation(s)
- Sheng Chen
- Department of NeurologyFujian Medical University Union HospitalFuzhouChina
- Institute of Clinical NeurologyFujian Medical UniversityFuzhouChina
| | - Xiao Huan
- Huashan Rare Disease Center and Department of NeurologyHuashan Hospital, Shanghai Medical College, National Center for Neurological Disorders, Fudan UniversityShanghaiChina
| | - Chun‐Zuan Xu
- Department of NeurologyFujian Medical University Union HospitalFuzhouChina
- Institute of Clinical NeurologyFujian Medical UniversityFuzhouChina
| | - Su‐Shan Luo
- Huashan Rare Disease Center and Department of NeurologyHuashan Hospital, Shanghai Medical College, National Center for Neurological Disorders, Fudan UniversityShanghaiChina
| | - Chong‐Bo Zhao
- Huashan Rare Disease Center and Department of NeurologyHuashan Hospital, Shanghai Medical College, National Center for Neurological Disorders, Fudan UniversityShanghaiChina
| | - Hua‐Hua Zhong
- Huashan Rare Disease Center and Department of NeurologyHuashan Hospital, Shanghai Medical College, National Center for Neurological Disorders, Fudan UniversityShanghaiChina
| | - Xue‐Ying Zheng
- Department of Biostatistics, School of Public Health and Key Laboratory of Public Health SafetyFudan UniversityShanghaiChina
| | - Kai Qiao
- Huashan Rare Disease Center and Department of NeurologyHuashan Hospital, Shanghai Medical College, National Center for Neurological Disorders, Fudan UniversityShanghaiChina
| | - Yi Dong
- Huashan Rare Disease Center and Department of NeurologyHuashan Hospital, Shanghai Medical College, National Center for Neurological Disorders, Fudan UniversityShanghaiChina
| | - Ying Wang
- Department of PharmacyFudan University Huashan HospitalShanghaiChina
| | - Chang‐Yun Liu
- Department of NeurologyFujian Medical University Union HospitalFuzhouChina
- Institute of Clinical NeurologyFujian Medical UniversityFuzhouChina
| | - Hua‐Pin Huang
- Department of NeurologyFujian Medical University Union HospitalFuzhouChina
- Institute of Clinical NeurologyFujian Medical UniversityFuzhouChina
| | - Yan Chen
- Huashan Rare Disease Center and Department of NeurologyHuashan Hospital, Shanghai Medical College, National Center for Neurological Disorders, Fudan UniversityShanghaiChina
| | - Zhang‐Yu Zou
- Department of NeurologyFujian Medical University Union HospitalFuzhouChina
- Institute of Clinical NeurologyFujian Medical UniversityFuzhouChina
| |
Collapse
|
11
|
He D, Xu Y, Liu M, Cui L. The Inflammatory Puzzle: Piecing together the Links between Neuroinflammation and Amyotrophic Lateral Sclerosis. Aging Dis 2024; 15:96-114. [PMID: 37307819 PMCID: PMC10796096 DOI: 10.14336/ad.2023.0519] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/19/2023] [Indexed: 06/14/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that has a complex genetic basis. Through advancements in genetic screening, researchers have identified more than 40 mutant genes associated with ALS, some of which impact immune function. Neuroinflammation, with abnormal activation of immune cells and excessive production of inflammatory cytokines in the central nervous system, significantly contributes to the pathophysiology of ALS. In this review, we examine recent evidence on the involvement of ALS-associated mutant genes in immune dysregulation, with a specific focus on the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway and N6-methyladenosine (m6A)-mediated immune regulation in the context of neurodegeneration. We also discuss the perturbation of immune cell homeostasis in both the central nervous system and peripheral tissues in ALS. Furthermore, we explore the advancements made in the emerging genetic and cell-based therapies for ALS. This review underscores the complex relationship between ALS and neuroinflammation, highlighting the potential to identify modifiable factors for therapeutic intervention. A deeper understanding of the connection between neuroinflammation and the risk of ALS is crucial for advancing effective treatments for this debilitating disorder.
Collapse
Affiliation(s)
- Di He
- Department of Neurology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Yan Xu
- Department of Neurology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Mingsheng Liu
- Department of Neurology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Liying Cui
- Department of Neurology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| |
Collapse
|
12
|
Evangelista BA, Ragusa JV, Pellegrino K, Wu Y, Quiroga-Barber IY, Cahalan SR, Arooji OK, Madren JA, Schroeter S, Cozzarin J, Xie L, Chen X, White KK, Ezzell JA, Iannone MA, Cohen S, Traub RE, Li X, Bedlack R, Phanstiel DH, Meeker R, Stanley N, Cohen TJ. TDP-43 pathology links innate and adaptive immunity in amyotrophic lateral sclerosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.07.574541. [PMID: 38260395 PMCID: PMC10802498 DOI: 10.1101/2024.01.07.574541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Amyotrophic lateral sclerosis is the most common fatal motor neuron disease. Approximately 90% of ALS patients exhibit pathology of the master RNA regulator, Transactive Response DNA Binding protein (TDP-43). Despite the prevalence TDP-43 pathology in ALS motor neurons, recent findings suggest immune dysfunction is a determinant of disease progression in patients. Whether TDP-43 pathology elicits disease-modifying immune responses in ALS remains underexplored. In this study, we demonstrate that TDP-43 pathology is internalized by antigen presenting cells, causes vesicle rupture, and leads to innate and adaptive immune cell activation. Using a multiplex imaging platform, we observed interactions between innate and adaptive immune cells near TDP-43 pathological lesions in ALS brain. We used a mass cytometry-based whole-blood stimulation assay to provide evidence that ALS patient peripheral immune cells exhibit responses to TDP-43 aggregates. Taken together, this study provides a novel link between TDP-43 pathology and ALS immune dysfunction, and further highlights the translational and diagnostic implications of monitoring and manipulating the ALS immune response.
Collapse
|
13
|
Hu Z, Zuo C, Mao C, Shi C, Xu Y. Peripheral immune markers and amyotrophic lateral sclerosis: a Mendelian randomization study. Front Neurosci 2023; 17:1269354. [PMID: 38188028 PMCID: PMC10768049 DOI: 10.3389/fnins.2023.1269354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 12/06/2023] [Indexed: 01/09/2024] Open
Abstract
Introduction The peripheral immune system changes in amyotrophic lateral sclerosis (ALS), but the causal relationship between the two is still controversial. Methods In this study, we aimed to estimate the causal relationship between peripheral immune markers and ALS using a two-sample Mendelian randomization method. Genome-wide association study (GWAS) data on peripheral blood immune traits from European populations were used for exposure, and ALS summary statistics were used as the outcome. The causal relationship was evaluated by inverse variance weighting, MR-Egger, and weighted median methods and verified by multiple sensitivity analysis. Results We found that the increase of one standard deviation of lymphocyte count is related to reducing ALS risk. CD3 on effector memory CD4+ T cell, HLA DR+ CD4+ T cell, effector memory CD8+ T cell, terminally differentiated CD8+ T cell and CD28- CD8+ T cell is also a protective factor for ALS. Among the circulating immune protein, the increase of one standard deviation of α-2-macroglobulin receptor-associated protein (α-2-MRAP) and C4b showed associated with low risk of ALS, while Interleukin-21 (IL-21) increases the risk of ALS. Discussion Our study further reveals the important role of peripheral immune activity in ALS.
Collapse
Affiliation(s)
- Zhengwei Hu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Academy of Medical Sciences of Zhengzhou University, Zhengzhou, China
| | - Chunyan Zuo
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Chengyuan Mao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, China
| | - Changhe Shi
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, China
| | - Yuming Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
14
|
Yang J, Liu T, Zhang L, Li X, Du FP, Liu Q, Dong H, Liu Y. Eosinophils at diagnosis are elevated in amyotrophic lateral sclerosis. Front Neurol 2023; 14:1289467. [PMID: 38187158 PMCID: PMC10768070 DOI: 10.3389/fneur.2023.1289467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/04/2023] [Indexed: 01/09/2024] Open
Abstract
Introduction Amyotrophic lateral sclerosis (ALS) is a rare, devastating neurodegenerative disease that affects upper and lower motor neurons. To date, no effective treatment or reliable biomarker for ALS has been developed. In recent years, many factors have been proposed as possible biomarkers of ALS; however, no consensus has been reached. Therefore, a reliable biomarker is urgently needed. Eosinophils may play a crucial role in healthy humans and diseases, and serve as a biomarker for many chronic diseases. Methods Routine blood test results were collected from 66 healthy controls and 59 patients with ALS. The percentages and total numbers of each cell population were analyzed, and the correlation between these indicators and patient ALS functional rating scale-revised (ALSFRS-R) score or disease progression rate (ΔFS score) was analyzed. Results Compared to healthy controls, the number of blood leukocytes, neutrophils, monocytes, and basophils was significantly decreased in patients with ALS (p = 0.002, p = 0.001, p = 0.049, and p < 0.0001, respectively). There was an increase in the number of eosinophils (p < 0.0001), but no difference in the number of lymphocytes between patients with ALS and healthy controls was found (p = 0.563). Compared to healthy controls, the percentage of neutrophils was decreased and the percentage of lymphocytes and eosinophils was increased in patients with ALS (p = 0.01, p = 0.012, and p = 0.001, respectively). There was no difference between patients with ALS and healthy controls in the percentage of monocytes and basophils (p = 0.622 and p = 0.09, respectively). However, only the percentage and number of eosinophils had a correlation with the ΔFS score. Further multivariate analysis revealed a significant correlation between the disease duration, eosinophil count and percentage, and the disease progression rate (p < 0.0001, p = 0.048, and p = 0.023, respectively). The neutrophil-to-eosinophil ratio (NER), lymphocyte-to-eosinophil ratio (LER), and monocyte-to-eosinophil ratio (MER) were significantly lower in patients with ALS than in healthy controls. However, only the LER was significantly correlated with the ΔFS score. Conclusion These observations implicate neutrophils, lymphocytes, and eosinophils as important factors, and increasing eosinophil counts were negatively correlated with the ΔFS score in patients with ALS.
Collapse
Affiliation(s)
- Jing Yang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
| | - Tingting Liu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
| | - Lei Zhang
- Department of Emergency, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xin Li
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
| | - Feng Ping Du
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
| | - Qi Liu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
| | - Hui Dong
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
| | - Yaling Liu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
| |
Collapse
|
15
|
Mimic S, Aru B, Pehlivanoğlu C, Sleiman H, Andjus PR, Yanıkkaya Demirel G. Immunology of amyotrophic lateral sclerosis - role of the innate and adaptive immunity. Front Neurosci 2023; 17:1277399. [PMID: 38105925 PMCID: PMC10723830 DOI: 10.3389/fnins.2023.1277399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 11/07/2023] [Indexed: 12/19/2023] Open
Abstract
This review aims to summarize the latest evidence about the role of innate and adaptive immunity in Amyotrophic Lateral Sclerosis (ALS). ALS is a devastating neurodegenerative disease affecting upper and lower motor neurons, which involves essential cells of the immune system that play a basic role in innate or adaptive immunity, that can be neurotoxic or neuroprotective for neurons. However, distinguishing between the sole neurotoxic or neuroprotective function of certain cells such as astrocytes can be challenging due to intricate nature of these cells, the complexity of the microenvironment and the contextual factors. In this review, in regard to innate immunity we focus on the involvement of monocytes/macrophages, microglia, the complement, NK cells, neutrophils, mast cells, and astrocytes, while regarding adaptive immunity, in addition to humoral immunity the most important features and roles of T and B cells are highlighted, specifically different subsets of CD4+ as well as CD8+ T cells. The role of autoantibodies and cytokines is also discussed in distinct sections of this review.
Collapse
Affiliation(s)
- Stefan Mimic
- Centre for Laser Microscopy, Institute of Physiology and Biochemistry “Jean Giaja”, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Başak Aru
- Immunology Department, Faculty of Medicine, Yeditepe University, Istanbul, Türkiye
| | - Cemil Pehlivanoğlu
- Immunology Department, Faculty of Medicine, Yeditepe University, Istanbul, Türkiye
| | - Hadi Sleiman
- Faculty of Medicine, Yeditepe University, Istanbul, Türkiye
| | - Pavle R. Andjus
- Centre for Laser Microscopy, Institute of Physiology and Biochemistry “Jean Giaja”, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | | |
Collapse
|
16
|
Cao W, Cao Z, Tian Y, Zhang L, Wang W, Tang L, Xu C, Fan D. Neutrophils Are Associated with Higher Risk of Incident Amyotrophic Lateral Sclerosis in a BMI- and Age-Dependent Manner. Ann Neurol 2023; 94:942-954. [PMID: 37554051 DOI: 10.1002/ana.26760] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/25/2023] [Accepted: 07/31/2023] [Indexed: 08/10/2023]
Abstract
OBJECTIVE Peripheral immune markers have been associated with the progression and prognosis of amyotrophic lateral sclerosis (ALS). However, whether dysregulation of peripheral immunity is a risk factor for ALS or a consequence of motor neuron degeneration has not yet been clarified. We aimed to identify longitudinal associations between prediagnostic peripheral immunity and the risk of incident ALS. METHODS A total of 345,000 individuals from the UK Biobank between 2006 and 2010 were included at the baseline. The counts of peripheral immune markers (neutrophils, lymphocytes, monocytes, platelets, and CRP) and its derived metrics (neutrophil-to-lymphocyte ratio [NLR], platelet-to-lymphocyte ratio [PLR], lymphocyte-to-monocyte ratio [LMR], and systemic immune-inflammation index [SII]) were analyzed in relation to the following incident ALS by Cox proportional hazard models. Subgroup and interaction analyses were performed to explore the covariates of these relationships further. RESULTS After adjusting for all covariates, the multivariate analysis showed that high neutrophil counts and their derived metrics (NLR and SII) were associated with an increased risk of ALS incidence (per SD increment hazard ratio [HR] = 1.15, 95% confidence interval [CI] = 1.02-1.29 for neutrophils; HR = 1.15, 95% CI = 1.03-1.28 for NLR; and HR = 1.17, 95% CI = 1.05-1.30 for SII). Subgroup and interaction analyses revealed that body mass index (BMI) and age had specific effects on this association. In participants with BMI ≥ 25 or age < 65 years, higher neutrophil counts, and their metrics increased the risk of incident ALS; however, in participants with BMI < 25 or age ≥ 65 years, neutrophils had no effect on incident ALS. INTERPRETATION Our study provides evidence that increased neutrophil levels and neutrophil-derived metrics (NLR and SII) are associated with an increased risk of developing ALS. ANN NEUROL 2023;94:942-954.
Collapse
Affiliation(s)
- Wen Cao
- Department of Neurology, Peking University Third Hospital, Beijing, China
| | - Zhi Cao
- School of Public Health, Zhejiang University School of Medicine, Hangzhou, China
- School of Public Health, Hangzhou Normal University, Hangzhou, China
| | - Yao Tian
- Department of Neurology, Peking University Third Hospital, Beijing, China
| | - Linjing Zhang
- Department of Neurology, Peking University Third Hospital, Beijing, China
| | - Wenjing Wang
- Department of Neurology, Peking University Third Hospital, Beijing, China
| | - Lu Tang
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Biomarker and Translational Research in Neurodegenerative Disorders, Beijing, China
| | - Chenjie Xu
- School of Public Health, Hangzhou Normal University, Hangzhou, China
| | - Dongsheng Fan
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Biomarker and Translational Research in Neurodegenerative Disorders, Beijing, China
| |
Collapse
|
17
|
Chi B, Öztürk MM, Paraggio CL, Leonard CE, Sanita ME, Dastpak M, O’Connell JD, Coady JA, Zhang J, Gygi SP, Lopez-Gonzalez R, Yin S, Reed R. Causal ALS genes impact the MHC class II antigen presentation pathway. Proc Natl Acad Sci U S A 2023; 120:e2305756120. [PMID: 37722062 PMCID: PMC10523463 DOI: 10.1073/pnas.2305756120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 08/18/2023] [Indexed: 09/20/2023] Open
Abstract
Mutations in RNA/DNA-binding proteins cause amyotrophic lateral sclerosis (ALS), but the underlying disease mechanisms remain unclear. Here, we report that a set of ALS-associated proteins, namely FUS, EWSR1, TAF15, and MATR3, impact the expression of genes encoding the major histocompatibility complex II (MHC II) antigen presentation pathway. Both subunits of the MHC II heterodimer, HLA-DR, are down-regulated in ALS gene knockouts/knockdown in HeLa and human microglial cells, due to loss of the MHC II transcription factor CIITA. Importantly, hematopoietic progenitor cells (HPCs) derived from human embryonic stem cells bearing the FUSR495X mutation and HPCs derived from C9ORF72 ALS patient induced pluripotent stem cells also exhibit disrupted MHC II expression. Given that HPCs give rise to numerous immune cells, our data raise the possibility that loss of the MHC II pathway results in global failure of the immune system to protect motor neurons from damage that leads to ALS.
Collapse
Affiliation(s)
- Binkai Chi
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA02115
| | - Muhammet M. Öztürk
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA02115
| | - Christina L. Paraggio
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA02115
| | - Claudia E. Leonard
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA02115
| | - Maria E. Sanita
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA02115
| | - Mahtab Dastpak
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA02115
| | - Jeremy D. O’Connell
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA02115
| | - Jordan A. Coady
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA02115
| | - Jiuchun Zhang
- Harvard Medical School Cell Biology Initiative for Genome Editing and Neurodegeneration, Blavatnik Institute, Harvard Medical School, Boston, MA02115
| | - Steven P. Gygi
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA02115
| | - Rodrigo Lopez-Gonzalez
- Department of Neurosciences Lerner Research Institute, Cleveland Clinic, Cleveland, OH44196
| | - Shanye Yin
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY10461
| | - Robin Reed
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA02115
| |
Collapse
|
18
|
Grassano M, Manera U, De Marchi F, Cugnasco P, Matteoni E, Daviddi M, Solero L, Bombaci A, Palumbo F, Vasta R, Canosa A, Salamone P, Fuda G, Casale F, Mazzini L, Calvo A, Moglia C, Chiò A. The role of peripheral immunity in ALS: a population-based study. Ann Clin Transl Neurol 2023; 10:1623-1632. [PMID: 37482930 PMCID: PMC10502618 DOI: 10.1002/acn3.51853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/14/2023] [Accepted: 06/28/2023] [Indexed: 07/25/2023] Open
Abstract
BACKGROUND Systemic inflammation has been proposed as a relevant mechanism in amyotrophic lateral sclerosis (ALS). Still, comprehensive data on ALS patients' innate and adaptive immune responses and their effect on the clinical phenotype are lacking. Here, we investigate systemic immunity in a population-based ALS cohort using readily available hematological indexes. METHODS We collected clinical data and the complete blood count (CBC) at diagnosis in ALS patients from the Piemonte and Valle d'Aosta Register for ALS (PARALS) from 2007 to 2019. Leukocytes populations, neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), systemic-immune-inflammation index (SII), and lymphocyte-to-monocyte ratio (LMR) were derived from CBC. All variables were analyzed for association with clinical features in the entire cohort and then in sex- and age-based subgroups. RESULTS Neutrophils (P = 0.001) and markers of increased innate immunity (NLR, P = 0.008 and SII, P = 0.006) were associated with a faster disease progression. Similarly, elevated innate immunity correlated with worse pulmonary function and shorter survival. The prognosis in women also correlated with low lymphocytes (P = 0.045) and a decreased LMR (P = 0.013). ALS patients with cognitive impairment exhibited lower monocytes (P = 0.0415). CONCLUSIONS AND RELEVANCE The dysregulation of the systemic immune system plays a multifaceted role in ALS. More specifically, an elevated innate immune response is associated with faster progression and reduced survival. Conversely, ALS patients with cognitive impairment showed a reduction in monocyte count. Additionally, immune response varied according to sex and age, thus suggesting that involved immune pathways are patient specific. Further studies will help translate those findings into clinical practice or targeted treatments.
Collapse
Affiliation(s)
- Maurizio Grassano
- ALS Centre, Department of Neuroscience “Rita Levi Montalcini”University of TorinoTurinItaly
| | - Umberto Manera
- ALS Centre, Department of Neuroscience “Rita Levi Montalcini”University of TorinoTurinItaly
- SC Neurologia 1UAOU Città della Salute e della Scienza of TorinoTurinItaly
| | - Fabiola De Marchi
- Department of Neurology and ALS CentreUniversity of Piemonte Orientale, Maggiore della Carità HospitalNovaraItaly
| | - Paolo Cugnasco
- ALS Centre, Department of Neuroscience “Rita Levi Montalcini”University of TorinoTurinItaly
| | - Enrico Matteoni
- ALS Centre, Department of Neuroscience “Rita Levi Montalcini”University of TorinoTurinItaly
| | - Margherita Daviddi
- ALS Centre, Department of Neuroscience “Rita Levi Montalcini”University of TorinoTurinItaly
| | - Luca Solero
- ALS Centre, Department of Neuroscience “Rita Levi Montalcini”University of TorinoTurinItaly
| | - Alessandro Bombaci
- ALS Centre, Department of Neuroscience “Rita Levi Montalcini”University of TorinoTurinItaly
| | - Francesca Palumbo
- ALS Centre, Department of Neuroscience “Rita Levi Montalcini”University of TorinoTurinItaly
| | - Rosario Vasta
- ALS Centre, Department of Neuroscience “Rita Levi Montalcini”University of TorinoTurinItaly
| | - Antonio Canosa
- ALS Centre, Department of Neuroscience “Rita Levi Montalcini”University of TorinoTurinItaly
- SC Neurologia 1UAOU Città della Salute e della Scienza of TorinoTurinItaly
| | - Paolina Salamone
- ALS Centre, Department of Neuroscience “Rita Levi Montalcini”University of TorinoTurinItaly
| | - Giuseppe Fuda
- ALS Centre, Department of Neuroscience “Rita Levi Montalcini”University of TorinoTurinItaly
| | - Federico Casale
- ALS Centre, Department of Neuroscience “Rita Levi Montalcini”University of TorinoTurinItaly
| | - Letizia Mazzini
- Department of Neurology and ALS CentreUniversity of Piemonte Orientale, Maggiore della Carità HospitalNovaraItaly
| | - Andrea Calvo
- ALS Centre, Department of Neuroscience “Rita Levi Montalcini”University of TorinoTurinItaly
- SC Neurologia 1UAOU Città della Salute e della Scienza of TorinoTurinItaly
| | - Cristina Moglia
- ALS Centre, Department of Neuroscience “Rita Levi Montalcini”University of TorinoTurinItaly
- SC Neurologia 1UAOU Città della Salute e della Scienza of TorinoTurinItaly
| | - Adriano Chiò
- ALS Centre, Department of Neuroscience “Rita Levi Montalcini”University of TorinoTurinItaly
- SC Neurologia 1UAOU Città della Salute e della Scienza of TorinoTurinItaly
| |
Collapse
|
19
|
Cao W, Fan D. Neutrophils: a subgroup of neglected immune cells in ALS. Front Immunol 2023; 14:1246768. [PMID: 37662922 PMCID: PMC10468589 DOI: 10.3389/fimmu.2023.1246768] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 08/02/2023] [Indexed: 09/05/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a chronic, progressive neurodegenerative disease characterized by the loss of motor neurons. Dysregulated peripheral immunity has been identified as a hallmark of ALS. Neutrophils, as the front-line responders of innate immunity, contribute to host defense through pathogen clearance. However, they can concurrently play a detrimental role in chronic inflammation. With the unveiling of novel functions of neutrophils in neurodegenerative diseases, it becomes essential to review our current understanding of neutrophils and to recognize the gap in our knowledge about their role in ALS. Thus, a detailed comprehension of the biological processes underlying neutrophil-induced pathogenesis in ALS may assist in identifying potential cell-based therapeutic strategies to delay disease progression.
Collapse
Affiliation(s)
- Wen Cao
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Biomarker and Translational Research in Neurodegenerative Disorders, Beijing, China
- Key Laboratory for Neuroscience, National Health Commission/Ministry of Education, Peking University, Beijing, China
| | - Dongsheng Fan
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Biomarker and Translational Research in Neurodegenerative Disorders, Beijing, China
- Key Laboratory for Neuroscience, National Health Commission/Ministry of Education, Peking University, Beijing, China
| |
Collapse
|
20
|
Berriat F, Lobsiger CS, Boillée S. The contribution of the peripheral immune system to neurodegeneration. Nat Neurosci 2023:10.1038/s41593-023-01323-6. [PMID: 37231108 DOI: 10.1038/s41593-023-01323-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 04/05/2023] [Indexed: 05/27/2023]
Abstract
Microglial cells are the major immune cells of the central nervous system (CNS), and directly react to neurodegeneration, but other immune cell types are also able to react to pathology and can modify the course of neurodegenerative processes. These mainly include monocytes/macrophages and lymphocytes. While these peripheral immune cells were initially considered to act only after infiltrating the CNS, recent evidence suggests that some of them can also act directly from the periphery. We will review the existing and emerging evidence for a role of peripheral immune cells in neurodegenerative diseases, both with and without CNS infiltration. Our focus will be on amyotrophic lateral sclerosis, but we will also compare to Alzheimer's disease and Parkinson's disease to highlight similarities or differences. Peripheral immune cells are easily accessible, and therefore may be an attractive therapeutic target for neurodegenerative diseases. Thus, understanding how these peripheral immune cells communicate with the CNS deserves deeper investigation.
Collapse
Affiliation(s)
- Félix Berriat
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Christian S Lobsiger
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Séverine Boillée
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtrière, Paris, France.
| |
Collapse
|
21
|
Chen X, Zhou L, Cui C, Sun J. Evolving markers in amyotrophic lateral sclerosis. Adv Clin Chem 2023. [DOI: 10.1016/bs.acc.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
|
22
|
Renzini A, Pigna E, Rocchi M, Cedola A, Gigli G, Moresi V, Coletti D. Sex and HDAC4 Differently Affect the Pathophysiology of Amyotrophic Lateral Sclerosis in SOD1-G93A Mice. Int J Mol Sci 2022; 24:ijms24010098. [PMID: 36613534 PMCID: PMC9820722 DOI: 10.3390/ijms24010098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/16/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a devastating adult-onset neurodegenerative disease, with ineffective therapeutic options. ALS incidence and prevalence depend on the sex of the patient. Histone deacetylase 4 (HDAC4) expression in skeletal muscle directly correlates with the progression of ALS, pointing to the use of HDAC4 inhibitors for its treatment. Contrarily, we have found that deletion of HDAC4 in skeletal muscle worsened the pathological features of ALS, accelerating and exacerbating skeletal muscle loss and negatively affecting muscle innervations in male SOD1-G93A (SOD1) mice. In the present work, we compared SOD1 mice of both sexes with the aim to characterize ALS onset and progression as a function of sex differences. We found a global sex-dependent effects on disease onset and mouse lifespan. We further investigated the role of HDAC4 in SOD1 females with a genetic approach, and discovered morpho-functional effects on skeletal muscle, even in the early phase of the diseases. The deletion of HDAC4 decreased muscle function and exacerbated muscle atrophy in SOD1 females, and had an even more dramatic effect in males. Therefore, the two sexes must be considered separately when studying ALS.
Collapse
Affiliation(s)
- Alessandra Renzini
- DAHFMO Unit of Histology and Medical Embryology, Sapienza University of Rome, 00161 Rome, Italy
| | - Eva Pigna
- DAHFMO Unit of Histology and Medical Embryology, Sapienza University of Rome, 00161 Rome, Italy
| | - Marco Rocchi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Alessia Cedola
- Institute of Nanotechnology, c/o Dipartimento di Fisica, National Research Council (CNR-NANOTEC), Sapienza University of Rome, 00185 Rome, Italy
| | - Giuseppe Gigli
- Institute of Nanotechnology, c/o Campus Ecotekne, National Research Council (CNR-NANOTEC), Monteroni, 73100 Lecce, Italy
| | - Viviana Moresi
- DAHFMO Unit of Histology and Medical Embryology, Sapienza University of Rome, 00161 Rome, Italy
- Institute of Nanotechnology, c/o Dipartimento di Fisica, National Research Council (CNR-NANOTEC), Sapienza University of Rome, 00185 Rome, Italy
- Correspondence: ; Tel.: +39-064976-6643
| | - Dario Coletti
- DAHFMO Unit of Histology and Medical Embryology, Sapienza University of Rome, 00161 Rome, Italy
- Biological Adaptation and Ageing, Institut de Biologie Paris-Seine, Sorbonne Université, F-75005 Paris, France
| |
Collapse
|
23
|
Li S, Zhang Q, Li J, Weng L. Comprehensive analysis of autoimmune-related genes in amyotrophic lateral sclerosis from the perspective of 3P medicine. EPMA J 2022; 13:699-723. [PMID: 36505891 PMCID: PMC9727070 DOI: 10.1007/s13167-022-00299-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 09/30/2022] [Indexed: 12/15/2022]
Abstract
Background Although growing evidence suggests close correlations between autoimmunity and amyotrophic lateral sclerosis (ALS), no studies have reported on autoimmune-related genes (ARGs) from the perspective of the prognostic assessment of ALS. The purpose of this study was to investigate whether the circulating ARD signature could be identified as a reliable biomarker for ALS survival for predictive, preventive, and personalized medicine. Methods The whole blood transcriptional profiles and clinical characteristics of 454 ALS patients were downloaded from the Gene Expression Omnibus (GEO) database. A total of 4371 ARGs were obtained from GAAD and DisGeNET databases. Wilcoxon test and multivariate Cox regression were applied to identify the differentially expressed and prognostic ARGs. Then, unsupervised clustering was performed to classify patients into two distinct autoimmune-related clusters. PCA method was used to calculate the autoimmune index. LASSO and multivariate Cox regression was performed to establish risk model to predict overall survival for ALS patients. A ceRNA regulatory network was then constructed for regulating the model genes. Finally, we performed single-cell analysis to explore the expression of model genes in mutant SOD1 mice and methylation analysis in ALS patients. Results Based on the expressions of 85 prognostic ARGs, two autoimmune-related clusters with various biological features, immune characteristics, and survival outcome were determined. Cluster 1 with a worsen prognosis was more active in immune-related biological pathways and immune infiltration than Cluster 2. A higher autoimmune index was associated with a better prognosis than a lower autoimmune index, and there were significant adverse correlations between the autoimmune index and immune infiltrating cells and immune responses. Nine model genes (KIF17, CD248, ENG, BTNL2, CLEC5A, ADORA3, PRDX5, AIM2, and XKR8) were selected to construct prognostic risk signature, indicating potent potential for survival prediction in ALS. Nomogram integrating risk model and clinical characteristics could predict the prognosis more accurately than other clinicopathological features. We constructed a ceRNA regulatory network for the model genes, including five lncRNAs, four miRNAs, and five mRNAs. Conclusion Expression of ARGs is correlated with immune characteristics of ALS, and seven ARG signatures may have practical application as an independent prognostic factor in patients with ALS, which may serve as target for the future prognostic assessment, targeted prevention, patient stratification, and personalization of medical services in ALS. Supplementary Information The online version contains supplementary material available at 10.1007/s13167-022-00299-w.
Collapse
Affiliation(s)
- Shifu Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Street, Changsha, 410008 Hunan China
- National Clinical Research Center for Geriatric Disorders, Central South University, 87 Xiangya Street, Changsha, 410008 Hunan China
| | - Qian Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Street, Changsha, 410008 Hunan China
- National Clinical Research Center for Geriatric Disorders, Central South University, 87 Xiangya Street, Changsha, 410008 Hunan China
| | - Jian Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Street, Changsha, 410008 Hunan China
- National Clinical Research Center for Geriatric Disorders, Central South University, 87 Xiangya Street, Changsha, 410008 Hunan China
- Hydrocephalus Center, Xiangya Hospital, Central South University, 87 Xiangya Street, Changsha, 410008 Hunan China
| | - Ling Weng
- National Clinical Research Center for Geriatric Disorders, Central South University, 87 Xiangya Street, Changsha, 410008 Hunan China
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiangya Street, Changsha, 410008 Hunan China
| |
Collapse
|
24
|
Butler R, Bradford D, Rodgers KE. Analysis of shared underlying mechanism in neurodegenerative disease. Front Aging Neurosci 2022; 14:1006089. [PMID: 36523957 PMCID: PMC9745190 DOI: 10.3389/fnagi.2022.1006089] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 11/08/2022] [Indexed: 08/27/2023] Open
Abstract
In this review, the relationship between bioenergetics, mitochondrial dysfunction, and inflammation will be and how they contribute to neurodegeneration, specifically in Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), and multiple sclerosis (MS) will be reviewed. Long-term changes in mitochondrial function, autophagy dysfunction, and immune activation are commonalities shared across these age-related disorders. Genetic risk factors for these diseases support an autophagy-immune connection in the underlying pathophysiology. Critical areas of deeper evaluation in these bioenergetic processes may lead to potential therapeutics with efficacy across multiple neurodegenerative diseases.
Collapse
Affiliation(s)
| | | | - Kathleen E. Rodgers
- Department of Medical Pharmacology, Center for Innovation in Brain Science, University of Arizona College of Medicine, Tucson, AZ, United States
| |
Collapse
|