1
|
Spudich JA, Nandwani N, Robert-Paganin J, Houdusse A, Ruppel KM. Reassessing the unifying hypothesis for hypercontractility caused by myosin mutations in hypertrophic cardiomyopathy. EMBO J 2024; 43:4139-4155. [PMID: 39192034 PMCID: PMC11445530 DOI: 10.1038/s44318-024-00199-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/12/2024] [Accepted: 07/18/2024] [Indexed: 08/29/2024] Open
Affiliation(s)
- James A Spudich
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| | - Neha Nandwani
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Julien Robert-Paganin
- Structural Motility, Institut Curie, Paris Université Sciences et Lettres, Sorbonne Université, CNRS UMR144, F-75005, Paris, France
| | - Anne Houdusse
- Structural Motility, Institut Curie, Paris Université Sciences et Lettres, Sorbonne Université, CNRS UMR144, F-75005, Paris, France
| | - Kathleen M Ruppel
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
2
|
Bodt SML, Ge J, Ma W, Rasicci DV, Desetty R, McCammon JA, Yengo CM. Dilated cardiomyopathy mutation in beta-cardiac myosin enhances actin activation of the power stroke and phosphate release. PNAS NEXUS 2024; 3:pgae279. [PMID: 39108304 PMCID: PMC11302452 DOI: 10.1093/pnasnexus/pgae279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/25/2024] [Indexed: 08/13/2024]
Abstract
Inherited mutations in human beta-cardiac myosin (M2β) can lead to severe forms of heart failure. The E525K mutation in M2β is associated with dilated cardiomyopathy (DCM) and was found to stabilize the interacting heads motif (IHM) and autoinhibited super-relaxed (SRX) state in dimeric heavy meromyosin. However, in monomeric M2β subfragment 1 (S1) we found that E525K enhances (threefold) the maximum steady-state actin-activated ATPase activity (k cat) and decreases (eightfold) the actin concentration at which ATPase is one-half maximal (K ATPase). We also found a twofold to fourfold increase in the actin-activated power stroke and phosphate release rate constants at 30 μM actin, which overall enhanced the duty ratio threefold. Loaded motility assays revealed that the enhanced intrinsic motor activity translates to increased ensemble force in M2β S1. Glutamate 525, located near the actin binding region in the so-called activation loop, is highly conserved and predicted to form a salt bridge with another conserved residue (lysine 484) in the relay helix. Enhanced sampling molecular dynamics simulations predict that the charge reversal mutation disrupts the E525-K484 salt bridge, inducing conformations with a more flexible relay helix and a wide phosphate release tunnel. Our results highlight a highly conserved allosteric pathway associated with actin activation of the power stroke and phosphate release and suggest an important feature of the autoinhibited IHM is to prevent this region of myosin from interacting with actin. The ability of the E525K mutation to stabilize the IHM likely overrides the enhanced intrinsic motor properties, which may be key to triggering DCM pathogenesis.
Collapse
Affiliation(s)
- Skylar M L Bodt
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, 500 University Dr, Hershey, PA 17033, USA
| | - Jinghua Ge
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, 500 University Dr, Hershey, PA 17033, USA
| | - Wen Ma
- Department of Physics, University of Vermont, 149 Beaumont Avenue, Burlington, VT 05405, USA
| | - David V Rasicci
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, 500 University Dr, Hershey, PA 17033, USA
- Department of Pathology, Anatomy, and Laboratory Medicine, West Virginia University School of Medicine, 64 Medical Center Dr, Morgantown, WV 26506, USA
| | - Rohini Desetty
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, 500 University Dr, Hershey, PA 17033, USA
| | - J Andrew McCammon
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA
| | - Christopher M Yengo
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, 500 University Dr, Hershey, PA 17033, USA
| |
Collapse
|
3
|
van den Berg M, Shi Z, Claassen WJ, Hooijman P, Lewis CTA, Andersen JL, van der Pijl RJ, Bogaards SJP, Conijn S, Peters EL, Begthel LPL, Uijterwijk B, Lindqvist J, Langlais PR, Girbes ARJ, Stapel S, Granzier H, Campbell KS, Ma W, Irving T, Hwee DT, Hartman JJ, Malik FI, Paul M, Beishuizen A, Ochala J, Heunks L, Ottenheijm CAC. Super-relaxed myosins contribute to respiratory muscle hibernation in mechanically ventilated patients. Sci Transl Med 2024; 16:eadg3894. [PMID: 39083588 DOI: 10.1126/scitranslmed.adg3894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/12/2024] [Accepted: 07/11/2024] [Indexed: 08/02/2024]
Abstract
Patients receiving mechanical ventilation in the intensive care unit (ICU) frequently develop contractile weakness of the diaphragm. Consequently, they may experience difficulty weaning from mechanical ventilation, which increases mortality and poses a high economic burden. Because of a lack of knowledge regarding the molecular changes in the diaphragm, no treatment is currently available to improve diaphragm contractility. We compared diaphragm biopsies from ventilated ICU patients (N = 54) to those of non-ICU patients undergoing thoracic surgery (N = 27). By integrating data from myofiber force measurements, x-ray diffraction experiments, and biochemical assays with clinical data, we found that in myofibers isolated from the diaphragm of ventilated ICU patients, myosin is trapped in an energy-sparing, super-relaxed state, which impairs the binding of myosin to actin during diaphragm contraction. Studies on quadriceps biopsies of ICU patients and on the diaphragm of previously healthy mechanically ventilated rats suggested that the super-relaxed myosins are specific to the diaphragm and not a result of critical illness. Exposing slow- and fast-twitch myofibers isolated from the diaphragm biopsies to small-molecule compounds activating troponin restored contractile force in vitro. These findings support the continued development of drugs that target sarcomere proteins to increase the calcium sensitivity of myofibers for the treatment of ICU-acquired diaphragm weakness.
Collapse
Affiliation(s)
- Marloes van den Berg
- Amsterdam UMC, Location VUmc, Department of Physiology, Amsterdam 1081, HV, Netherlands
- Bispebjerg Hospital, Institute of Sports Medicine, Copenhagen 2400, Denmark
| | - Zhonghua Shi
- Amsterdam UMC, Location VUmc, Department of Physiology, Amsterdam 1081, HV, Netherlands
- Amsterdam UMC, Location VUmc, Department of Intensive Care Medicine, Amsterdam 1081, HV, Netherlands
- Sanbo Brain Hospital, Capital Medical University, Intensive Care Medicine, Beijing 100093, China
| | - Wout J Claassen
- Amsterdam UMC, Location VUmc, Department of Physiology, Amsterdam 1081, HV, Netherlands
| | - Pleuni Hooijman
- Amsterdam UMC, Location VUmc, Department of Physiology, Amsterdam 1081, HV, Netherlands
| | - Christopher T A Lewis
- University of Copenhagen, Department of Biomedical Sciences, Copenhagen 2200, Denmark
- Research and Early Development, Novo Nordisk A/S, Måløv 2760, Denmark
| | - Jesper L Andersen
- Bispebjerg Hospital, Institute of Sports Medicine, Copenhagen 2400, Denmark
| | - Robbert J van der Pijl
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson AZ 85721, USA
| | - Sylvia J P Bogaards
- Amsterdam UMC, Location VUmc, Department of Physiology, Amsterdam 1081, HV, Netherlands
| | - Stefan Conijn
- Amsterdam UMC, Location VUmc, Department of Physiology, Amsterdam 1081, HV, Netherlands
| | - Eva L Peters
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson AZ 85721, USA
| | - Leon P L Begthel
- Amsterdam UMC, Location VUmc, Department of Physiology, Amsterdam 1081, HV, Netherlands
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK
| | - Bas Uijterwijk
- Amsterdam UMC, Location VUmc, Department of Physiology, Amsterdam 1081, HV, Netherlands
| | - Johan Lindqvist
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson AZ 85721, USA
| | - Paul R Langlais
- Department of Endocrinology, University of Arizona, Tucson, AZ 85721, USA
| | - Armand R J Girbes
- Amsterdam UMC, Location VUmc, Department of Intensive Care Medicine, Amsterdam 1081, HV, Netherlands
| | - Sandra Stapel
- Amsterdam UMC, Location VUmc, Department of Intensive Care Medicine, Amsterdam 1081, HV, Netherlands
| | - Henk Granzier
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson AZ 85721, USA
| | - Kenneth S Campbell
- Division of Cardiovascular Medicine, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Weikang Ma
- BioCAT, Illinois Institute of Technology, Lemont, IL 60439, USA
| | - Thomas Irving
- BioCAT, Illinois Institute of Technology, Lemont, IL 60439, USA
| | - Darren T Hwee
- Research and Early Development, Cytokinetics Inc., South San Francisco, CA 94080, USA
| | - James J Hartman
- Research and Early Development, Cytokinetics Inc., South San Francisco, CA 94080, USA
| | - Fady I Malik
- Research and Early Development, Cytokinetics Inc., South San Francisco, CA 94080, USA
| | - Marinus Paul
- Amsterdam UMC, Location VUmc, Department of Cardiothoracic Surgery, Amsterdam 1081, HV, Netherlands
| | - Albertus Beishuizen
- Medisch Spectrum Twente, Intensive Care Center, Enschede 7511, HN, Netherlands
| | - Julien Ochala
- University of Copenhagen, Department of Biomedical Sciences, Copenhagen 2200, Denmark
| | - Leo Heunks
- Radboud UMC, Department of Intensive Care, Nijmegen 6525, GA, Netherlands
| | - Coen A C Ottenheijm
- Amsterdam UMC, Location VUmc, Department of Physiology, Amsterdam 1081, HV, Netherlands
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson AZ 85721, USA
| |
Collapse
|
4
|
Short B. A mutation that prevents myosin from overcoming its inhibitions. J Gen Physiol 2024; 156:e202413594. [PMID: 38727632 PMCID: PMC11090048 DOI: 10.1085/jgp.202413594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2024] Open
Abstract
JGP study (Duno-Miranda et al. https://doi.org/10.1085/jgp.202313522) shows that a mutation linked to dilated cardiomyopathy stabilizes β-cardiac myosin in its autoinhibited, super-relaxed state.
Collapse
Affiliation(s)
- Ben Short
- Science Writer, Rockefeller University Press, New York, NY, USA
| |
Collapse
|
5
|
Duno-Miranda S, Nelson SR, Rasicci DV, Bodt SM, Cirilo JA, Vang D, Sivaramakrishnan S, Yengo CM, Warshaw DM. Tail length and E525K dilated cardiomyopathy mutant alter human β-cardiac myosin super-relaxed state. J Gen Physiol 2024; 156:e202313522. [PMID: 38709176 PMCID: PMC11074782 DOI: 10.1085/jgp.202313522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/18/2024] [Accepted: 04/17/2024] [Indexed: 05/07/2024] Open
Abstract
Dilated cardiomyopathy (DCM) is a condition characterized by impaired cardiac function, due to myocardial hypo-contractility, and is associated with point mutations in β-cardiac myosin, the molecular motor that powers cardiac contraction. Myocardial function can be modulated through sequestration of myosin motors into an auto-inhibited "super-relaxed" state (SRX), which may be further stabilized by a structural state known as the "interacting heads motif" (IHM). Here, we sought to determine whether hypo-contractility of DCM myocardium results from reduced function of individual myosin molecules or from decreased myosin availability to interact with actin due to increased IHM/SRX stabilization. We used an established DCM myosin mutation, E525K, and characterized the biochemical and mechanical activity of wild-type and mutant human β-cardiac myosin constructs that differed in the length of their coiled-coil tail, which dictates their ability to form the IHM/SRX state. We found that short-tailed myosin constructs exhibited low IHM/SRX content, elevated actin-activated ATPase activity, and fast velocities in unloaded motility assays. Conversely, longer-tailed constructs exhibited higher IHM/SRX content and reduced actomyosin ATPase and velocity. Our modeling suggests that reduced velocities may be attributed to IHM/SRX-dependent sequestration of myosin heads. Interestingly, longer-tailed E525K mutants showed no apparent impact on velocity or actomyosin ATPase at low ionic strength but stabilized IHM/SRX state at higher ionic strength. Therefore, the hypo-contractility observed in DCM may be attributable to reduced myosin head availability caused by enhanced IHM/SRX stability in E525K mutants.
Collapse
Affiliation(s)
- Sebastian Duno-Miranda
- Department of Molecular Physiology and Biophysics, Cardiovascular Research Institute, University of Vermont, Burlington, VT, USA
| | - Shane R. Nelson
- Department of Molecular Physiology and Biophysics, Cardiovascular Research Institute, University of Vermont, Burlington, VT, USA
| | - David V. Rasicci
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA, USA
| | - Skylar M.L. Bodt
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA, USA
| | - Joseph A. Cirilo
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA, USA
| | - Duha Vang
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, USA
| | - Sivaraj Sivaramakrishnan
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, USA
| | - Christopher M. Yengo
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA, USA
| | - David M. Warshaw
- Department of Molecular Physiology and Biophysics, Cardiovascular Research Institute, University of Vermont, Burlington, VT, USA
| |
Collapse
|
6
|
Duno-Miranda S, Nelson SR, Rasicci DV, Bodt SL, Cirilo JA, Vang D, Sivaramakrishnan S, Yengo CM, Warshaw DM. Tail Length and E525K Dilated Cardiomyopathy Mutant Alter Human β-Cardiac Myosin Super-Relaxed State. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.07.570656. [PMID: 38105932 PMCID: PMC10723396 DOI: 10.1101/2023.12.07.570656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Dilated cardiomyopathy (DCM) is characterized by impaired cardiac function due to myocardial hypo-contractility and is associated with point mutations in β-cardiac myosin, the molecular motor that powers cardiac contraction. Myocardial function can be modulated through sequestration of myosin motors into an auto-inhibited "super relaxed" state (SRX), which is further stabilized by a structural state known as the "Interacting Heads Motif" (IHM). Therefore, hypo-contractility of DCM myocardium may result from: 1) reduced function of individual myosin, and/or; 2) decreased myosin availability due to increased IHM/SRX stabilization. To define the molecular impact of an established DCM myosin mutation, E525K, we characterized the biochemical and mechanical activity of wild-type (WT) and E525K human β-cardiac myosin constructs that differed in the length of their coiled-coil tail, which dictates their ability to form the IHM/SRX state. Single-headed (S1) and a short-tailed, double-headed (2HEP) myosin constructs exhibited low (~10%) IHM/SRX content, actin-activated ATPase activity of ~5s-1 and fast velocities in unloaded motility assays (~2000nm/s). Double-headed, longer-tailed (15HEP, 25HEP) constructs exhibited higher IHM/SRX content (~90%), and reduced actomyosin ATPase (<1s-1) and velocity (~800nm/s). A simple analytical model suggests that reduced velocities may be attributed to IHM/SRXdependent sequestration of myosin heads. Interestingly, the E525K 15HEP and 25HEP mutants showed no apparent impact on velocity or actomyosin ATPase at low ionic strength. However, at higher ionic strength, the E525K mutation stabilized the IHM/SRX state. Therefore, the E525K-associated DCM human cardiac hypo-contractility may be attributable to reduced myosin head availability caused by enhanced IHM/SRX stability.
Collapse
Affiliation(s)
- Sebastian Duno-Miranda
- Department of Molecular Physiology and Biophysics, Cardiovascular Research Institute, University of Vermont, Burlington, Vermont
| | - Shane R. Nelson
- Department of Molecular Physiology and Biophysics, Cardiovascular Research Institute, University of Vermont, Burlington, Vermont
| | - David V. Rasicci
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania
| | - Skylar L.M. Bodt
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania
| | - Joseph A. Cirilo
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania
| | - Duha Vang
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota
| | - Sivaraj Sivaramakrishnan
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota
| | - Christopher M. Yengo
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania
| | - David M. Warshaw
- Department of Molecular Physiology and Biophysics, Cardiovascular Research Institute, University of Vermont, Burlington, Vermont
| |
Collapse
|
7
|
Bodt SML, Ge J, Ma W, Rasicci DV, Desetty R, McCammon JA, Yengo CM. Dilated cardiomyopathy mutation in beta-cardiac myosin enhances actin activation of the power stroke and phosphate release. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.10.566646. [PMID: 38014187 PMCID: PMC10680644 DOI: 10.1101/2023.11.10.566646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Inherited mutations in human beta-cardiac myosin (M2β) can lead to severe forms of heart failure. The E525K mutation in M2β is associated with dilated cardiomyopathy (DCM) and was found to stabilize the interacting heads motif (IHM) and autoinhibited super-relaxed (SRX) state in dimeric heavy meromyosin. However, in monomeric M2β subfragment 1 (S1) we found that E525K enhances (3-fold) the maximum steady-state actin-activated ATPase activity (kcat) and decreases (6-fold) the actin concentration at which ATPase is one-half maximal (KATPase). We also found a 3 to 4-fold increase in the actin-activated power stroke and phosphate release rate constants at 30 μM actin, which overall enhanced the duty ratio 3-fold. Loaded motility assays revealed that the enhanced intrinsic motor activity translates to increased ensemble force in M2β S1. Glutamate 525, located near the actin binding region in the so-called activation loop, is highly conserved and predicted to form a salt-bridge with another conserved residue (lysine 484) in the relay helix. Enhanced sampling molecular dynamics simulations predict that the charge reversal mutation disrupts the E525-K484 salt-bridge, inducing conformations with a more flexible relay helix and a wide phosphate release tunnel. Our results highlight a highly conserved allosteric pathway associated with actin activation of the power stroke and phosphate release and suggest an important feature of the autoinhibited IHM is to prevent this region of myosin from interacting with actin. The ability of the E525K mutation to stabilize the IHM likely overrides the enhanced intrinsic motor properties, which may be key to triggering DCM pathogenesis.
Collapse
Affiliation(s)
- Skylar M. L. Bodt
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Jinghua Ge
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Wen Ma
- Department of Chemistry and Biochemistry, University of California San Diego, San Diego, California
| | - David V. Rasicci
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Rohini Desetty
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - J. Andrew McCammon
- Department of Chemistry and Biochemistry, University of California San Diego, San Diego, California
| | - Christopher M. Yengo
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| |
Collapse
|
8
|
Ochala J, Lewis CTA, Beck T, Iwamoto H, Hessel AL, Campbell KS, Pyle WG. Predominant myosin superrelaxed state in canine myocardium with naturally occurring dilated cardiomyopathy. Am J Physiol Heart Circ Physiol 2023; 325:H585-H591. [PMID: 37505469 DOI: 10.1152/ajpheart.00369.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/12/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023]
Abstract
Dilated cardiomyopathy (DCM) is a naturally occurring heart failure condition in humans and dogs, notably characterized by a reduced contractility and ejection fraction. As the identification of its underlying cellular and molecular mechanisms remain incomplete, the aim of the present study was to assess whether the molecular motor myosin and its known relaxed conformational states are altered in DCM. For that, we dissected and skinned thin cardiac strips from left ventricle obtained from six DCM Doberman Pinschers and six nonfailing (NF) controls. We then used a combination of Mant-ATP chase experiments and X-ray diffraction to assess both energetic and structural changes of myosin. Using the Mant-ATP chase protocol, we observed that in DCM dogs, the amount of myosin molecules in the ATP-conserving conformational state, also known as superrelaxed (SRX), is significantly increased when compared with NF dogs. This alteration can be rescued by applying EMD-57033, a small molecule activating myosin. Conversely, with X-ray diffraction, we found that in DCM dogs, there is a higher proportion of myosin heads in the vicinity of actin when compared with NF dogs (1,0 to 1,1 intensity ratio). Hence, we observed an uncoupling between energetic (Mant-ATP chase) and structural (X-ray diffraction) data. Taken together, these results may indicate that in the heart of Doberman Pinschers with DCM, myosin molecules are potentially stuck in a nonsequestered but ATP-conserving SRX state, that can be counterbalanced by EMD-57033 demonstrating the potential for a myosin-centered pharmacological treatment of DCM.NEW & NOTEWORTHY The key finding of the present study is that, in left ventricles of dogs with a naturally occurring dilated cardiomyopathy, relaxed myosin molecules favor a nonsequestered superrelaxed state potentially impairing sarcomeric contractility. This alteration is rescuable by applying a small molecule activating myosin known as EMD-57033.
Collapse
Affiliation(s)
- Julien Ochala
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Thomas Beck
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hiroyuki Iwamoto
- SPring-8, Japan Synchrotron Radiation Research Institute, Hyogo, Japan
| | - Anthony L Hessel
- Institute of Physiology II, University of Muenster, Muenster, Germany
- Accelerated Muscle Biotechnologies, Boston, Massachusetts, United States
| | - Kenneth S Campbell
- Department of Physiology, University of Kentucky, Lexington, Kentucky, United States
- Division of Cardiovascular Medicine, University of Kentucky, Lexington, Kentucky, United States
| | - W Glen Pyle
- IMPART Investigator Team, Dalhousie Medicine, Saint John, New Brunswick, Canada
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
9
|
Lehman SJ, Meller A, Solieva SO, Lotthammer JM, Greenberg L, Langer SJ, Greenberg MJ, Tardiff JC, Bowman GR, Leinwand L. Divergent Molecular Phenotypes in Point Mutations at the Same Residue in Beta-Myosin Heavy Chain Lead to Distinct Cardiomyopathies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.03.547580. [PMID: 37461648 PMCID: PMC10349964 DOI: 10.1101/2023.07.03.547580] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
In genetic cardiomyopathies, a frequently described phenomenon is how similar mutations in one protein can lead to discrete clinical phenotypes. One example is illustrated by two mutations in beta myosin heavy chain (β-MHC) that are linked to hypertrophic cardiomyopathy (HCM) (Ile467Val, I467V) and left ventricular non-compaction (LVNC) (Ile467Thr, I467T). To investigate how these missense mutations lead to independent diseases, we studied the molecular effects of each mutation using recombinant human β-MHC Subfragment 1 (S1) in in vitro assays. Both HCM-I467V and LVNC-I467T S1 mutations exhibited similar mechanochemical function, including unchanged ATPase and enhanced actin velocity but had opposing effects on the super-relaxed (SRX) state of myosin. HCM-I467V S1 showed a small reduction in the SRX state, shifting myosin to a more actin-available state that may lead to the "gain-of-function" phenotype commonly described in HCM. In contrast, LVNC-I467T significantly increased the population of myosin in the ultra-slow SRX state. Interestingly, molecular dynamics simulations reveal that I467T allosterically disrupts interactions between ADP and the nucleotide-binding pocket, which may result in an increased ADP release rate. This predicted change in ADP release rate may define the enhanced actin velocity measured in LVNC-I467T, but also describe the uncoupled mechanochemical function for this mutation where the enhanced ADP release rate may be sufficient to offset the increased SRX population of myosin. These contrasting molecular effects may lead to contractile dysregulation that initiates LVNC-associated signaling pathways that progress the phenotype. Together, analysis of these mutations provides evidence that phenotypic complexity originates at the molecular level and is critical to understanding disease progression and developing therapies.
Collapse
Affiliation(s)
- Sarah J Lehman
- University of Colorado, Molecular, Cellular, and Developmental Biology, Boulder, CO, USA
| | - Artur Meller
- Washington University in St. Louis, Department of Biochemistry and Molecular Biophysics, St. Louis, MO, USA
- Medical Scientist Training Program, Washington University in St. Louis, St. Louis, MO, USA
| | - Shahlo O Solieva
- University of Pennsylvania, Department of Biochemistry and Biophysics, Philadelphia, PA, USA
| | - Jeffrey M Lotthammer
- Washington University in St. Louis, Department of Biochemistry and Molecular Biophysics, St. Louis, MO, USA
| | - Lina Greenberg
- Washington University in St. Louis, Department of Biochemistry and Molecular Biophysics, St. Louis, MO, USA
| | - Stephen J Langer
- University of Colorado, Molecular, Cellular, and Developmental Biology, Boulder, CO, USA
| | - Michael J Greenberg
- Washington University in St. Louis, Department of Biochemistry and Molecular Biophysics, St. Louis, MO, USA
| | - Jil C Tardiff
- University of Arizona, Department of Biomedical Engineering, Tucson, AZ, USA
| | - Gregory R Bowman
- University of Pennsylvania, Department of Biochemistry and Biophysics, Philadelphia, PA, USA
| | - Leslie Leinwand
- University of Colorado, Molecular, Cellular, and Developmental Biology, Boulder, CO, USA
| |
Collapse
|
10
|
Rasicci DV, Ge J, Milburn GN, Wood NB, Pruznak AM, Lang CH, Previs MJ, Campbell KS, Yengo CM. Cardiac myosin motor deficits are associated with left ventricular dysfunction in human ischemic heart failure. Am J Physiol Heart Circ Physiol 2023; 324:H198-H209. [PMID: 36525480 PMCID: PMC9829461 DOI: 10.1152/ajpheart.00272.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
During ischemic heart failure (IHF), cardiac muscle contraction is typically impaired, though the molecular changes within the myocardium are not fully understood. Thus, we aimed to characterize the biophysical properties of cardiac myosin in IHF. Cardiac tissue was harvested from 10 age-matched males, either with a history of IHF or nonfailing (NF) controls that had no history of structural or functional cardiac abnormalities. Clinical measures before cardiac biopsy demonstrated significant differences in measures of ejection fraction and left ventricular dimensions. Myofibrils and myosin were extracted from left ventricular free wall cardiac samples. There were no changes in myofibrillar ATPase activity or calcium sensitivity between groups. Using isolated myosin, we found a 15% reduction in the IHF group in actin sliding velocity in the in vitro motility assay, which was observed in the absence of a myosin isoform shift. Oxidative damage (carbonylation) of isolated myosin was compared, in which there were no significant differences between groups. Synthetic thick filaments were formed from purified myosin and the ATPase activity was similar in both basal and actin-activated conditions (20 µM actin). Correlation analysis and Deming linear regression were performed between all studied parameters, in which we found statistically significant correlations between clinical measures of contractility with molecular measures of sliding velocity and ELC carbonylation. Our data indicate that subtle deficits in myosin mechanochemical properties are associated with reduced contractile function and pathological remodeling of the heart, suggesting that the myosin motor may be an effective pharmacological intervention in ischemia.NEW & NOTEWORTHY Ischemic heart failure is associated with impairments in contractile performance of the heart. This study revealed that cardiac myosin isolated from patients with ischemic heart failure had reduced mechanical activity, which correlated with the impaired clinical phenotype of the patients. The results suggest that restoring myosin function with pharmacological intervention may be a viable method for therapeutic intervention.
Collapse
Affiliation(s)
- D. V. Rasicci
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania
- Department of Pathology, Anatomy, and Laboratory Medicine, West Virginia University School of Medicine, Morgantown, West Virginia
| | - J. Ge
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - G. N. Milburn
- Department of Physiology, University of Kentucky, Lexington, Kentucky
| | - N. B. Wood
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont
| | - A. M. Pruznak
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - C. H. Lang
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - M. J. Previs
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont
| | - K. S. Campbell
- Department of Physiology, University of Kentucky, Lexington, Kentucky
- Division of Cardiovascular Medicine, University of Kentucky, Lexington, Kentucky
| | - C. M. Yengo
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| |
Collapse
|