1
|
Millett M, Heuberger A, Martin Castosa E, Comite A, Wagner P, Hall D, Gallardo I, Chambers NE, Wagner L, Reinhardt J, Moehle MS. Neuron specific quantitation of Gα olf expression and signaling in murine brain tissue. Brain Res 2024; 1842:149105. [PMID: 38960060 DOI: 10.1016/j.brainres.2024.149105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/19/2024] [Accepted: 06/29/2024] [Indexed: 07/05/2024]
Abstract
The heterotrimeric G-protein α subunit, Gαolf, acts to transduce extracellular signals through G-protein coupled receptors (GPCRs) and stimulates adenylyl cyclase mediated production of the second messenger cyclic adenosine monophosphate. Numerous mutations in the GNAL gene, which encodes Gαolf, have been identified as causative for an adult-onset dystonia. These mutations disrupt GPCR signaling cascades in in vitro assays through several mechanisms, and this disrupted signaling is hypothesized to lead to dystonic motor symptoms in patients. However, the cells and circuits that mutations in GNAL corrupt are not well understood. Published patterns of Gαolf expression outside the context of the striatum are sparse, conflicting, often lack cell type specificity, and may be confounded by expression of the close GNAL homolog of GNAS. Here, we use RNAScope in-situ hybridization to quantitatively characterize Gnal mRNA expression in brain tissue from wildtype C57BL/6J adult mice. We observed widespread expression of Gnal puncta throughout the brain, suggesting Gαolf is expressed in more brain structures and neuron types than previously accounted for. We quantify transcripts at a single cell level, and use neuron type specific markers to further classify and understand patterns of GNAL expression. Our data suggests that brain regions classically associated with motor control, initiation, and regulation show the highest expression of GNAL, with Purkinje Cells of the cerebellum showing the highest expression of any neuron type examined. Subsequent conditional Gnal knockout in Purkinje cells led to markedly decreased intracellular cAMP levels and downstream cAMP-dependent enzyme activation. Our work provides a detailed characterization of Gnal expression throughout the brain and the biochemical consequences of loss of Gαolf signaling in vivo in neurons that highly express Gnal.
Collapse
Affiliation(s)
- Michael Millett
- Department of Pharmacology & Therapeutics and Center for Translational Research in Neurodegeneration, University of Florida College of Medicine, Gainesville, FL, 32610, United States.
| | - Anika Heuberger
- Department of Pharmacology & Therapeutics and Center for Translational Research in Neurodegeneration, University of Florida College of Medicine, Gainesville, FL, 32610, United States.
| | - Elisabeth Martin Castosa
- Department of Pharmacology & Therapeutics and Center for Translational Research in Neurodegeneration, University of Florida College of Medicine, Gainesville, FL, 32610, United States.
| | - Allison Comite
- Department of Pharmacology & Therapeutics and Center for Translational Research in Neurodegeneration, University of Florida College of Medicine, Gainesville, FL, 32610, United States.
| | - Preston Wagner
- Department of Pharmacology & Therapeutics and Center for Translational Research in Neurodegeneration, University of Florida College of Medicine, Gainesville, FL, 32610, United States.
| | - Dominic Hall
- Department of Pharmacology & Therapeutics and Center for Translational Research in Neurodegeneration, University of Florida College of Medicine, Gainesville, FL, 32610, United States.
| | - Ignacio Gallardo
- Department of Pharmacology & Therapeutics and Center for Translational Research in Neurodegeneration, University of Florida College of Medicine, Gainesville, FL, 32610, United States.
| | - Nicole E Chambers
- Department of Pharmacology & Therapeutics and Center for Translational Research in Neurodegeneration, University of Florida College of Medicine, Gainesville, FL, 32610, United States.
| | - Lloyd Wagner
- Department of Pharmacology & Therapeutics and Center for Translational Research in Neurodegeneration, University of Florida College of Medicine, Gainesville, FL, 32610, United States.
| | - Jessica Reinhardt
- Department of Pharmacology & Therapeutics and Center for Translational Research in Neurodegeneration, University of Florida College of Medicine, Gainesville, FL, 32610, United States.
| | - Mark S Moehle
- Department of Pharmacology & Therapeutics and Center for Translational Research in Neurodegeneration, University of Florida College of Medicine, Gainesville, FL, 32610, United States.
| |
Collapse
|
2
|
Salazar Leon LE, Kim LH, Sillitoe RV. Cerebellar deep brain stimulation as a dual-function therapeutic for restoring movement and sleep in dystonic mice. Neurotherapeutics 2024; 21:e00467. [PMID: 39448336 PMCID: PMC11585869 DOI: 10.1016/j.neurot.2024.e00467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/26/2024] Open
Abstract
Dystonia arises with cerebellar dysfunction, which plays a key role in the emergence of multiple pathophysiological deficits that range from abnormal movements and postures to disrupted sleep. Current therapeutic interventions typically do not simultaneously address both the motor and non-motor symptoms of dystonia, underscoring the necessity for a multi-functional therapeutic strategy. Deep brain stimulation (DBS) is effectively used to reduce motor symptoms in dystonia, with existing parallel evidence arguing for its potential to correct sleep disturbances. However, the simultaneous efficacy of DBS for improving sleep and motor dysfunction, specifically by targeting the cerebellum, remains underexplored. Here, we test the effect of cerebellar DBS in two genetic mouse models with dystonia that exhibit sleep defects-Ptf1aCre;Vglut2fx/fx and Pdx1Cre;Vglut2fx/fx-which have overlapping cerebellar circuit miswiring defects but differing severity in motor phenotypes. By targeting DBS to the fiber tracts located between the cerebellar fastigial and the interposed nuclei (FN + INT-DBS), we modulated sleep dysfunction by enhancing sleep quality and timing. This DBS paradigm improved wakefulness and rapid eye movement sleep in both mutants. Additionally, the latency to reach REM sleep, a deficit observed in human dystonia patients, was reduced in both models. Cerebellar DBS also induced alterations in the electrocorticogram (ECoG) patterns that define sleep states. As expected, DBS reduced the severe dystonic twisting motor symptoms that are observed in the Ptf1aCre;Vglut2fx/fx mice. These findings highlight the potential for using cerebellar DBS to simultaneously improve sleep and reduce motor dysfunction in dystonia and uncover its potential as a dual-effect in vivo therapeutic strategy.
Collapse
Affiliation(s)
- Luis E Salazar Leon
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA; Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, 77030, USA
| | - Linda H Kim
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, 77030, USA
| | - Roy V Sillitoe
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA; Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA; Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX, USA; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, 77030, USA.
| |
Collapse
|
3
|
Chambers NE, Hall D, Barsoum S, Miller E, Curry T, Kaplan M, Garan S, Gallardo I, Staab R, Nabert D, Hutchinson K, Millett M, Moehle MS. Conditional Knockout of Striatal Gnal Produces Dystonia-like Motor Phenotypes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.26.609754. [PMID: 39253490 PMCID: PMC11383043 DOI: 10.1101/2024.08.26.609754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Loss-of-function mutations in GNAL have been linked to an adult-onset, isolated dystonia that is largely indistinguishable from idiopathic dystonia. GNAL encodes Gα olf , a heterotrimeric G-protein α subunit with a defined molecular function to increase the production of the second messenger cAMP. Gα olf is abundant in the striatum, and is the only stimulatory G-protein in many cell types of the striatum. Due to the defined molecular signaling pathway and expression pattern of Gα olf , the clear genetic link to dystonia makes GNAL an exciting target to understand the pathological mechanisms of not only this genetic dystonia, but also the larger idiopathic disease. To better understand GNAL -linked dystonia, we generated a novel genetic mouse model that allows us to conditionally knock out Gnal in a site and time-specific manner. In the current study we used genetic or AAV based approaches to express Cre to knockout striatal Gnal in our novel Gnal fl/fl model. We then performed motor behavioral testing and ex vivo whole-cell patch clamp electrophysiology of striatal spiny projection neurons to interrogate how loss of Gnal leads to dystonia. Mice with conditional striatal knockout of Gnal show hindlimb clasping, other dystonia-like postures, less motor coordination, slowness, and torticollis as compared to age-matched controls. Furthermore, striatal spiny projection neurons show increased excitability in Gnal knockout animals. These exciting data are the first to report uninduced, overt dystonia in a mouse model of GNAL- linked dystonia, and directly correlate these with changes in spiny projection neuron electrophysiological properties. Our results show that adult loss of Gnal in the striatum leads to the development of dystonia, through homeostatic, paradoxical increases in spiny projection neuron excitability, and suggest that therapeutic strategies aimed at decreasing this hyperexcitable phenotype may provide symptomatic relief for patients with disease. One Sentence Summary: When Gnal is knocked out in the striatum of mice we observe overt behavioral symptoms and hyperexcitability in striatal spiny projection neurons.
Collapse
|
4
|
Gelineau-Morel R, Dlamini N, Bruss J, Cohen AL, Robertson A, Alexopoulos D, Smyser CD, Boes AD. Network localization of pediatric lesion-induced dystonia. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.06.24305421. [PMID: 38645071 PMCID: PMC11030491 DOI: 10.1101/2024.04.06.24305421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Objective Dystonia is a movement disorder defined by involuntary muscle contractions leading to abnormal postures or twisting and repetitive movements. Classically dystonia has been thought of as a disorder of the basal ganglia, but newer results in idiopathic dystonia and lesion-induced dystonia in adults point to broader motor network dysfunction spanning the basal ganglia, cerebellum, premotor cortex, sensorimotor, and frontoparietal regions. It is unclear whether a similar network is shared between different etiologies of pediatric lesion-induced dystonia. Methods Three cohorts of pediatric patients with lesion-induced dystonia were identified. The lesion etiologies included hypoxia, kernicterus, and stroke versus comparison subjects with acquired lesions not associated with dystonia. Multivariate lesion-symptom mapping and lesion network mapping were used to evaluate the anatomy and networks associated with dystonia. Results Multivariate lesion-symptom mapping showed that lesions of the putamen (stroke: r = 0.50, p <0.01; hypoxia, r = 0.64, p <0.001) and globus pallidus (kernicterus, r = 0.61, p <0.01) were associated with dystonia. Lesion network mapping using normative connectome data from healthy children demonstrated that these regional findings occurred within a common brain-wide network that involves the basal ganglia, anterior and medial cerebellum, and cortical regions that overlap the cingulo-opercular and somato-cognitive-action networks. Interpretation We interpret these findings as novel evidence for a unified dystonia brain network that involves the somato-cognitive-action network, which is involved in higher order coordination of movement. Elucidation of this network gives insight into the functional origins of dystonia and provides novel targets to investigate for therapeutic intervention.
Collapse
Affiliation(s)
- Rose Gelineau-Morel
- Division of Neurology, Department of Pediatrics, Children’s Mercy Kansas City, Kansas City, Missouri, USA
- University of Missouri-Kansas City School of Medicine, Kansas City, Missouri
| | - Nomazulu Dlamini
- Division of Neurology, Department of Paediatrics, The Hospital for Sick Children, Toronto, Canada
- Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Joel Bruss
- Department of Pediatrics, University of Iowa Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Department of Neurology, University of Iowa Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Alexander Li Cohen
- Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Amanda Robertson
- Division of Neurology, Department of Paediatrics, The Hospital for Sick Children, Toronto, Canada
| | | | - Christopher D. Smyser
- Department of Neurology, Washington University, St Louis, Missouri, USA
- Department of Pediatrics, Washington University, St Louis, Missouri, USA
- Mallinckrodt Institute of Radiology, Washington University, St Louis, Missouri, USA
| | - Aaron D. Boes
- Department of Pediatrics, University of Iowa Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Department of Neurology, University of Iowa Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa, USA Characters in title: 57, Characters in running head: 31
| |
Collapse
|
5
|
Millett M, Heuberger A, Castosa EM, Comite A, Wagner P, Hall D, Gallardo I, Chambers NE, Wagner L, Moehle MS. G α olf Regulates Biochemical Signaling in Neurons Associated with Movement Control and Initiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.03.587766. [PMID: 38617339 PMCID: PMC11014607 DOI: 10.1101/2024.04.03.587766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
The heterotrimeric G-protein α subunit, Gα olf , acts to transduce extracellular signals through G-protein coupled receptors (GPCRs) and stimulates adenylyl cyclase mediated production of the second messenger cyclic adenosine monophosphate. Numerous mutations in the GNAL gene, which encodes Gα olf , have been identified as causative for an adult-onset dystonia. These mutations disrupt GPCR signaling cascades in in vitro assays through several mechanisms, and this disrupted signaling is hypothesized to lead to dystonic motor symptoms in patients. However, the cells and circuits that mutations in GNAL corrupt are not well understood. Published patterns of Gα olf expression outside the context of the striatum are sparse, conflicting, often lack cell type specificity, and may be confounded by expression of the close GNAL homolog of GNAS . Here, we use RNAScope in-situ hybridization to quantitatively characterize Gnal mRNA expression in brain tissue from wildtype C57BL/6J adult mice. We observed widespread expression of Gnal puncta throughout the brain, suggesting Gα olf is expressed in more brain structures and neuron types than previously accounted for. We quantify transcripts at a single cell level, and use neuron type specific markers to further classify and understand patterns of GNAL expression. Our data suggests that brain regions classically associated with motor control, initiation, and regulation show the highest expression of GNAL , with Purkinje Cells of the cerebellum showing the highest expression of any neuron type examined. Subsequent conditional Gnal knockout in Purkinje cells led to markedly decreased intracellular cAMP levels and downstream cAMP-dependent enzyme activation. Our work provides a detailed characterization of Gnal expression throughout the brain and the biochemical consequences of loss of Gα olf signaling in vivo in neurons that highly express Gnal .
Collapse
|
6
|
Gill JS, Nguyen MX, Hull M, van der Heijden ME, Nguyen K, Thomas SP, Sillitoe RV. Function and dysfunction of the dystonia network: an exploration of neural circuits that underlie the acquired and isolated dystonias. DYSTONIA 2023; 2:11805. [PMID: 38273865 PMCID: PMC10810232 DOI: 10.3389/dyst.2023.11805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Dystonia is a highly prevalent movement disorder that can manifest at any time across the lifespan. An increasing number of investigations have tied this disorder to dysfunction of a broad "dystonia network" encompassing the cerebellum, thalamus, basal ganglia, and cortex. However, pinpointing how dysfunction of the various anatomic components of the network produces the wide variety of dystonia presentations across etiologies remains a difficult problem. In this review, a discussion of functional network findings in non-mendelian etiologies of dystonia is undertaken. Initially acquired etiologies of dystonia and how lesion location leads to alterations in network function are explored, first through an examination of cerebral palsy, in which early brain injury may lead to dystonic/dyskinetic forms of the movement disorder. The discussion of acquired etiologies then continues with an evaluation of the literature covering dystonia resulting from focal lesions followed by the isolated focal dystonias, both idiopathic and task dependent. Next, how the dystonia network responds to therapeutic interventions, from the "geste antagoniste" or "sensory trick" to botulinum toxin and deep brain stimulation, is covered with an eye towards finding similarities in network responses with effective treatment. Finally, an examination of how focal network disruptions in mouse models has informed our understanding of the circuits involved in dystonia is provided. Together, this article aims to offer a synthesis of the literature examining dystonia from the perspective of brain networks and it provides grounding for the perspective of dystonia as disorder of network function.
Collapse
Affiliation(s)
- Jason S. Gill
- Division of Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX, United States
| | - Megan X. Nguyen
- Division of Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX, United States
| | - Mariam Hull
- Division of Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - Meike E. van der Heijden
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX, United States
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United State
| | - Ken Nguyen
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX, United States
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United State
| | - Sruthi P. Thomas
- H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, United States
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, United States
| | - Roy V. Sillitoe
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX, United States
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United State
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
- Development, Disease Models and Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
7
|
Leon LES, Kim LH, Sillitoe RV. Cerebellar deep brain stimulation as a dual-function therapeutic for restoring movement and sleep in dystonic mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.30.564790. [PMID: 37961355 PMCID: PMC10635001 DOI: 10.1101/2023.10.30.564790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Dystonia arises with cerebellar dysfunction, which plays a key role in the emergence of multiple pathophysiological deficits that range from abnormal movements and postures to disrupted sleep. Current therapeutic interventions typically do not simultaneously address both the motor and non-motor (sleep-related) symptoms of dystonia, underscoring the necessity for a multi-functional therapeutic strategy. Deep brain stimulation (DBS) is effectively used to reduce motor symptoms in dystonia, with existing parallel evidence arguing for its potential to correct sleep disturbances. However, the simultaneous efficacy of DBS for improving sleep and motor dysfunction, specifically by targeting the cerebellum, remains underexplored. Here, we test the effect of cerebellar DBS in two genetic mouse models with dystonia that exhibit sleep defects- Ptf1a Cre ;Vglut2 fx/fx and Pdx1 Cre ;Vglut2 fx/fx -which have overlapping cerebellar circuit miswiring defects but differing severity in motor phenotypes. By targeting DBS to the cerebellar fastigial and interposed nuclei, we modulated sleep dysfunction by enhancing sleep quality and timing in both models. This DBS paradigm improved wakefulness (decreased) and rapid eye movement (REM) sleep (increased) in both mutants. Additionally, the latency to reach REM sleep, a deficit observed in human dystonia patients, was reduced in both models. Cerebellar DBS also induced alterations in the electrocorticogram (ECoG) patterns that define sleep states. As expected, DBS reduced the severe dystonic twisting motor symptoms that are observed in the Ptf1a Cre ;Vglut2 fx/fx mutant mice. These findings highlight the potential for using cerebellar DBS to improve sleep and reduce motor dysfunction in dystonia and uncover its potential as a dual-effect in vivo therapeutic strategy.
Collapse
|
8
|
Rey Hipolito AG, van der Heijden ME, Sillitoe RV. Physiology of Dystonia: Animal Studies. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 169:163-215. [PMID: 37482392 DOI: 10.1016/bs.irn.2023.05.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Dystonia is currently ranked as the third most prevalent motor disorder. It is typically characterized by involuntary muscle over- or co-contractions that can cause painful abnormal postures and jerky movements. Dystonia is a heterogenous disorder-across patients, dystonic symptoms vary in their severity, body distribution, temporal pattern, onset, and progression. There are also a growing number of genes that are associated with hereditary dystonia. In addition, multiple brain regions are associated with dystonic symptoms in both genetic and sporadic forms of the disease. The heterogeneity of dystonia has made it difficult to fully understand its underlying pathophysiology. However, the use of animal models has been used to uncover the complex circuit mechanisms that lead to dystonic behaviors. Here, we summarize findings from animal models harboring mutations in dystonia-associated genes and phenotypic animal models with overt dystonic motor signs resulting from spontaneous mutations, neural circuit perturbations, or pharmacological manipulations. Taken together, an emerging picture depicts dystonia as a result of brain-wide network dysfunction driven by basal ganglia and cerebellar dysfunction. In the basal ganglia, changes in dopaminergic, serotonergic, noradrenergic, and cholinergic signaling are found across different animal models. In the cerebellum, abnormal burst firing activity is observed in multiple dystonia models. We are now beginning to unveil the extent to which these structures mechanistically interact with each other. Such mechanisms inspire the use of pre-clinical animal models that will be used to design new therapies including drug treatments and brain stimulation.
Collapse
Affiliation(s)
- Alejandro G Rey Hipolito
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, United States
| | - Meike E van der Heijden
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, United States; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, United States
| | - Roy V Sillitoe
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States; Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, United States; Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States; Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX, United States; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, United States.
| |
Collapse
|
9
|
Kumar G, Ma CHE. Toward a cerebello-thalamo-cortical computational model of spinocerebellar ataxia. Neural Netw 2023; 162:541-556. [PMID: 37023628 DOI: 10.1016/j.neunet.2023.01.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 12/07/2022] [Accepted: 01/28/2023] [Indexed: 02/05/2023]
Abstract
Computational neural network modelling is an emerging approach for optimization of drug treatment of neurological disorders and fine-tuning of rehabilitation strategies. In the current study, we constructed a cerebello-thalamo-cortical computational neural network model to simulate a mouse model of cerebellar ataxia (pcd5J mice) by manipulating cerebellar bursts through reduction of GABAergic inhibitory input. Cerebellar output neurons were projected to the thalamus and bidirectionally connected with the cortical network. Our results showed that reduction of inhibitory input in the cerebellum orchestrated the cortical local field potential (LFP) dynamics to generate specific motor outputs of oscillations of the theta, alpha, and beta bands in the computational model as well as in mouse motor cortical neurons. The therapeutic potential of deep brain stimulation (DBS) was tested in the computational model by increasing the sensory input to restore cortical output. Ataxia mice showed normalization of the motor cortex LFP after cerebellum DBS. We provide a novel approach to computational modelling to investigate the effect of DBS by mimicking cerebellar ataxia involving degeneration of Purkinje cells. Simulated neural activity coincides with findings from neural recordings of ataxia mice. Our computational model could thus represent cerebellar pathologies and provide insight into how to improve disease symptoms by restoring neuronal electrophysiological properties using DBS.
Collapse
Affiliation(s)
- Gajendra Kumar
- Department of Neuroscience, City University of Hong Kong, Tat Chee Avenue, Hong Kong Special Administrative Region.
| | - Chi Him Eddie Ma
- Department of Neuroscience, City University of Hong Kong, Tat Chee Avenue, Hong Kong Special Administrative Region.
| |
Collapse
|
10
|
El Atiallah I, Bonsi P, Tassone A, Martella G, Biella G, Castagno AN, Pisani A, Ponterio G. Synaptic Dysfunction in Dystonia: Update From Experimental Models. Curr Neuropharmacol 2023; 21:2310-2322. [PMID: 37464831 PMCID: PMC10556390 DOI: 10.2174/1570159x21666230718100156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/05/2022] [Accepted: 12/12/2022] [Indexed: 07/20/2023] Open
Abstract
Dystonia, the third most common movement disorder, refers to a heterogeneous group of neurological diseases characterized by involuntary, sustained or intermittent muscle contractions resulting in repetitive twisting movements and abnormal postures. In the last few years, several studies on animal models helped expand our knowledge of the molecular mechanisms underlying dystonia. These findings have reinforced the notion that the synaptic alterations found mainly in the basal ganglia and cerebellum, including the abnormal neurotransmitters signalling, receptor trafficking and synaptic plasticity, are a common hallmark of different forms of dystonia. In this review, we focus on the major contribution provided by rodent models of DYT-TOR1A, DYT-THAP1, DYT-GNAL, DYT/ PARK-GCH1, DYT/PARK-TH and DYT-SGCE dystonia, which reveal that an abnormal motor network and synaptic dysfunction represent key elements in the pathophysiology of dystonia.
Collapse
Affiliation(s)
- Ilham El Atiallah
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
- Department of System Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Paola Bonsi
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Annalisa Tassone
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Giuseppina Martella
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Gerardo Biella
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Pavia, Italy
| | - Antonio N. Castagno
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- IRCCS Fondazione Mondino, Pavia, Italy
| | - Antonio Pisani
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- IRCCS Fondazione Mondino, Pavia, Italy
| | - Giulia Ponterio
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|