1
|
Wang Y, Wang H, Zhang P, Zhu B, Li W, Zhao X, Yan M, Song X, Lai F, Dong J, Cui J, Guo X, Wu HJ, Li J. Single-cell atlas comparison across vertebrates reveals auditory cell evolution and mechanisms for hair cell regeneration. Commun Biol 2024; 7:1648. [PMID: 39702452 DOI: 10.1038/s42003-024-07335-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 11/29/2024] [Indexed: 12/21/2024] Open
Abstract
Mammals suffer permanent hearing impairment from the loss of auditory hair cells due to their inability to regenerate. In contrast, lower vertebrates exhibit extraordinary capacity for hair cell regeneration and hearing restoration, but the mechanisms remain unclear. Here we characterize the single-cell atlas of Xenopus laevis inner ear and perform a comprehensive comparison with mouse model. An exceptionally conserved inner ear neuronal cell type is discovered. The results reveal that the outer hair cells (OHCs) exist exclusively in mammals. Importantly, our analyses reveal an orchestrated gene expression program in Xenopus, characterized by upregulation of hair cell regeneration-related genes, coupled with downregulation of proliferation inhibitory genes. These findings unveil a natural feature of regenerative capacity in Xenopus, and provide molecular and evolutionary evidences for differential regenerative capacities across vertebrates. This work offers insights from amphibians into developing strategies to solve the challenges of hair cell regeneration in humans.
Collapse
Affiliation(s)
- Yafan Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610213, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Haojie Wang
- University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Penghui Zhang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610213, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bicheng Zhu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610213, China
| | - Wenxiu Li
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610213, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaomeng Zhao
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610213, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mengzhen Yan
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610213, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xuemei Song
- Institute of Blood Diseases, Department of Hematology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Sichuan, Chengdu, 610072, China
| | - Futing Lai
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Jieran Dong
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Jianguo Cui
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610213, China
| | - Xiang Guo
- Institute of Blood Diseases, Department of Hematology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Sichuan, Chengdu, 610072, China.
| | - Hua-Jun Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, 100142, China.
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
- Center for Precision Medicine Multi-Omics Research, Institute of Advanced Clinical Medicine, Peking University, Beijing, 100191, China.
| | - Jun Li
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610213, China.
| |
Collapse
|
2
|
Lin Y, Zhang Q, Tong W, Wang Y, Wu L, Xiao H, Tang X, Dai M, Ye Z, Chai R, Zhang S. Conditional Overexpression of Net1 Enhances the Trans-Differentiation of Lgr5 + Progenitors into Hair Cells in the Neonatal Mouse Cochlea. Cell Prolif 2024:e13787. [PMID: 39675772 DOI: 10.1111/cpr.13787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/05/2024] [Accepted: 11/13/2024] [Indexed: 12/17/2024] Open
Abstract
Sensorineural hearing loss is mainly caused by damage to hair cells (HC), which cannot be regenerated spontaneously in adult mammals once damaged. Cochlear Lgr5+ progenitors are characterised by HC regeneration capacity in neonatal mice, and we previously screened several new genes that might induce HC regeneration from Lgr5+ progenitors. Net1, a guanine nucleotide exchange factor, is one of the screened new genes and is particularly active in cancer cells and is involved in cell proliferation and differentiation. Here, to explore in vivo roles of Net1 in HC regeneration, Net1loxp/loxp mice were constructed and crossed with Lgr5CreER/+ mice to conditionally overexpress (cOE) Net1 in cochlear Lgr5+ progenitors. We observed a large number of ectopic HCs in Lgr5CreER/+Net1loxp/loxp mouse cochlea, which showed a dose-dependent effect. Moreover, the EdU assay was unable to detect any EdU+/Sox2+ supporting cells, while lineage tracing showed significantly more regenerated tdTomato+ HCs in Lgr5CreER/+Net1loxp/loxptdTomato mice, which indicated that Net1 cOE enhanced HC regeneration by inducing the direct trans-differentiation of Lgr5+ progenitors rather than mitotic HC regeneration. Additionally, qPCR results showed that the transcription factors related to HC regeneration, including Atoh1, Gfi1 and Pou4f3, were significantly upregulated and are probably the mechanism behind the HC regeneration induced by Net1. In conclusion, our study provides new evidence for the role of Net1 in enhancing HC regeneration in the neonatal mouse cochlea.
Collapse
Affiliation(s)
- Yanqin Lin
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
- Southeast University Shenzhen Research Institute, Shenzhen, China
| | - Qiuyue Zhang
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
- Southeast University Shenzhen Research Institute, Shenzhen, China
| | - Wei Tong
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
- Southeast University Shenzhen Research Institute, Shenzhen, China
| | - Yintao Wang
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
- Southeast University Shenzhen Research Institute, Shenzhen, China
| | - Leilei Wu
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
- Southeast University Shenzhen Research Institute, Shenzhen, China
| | - Hairong Xiao
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
- Southeast University Shenzhen Research Institute, Shenzhen, China
| | - Xujun Tang
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
- Southeast University Shenzhen Research Institute, Shenzhen, China
| | - Mingchen Dai
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
- Southeast University Shenzhen Research Institute, Shenzhen, China
| | - Zixuan Ye
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
- Southeast University Shenzhen Research Institute, Shenzhen, China
| | - Renjie Chai
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
- Southeast University Shenzhen Research Institute, Shenzhen, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Science, Beijing, China
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Shasha Zhang
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
- Southeast University Shenzhen Research Institute, Shenzhen, China
| |
Collapse
|
3
|
Chen Y, Lee JH, Li J, Park S, Perez Flores MC, Peguero B, Kersigo J, Kang M, Choi J, Levine L, Gratton MA, Fritzsch B, Yamoah EN. Genetic and pharmacologic alterations of claudin9 levels suffice to induce functional and mature inner hair cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.08.561387. [PMID: 37873357 PMCID: PMC10592694 DOI: 10.1101/2023.10.08.561387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Hearing loss is the most common form of sensory deficit. It occurs predominantly due to hair cell (HC) loss. Mammalian HCs are terminally differentiated by birth, making HC loss challenging to replace. Here, we show the pharmacogenetic downregulation of Cldn9, a tight junction protein, generates robust supernumerary inner HCs (IHCs) in mice. The ectopic IHC shared functional and synaptic features akin to typical IHCs and were surprisingly and remarkably preserved for at least fifteen months >50% of the mouse's life cycle. In vivo, Cldn9 knockdown using shRNA on postnatal days (P) P2-7 yielded analogous functional ectopic IHCs that were equally durably conserved. The findings suggest that Cldn9 levels coordinate embryonic and postnatal HC differentiation, making it a viable target for altering IHC development pre- and post-terminal differentiation.
Collapse
Affiliation(s)
- Yingying Chen
- University of Nevada, Reno, School of Medicine, Department of Physiology and Cell Biology, Reno NV 89557
- Indiana University School of Medicine, Department of Pharmacology and Toxicology, Indianapolis, IN, 46202, USA
| | - Jeong Han Lee
- University of Nevada, Reno, School of Medicine, Department of Physiology and Cell Biology, Reno NV 89557
| | - Jin Li
- Department of Otolaryngology, University of Washington Seattle, WA, USA
| | - Seojin Park
- University of Nevada, Reno, School of Medicine, Department of Physiology and Cell Biology, Reno NV 89557
- Prestige Biopharma, 11-12F, 44, Myongjigukje7-ro, Gangseo-gu, Busan, South Korea 67264
| | - Maria C. Perez Flores
- University of Nevada, Reno, School of Medicine, Department of Physiology and Cell Biology, Reno NV 89557
| | - Braulio Peguero
- Otolaryngology-Head, Neck Surgery, St. Louis University, St. Louis, Missouri 63108
| | | | - Mincheol Kang
- University of Nevada, Reno, School of Medicine, Department of Physiology and Cell Biology, Reno NV 89557
- Prestige Biopharma, 11-12F, 44, Myongjigukje7-ro, Gangseo-gu, Busan, South Korea 67264
| | - Jinsil Choi
- University of Nevada, Reno, School of Medicine, Department of Physiology and Cell Biology, Reno NV 89557
| | | | | | | | - Ebenezer N. Yamoah
- University of Nevada, Reno, School of Medicine, Department of Physiology and Cell Biology, Reno NV 89557
| |
Collapse
|
4
|
de Haan S, Corbat AA, Cederroth CR, Autrum LG, Hankeova S, Driver EC, Canlon B, Kelley MW, Andersson ER. Jag1 represses Notch activation in lateral supporting cells and inhibits an outer hair cell fate in the medial cochlea. Development 2024; 151:dev202949. [PMID: 39373109 PMCID: PMC11574350 DOI: 10.1242/dev.202949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 09/25/2024] [Indexed: 10/08/2024]
Abstract
Notch signaling patterns the cochlear organ of Corti, and individuals with the JAG1/NOTCH2-related genetic disorder Alagille syndrome can thus experience hearing loss. We investigated the function of Jag1 in cochlear patterning and signaling using Jag1Ndr/Ndr mice, which are a model of Alagille syndrome. Jag1Ndr/Ndr mice exhibited expected vestibular and auditory deficits, a dose-dependent increase in ectopic inner hair cells, and a reduction in outer hair cells. Single cell RNA sequencing of the organ of Corti demonstrated a global dysregulation of genes associated with inner ear development and deafness. Analysis of individual cell types further revealed that Jag1 represses Notch activation in lateral supporting cells and demonstrated a function for Jag1 in gene regulation and development of outer hair cells. Surprisingly, ectopic 'outer hair cell-like' cells were present in the medial compartment and pillar cell region of Jag1Ndr/Ndr cochleae, yet they exhibited location-dependent expression of the inner hair cell fate-determinant Tbx2, suggesting Jag1 is required for Tbx2 to drive inner hair cell commitment. This study thus identifies new roles for Jag1 in supporting cells, and in outer hair cell specification and positioning.
Collapse
MESH Headings
- Animals
- Jagged-1 Protein/metabolism
- Jagged-1 Protein/genetics
- Mice
- Hair Cells, Auditory, Outer/metabolism
- Hair Cells, Auditory, Outer/cytology
- Cochlea/metabolism
- Cochlea/cytology
- Receptors, Notch/metabolism
- Receptors, Notch/genetics
- Signal Transduction
- Cell Differentiation
- Labyrinth Supporting Cells/metabolism
- Hair Cells, Auditory, Inner/metabolism
- Hair Cells, Auditory, Inner/cytology
- Gene Expression Regulation, Developmental
- Organ of Corti/metabolism
- Organ of Corti/cytology
Collapse
Affiliation(s)
- Sandra de Haan
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm 17177, Sweden
- Laboratory of Cochlear Development, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Agustin A Corbat
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm 17177, Sweden
| | - Christopher R Cederroth
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm 17177, Sweden
- Translational Hearing Research, Tübingen Hearing Research Center, Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Tübingen 72074, Germany
| | - Lisa G Autrum
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm 17177, Sweden
| | - Simona Hankeova
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm 17177, Sweden
- Department of Structural Biology, Genentech, South San Francisco, CA 94080, USA
| | - Elizabeth C Driver
- Laboratory of Cochlear Development, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Barbara Canlon
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm 17177, Sweden
| | - Matthew W Kelley
- Laboratory of Cochlear Development, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Emma R Andersson
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm 17177, Sweden
| |
Collapse
|
5
|
Cederroth CR, Dyhrfjeld-Johnsen J, Canlon B. Pharmacological Approaches to Hearing Loss. Pharmacol Rev 2024; 76:1063-1088. [PMID: 39164117 PMCID: PMC11549935 DOI: 10.1124/pharmrev.124.001195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 07/08/2024] [Accepted: 07/16/2024] [Indexed: 08/22/2024] Open
Abstract
Hearing disorders pose significant challenges to individuals experiencing them and their overall quality of life, emphasizing the critical need for advanced pharmacological approaches to address these conditions. Current treatment options often focus on amplification devices, cochlear implants, or other rehabilitative therapies, leaving a substantial gap regarding effective pharmacological interventions. Advancements in our understanding of the molecular and cellular mechanisms involved in hearing disorders induced by noise, aging, and ototoxicity have opened new avenues for drug development, some of which have led to numerous clinical trials, with promising results. The development of optimal drug delivery solutions in animals and humans can also enhance the targeted delivery of medications to the ear. Moreover, large genome studies contributing to a genetic understanding of hearing loss in humans combined with advanced molecular technologies in animal studies have shown a great potential to increase our understanding of the etiologies of hearing loss. The auditory system exhibits circadian rhythms and temporal variations in its physiology, its vulnerability to auditory insults, and its responsiveness to drug treatments. The cochlear clock rhythms are under the control of the glucocorticoid system, and preclinical evidence suggests that the risk/benefit profile of hearing disorder treatments using chronopharmacological approaches would be beneficial. If translatable to the bedside, such approaches may improve the outcome of clinical trials. Ongoing research into the molecular and genetic basis of auditory disorders, coupled with advancements in drug formulation and delivery as well as optimized timing of drug administration, holds great promise of more effective treatments. SIGNIFICANCE STATEMENT: Hearing disorders pose significant challenges to individuals and their overall quality of life, emphasizing the critical need for advanced pharmacological approaches to address these conditions. Ongoing research into the molecular and genetic basis of auditory disorders, coupled with advancements in drug delivery procedures and optimized timing of drug administration, holds the promise of more effective treatments.
Collapse
Affiliation(s)
- Christopher R Cederroth
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden (C.R.C., B.C.); Translational Hearing Research, Tübingen Hearing Research Center, Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Tübingen, Germany (C.R.C.); and Acousia Therapeutics GmbH, Tübingen, Germany (J.D.-J.)
| | - Jonas Dyhrfjeld-Johnsen
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden (C.R.C., B.C.); Translational Hearing Research, Tübingen Hearing Research Center, Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Tübingen, Germany (C.R.C.); and Acousia Therapeutics GmbH, Tübingen, Germany (J.D.-J.)
| | - Barbara Canlon
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden (C.R.C., B.C.); Translational Hearing Research, Tübingen Hearing Research Center, Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Tübingen, Germany (C.R.C.); and Acousia Therapeutics GmbH, Tübingen, Germany (J.D.-J.)
| |
Collapse
|
6
|
McGovern MM, Ghosh S, Dupuis C, Walters BJ, Groves AK. Reprogramming with Atoh1, Gfi1, and Pou4f3 promotes hair cell regeneration in the adult organ of Corti. PNAS NEXUS 2024; 3:pgae445. [PMID: 39411090 PMCID: PMC11477985 DOI: 10.1093/pnasnexus/pgae445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024]
Abstract
Cochlear hair cells can be killed by loud noises, ototoxic drugs, and natural aging. Once lost, mammalian hair cells do not naturally regenerate, leading to permanent hearing loss. Since the mammalian cochlea lacks any intrinsic ability to regenerate, genetic reprogramming of cochlear supporting cells that lie adjacent to hair cells is a potential option for hearing restoration therapies. We targeted cochlear supporting cells with three hair cell transcription factors: Atoh1, or Atoh1 + Gfi1, or Atoh1 + Gfi1 + Pou4f3 and found that 1- and 2-factor reprogramming is not sufficient to reprogram adult supporting cells into hair cells. However, activation of all three hair cell transcription factors reprogrammed some adult supporting cells into hair cell-like cells. We found that killing endogenous hair cells significantly improved the ability of supporting cells to be reprogrammed and regenerated numerous hair cell-like cells throughout the length of the cochlea. These regenerated hair cell-like cells expressed myosin VIIa and parvalbumin, as well as the mature outer hair cell protein prestin, were innervated, expressed proteins associated with ribbon synapses, and formed rudimentary stereociliary bundles. Finally, we demonstrate that supporting cells remained responsive to transcription factor reprogramming for at least 6 weeks after hair cell damage, suggesting that hair cell reprogramming may be effective in the chronically deafened cochlea.
Collapse
Affiliation(s)
- Melissa M McGovern
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sumana Ghosh
- Department of Otolaryngology—Head and Neck Surgery, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Colleen Dupuis
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Program in Genetics and Genomics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Bradley J Walters
- Department of Otolaryngology—Head and Neck Surgery, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Andrew K Groves
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Program in Genetics and Genomics, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
7
|
Ma X, Guo J, Tian M, Fu Y, Jiang P, Zhang Y, Chai R. Advance and Application of Single-cell Transcriptomics in Auditory Research. Neurosci Bull 2024; 40:963-980. [PMID: 38015350 PMCID: PMC11250760 DOI: 10.1007/s12264-023-01149-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/03/2023] [Indexed: 11/29/2023] Open
Abstract
Hearing loss and deafness, as a worldwide disability disease, have been troubling human beings. However, the auditory organ of the inner ear is highly heterogeneous and has a very limited number of cells, which are largely uncharacterized in depth. Recently, with the development and utilization of single-cell RNA sequencing (scRNA-seq), researchers have been able to unveil the complex and sophisticated biological mechanisms of various types of cells in the auditory organ at the single-cell level and address the challenges of cellular heterogeneity that are not resolved through by conventional bulk RNA sequencing (bulk RNA-seq). Herein, we reviewed the application of scRNA-seq technology in auditory research, with the aim of providing a reference for the development of auditory organs, the pathogenesis of hearing loss, and regenerative therapy. Prospects about spatial transcriptomic scRNA-seq, single-cell based genome, and Live-seq technology will also be discussed.
Collapse
Affiliation(s)
- Xiangyu Ma
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Jiamin Guo
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Mengyao Tian
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Yaoyang Fu
- Department of Psychiatry, Affiliated Hangzhou First People's Hospital, Zhejiang University school of Medicine, Hangzhou, 310030, China
| | - Pei Jiang
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Yuan Zhang
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, China
- Research Institute of Otolaryngology, Nanjing, 210008, China
| | - Renjie Chai
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China.
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China.
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Science, Beijing, 101408, China.
- Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
8
|
Maraslioglu-Sperber A, Blanc F, Heller S. Murine cochlear damage models in the context of hair cell regeneration research. Hear Res 2024; 447:109021. [PMID: 38703432 DOI: 10.1016/j.heares.2024.109021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 04/16/2024] [Accepted: 04/26/2024] [Indexed: 05/06/2024]
Abstract
Understanding the complex pathologies associated with hearing loss is a significant motivation for conducting inner ear research. Lifelong exposure to loud noise, ototoxic drugs, genetic diversity, sex, and aging collectively contribute to human hearing loss. Replicating this pathology in research animals is challenging because hearing impairment has varied causes and different manifestations. A central aspect, however, is the loss of sensory hair cells and the inability of the mammalian cochlea to replace them. Researching therapeutic strategies to rekindle regenerative cochlear capacity, therefore, requires the generation of animal models in which cochlear hair cells are eliminated. This review discusses different approaches to ablate cochlear hair cells in adult mice. We inventoried the cochlear cyto- and histo-pathology caused by acoustic overstimulation, systemic and locally applied drugs, and various genetic tools. The focus is not to prescribe a perfect damage model but to highlight the limitations and advantages of existing approaches and identify areas for further refinement of damage models for use in regenerative studies.
Collapse
Affiliation(s)
- Ayse Maraslioglu-Sperber
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Fabian Blanc
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Otolaryngology - Head & Neck Surgery, University Hospital Gui de Chauliac, University of Montpellier, Montpellier, France
| | - Stefan Heller
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
9
|
Anselmi C, Fuller GK, Stolfi A, Groves AK, Manni L. Sensory cells in tunicates: insights into mechanoreceptor evolution. Front Cell Dev Biol 2024; 12:1359207. [PMID: 38550380 PMCID: PMC10973136 DOI: 10.3389/fcell.2024.1359207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
Tunicates, the sister group of vertebrates, offer a unique perspective for evolutionary developmental studies (Evo-Devo) due to their simple anatomical organization. Moreover, the separation of tunicates from vertebrates predated the vertebrate-specific genome duplications. As adults, they include both sessile and pelagic species, with very limited mobility requirements related mainly to water filtration. In sessile species, larvae exhibit simple swimming behaviors that are required for the selection of a suitable substrate on which to metamorphose. Despite their apparent simplicity, tunicates display a variety of mechanoreceptor structures involving both primary and secondary sensory cells (i.e., coronal sensory cells). This review encapsulates two decades of research on tunicate mechanoreception focusing on the coronal organ's sensory cells as prime candidates for understanding the evolution of vertebrate hair cells of the inner ear and the lateral line organ. The review spans anatomical, cellular and molecular levels emphasizing both similarity and differences between tunicate and vertebrate mechanoreception strategies. The evolutionary significance of mechanoreception is discussed within the broader context of Evo-Devo studies, shedding light on the intricate pathways that have shaped the sensory system in chordates.
Collapse
Affiliation(s)
- Chiara Anselmi
- Hopkins Marine Station, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Pacific Grove, CA, United States
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, United States
| | - Gwynna K. Fuller
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| | - Alberto Stolfi
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States
| | - Andrew K. Groves
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Lucia Manni
- Dipartimento di Biologia, Università degli Studi di Padova, Padova, Italy
| |
Collapse
|
10
|
Eshel M, Milon B, Hertzano R, Elkon R. The cells of the sensory epithelium, and not the stria vascularis, are the main cochlear cells related to the genetic pathogenesis of age-related hearing loss. Am J Hum Genet 2024; 111:614-617. [PMID: 38330941 PMCID: PMC10940011 DOI: 10.1016/j.ajhg.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 02/10/2024] Open
Abstract
Age-related hearing loss (ARHL) is a major health concern among the elderly population. It is hoped that increasing our understanding of its underlying pathophysiological processes will lead to the development of novel therapies. Recent genome-wide association studies (GWASs) discovered a few dozen genetic variants in association with elevated risk for ARHL. Integrated analysis of GWAS results and transcriptomics data is a powerful approach for elucidating specific cell types that are involved in disease pathogenesis. Intriguingly, recent studies that applied such bioinformatics approaches to ARHL resulted in disagreeing findings as for the key cell types that are most strongly linked to the genetic pathogenesis of ARHL. These conflicting studies pointed either to cochlear sensory epithelial or to stria vascularis cells as the cell types most prominently involved in the genetic basis of ARHL. Seeking to resolve this discrepancy, we integrated the analysis of four ARHL GWAS datasets with four independent inner-ear single-cell RNA-sequencing datasets. Our analysis clearly points to the cochlear sensory epithelial cells as the key cells for the genetic predisposition to ARHL. We also explain the limitation of the bioinformatics analysis performed by previous studies that led to missing the enrichment for ARHL GWAS signal in sensory epithelial cells. Collectively, we show that cochlear epithelial cells, not stria vascularis cells, are the main inner-ear cells related to the genetic pathogenesis of ARHL.
Collapse
Affiliation(s)
- Mai Eshel
- Department of Human Molecular Genetics and Biochemistry, School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Beatrice Milon
- Neurotology Branch, NIDCD, National Institutes of Health, Bethesda, MD, USA
| | - Ronna Hertzano
- Neurotology Branch, NIDCD, National Institutes of Health, Bethesda, MD, USA.
| | - Ran Elkon
- Department of Human Molecular Genetics and Biochemistry, School of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
11
|
McGovern MM, Hosamani IV, Niu Y, Nguyen KY, Zong C, Groves AK. Expression of Atoh1, Gfi1, and Pou4f3 in the mature cochlea reprograms nonsensory cells into hair cells. Proc Natl Acad Sci U S A 2024; 121:e2304680121. [PMID: 38266052 PMCID: PMC10835112 DOI: 10.1073/pnas.2304680121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 12/08/2023] [Indexed: 01/26/2024] Open
Abstract
Mechanosensory hair cells of the mature mammalian organ of Corti do not regenerate; consequently, loss of hair cells leads to permanent hearing loss. Although nonmammalian vertebrates can regenerate hair cells from neighboring supporting cells, many humans with severe hearing loss lack both hair cells and supporting cells, with the organ of Corti being replaced by a flat epithelium of nonsensory cells. To determine whether the mature cochlea can produce hair cells in vivo, we reprogrammed nonsensory cells adjacent to the organ of Corti with three hair cell transcription factors: Gfi1, Atoh1, and Pou4f3. We generated numerous hair cell-like cells in nonsensory regions of the cochlea and new hair cells continued to be added over a period of 9 wk. Significantly, cells adjacent to reprogrammed hair cells expressed markers of supporting cells, suggesting that transcription factor reprogramming of nonsensory cochlear cells in adult animals can generate mosaics of sensory cells like those seen in the organ of Corti. Generating such sensory mosaics by reprogramming may represent a potential strategy for hearing restoration in humans.
Collapse
Affiliation(s)
| | - Ishwar V. Hosamani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX77030
| | - Yichi Niu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX77030
| | - Ken Y. Nguyen
- Department of Neuroscience, Baylor College of Medicine, Houston, TX77030
| | - Chenghang Zong
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX77030
| | - Andrew K. Groves
- Department of Neuroscience, Baylor College of Medicine, Houston, TX77030
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX77030
| |
Collapse
|
12
|
Qi J, Huang W, Lu Y, Yang X, Zhou Y, Chen T, Wang X, Yu Y, Sun JQ, Chai R. Stem Cell-Based Hair Cell Regeneration and Therapy in the Inner Ear. Neurosci Bull 2024; 40:113-126. [PMID: 37787875 PMCID: PMC10774470 DOI: 10.1007/s12264-023-01130-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 06/01/2023] [Indexed: 10/04/2023] Open
Abstract
Hearing loss has become increasingly prevalent and causes considerable disability, thus gravely burdening the global economy. Irreversible loss of hair cells is a main cause of sensorineural hearing loss, and currently, the only relatively effective clinical treatments are limited to digital hearing equipment like cochlear implants and hearing aids, but these are of limited benefit in patients. It is therefore urgent to understand the mechanisms of damage repair in order to develop new neuroprotective strategies. At present, how to promote the regeneration of functional hair cells is a key scientific question in the field of hearing research. Multiple signaling pathways and transcriptional factors trigger the activation of hair cell progenitors and ensure the maturation of newborn hair cells, and in this article, we first review the principal mechanisms underlying hair cell reproduction. We then further discuss therapeutic strategies involving the co-regulation of multiple signaling pathways in order to induce effective functional hair cell regeneration after degeneration, and we summarize current achievements in hair cell regeneration. Lastly, we discuss potential future approaches, such as small molecule drugs and gene therapy, which might be applied for regenerating functional hair cells in the clinic.
Collapse
Affiliation(s)
- Jieyu Qi
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Wenjuan Huang
- Hospital of Southeast University, Nanjing, 210096, China
| | - Yicheng Lu
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Xuehan Yang
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Yinyi Zhou
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Tian Chen
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Xiaohan Wang
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Yafeng Yu
- First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
| | - Jia-Qiang Sun
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China.
| | - Renjie Chai
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China.
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China.
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Science, Beijing, 100101, China.
| |
Collapse
|
13
|
Tisi A, Palaniappan S, Maccarrone M. Advanced Omics Techniques for Understanding Cochlear Genome, Epigenome, and Transcriptome in Health and Disease. Biomolecules 2023; 13:1534. [PMID: 37892216 PMCID: PMC10605747 DOI: 10.3390/biom13101534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/10/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Advanced genomics, transcriptomics, and epigenomics techniques are providing unprecedented insights into the understanding of the molecular underpinnings of the central nervous system, including the neuro-sensory cochlea of the inner ear. Here, we report for the first time a comprehensive and updated overview of the most advanced omics techniques for the study of nucleic acids and their applications in cochlear research. We describe the available in vitro and in vivo models for hearing research and the principles of genomics, transcriptomics, and epigenomics, alongside their most advanced technologies (like single-cell omics and spatial omics), which allow for the investigation of the molecular events that occur at a single-cell resolution while retaining the spatial information.
Collapse
Affiliation(s)
- Annamaria Tisi
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
| | - Sakthimala Palaniappan
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
| | - Mauro Maccarrone
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
- Laboratory of Lipid Neurochemistry, European Center for Brain Research (CERC), Santa Lucia Foundation IRCCS, 00143 Rome, Italy
| |
Collapse
|
14
|
Bhati M, Thakre S, Anjankar A. Nissl Granules, Axonal Regeneration, and Regenerative Therapeutics: A Comprehensive Review. Cureus 2023; 15:e47872. [PMID: 38022048 PMCID: PMC10681117 DOI: 10.7759/cureus.47872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 10/28/2023] [Indexed: 12/01/2023] Open
Abstract
Nissl granules, traditionally recognized for their pivotal role in protein synthesis within neuronal cell bodies, are emerging as intriguing components with far-reaching implications in the realm of regenerative therapeutics. This abstract encapsulates the essence of a comprehensive review, exploring the nexus between Nissl granules, axonal regeneration, and their transformative applications in regenerative medicine. The molecular intricacies of Nissl granules form the foundation of this exploration, unraveling their dynamic role in orchestrating cellular responses, particularly in the context of axonal regeneration. As we delve into the interplay between Nissl granules and regenerative processes, this review highlights the diverse mechanisms through which these granules contribute to neuronal repair and recovery. Beyond their conventional association with neurobiology, recent advancements underscore the translational potential of Nissl granules as therapeutic agents. Insights into their involvement in enhancing axonal regeneration prompt a reconsideration of these granules as key players in the broader field of regenerative medicine. The abstract encapsulates evidence suggesting that modulating Nissl granule-related pathways holds promise for augmenting tissue regeneration, extending their applicability beyond the confines of the nervous system. This review aims to serve as a valuable resource for medical professionals, researchers, and clinicians seeking to comprehend the multifaceted role of Nissl granules in regenerative therapeutics. By illuminating the intricate connections between Nissl granules, axonal regeneration, and therapeutic applications, this work aspires to catalyze further research and innovation, ultimately contributing to the evolution of regenerative strategies that harness the innate reparative capacities within cellular constituents.
Collapse
Affiliation(s)
- Manya Bhati
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Swedaj Thakre
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Ashish Anjankar
- Biochemistry, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
15
|
Nguyen JD, Llamas J, Shi T, Crump JG, Groves AK, Segil N. DNA methylation in the mouse cochlea promotes maturation of supporting cells and contributes to the failure of hair cell regeneration. Proc Natl Acad Sci U S A 2023; 120:e2300839120. [PMID: 37549271 PMCID: PMC10438394 DOI: 10.1073/pnas.2300839120] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 07/11/2023] [Indexed: 08/09/2023] Open
Abstract
Mammalian hair cells do not functionally regenerate in adulthood but can regenerate at embryonic and neonatal stages in mice by direct transdifferentiation of neighboring supporting cells into new hair cells. Previous work showed loss of transdifferentiation potential of supporting cells is in part due to H3K4me1 enhancer decommissioning of the hair cell gene regulatory network during the first postnatal week. However, inhibiting this decommissioning only partially preserves transdifferentiation potential. Therefore, we explored other repressive epigenetic modifications that may be responsible for this loss of plasticity. We find supporting cells progressively accumulate DNA methylation at promoters of developmentally regulated hair cell genes. Specifically, DNA methylation overlaps with binding sites of Atoh1, a key transcription factor for hair cell fate. We further show that DNA hypermethylation replaces H3K27me3-mediated repression of hair cell genes in mature supporting cells, and is accompanied by progressive loss of chromatin accessibility, suggestive of facultative heterochromatin formation. Another subset of hair cell loci is hypermethylated in supporting cells, but not in hair cells. Ten-eleven translocation (TET) enzyme-mediated demethylation of these hypermethylated sites is necessary for neonatal supporting cells to transdifferentiate into hair cells. We also observe changes in chromatin accessibility of supporting cell subtypes at the single-cell level with increasing age: Gene programs promoting sensory epithelium development loses chromatin accessibility, in favor of gene programs that promote physiological maturation and function of the cochlea. We also find chromatin accessibility is partially recovered in a chronically deafened mouse model, which holds promise for future translational efforts in hearing restoration.
Collapse
Affiliation(s)
- John D. Nguyen
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of the University of Southern California, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Biology at the University of Southern California, Los Angeles, CA90033
| | - Juan Llamas
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of the University of Southern California, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Biology at the University of Southern California, Los Angeles, CA90033
- Caruso Department of Otolaryngology-Head and Neck Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, CA90033
| | - Tuo Shi
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of the University of Southern California, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Biology at the University of Southern California, Los Angeles, CA90033
- Caruso Department of Otolaryngology-Head and Neck Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, CA90033
| | - J. Gage Crump
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of the University of Southern California, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Biology at the University of Southern California, Los Angeles, CA90033
| | - Andrew K. Groves
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX77030
- Department of Neuroscience, Baylor College of Medicine, Houston, TX77030
| | - Neil Segil
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of the University of Southern California, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Biology at the University of Southern California, Los Angeles, CA90033
- Caruso Department of Otolaryngology-Head and Neck Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, CA90033
| |
Collapse
|
16
|
Sun Y, Liu Z. Recent advances in molecular studies on cochlear development and regeneration. Curr Opin Neurobiol 2023; 81:102745. [PMID: 37356371 DOI: 10.1016/j.conb.2023.102745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/06/2023] [Accepted: 05/25/2023] [Indexed: 06/27/2023]
Abstract
The auditory organ cochlea harbors two types of sound receptors, inner hair cells (IHCs) and outer hair cells (OHCs), which are innervated by spiral (auditory) ganglion neurons (SGNs). Recent transcriptomic, epigenetic, and genetic studies have started to reveal various aspects of cochlear development, including how prosensory progenitors are specified and diversified into IHCs or OHCs, as well as the heterogeneity among SGNs and how SGN subtypes are formed. Here, we primarily review advances in this line of research over the past five years and discuss a few key studies (from the past two years) to elucidate (1) how prosensory progenitors are specified; (2) the cis-regulatory control of Atoh1 expression and the synergistic interaction between Atoh1 and Pou4f3; and (3) the essential roles of Insm1 and Ikzf2 in OHC development and Tbx2 in IHC development. Moreover, we highlight the contribution of recent molecular studies on cochlear development toward the goal of regenerating IHCs and OHCs, which holds considerable potential for application in treating human deafness. Lastly, we briefly summarize the most recent progress on uncovering when and how SGN diversity is generated.
Collapse
Affiliation(s)
- Yuwei Sun
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Zhiyong Liu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China; Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, 201210, China.
| |
Collapse
|
17
|
Ueda Y, Nakamura T, Nie J, Solivais AJ, Hoffman JR, Daye BJ, Hashino E. Defining developmental trajectories of prosensory cells in human inner ear organoids at single-cell resolution. Development 2023; 150:dev201071. [PMID: 37381908 PMCID: PMC10323240 DOI: 10.1242/dev.201071] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 05/24/2023] [Indexed: 06/29/2023]
Abstract
The inner ear sensory epithelia contain mechanosensitive hair cells and supporting cells. Both cell types arise from SOX2-expressing prosensory cells, but the mechanisms underlying the diversification of these cell lineages remain unclear. To determine the transcriptional trajectory of prosensory cells, we established a SOX2-2A-ntdTomato human embryonic stem cell line using CRISPR/Cas9, and performed single-cell RNA-sequencing analyses with SOX2-positive cells isolated from inner ear organoids at various time points between differentiation days 20 and 60. Our pseudotime analysis suggests that vestibular type II hair cells arise primarily from supporting cells, rather than bi-fated prosensory cells in organoids. Moreover, ion channel- and ion-transporter-related gene sets were enriched in supporting cells versus prosensory cells, whereas Wnt signaling-related gene sets were enriched in hair cells versus supporting cells. These findings provide valuable insights into how prosensory cells give rise to hair cells and supporting cells during human inner ear development, and may provide a clue to promote hair cell regeneration from resident supporting cells in individuals with hearing loss or balance disorders.
Collapse
Affiliation(s)
- Yoshitomo Ueda
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Takashi Nakamura
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Jing Nie
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Alexander J. Solivais
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - John R. Hoffman
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Becca J. Daye
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Eri Hashino
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
18
|
Xiao Y, Li D. The role of epigenetic modifications in sensory hair cell development, survival, and regulation. Front Cell Neurosci 2023; 17:1210279. [PMID: 37388412 PMCID: PMC10300351 DOI: 10.3389/fncel.2023.1210279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 05/23/2023] [Indexed: 07/01/2023] Open
Abstract
The cochlea is the sensory organ in the periphery, and hair cells are its main sensory cells. The development and survival of hair cells are highly controlled processes. When cells face intracellular and environmental stimuli, epigenetic regulation controls the structure and function of the genome in response to different cell fates. During sensory hair cell development, different histone modifications can induce normal numbers of functional hair cells to generate. When individuals are exposed to environmental-related hair cell damage, epigenetic modification also plays a significant role in the regulation of hair cell fate. Since mammalian hair cells cannot regenerate, their loss can cause permanent sensorineural hearing loss. Many breakthroughs have been achieved in recent years in understanding the signaling pathways that determine hair cell regeneration, and it is fascinating to note that epigenetic regulation plays a significant role in hair cell regeneration. In this review, we discuss the role of epigenetics in inner ear cell development, survival and regeneration and the significant impact on hearing protection.
Collapse
|
19
|
Li S, He S, Lu Y, Jia S, Liu Z. Epistatic genetic interactions between Insm1 and Ikzf2 during cochlear outer hair cell development. Cell Rep 2023; 42:112504. [PMID: 37171961 DOI: 10.1016/j.celrep.2023.112504] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/17/2023] [Accepted: 04/27/2023] [Indexed: 05/14/2023] Open
Abstract
The cochlea harbors two types of sound receptors, outer hair cells (OHCs) and inner hair cells (IHCs). OHCs transdifferentiate into IHCs in Insm1 mutants, and OHCs in Ikzf2-deficient mice are dysfunctional and maintain partial IHC gene expression. Insm1 potentially acts as a positive but indirect regulator of Ikzf2, considering that Insm1 is expressed earlier than Ikzf2 and primarily functions as a transcriptional repressor. However, direct evidence of this possibility is lacking. Here, we report the following results: first, Insm1 overexpression in IHCs leads to ectopic Ikzf2 expression. Second, Ikzf2 expression is repressed in Insm1-deficient OHCs, and forced expression of Ikzf2 mitigates the OHC abnormality in Insm1 mutants. Last, dual ablation of Insm1 and Ikzf2 generates a similar OHC phenotype as does Insm1 ablation alone. Collectively, our findings reveal the transcriptional cascade from Insm1 to Ikzf2, which should facilitate future investigation of the molecular mechanisms underlying OHC development and regeneration.
Collapse
Affiliation(s)
- Shuting Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shunji He
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ying Lu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Shiqi Jia
- The First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| | - Zhiyong Liu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 201210, China.
| |
Collapse
|
20
|
Smith-Cortinez N, Tan AK, Stokroos RJ, Versnel H, Straatman LV. Regeneration of Hair Cells from Endogenous Otic Progenitors in the Adult Mammalian Cochlea: Understanding Its Origins and Future Directions. Int J Mol Sci 2023; 24:ijms24097840. [PMID: 37175547 PMCID: PMC10177935 DOI: 10.3390/ijms24097840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Sensorineural hearing loss is caused by damage to sensory hair cells and/or spiral ganglion neurons. In non-mammalian species, hair cell regeneration after damage is observed, even in adulthood. Although the neonatal mammalian cochlea carries regenerative potential, the adult cochlea cannot regenerate lost hair cells. The survival of supporting cells with regenerative potential after cochlear trauma in adults is promising for promoting hair cell regeneration through therapeutic approaches. Targeting these cells by manipulating key signaling pathways that control mammalian cochlear development and non-mammalian hair cell regeneration could lead to regeneration of hair cells in the mammalian cochlea. This review discusses the pathways involved in the development of the cochlea and the impact that trauma has on the regenerative capacity of the endogenous progenitor cells. Furthermore, it discusses the effects of manipulating key signaling pathways targeting supporting cells with progenitor potential to promote hair cell regeneration and translates these findings to the human situation. To improve hearing recovery after hearing loss in adults, we propose a combined approach targeting (1) the endogenous progenitor cells by manipulating signaling pathways (Wnt, Notch, Shh, FGF and BMP/TGFβ signaling pathways), (2) by manipulating epigenetic control, and (3) by applying neurotrophic treatments to promote reinnervation.
Collapse
Affiliation(s)
- Natalia Smith-Cortinez
- Department of Otorhinolaryngology and Head & Neck Surgery, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
- UMC Utrecht Brain Center, Utrecht University, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | - A Katherine Tan
- Department of Otorhinolaryngology and Head & Neck Surgery, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
- UMC Utrecht Brain Center, Utrecht University, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | - Robert J Stokroos
- Department of Otorhinolaryngology and Head & Neck Surgery, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
- UMC Utrecht Brain Center, Utrecht University, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | - Huib Versnel
- Department of Otorhinolaryngology and Head & Neck Surgery, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
- UMC Utrecht Brain Center, Utrecht University, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | - Louise V Straatman
- Department of Otorhinolaryngology and Head & Neck Surgery, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
- UMC Utrecht Brain Center, Utrecht University, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
21
|
Future Pharmacotherapy for Sensorineural Hearing Loss by Protection and Regeneration of Auditory Hair Cells. Pharmaceutics 2023; 15:pharmaceutics15030777. [PMID: 36986638 PMCID: PMC10054686 DOI: 10.3390/pharmaceutics15030777] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/14/2023] [Accepted: 02/24/2023] [Indexed: 03/03/2023] Open
Abstract
Sensorineural hearing loss has been a global burden of diseases for decades. However, according to recent progress in experimental studies on hair cell regeneration and protection, clinical trials of pharmacotherapy for sensorineural hearing loss have rapidly progressed. In this review, we focus on recent clinical trials for hair cell protection and regeneration and outline mechanisms based on associated experimental studies. Outcomes of recent clinical trials provided valuable data regarding the safety and tolerability of intra-cochlear and intra-tympanic applications as drug delivery methods. Recent findings in molecular mechanisms of hair cell regeneration suggested the realization of regenerative medicine for sensorineural hearing loss in the near future.
Collapse
|
22
|
Wang J, Zheng J, Wang H, He H, Li S, Zhang Y, Wang Y, Xu X, Wang S. Gene therapy: an emerging therapy for hair cells regeneration in the cochlea. Front Neurosci 2023; 17:1177791. [PMID: 37207182 PMCID: PMC10188948 DOI: 10.3389/fnins.2023.1177791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/12/2023] [Indexed: 05/21/2023] Open
Abstract
Sensorineural hearing loss is typically caused by damage to the cochlear hair cells (HCs) due to external stimuli or because of one's genetic factors and the inability to convert sound mechanical energy into nerve impulses. Adult mammalian cochlear HCs cannot regenerate spontaneously; therefore, this type of deafness is usually considered irreversible. Studies on the developmental mechanisms of HC differentiation have revealed that nonsensory cells in the cochlea acquire the ability to differentiate into HCs after the overexpression of specific genes, such as Atoh1, which makes HC regeneration possible. Gene therapy, through in vitro selection and editing of target genes, transforms exogenous gene fragments into target cells and alters the expression of genes in target cells to activate the corresponding differentiation developmental program in target cells. This review summarizes the genes that have been associated with the growth and development of cochlear HCs in recent years and provides an overview of gene therapy approaches in the field of HC regeneration. It concludes with a discussion of the limitations of the current therapeutic approaches to facilitate the early implementation of this therapy in a clinical setting.
Collapse
Affiliation(s)
- Jipeng Wang
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jianwei Zheng
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haiyan Wang
- Department of Otolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Haoying He
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Shuang Li
- Department of Otolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Ya Zhang
- Department of Otolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - You Wang
- Department of Stomatology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- *Correspondence: You Wang,
| | - Xiaoxiang Xu
- Department of Otolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Xiaoxiang Xu,
| | - Shuyi Wang
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
- Shuyi Wang,
| |
Collapse
|
23
|
Chen X, Wan H, Bai Y, Zhang Y, Hua Q. Advances in Understanding the Notch Signaling Pathway in the Cochlea. Curr Pharm Des 2023; 29:3266-3273. [PMID: 37990430 DOI: 10.2174/0113816128273532231103110910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/17/2023] [Indexed: 11/23/2023]
Abstract
The cochlear structure is highly complex and specific, and its development is regulated by multiple signaling pathways. Abnormalities in cochlear development can lead to different degrees of loss of function. Hair cells (HCs), which are difficult to regenerate in the mature mammalian cochlea, are susceptible to damage from noise and ototoxic drugs, and damage to HCs can cause hearing loss to varying degrees. Notch, a classical developmental signaling molecule, has been shown to be closely associated with embryonic cochlear development and plays an important role in HC regeneration in mammals, suggesting that the Notch signaling pathway may be a potential therapeutic target for cochlear development and hearing impairment due to HC damage. In recent years, the important role of the Notch signaling pathway in the cochlea has received increasing attention. In this paper, we review the role of Notch signaling in cochlear development and HC regeneration, with the aim of providing new research ideas for the prevention and treatment of related diseases.
Collapse
Affiliation(s)
- Xiaoying Chen
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Huanzhi Wan
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yutong Bai
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yuanyuan Zhang
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Qingquan Hua
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| |
Collapse
|